51
|
Wang S, Li M, Liu P, Dong Y, Geng R, Zheng T, Zheng Q, Li B, Ma P. Col1a1 mediates the focal adhesion pathway affecting hearing in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2024; 185:112349. [PMID: 38103809 DOI: 10.1016/j.exger.2023.112349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Age-related hearing loss (ARHL) is a common neurodegenerative disease. Its molecular mechanisms have not been fully elucidated. In the present study, we obtained differential mRNA expression in the cochlea of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by RNA-seq. Gene ontology (GO) analysis was used to identify molecular functions associated with hearing in miR-29a-/- mice, including being actin binding (GO: 0003779) and immune processes. We focused on the intersection of differential genes, miR-29a target genes and the sensory perception of sound (GO:0007605) genes, with six mRNA at this intersection, and we selected Col1a1 as our target gene. We validated Col1a1 as the direct target of miR-29a by molecular and cellular experiments. Total 6 pathways involved in Col1a1 were identified by through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We selected the focal adhesion pathway as our target pathway based. Their expression levels in miR-29a-/- mice were verified by qRT-PCR and Western blot. Compared with miR-29a+/+ mice, the expression levels of Col1a1, Itga4, Itga2, Itgb3, Itgb7, Pik3r3 and Ptk2 were different in miR-29a-/- mice. Immunofluorescence was used to locate genes in the cochlea. Col1a1, Itga4 and Itgb3 were differentially expressed in the basilar membranes and stria vascularis and spiral ganglion neurons compared to miR-29a+/+ mice. Pik3r3 and Ptk2 were differentially expressed in the basilar membranes and stria vascularis, but not at the s spiral ganglion neurons compared to miR-29a+/+ mice. Our results show that when miR-29a is knocked out, the Col1a1 mediates the focal adhesion pathway may affect the hearing of miR-29a-/- mice. These findings may provide a new direction for effective treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China.
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education, Binzhou Medical University, Yantai, China; School of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
52
|
Wan H, Wang W, Liu J, Zhang Y, Yang B, Hua R, Chen H, Chen S, Hua Q. Cochlear metabolomics, highlighting novel insights of purine metabolic alterations in age-related hearing loss. Hear Res 2023; 440:108913. [PMID: 37939412 DOI: 10.1016/j.heares.2023.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Wenjing Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Rongkai Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; The First Clinical School of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
53
|
Fátima Heredia R, Riestra-Ayora JI, Yanes-Díaz J, Thuissard Vasallo IJ, Andreu-Vázquez C, Sanz-Fernández R, Sánchez-Rodríguez C. Cocoa Polyphenols Prevent Age-Related Hearing Loss and Frailty in an In Vivo Model. Antioxidants (Basel) 2023; 12:1994. [PMID: 38001847 PMCID: PMC10669688 DOI: 10.3390/antiox12111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Age-related hearing loss (ARHL) impairs the quality of life in elderly persons. ARHL is associated with comorbidities, such as depression, falls, or frailty. Frailty syndrome is related to poor health outcomes in old age. ARHL is a potentially modifiable risk factor for frailty. Oxidative stress has been proposed as a key factor underlying the onset and/or development of ARHL and frailty. Cocoa has high levels of polyphenols and provides many health benefits due to its antioxidant properties. Male and female C57Bl/6J mice were randomly assigned to two study groups: animals receiving a cocoa-supplemented diet and the other receiving a standard diet. Then, at the ages of 6, 14, and 22 months, hearing and frailty were measured in all mice. Auditory steady-state responses (ASSR) threshold shifts were measured to different frequencies. The frailty score was based on the "Valencia Score" adapted to the experimental animals. The total antioxidant capacity and total polyphenols in urine samples were also measured. Significant improvements in hearing ability are observed in the cocoa groups at 6, 14, and 22 months compared to the no cocoa group. The cocoa diet significantly retards the development of frailty in mice. Cocoa increases the concentration of polyphenols excreted in the urine, which increases the total antioxidant capacity. In conclusion, cocoa, due to its antioxidant properties, leads to significant protection against ARHL and frailty.
Collapse
Affiliation(s)
- Rosalía Fátima Heredia
- Department Clinical Analysis, Hospital Universitario de Getafe, Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain;
| | - Juan I. Riestra-Ayora
- Otolaryngology Department, Hospital Universitario de Getafe, Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain; (J.I.R.-A.); (J.Y.-D.); (R.S.-F.)
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; (I.J.T.V.); (C.A.-V.)
| | - Joaquín Yanes-Díaz
- Otolaryngology Department, Hospital Universitario de Getafe, Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain; (J.I.R.-A.); (J.Y.-D.); (R.S.-F.)
| | - Israel John Thuissard Vasallo
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; (I.J.T.V.); (C.A.-V.)
| | - Cristina Andreu-Vázquez
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; (I.J.T.V.); (C.A.-V.)
| | - Ricardo Sanz-Fernández
- Otolaryngology Department, Hospital Universitario de Getafe, Carretera de Toledo, km 12.500, 28905 Getafe, Madrid, Spain; (J.I.R.-A.); (J.Y.-D.); (R.S.-F.)
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; (I.J.T.V.); (C.A.-V.)
| | - Carolina Sánchez-Rodríguez
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain; (I.J.T.V.); (C.A.-V.)
| |
Collapse
|
54
|
Zhong Y, Li H, Liu G, Liu J, Mo JJ, Zhao X, Ju Y. Early detection of stroke at the sudden sensorineural hearing loss stage. Front Neurol 2023; 14:1293102. [PMID: 38020605 PMCID: PMC10646485 DOI: 10.3389/fneur.2023.1293102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background and purpose Sudden sensorineural hearing loss (SSNHL) can be a prodromal symptom of ischemic stroke, especially posterior circulation strokes in the anterior inferior cerebellar artery (AICA) area. Early diagnosis and optimal treatment for vascular SSNHL provide an opportunity to prevent more extensive area infarction. The objective of our research was to find clues that suggest stroke at the stage of isolated sudden hearing loss. Methods We retrospectively investigated the medical records of patients who received an initial diagnosis of sudden sensorineural hearing loss upon admission from January 2017 to December 2022 at Capital Medical University Affiliated Beijing Tiantan Hospital. Among these patients, 30 individuals who developed acute ischemic stroke during their hospital stay were enrolled as the case group. To create a control group, we matched individuals from the nonstroke idiopathic SSNHL patients to the case group in terms of age (±3 years old) at a ratio of 1:4. We collected the clinical characteristics, pure tone hearing threshold test results, and imaging information for all patients included in the study. Results Three models were constructed to simulate different clinical situations and to identify vascular sudden sensorineural hearing loss (SSNHL). The results revealed that patients with SSNHL who had three or more stroke risk factors, bilateral hearing loss, moderately severe to total hearing loss, and any intracranial large artery stenosis and occlusion (≥50%) were at a higher risk of developing ischemic stroke during hospitalization. Consistent with previous studies, the presence of vertigo at onset also played a significant role in the early detection of upcoming stroke. Conclusion Clinicians should be alert to SSNHL patients with bilateral hearing loss, moderately severe to total hearing loss and other aforementioned features. Early pure tone audiometric hearing assessment and vascular assessment are necessary for high-risk patients with SSNHL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Ju
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
55
|
Xu K, Chen S, Bai X, Xie L, Qiu Y, Liu X, Wang X, Kong W, Sun Y. Degradation of cochlear Connexin26 accelerate the development of age-related hearing loss. Aging Cell 2023; 22:e13973. [PMID: 37681746 PMCID: PMC10652327 DOI: 10.1111/acel.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
The GJB2 gene, encoding Connexin26 (Cx26), is one of the most common causes of inherited deafness. Clinically, mutations in GJB2 cause congenital deafness or late-onset progressive hearing loss. Recently, it has been reported that Cx26 haploid deficiency accelerates the development of age-related hearing loss (ARHL). However, the roles of cochlear Cx26 in the hearing function of aged animals remain unclear. In this study, we revealed that the Cx26 expression was significantly reduced in the cochleae of aged mice, and further explored the underlying molecular mechanism for Cx26 degradation. Immunofluorescence co-localization results showed that Cx26 was internalized and degraded by lysosomes, which might be one of the important ways for Cx26 degradation in the cochlea of aged mice. Currently, whether the degradation of Cx26 in the cochlea leads directly to ARHL, as well as the mechanism of Cx26 degradation-related hearing loss are still unclear. To address these questions, we generated mice with Cx26 knockout in the adult cochlea as a model for the natural degradation of Cx26. Auditory brainstem response (ABR) results showed that Cx26 knockout mice exhibited high-frequency hearing loss, which gradually progressed over time. Pathological examination also revealed the degeneration of hair cells and spiral ganglions, which is similar to the phenotype of ARHL. In summary, our findings suggest that degradation of Cx26 in the cochlea accelerates the occurrence of ARHL, which may be a novel mechanism of ARHL.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiao‐hui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
56
|
Cheng Y, Chen W, Xu J, Liu H, Chen T, Hu J. Genetic analysis of potential biomarkers and therapeutic targets in age-related hearing loss. Hear Res 2023; 439:108894. [PMID: 37844444 DOI: 10.1016/j.heares.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Age-related hearing loss (ARHL) or presbycusis is the phenomenon of hearing loss due to the aging of auditory organs with age. It seriously affects the cognitive function and quality of life of the elderly. This study is based on comprehensive bioinformatic and machine learning methods to identify the critical genes of ARHL and explore its therapy targets and pathological mechanisms. The ARHL and normal samples were from GSE49543 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to obtain significant modules. The Limma R-package was used to identify differentially expressed genes (DEGs). The 15 common genes of the practical module and DEGs were screened. Functional enrichment analysis suggested that these genes were mainly associated with inflammation, immune response, and infection. Cytoscape software created the protein-protein interaction (PPI) layouts and cytoHubba, support vector machine-recursive feature elimination (SVM-RFE), and random forests (RF) algorithms screened hub genes. After validating the hub gene expressions in GSE6045 and GSE154833 datasets, Clec4n, Mpeg1, and Fcgr3 are highly expressed in ARHL and have higher diagnostic efficacy for ARHL, so they were identified as hub genes. In conclusion, Clec4n, Mpeg1, and Fcgr3 play essential roles in developing ARHL, and they might become vital targets in ARHL diagnosis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yajing Cheng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hang Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ting Chen
- Department of Neurology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
57
|
Newton S, Aguilar C, Bunton-Stasyshyn RK, Flook M, Stewart M, Marcotti W, Brown S, Bowl MR. Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with Cdh23ahl. iScience 2023; 26:108056. [PMID: 37854703 PMCID: PMC10579432 DOI: 10.1016/j.isci.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | | | - Marisa Flook
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Michelle Stewart
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Oxford, Oxfordshire OX11 0RD, UK
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| |
Collapse
|
58
|
Sethukumar P, Mandavia R, Yildirim O, Hazell G, Devakumar H, Ahmed M, Stragier E, Duran MJ, Schilder AG, Mehta N. Cataloging Existing Hearing Loss Cohort Data to Guide the Development of Precision Medicine for Sensorineural Hearing Loss: A Systematic Review of Hearing Repositories. J Int Adv Otol 2023; 19:420-425. [PMID: 37789630 PMCID: PMC10645189 DOI: 10.5152/iao.2023.22690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2023] [Indexed: 10/05/2023] Open
Abstract
Recent breakthroughs in our understanding of sensorineural hearing loss etiology have encouraged the identification of novel hearing therapeutics, paving the way for precision hearing medicine. Critical to this field is the curation of health resources on hearing data. A systematic review of the literature was conducted to map existing (inter)national and regional datasets that include hearing data to inform the development of future hearing repositories. Systematic literature review was performed adhering to Preferred Reporting Items for Systematic Review and MetaAnalysis recommendations. Databases, including those from gray literature, were searched to identify publications reporting on phenotypic and/ or genotypic hearing data in May 2019. The databases reviewed were Medline, PubMed, Embase databases, and Google Scholar. Publications on local datasets were excluded. All hearing datasets identified in the screening process were noted. For each dataset, geography, context, objective, period of time run, numbers and demographics of participants, genomic data, hearing measures and instruments used were extracted and cataloged. One hundred and eighty-eight datasets were identified, containing hearing data on populations ranging from 100 to 1.39 million individuals, and all extracted data have been cataloged. This searchable resource has been made accessible online. This unique catalog provides an overview of existing datasets that contain valuable information on hearing. This can be used to inform the development of national and international patient data repositories for hearing loss and guide strategic collaboration between key stakeholder groups, pivotal to the delivery and development of sensorineural hearing loss precision diagnostics and treatments.
Collapse
Affiliation(s)
- Priya Sethukumar
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, UK
| | - Rishi Mandavia
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, UK
| | - Omursen Yildirim
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, UK
| | - Georgina Hazell
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal Surrey NHS Foundation Trust, Surrey, UK
| | - Haran Devakumar
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- North Middlesex University Hospital Trust, London, UK
| | - Muhammad Ahmed
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- University of Leeds School of Medicine, Leeds, UK
| | | | | | - Anne G.M. Schilder
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, UK
| | - Nishchay Mehta
- National Institute for Health Research, University College London Hospitals Biomedical Research Centre, UK
- evidENT, Ear Institute, University College London, UK
- Royal National ENT and Eastman Dental Hospitals, University College London Hospitals Trust, UK
| |
Collapse
|
59
|
Ramzan M, Duman D, Hendricks LCP, Guo S, Mutlu A, Kalcioglu MT, Seyhan S, Carranza C, Bonyadi M, Mahdieh N, Yildirim-Baylan M, Figueroa-Ildefonso E, Alper O, Atik T, Ayral A, Bozan N, Balta B, Rivas C, Manzoli GN, Huesca-Hernandez F, Kuchay RAH, Durgut M, Bademci G, Tekin M. Genome sequencing identifies coding and non-coding variants for non-syndromic hearing loss. J Hum Genet 2023; 68:657-669. [PMID: 37217689 DOI: 10.1038/s10038-023-01159-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Hearing loss (HL) is a common heterogeneous trait that involves variants in more than 200 genes. In this study, we utilized exome (ES) and genome sequencing (GS) to effectively identify the genetic cause of presumably non-syndromic HL in 322 families from South and West Asia and Latin America. Biallelic GJB2 variants were identified in 58 probands at the time of enrollment these probands were excluded. In addition, upon review of phenotypic findings, 38/322 probands were excluded based on syndromic findings at the time of ascertainment and no further evaluation was performed on those samples. We performed ES as a primary diagnostic tool on one or two affected individuals from 212/226 families. Via ES we detected a total of 78 variants in 30 genes and showed their co-segregation with HL in 71 affected families. Most of the variants were frameshift or missense and affected individuals were either homozygous or compound heterozygous in their respective families. We employed GS as a primary test on a subset of 14 families and a secondary tool on 22 families which were unsolved by ES. Although the cumulative detection rate of causal variants by ES and GS is 40% (89/226), GS alone has led to a molecular diagnosis in 7 of 14 families as the primary tool and 5 of 22 families as the secondary test. GS successfully identified variants present in deep intronic or complex regions not detectable by ES.
Collapse
Affiliation(s)
- Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - LeShon Chere Peart Hendricks
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ahmet Mutlu
- Department of Otorhinolaryngology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Mahmut Tayyar Kalcioglu
- Department of Otorhinolaryngology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, Turkey
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Serhat Seyhan
- Department of Medical Genetics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Claudia Carranza
- Institute for Research on Genetic and Metabolic Diseases, INVEGEM, Guatemala City, Guatemala
| | - Murtaza Bonyadi
- Faculty of Natural Sciences, Center of Excellence for Biodiversity, University of Tabriz, Tabriz, Iran
| | - Nejat Mahdieh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Erick Figueroa-Ildefonso
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Universidad Peruana Cayetano Heredia, Lima, 15102, Peru
| | - Ozgul Alper
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Ege University, Izmir, Turkey
| | - Abdurrahman Ayral
- Department of Otolaryngology, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| | - Nazim Bozan
- Department of Otolaryngology, Faculty of Medicine, Yuzuncu Yıl University, Van, Turkey
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey
| | | | - Gabrielle N Manzoli
- Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Fabiola Huesca-Hernandez
- Genetics and Genomic Medicine Service. National Institute of Rehabilitation, Mexico City, Mexico
| | - Raja A H Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | - Merve Durgut
- Kocaeli University Otorhinolaryngology Department- Audiology Unit, İzmit, Turkey
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
60
|
Boven C, Roberts R, Biggus J, Patel M, Matsuoka AJ, Richter CP. In-situ hearing threshold estimation using Gaussian process classification. Sci Rep 2023; 13:14667. [PMID: 37673944 PMCID: PMC10482858 DOI: 10.1038/s41598-023-40495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
One in six Americans suffers from hearing loss. While treatment with amplification is possible for many, the acceptance rate of hearing aids is low. Poor device fitting is one of the reasons. The hearing aid fitting starts with a detailed hearing assessment by a trained audiologist in a sound-controlled environment, using standard equipment. The hearing aid is adjusted step-by-step, following well-described procedures based on the audiogram. However, for many patients in rural settings, considerable travel time to a hearing center discourages them from receiving a hearing test and treatment. We hypothesize that hearing assessment with the patient's hearing aid can reliably substitute the hearing test in the clinic. Over-the-counter hearing aids could be programmed from a distance and fine-tuned by the hearing aid wearer. This study shows that a patient-controlled hearing assessment via a hearing aid in a non-clinical setting is not statistically different from an audiologist-controlled hearing assessment in a clinical setting. The differences in hearing obtained with our device and the Gaussian Process are within 3 dB of the standard audiogram. At 250 Hz, the sound delivery with the hearing aid used in this study added an additional reduction of sound level, which was not compensated.
Collapse
Affiliation(s)
- Christopher Boven
- Soundwave Hearing, LLC, 619 Enterprise Drive #205, Oakbrook, IL, 60523, USA
| | - Reagan Roberts
- Soundwave Hearing, LLC, 619 Enterprise Drive #205, Oakbrook, IL, 60523, USA
| | - Jeff Biggus
- Soundwave Hearing, LLC, 619 Enterprise Drive #205, Oakbrook, IL, 60523, USA
| | - Malini Patel
- Northwestern Medical Group, 675 N. St. Clair, Suite 15-200, Chicago, IL, 60611, USA
| | - Akihiro J Matsuoka
- Northwestern Medical Group, 675 N. St. Clair, Suite 15-200, Chicago, IL, 60611, USA
- Department of Otolaryngology, Northwestern University, 320 E. Superior Street, Chicago, IL, 60611, USA
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, 60201, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Evanston, IL, 60201, USA
- Center for Advanced Regenerative Engineering, Evanston, IL, 60201, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University, 320 E. Superior Street, Chicago, IL, 60611, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, 60201, USA.
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Evanston, IL, 60201, USA.
- Department of Biomedical Engineering, Northwestern University, 320 E. Superior Street, Chicago, IL, 60611, USA.
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Searle Building 12-470; 303 E. Chicago Avenue, Chicago, IL, 60611-3008, USA.
| |
Collapse
|
61
|
Brennan JR, Sharma R, Lindquist NR, Cass ND, Krishnapura SG, Kloosterman N, Perkins E, Bennett ML, O'Malley MR, Haynes DS, Tawfik KO. Presbycusis and Hearing Preservation in Observed Vestibular Schwannomas. Otol Neurotol 2023; 44:817-821. [PMID: 37442597 DOI: 10.1097/mao.0000000000003947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
OBJECTIVE We reviewed a cohort of patients with untreated sporadic vestibular schwannoma (VS) and examined the relationship between high-frequency hearing loss (HFHL) in the non-VS ear and long-term hearing outcomes in the VS-affected ear. We hypothesized that the progression of HFHL is associated with accelerated hearing decline in sporadic VS. STUDY DESIGN Retrospective cohort study. SETTING Tertiary center. PATIENTS We studied 102 patients with sporadic VS diagnosed from 1999 to 2015 with ≥5 years of observation (median, 6.92; interquartile range, 5.85-9.29). Sixty-six patients had AAO-HNS class A/B hearing at presentation and were included in analysis. INTERVENTIONS Audiometry, serial magnetic resonance imaging for observation of VS. MAIN OUTCOME MEASURES Four-frequency pure tone average (PTA) and word recognition scores (WRS) in the VS-affected ear. Decline in high-frequency PTA (average of thresholds at 4000, 6000, and 8,000 Hz) was defined as ≥10 dB during the study period. Decline in WRS was defined as ≥10%. RESULTS Compared with those without, patients with progressive HFHL in the non-VS ear were more likely to experience a decline in WRS in the VS ear (80% vs. 54%, p = 0.031). However, the same group showed no difference (52% vs. 41%, p = 0.40) in decline in PTA of the VS ear. CONCLUSIONS Patients with observed VS who experience progressive HFHL in the non-VS ear are more likely to experience significant declines in speech understanding in the VS-affected ear over time. Patients with a history of presbycusis may have an increased risk of losing serviceable hearing because of sporadic VS.
Collapse
Affiliation(s)
- Julia R Brennan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
63
|
Ito S, Nakashima H, Segi N, Ouchida J, Ishizuka S, Takegami Y, Yoshida T, Hasegawa Y, Imagama S. Association between Locomotive Syndrome and Hearing Loss in Community-Dwelling Adults. J Clin Med 2023; 12:5626. [PMID: 37685693 PMCID: PMC10488682 DOI: 10.3390/jcm12175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
The relationship between hearing and motor function as a function of aging is unclear. Therefore, we aimed to clarify the relationship between age-related hearing loss and locomotive syndrome. In total, 240 participants aged ≥40 years, whose hearing acuity and motor function had been measured, were included in this study. Patients with a hearing acuity of <35 dB and ≥35 dB were categorized into normal and low hearing acuity groups, respectively. Motor function was compared according to sex between the groups. Among men, those in the low hearing acuity group (51/100) were older, had a significantly slower walking speed, and had a higher prevalence of locomotive syndrome than those in the normal group. Among women, those in the low hearing group (14/140) were older and had a significantly slower gait speed than those in the normal group. The multivariate analysis showed that, in the low hearing acuity group, age and gait speed were risk factors in men, while age was the only risk factor in women. In conclusion, hearing loss was associated with walking speed. The association between hearing loss and locomotive syndrome was observed only in men. In the multivariate analysis, hearing loss was associated with walking speed only in men.
Collapse
Affiliation(s)
- Sadayuki Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Naoki Segi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Jun Ouchida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Yasuhiko Takegami
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan;
| | - Yukiharu Hasegawa
- Department of Rehabilitation, Kansai University of Welfare Science, Kashiwara 582-0026, Osaka, Japan;
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Aichi, Japan; (S.I.); (N.S.); (J.O.); (S.I.); (Y.T.); (S.I.)
| |
Collapse
|
64
|
Readman MR, Wan F, Fairman I, Linkenauger SA, Crawford TJ, Plack CJ. Is Hearing Loss a Risk Factor for Idiopathic Parkinson's Disease? An English Longitudinal Study of Ageing Analysis. Brain Sci 2023; 13:1196. [PMID: 37626551 PMCID: PMC10452744 DOI: 10.3390/brainsci13081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Observations that hearing loss is a substantial risk factor for dementia may be accounted for by a common pathology. Mitochondrial oxidative stress and alterations in α-synuclein pathology may be common pathology candidates. Crucially, these candidate pathologies are implicated in Parkinson's disease (PD). Consequently, hearing loss may be a risk factor for PD. Subsequently, this prospective cohort study of the English Longitudinal Study of Ageing examines whether hearing loss is a risk factor for PD longitudinally. Participants reporting self-reported hearing capabilities and no PD diagnosis prior to entry (n = 14,340) were used. A joint longitudinal and survival model showed that during a median follow up of 10 years (SD = 4.67 years) increased PD risk (p < 0.001), but not self-reported hearing capability (p = 0.402). Additionally, an exploratory binary logistic regression modelling the influence of hearing loss identified using a screening test (n = 4812) on incident PD indicated that neither moderate (p = 0.794), nor moderately severe/severe hearing loss (p = 0.5210), increased PD risk, compared with normal hearing. Whilst discrepancies with prior literature may suggest a neurological link between hearing loss and PD, further large-scale analyses using clinically derived hearing loss are needed.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool L69 3BX, UK
- NIHR ARC NWC, Liverpool L7 8XP, UK
| | - Fang Wan
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YW, UK
| | - Ian Fairman
- Public Advisor, Associated with Lancaster University Psychology Department, Lancaster LA1 4YF, UK
| | | | | | - Christopher J. Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YW, UK
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
65
|
Miwa T, Katsuno T, Wei F, Tomizawa K. Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss. FEBS Open Bio 2023; 13:1365-1374. [PMID: 37258461 PMCID: PMC10315731 DOI: 10.1002/2211-5463.13655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Previous studies have revealed that age-related hearing loss (AHL) in Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1)-knockout mice is associated with pathology in the cochlea. Here, we aimed to identify mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with AHL. Mitochondria in the spiral ganglion neurons (SGNs) and hair cells (HCs) were normal despite senescence; however, the mitochondria of types I, II, and IV spiral ligament fibrocytes were ballooned, damaged, and ballooned, respectively, in the stria vascularis. Our results suggest that the accumulation of dysfunctional mitochondria in the lateral wall, rather than the loss of HCs and SGNs, leads to the onset of AHL. Our results provide valuable information regarding the underlying mechanisms of AHL and the relationship between aberrant tRNA modification-induced hearing loss and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology‐Head and Neck Surgery, Graduate School of MedicineKyoto UniversityJapan
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Tatsuya Katsuno
- Department of Otolaryngology‐Head and Neck SurgeryOsaka Metropolitan UniversityJapan
| | - Fan‐Yan Wei
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityJapan
| |
Collapse
|
66
|
Watarai G, Suzuki J, Motoike IN, Sakurai M, Ikeda R, Kawase T, Kinoshita K, Hozawa A, Kuriyama S, Fuse N, Yamamoto M, Katori Y. Relationship between age-related hearing loss and consumption of coffee and tea. Geriatr Gerontol Int 2023; 23:453-456. [PMID: 37132547 DOI: 10.1111/ggi.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Gosuke Watarai
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Miyuki Sakurai
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology-Head and Neck Surgery, Iwate Medical University, Iwate, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
- Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
67
|
Li N, Yan X, Huang W, Chu M, Dong Y, Song H, Peng Y, Shi J, Liu Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem Pharmacol 2023; 212:115575. [PMID: 37334787 DOI: 10.1016/j.bcp.2023.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023]
Abstract
Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.
Collapse
Affiliation(s)
- Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiling Huang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
68
|
Chen Z, Yu L, Li W, Zhang H, Huang X, Chen W, Wang D. Association of vitamins with hearing loss, vision disorder and sleep problem in the US general population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53876-53886. [PMID: 36867331 DOI: 10.1007/s11356-023-26164-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Based on nationally representative samples from US, we aimed to assess the associations of vitamins with hearing loss, vision disorder and sleep problem. A total of 25,312, 8425 and 24,234 participants were included in this study to investigate the relationship of vitamins with hearing loss, vision disorder and sleep problem from National Health and Nutrition Examination Survey, respectively. Vitamins including niacin, folic acid, vitamin B6, A, C, E and carotenoids were considered in our study. Logistic regression models were used to assess the associations between all included dietary vitamin intake concentrations and the prevalence of specific outcomes. Increased lycopene (odds ratio [OR]: 0.904, 95% confidence interval [CI]: 0.829-0.985) intake was associated with a deceased prevalence of hearing loss. Higher dietary intake of folic acid (OR: 0.637, 95% CI: 0.443-0.904), vitamin B6 (0.667, 0.465-0.947), alpha-carotene (0.695, 0.494-0.968), beta-carotene (0.703, 0.505-0.969) and lutein + zeaxanthin (0.640, 0.455-0.892) were associated with a decreased prevalence of vision disorder. The inversely associations of sleeping problem with niacin (OR: 0.902, 95% CI: 0.826-0.985), folic acid (0.882, 0.811-0.959), vitamin B6 (0.892, 0.818-0.973), vitamin C (0.908, 0.835-0.987), vitamin E (0.885, 0.813-0.963) and lycopene (0.919, 0.845-0.998) were also observed. Our findings provide evidence that increased specific vitamin intake is associated with decreased prevalence of hearing loss, vision disorder and sleep problem.
Collapse
Affiliation(s)
- Zhaomin Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Linling Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Haozhe Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuezan Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
69
|
Yuan L, Li D, Tian Y, Sun Y. The association between residential greenness and hearing impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51113-51124. [PMID: 36807037 DOI: 10.1007/s11356-023-25952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Growing evidence shows that residential greenness is beneficial for various health outcomes, but the link between residential greenness and hearing impairment has not been explored. We aimed to explore the link between residential greenness and hearing impairment using baseline data from the UK Biobank. We used data from 107,516 participants between the ages of 40 and 69 years in the UK Biobank from 2006 to 2010. The normalized difference vegetation index (NDVI) was used to measure the residential greenness. We defined hearing impairment using the digital triplet test. Logistic regression models were conducted to examine the association of residential greenness with hearing impairment. Each interquartile increment in NDVI was associated with 19% lower odds of hearing impairment (odds ratio, OR 0.81; 95% confidence interval, 95% CI 0.79-0.83). Compared with participants in the first NDVI quartile, those in the second, third, and fourth NDVI quartiles had lower odds of hearing impairment (OR 0.69, 95% CI 0.65-0.73 for the second; OR 0.76, 95% CI 0.72-0.81 for the third; OR 0.68, 95% CI 0.65-0.72 for the fourth). Age and Townsend deprivation index showed moderating effects on this association. Our findings showed a negative association between residential greenness and hearing impairment, which might provide potential value for developing cost-effective greenness design and configuration interventions to reduce the risk of hearing impairment.
Collapse
Affiliation(s)
- Lanlai Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
70
|
Paciello F, Pisani A, Rinaudo M, Cocco S, Paludetti G, Fetoni AR, Grassi C. Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiol Dis 2023; 178:106024. [PMID: 36724860 DOI: 10.1016/j.nbd.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Several studies identified noise-induced hearing loss (NIHL) as a risk factor for sensory aging and cognitive decline processes, including neurodegenerative diseases, such as dementia and age-related hearing loss (ARHL). Although the association between noise- and age-induced hearing impairment has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood as it is not known how these risk factors (aging and noise) can interact, affecting memory processes. We recently found that early noise exposure in an established animal model of ARHL (C57BL/6 mice) accelerates the onset of age-related cochlear dysfunctions. Here, we extended our previous data by investigating what happens in central brain structures (auditory cortex and hippocampus), to assess the relationship between hearing and memory impairment and the possible combined effect of noise and sensory aging on the cognitive domain. To this aim, we exposed juvenile C57BL/6 mice of 2 months of age to repeated noise sessions (60 min/day, pure tone of 100 dB SPL, 10 kHz, 10 consecutive days) and we monitored auditory threshold by measuring auditory brainstem responses (ABR), spatial working memory, by using the Y-maze test, and basal synaptic transmission by using ex vivo electrophysiological recordings, at different time points (1, 4 and 7 months after the onset of noise exposure, corresponding to 3, 6 and 9 months of age). We found that hearing loss, along with accelerated presbycusis onset, can induce persistent synaptic alterations in the auditory cortex. This was associated with decreased memory performance and oxidative-inflammatory injury in the hippocampus, the extra-auditory structure involved in memory processes. Collectively, our data confirm the critical relationship between auditory and memory circuits, suggesting that the combined detrimental effect of noise and sensory aging on hearing function can be considered a high-risk factor for both sensory and cognitive degenerative processes, given that early noise exposure accelerates presbycusis phenotype and induces hippocampal-dependent memory dysfunctions.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
71
|
Kim MJ, Carmichael PB, Bose U, Honkura Y, Suzuki J, Ding D, Erfe SL, Simms SS, Avaiya KA, Milani MN, Rymer EJ, Fragnito DT, Strom N, Salvi R, Someya S. Sex differences in body composition, voluntary wheel running activity, balance performance, and auditory function in CBA/CaJ mice across the lifespan. Hear Res 2023; 428:108684. [PMID: 36599258 PMCID: PMC11446250 DOI: 10.1016/j.heares.2022.108684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Peter B Carmichael
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Upal Bose
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Yohei Honkura
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Samantha L Erfe
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Kishan A Avaiya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Elizabeth J Rymer
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Daniella T Fragnito
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Nathan Strom
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
72
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
73
|
Schutte DL, Jenuwine ES, Templin T, Schutte BC. Perceived Hearing Impairment in a Rural Community. Res Gerontol Nurs 2023; 16:21-32. [PMID: 36692440 DOI: 10.3928/19404921-20230104-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CoSAGE Community Advisory and Ethics Committee; Age-related hearing impairment yields many negative outcomes, including alterations in mental health, functional impairments, and decreased social engagement. The purpose of the current study was to examine perceived hearing impairment and its relationship with person-centered outcomes among adults in a rural community setting. A cross-sectional, descriptive correlational design was used. Survey packets of validated instruments were distributed following all weekend services at a rural community church; 72 completed surveys were returned (26% response rate). Descriptive and inferential statistics, including Spearman's rank correlations (rs), were used to address the study aims. Mean age of participants was 54 years (SD = 17 years), 58% were female, and 97% attended church regularly. Thirty-one percent of respondents reported moderate to severe hearing impairment. Perceived hearing impairment was associated with more depressive symptoms (rs = 0.24, p = 0.052), poorer attentional function (rs = -0.29, p = 0.016), and decreased quality of life in the mental health domain (rs = -0.21, p = 0.081). Findings expand evidence supporting the relationship between hearing and person-centered outcomes, including a functional measure of cognition. These results serve as a foundation for the design of a community-driven, church-based hearing health intervention. [Research in Gerontological Nursing, 16(1), 21-32.].
Collapse
|
74
|
Guerrieri M, Di Mauro R, Di Girolamo S, Di Stadio A. Hearing and Ageing. Subcell Biochem 2023; 103:279-290. [PMID: 37120472 DOI: 10.1007/978-3-031-26576-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Age-related hearing loss (ARHL), or presbycusis, occurs in most mammals, humans included, with a different age of onset and magnitude of loss. It is associated with two major symptoms: loss of sensitivity to sound, especially for high pitches, and a reduced ability to understand speech in background noise. This phenomenon involves both the peripheral structures of the inner ear and the central acoustic pathways. Several mechanisms have been identified as pro-ageing in the human cochlea. The main one is the oxidative stress. The inner ear physiological degeneration can be affected by both intrinsic conditions, such as genetic predisposition, and extrinsic ones, such as noise exposure. The magnitude of neuronal loss precedes and exceeds that of inner hair cell loss, which is also less important than the loss of outer hair cells. Patients with HL often develop atrophy of the temporal lobe (auditory cortex) and brain gliosis can contribute to the development of a central hearing loss. The presence of white matter hyperintensities (WMHs) on the MRI, which is radiologic representation of brain gliosis, can justify a central HL due to demyelination in the superior auditory pathways. Recently, the presence of WMHs has been correlated with the inability to correctly understand words in elderly with normal auditory thresholds.
Collapse
Affiliation(s)
| | - Roberta Di Mauro
- ENT Department, MVZ Dr. Roser und Kollegen, Remchingen, Baden-Württemberg, Germany
| | | | - Arianna Di Stadio
- GF Ingrassia Department, University of Catania, Catania, Italy.
- , Rome, Italy.
| |
Collapse
|
75
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
76
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
77
|
Tsuzuki N, Wasano K, Oishi N, Hentona K, Shimanuki M, Nishiyama T, Hiraga Y, Ueno M, Suzuki N, Shinden S, Ogawa K, Ozawa H. Association between atherosclerosis, hearing recovery, and hearing in the healthy ear in idiopathic sudden sensorineural hearing loss: a retrospective chart analysis. Sci Rep 2022; 12:21571. [PMID: 36513737 PMCID: PMC9747959 DOI: 10.1038/s41598-022-25593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is reported to be a risk factor for the severity of idiopathic sudden sensorineural hearing loss (ISSNHL). We evaluated the hypothesis that atherosclerosis affects the hearing thresholds of both the affected and healthy sides of ISSNHL patients. We conducted multivariate analyses on retrospectively collected data of patients with ISSNHL (N = 762) to evaluate the relationship between known factors linked to atherosclerosis and hearing thresholds on affected and healthy sides and whether these factors are prognostic for hearing recovery. Older ages, vertigo or dizziness, diabetes mellitus, and congestive heart failure were significantly related to higher hearing thresholds on the affected side. Older ages, male, and vascular disease were significantly related to higher hearing thresholds on the healthy side. Vertigo or dizziness, severe hearing loss and hearing loss at high frequencies on the affected side, higher hearing thresholds on the healthy side, regular anticoagulant medication, and delayed steroid treatment were significantly related to lack of recovery. Since several atherosclerosis-related factors are associated with higher hearing thresholds on both affected and healthy sides in ISSNHL and higher hearing thresholds on the healthy side predict poorer prognosis, diagnosis, and predicting prognosis of ISSNHL may benefit from rigorous evaluation of patients' cardiovascular comorbidities and hearing levels on both the healthy and affected sides.
Collapse
Affiliation(s)
- Nobuyoshi Tsuzuki
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.414147.30000 0004 0569 1007Department of Otolaryngology, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka-City, Kanagawa 254-0065 Japan
| | - Koichiro Wasano
- grid.265061.60000 0001 1516 6626Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-City, Kanagawa 259-1193 Japan ,grid.416239.bNational Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902 Japan
| | - Naoki Oishi
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| | - Ko Hentona
- grid.416239.bDepartment of Otolaryngology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902 Japan
| | - Marie Shimanuki
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Takanori Nishiyama
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.415107.60000 0004 1772 6908Department of Otolaryngology, Kawasaki Municipal Hospital, 12-1 Shinkawadori, Kawasaki, Kawasaki-City, Kanagawa 210-0013 Japan
| | - Yoshihiko Hiraga
- grid.410790.b0000 0004 0604 5883Department of Otolaryngology, Japanese Red Cross Shizuoka Hospital, 8-2 Outemachi, Aoi, Shizuoka-City, Shizuoka 420-0853 Japan
| | - Masafumi Ueno
- grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Narihisa Suzuki
- grid.414147.30000 0004 0569 1007Department of Otolaryngology, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka-City, Kanagawa 254-0065 Japan
| | - Seiichi Shinden
- grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Kaoru Ogawa
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| | - Hiroyuki Ozawa
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| |
Collapse
|
78
|
Yang YF, Yan XR, Wu RX, Li N, Chu M, Dong Y, Fu SP, Shi JR, Liu Q. Network pharmacology and experimental evidence reveal the protective mechanism of Yi-Qi Cong-Ming decoction on age-related hearing loss. PHARMACEUTICAL BIOLOGY 2022; 60:1478-1490. [PMID: 35938504 PMCID: PMC9359200 DOI: 10.1080/13880209.2022.2101671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Yi-Qi Cong-Ming (YQCM) decoction has been widely used to prevent age-related hearing loss (ARHL), the most prevalent neurodegenerative disease in the elderly. OBJECTIVE To explore the mechanism of YQCM decoction in the treatment of ARHL. MATERIALS AND METHODS The chemical constituents of YQCM were screened from the Traditional Chinese Medicine Systems Pharmacology Database. Potential targets of YQCM against ARHL were predicted by DrugBank, GeneCards, and OMIM database. Protein-protein network and enrichment analysis were used for exploring possible molecular mechanisms. Molecular docking and an in vitro model of ARHL by exposing auditory cells with 100 μM H2O2 for 3 h were applied. Cell viability and mitochondrial membrane potential (ΔΨM) were detected by CCK-8 and high-content analysis. γH2AX and cleaved caspase-3 were detected by Western blot. RESULTS The main compounds have good affinities with hub targets, especially AKT1, PTGS2, and CASP3. GO and KEGG analysis showed that the main biological process and key targets were related to negative regulation of the apoptotic process. H2O2 treatment could reduce the cell viability by 68% and impaired ΔΨM, while 90 μg/mL YQCM pre-treatment could restore the cell viability by 97.45% and increase ΔΨM (2-fold higher). YQCM pre-treatment also reduced γH2AX and cleaved caspase-3 protein levels. CONCLUSIONS Our study suggested that YQCM prevents ARHL by modulating the apoptosis process in auditory hair cells. Moreover, this study proved that bioinformatics analysis combined with molecular docking and cell model is a promising method to explore other possible pharmacological interventions of ARHL.
Collapse
Affiliation(s)
- Yi-Fang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Rui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Xin Wu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Rong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
79
|
Chen HL, Tan CT, Wu CC, Liu TC. Effects of Diet and Lifestyle on Audio-Vestibular Dysfunction in the Elderly: A Literature Review. Nutrients 2022; 14:nu14224720. [PMID: 36432406 PMCID: PMC9698578 DOI: 10.3390/nu14224720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The world's age-related health concerns continue to rise. Audio-vestibular disorders, such as hearing loss, tinnitus, and vertigo, are common complaints in the elderly and are associated with social and public health burdens. Various preventative measures can ease their impact, including healthy food consumption, nutritional supplementation, and lifestyle modification. We aim to provide a comprehensive summary of current possible strategies for preventing the age-related audio-vestibular dysfunction. METHODS A PubMed, Embase, and Cochrane review databases search was conducted to identify the relationship between diet, lifestyle, and audio-vestibular dysfunction. "Diet", "nutritional supplement", "lifestyle", "exercise", "physical activity", "tinnitus", "vertigo" and "age-related hearing loss" were used as keywords. RESULTS Audio-vestibular dysfunction develops and progresses as a result of age-related inflammation and oxidative stress. Diets with anti-inflammatory and antioxidant effects have been proposed to alleviate this illness. A high-fat diet may induce oxidative stress and low protein intake is associated with hearing discomfort in the elderly. Increased carbohydrate and sugar intake positively correlate with the incidence of audio-vestibular dysfunction, whereas a Mediterranean-style diet can protect against the disease. Antioxidants in the form of vitamins A, C, and E; physical activity; good sleep quality; smoking cessation; moderate alcohol consumption; and avoiding noise exposure are also beneficial. CONCLUSIONS Adequate diet or nutritional interventions with lifestyle modification may protect against developing audio-vestibular dysfunction in elderly individuals.
Collapse
Affiliation(s)
- Hsin-Lin Chen
- Department of Surgical Oncology, National Taiwan University Cancer Center Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
80
|
Choo OS, Lee YY, Kim YS, Kim YJ, Lee DH, Kim H, Jang JH, Choung YH. Effect of statin on age-related hearing loss via drug repurposing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119331. [PMID: 35963547 DOI: 10.1016/j.bbamcr.2022.119331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Hearing loss in the elderly cause communication difficulties, decreased quality of life, isolation, loneliness and frustration. The aim of our study was to investigate the effect of drug repurposing candidates in aging mouse. The selected candidate drugs for age-related hearing loss (ARHL) included atorvastatin (AS) and sarpogrelate. Monotherapy or fixed dose combination (FDC) products were administered via oral gavage for 6 consecutive months. Auditory outcomes showed significant hearing preservation in AS-treated aging mice compared to aging control, especially in the early stages of ARHL in both 8 and 16 kHz frequencies. However, none of the FDC products were able to prevent ARHL regardless of AS involvement. In aging mice, damage and dysfunction of mitochondria was noted as well as reactive oxygen species overproduction leading to oxidative stress and intrinsic apoptosis. These processes of ARHL were significantly prevented with administration of AS. Normal structures of mitochondria were maintained, and antioxidant activity were proceeded by activation of HSF1/Sirt1 pathway. Our study suggests that AS is a promising drug repurposing candidate to delay the progression of ARHL.
Collapse
Affiliation(s)
- Oak-Sung Choo
- Department of Otolaryngology, Uijeongbu Eulji Medical Center, Uijeongbu 11749, Republic of Korea
| | - Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Dong Ha Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hantai Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
81
|
Zhao C, Yang Z, Chen Z, Liang W, Gong S, Du Z. AAV-ie-mediated UCP2 overexpression accelerates inner hair cell loss during aging in vivo. Mol Med 2022; 28:124. [PMID: 36266633 PMCID: PMC9583487 DOI: 10.1186/s10020-022-00552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Uncoupling protein 2 (UCP2), activated by excessive reactive oxygen species (ROS) in vivo, has the dual effect of reducing ROS to protect against oxidative stress and reducing ATP production to regulate cellular metabolism. Both the UCP2 and ROS are increased in cochleae in age-related hearing loss (ARHL). However, the role of UCP2 in sensory hair cells in ARHL remains unclear. METHODS Male C57BL/6 J mice were randomly assigned to an 8-week-old group (Group 1), a 16-week-old group (Group 2), a 16-week-old + adeno-associated virus-inner ear (AAV-ie) group (Group 3), and a 16-week-old + AAV-ie-UCP2 group (Group 4). Mice aged 8 weeks were administrated with AAV-ie-GFP or AAV-ie-UCP2 via posterior semicircular canal injection. Eight weeks after this viral intervention, hearing thresholds and wave-I amplitudes were tested by auditory brainstem response (ABR). Subsequently, the cochlear basilar membrane was dissected for investigation. The number of hair cells and inner hair cell (IHC) synapses, the level of ROS, and the expression of AMP-activated protein kinase α (AMPKα), were assessed by immunofluorescence staining. In addition, mitochondrial function was determined, and the expression of AMPKα and UCP2 proteins was further evaluated using western blotting. RESULTS Mice with early-onset ARHL exhibited enhanced oxidative stress and loss of outer hair cells and IHC synapses, while UCP2 overexpression aggravated hearing loss and cochlear pathophysiological changes in mice. UCP2 overexpression resulted in a notable decrease in the number of IHCs and IHC synapses, caused ATP depletion and excessive ROS generation, increased AMPKα protein levels, and promoted IHC apoptosis, especially in the apical and middle turns of the cochlea. CONCLUSION Collectively, our data suggest that UCP2 overexpression may cause mitochondrial dysfunction via energy metabolism, which activates mitochondrion-dependent cellular apoptosis and leads to IHC loss, ultimately exacerbating ARHL.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
82
|
Daimaru K, Wagatsuma Y. Hearing loss and physical function in the general population: A cross-sectional study. PLoS One 2022; 17:e0275877. [PMID: 36206281 PMCID: PMC9544020 DOI: 10.1371/journal.pone.0275877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Hearing loss is a major public health concern. Higher physical function may be related to the maintenance of hearing acuity. Therefore, this study examined the association between hearing loss and physical function in the general population. METHODS This cross-sectional study was conducted with health checkup participants who underwent pure-tone audiometry at a regional health care center in Japan. Information for physical function included handgrip strength, vital capacity (VC), and forced expiratory volume in one second (FEV1). A hearing threshold of >30 dB at 1 kHz and/or >40 dB at 4 kHz in either ear was identified as hearing loss. The characteristics of the subjects were examined with stratification by sex and age group. Multivariable logistic regression analysis was performed to examine the association between hearing loss and physical function with adjustments for age, body mass index and current smoking. RESULTS Among the 4766 study subjects, 56.5% were male. The mean age was 47.7 years (SD: 13.8 years; range: 20-86 years), and the prevalence of hearing loss was 12.8% based on the definition stated above. For females, handgrip strength, VC, and FEV1 showed significant negative associations with hearing loss (multivariable-adjusted OR [95% CI] = 0.691 [0.560-0.852], 0.542 [0.307-0.959], and 0.370 [0.183-0.747], respectively). These associations were not found in males. CONCLUSIONS Higher physical function was associated with a lower prevalence of hearing loss among females. This study suggests that it is important to maintain physical function for hearing loss in females. Further studies are required to investigate sex differences in the relationship between physical function and hearing loss in the general population.
Collapse
Affiliation(s)
- Kaori Daimaru
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
83
|
Capshaw G, Vicencio-Jimenez S, Screven LA, Burke K, Weinberg MM, Lauer AM. Physiological Evidence for Delayed Age-related Hearing Loss in Two Long-lived Rodent Species (Peromyscus leucopus and P. californicus). J Assoc Res Otolaryngol 2022; 23:617-631. [PMID: 35882705 PMCID: PMC9613845 DOI: 10.1007/s10162-022-00860-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 10/16/2022] Open
Abstract
Deer mice (genus Peromyscus) are an emerging model for aging studies due to their longevity relative to rodents of similar size. Although Peromyscus species are well-represented in genetic, developmental, and behavioral studies, relatively few studies have investigated auditory sensitivity in this genus. Given the potential utility of Peromyscus for investigations of age-related changes to auditory function, we recorded auditory brainstem responses (ABRs) in two Peromyscus species, P. californicus, and P. leucopus, across the lifespan. We compared hearing sensitivity and ABR wave metrics measured in these species with measurements from Mus musculus (CBA/CaJ strain) to assess age-related effects on hearing across species. Recordings in young animals showed that all species had similar hearing ranges and thresholds with peak sensitivity ranging from 8 to 16 kHz; however, P. californicus and P. leucopus were more sensitive to frequencies below 8 kHz. Although M. musculus showed significant threshold shifts across a broad range of frequencies beginning at middle age and worsening among old individuals, older Peromyscus mice retained good sensitivity to sound across their lifespan. Middle-aged P. leucopus had comparable thresholds to young for frequencies below 24 kHz. P. leucopus also had notably large ABRs that were robust to age-related amplitude reductions, although response latencies increased with age. Old P. californicus were less sensitive to mid-range tones (8-16 kHz) than young individuals; however, there were no significant age-effects on ABR amplitudes or latencies in this species. These results indicate that longevity in Peromyscus mice may be correlated with delayed aging of the auditory system and highlight these species as promising candidates for longitudinal hearing research.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Laurel A. Screven
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kali Burke
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Madison M. Weinberg
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amanda M. Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
84
|
Noise overstimulation of young adult UMHET4 mice accelerates age-related hearing loss. Hear Res 2022; 424:108601. [PMID: 36126618 DOI: 10.1016/j.heares.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL). The present study further investigated this condition in the UMHET4 mouse model by comparing a small arms fire (SAF)-like impulse noise exposure that has the greatest immediate effect in more apical cochlear regions to a broadband noise (BBN) exposure that has the greatest immediate effect in more basal cochlear regions. Both noise exposures were given at levels that only induced temporary auditory brainstem response (ABR) threshold shifts (TS). Mice were noise exposed at 5 months of age followed by ABR assessment at 6, 12, 18, 21, and 24 months of age. Mice that received the SAF-like impulse noise had accelerated age-related TS at 4 kHz that appeared at 12 months of age (significantly increased compared to no-noise controls). This increased TS at 4 kHz continued at 18 and 21 months but was no longer significantly greater at 24 months of age. The SAF-like impulse noise also induced a significantly greater mean TS at 48 kHz, first appearing at 18 months of age and continuing to be significantly greater than controls at 21 and 24 months. The BBN induced a different pace and pattern of enhanced age-related ABR TS. The mean TS for the BBN group first became significantly greater than controls at 18 months of age and only at 48 kHz. It remained significantly greater than controls at 21 months but was no longer significantly greater at 24 months of age. Results, therefore, show different influences on ARHL for the two different noise exposure conditions. Noise-induced enhancement appears to provide more an acceleration than overall total increase in ARHL.
Collapse
|
85
|
Saperstein AM, Meyler S, Medalia A. Hearing Loss Among People With Schizophrenia: Implications for Clinical Practice. Psychiatr Serv 2022; 74:543-546. [PMID: 36164770 DOI: 10.1176/appi.ps.20220226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors characterized hearing loss among individuals diagnosed as having schizophrenia to inform provision of routine behavioral health services to this population. METHODS Audiometry data collected between October 2019 and December 2021 from 84 community-dwelling adults with schizophrenia and 81 age-matched participants without the condition were analyzed. Rates of hearing loss were identified within groups and across age decades (20-50 years). Hearing threshold and rates of hearing loss were compared between groups. RESULTS Participants with schizophrenia had significantly higher mean hearing thresholds (p=0.006), indicating worse hearing. This difference remained significant after controlling for age (p=0.01). A significantly larger proportion of participants with schizophrenia had mild hearing loss (24%) compared with age-matched participants (6%) (p=0.002), with higher rates of mild hearing loss observed across all ages. CONCLUSIONS Screening for and detection of hearing loss among adults with schizophrenia may be an unmet need. Hearing loss is a treatable source of cognitive and psychosocial disability, warranting scalable assessment and intervention practices.
Collapse
Affiliation(s)
- Alice M Saperstein
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| | - Shanique Meyler
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| | - Alice Medalia
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| |
Collapse
|
86
|
Effects of pyrroloquinoline quinone on noise-induced and age-related hearing loss in mice. Sci Rep 2022; 12:15911. [PMID: 36151123 PMCID: PMC9508078 DOI: 10.1038/s41598-022-19842-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated whether the oxidoreductase cofactor pyrroloquinoline quinone (PQQ) prevents noise-induced and age-related hearing loss (NIHL and ARHL) in mice. To assess NIHL, 8 week-old mice with and without PQQ administration were exposed to noise for 4 h. PQQ was orally administered for one week before and after noise exposure and subcutaneously once before noise exposure. For ARHL evaluation, mice were given drinking water with or without PQQ starting at 2 months of age. In the NIHL model, PQQ-treated mice had auditory brainstem response (ABR) thresholds of significantly reduced elevation at 8 kHz, a significantly increased number of hair cells at the basal turn, and significantly better maintained synapses beneath the inner hair cells compared to controls. In the ARHL model, PQQ significantly attenuated the age-related increase in ABR thresholds at 8 and 32 kHz at 10 months of age compared to controls. In addition, the hair cells, spiral ganglion cells, ribbon synapses, stria vascularis and nerve fibers were all significantly better maintained in PQQ-treated animals compared to controls at 10 months of age. These physiological and histological results demonstrate that PQQ protects the auditory system from NIHL and ARHL in mice.
Collapse
|
87
|
Sauvé SA, Marozeau J, Rich Zendel B. The effects of aging and musicianship on the use of auditory streaming cues. PLoS One 2022; 17:e0274631. [PMID: 36137151 PMCID: PMC9498935 DOI: 10.1371/journal.pone.0274631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Auditory stream segregation, or separating sounds into their respective sources and tracking them over time, is a fundamental auditory ability. Previous research has separately explored the impacts of aging and musicianship on the ability to separate and follow auditory streams. The current study evaluated the simultaneous effects of age and musicianship on auditory streaming induced by three physical features: intensity, spectral envelope and temporal envelope. In the first study, older and younger musicians and non-musicians with normal hearing identified deviants in a four-note melody interleaved with distractors that were more or less similar to the melody in terms of intensity, spectral envelope and temporal envelope. In the second study, older and younger musicians and non-musicians participated in a dissimilarity rating paradigm with pairs of melodies that differed along the same three features. Results suggested that auditory streaming skills are maintained in older adults but that older adults rely on intensity more than younger adults while musicianship is associated with increased sensitivity to spectral and temporal envelope, acoustic features that are typically less effective for stream segregation, particularly in older adults.
Collapse
Affiliation(s)
- Sarah A. Sauvé
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jeremy Marozeau
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Rich Zendel
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
88
|
Jung W, Kim J, Cho IY, Jeon KH, Song YM. Association between Serum Lipid Levels and Sensorineural Hearing Loss in Korean Adult Population. Korean J Fam Med 2022; 43:334-343. [PMID: 36168906 PMCID: PMC9532192 DOI: 10.4082/kjfm.21.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background Hearing loss (HL) has been suggested to be associated with impaired microcirculation of the inner ear. This cross-sectional study aimed to evaluate an association between HL and serum lipid levels. Methods The study comprised 10,356 Korean adults who participated in the fifth Korea National Health and Nutrition Examination Survey (2010–2012). We defined HL as the average hearing thresholds exceeding 25 dB at predetermined frequency levels by pure tone audiometry. Serum lipid levels were measured using an enzymatic assay. The associations between lipid levels and HL were evaluated using a multiple logistic regression model after adjusting for covariates including age, sex, hypertension, diabetes, smoking status, alcohol, physical activity, educational level, household income, and noise exposure. Stratified analyses were performed to examine the effect of the covariates on the association between lipid levels and HL. Results The high-density lipoprotein cholesterol (HDL-C) level was inversely associated with high-frequency (HF)-HL, with an odds ratio (95% confidence interval) of 0.78 (0.64–0.96) for 1-mmol/L increase in the HDL-C level. Neither the triglyceride nor the low-density lipoprotein cholesterol level was associated with HF-HL. For low-frequency HL, association with any of the serum lipid components was absent. A stratified analysis showed that the inverse association between HDL-C levels and HF-HL was evident (P trend <0.05) in some subjects with specific characteristics such as older age (≥65 years), female sex, non-hypertensive state, and non-regular physical activity. However, a significant interaction between HDL-C levels and all of the stratified variables was absent (P for interaction >0.05). Conclusion The HDL-C level has a linear inverse association with the risk of HF-HL. Given the known protective role of HDL-C against atherosclerotic changes, this finding seems to support the concept of impaired microcirculation in the inner ear as a mechanism for HF-HL.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
| | - In Young Cho
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keun Hye Jeon
- Department of Family Medicine, CHA Gumi Medical Center, Gumi, Korea
| | - Yun-Mi Song
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Corresponding Author: Yun-Mi Song Tel: +82-2-3410-2442, Fax: +82-2-3410-0338, E-mail:
| |
Collapse
|
89
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
90
|
Quaio CRDAC, Coelho AVC, Moura LMS, Guedes RLM, Chen K, Ceroni JRM, Minillo RM, Caraciolo MP, Reis RDS, de Azevedo BMC, Nobrega MS, Teixeira ACB, Martinelli Lima M, da Mota TR, da Matta MC, Colichio GBC, Roncalho AL, Ferreira AFM, Campilongo GP, Perrone E, Virmond LDA, Moreno CA, Prota JRM, de França M, Cervato MC, de Almeida TF, de Oliveira Filho JB. Genomic study of nonsyndromic hearing loss in unaffected individuals: Frequency of pathogenic and likely pathogenic variants in a Brazilian cohort of 2,097 genomes. Front Genet 2022; 13:921324. [PMID: 36147510 PMCID: PMC9486813 DOI: 10.3389/fgene.2022.921324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy–Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4–15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.
Collapse
Affiliation(s)
- Caio Robledo D’ Angioli Costa Quaio
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Instituto da Criança (Children’s Hospital), Hospital Das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| | | | - Livia Maria Silva Moura
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rafael Lucas Muniz Guedes
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Kelin Chen
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Marcel Pinheiro Caraciolo
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rodrigo de Souza Reis
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | - Thamara Rayssa da Mota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Programa de Pós Graduação em Tecnologias Energéticas e Nucleares (PROTEN), UFPE, Recife, Brazil
| | | | | | | | | | | | - Eduardo Perrone
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Araujo Moreno
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Joana Rosa Marques Prota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Murilo Castro Cervato
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | - Joao Bosco de Oliveira Filho
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| |
Collapse
|
91
|
Smetanina MA, Oscorbin IP, Shadrina AS, Sevost'ianova KS, Korolenya VA, Gavrilov KA, Shevela AI, Shirshova AN, Oskina NA, Zolotukhin IA, Filipenko ML. Quantitative and structural characteristics of mitochondrial DNA in varicose veins. Vascul Pharmacol 2022; 145:107021. [PMID: 35690235 DOI: 10.1016/j.vph.2022.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Fundamental Medicine of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Kseniya S Sevost'ianova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arina N Shirshova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Natalya A Oskina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Department of Faculty Surgery, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Laboratory of Molecular Diagnostics Development, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
92
|
Zhang X, Wang Y, Wang W, Hu W, Shang X, Liao H, Chen Y, Kiburg KV, Huang Y, Zhang X, Tang S, Yu H, Yang X, He M, Zhu Z. Association between dual sensory impairment and risk of mortality: a cohort study from the UK Biobank. BMC Geriatr 2022; 22:631. [PMID: 35915397 PMCID: PMC9341066 DOI: 10.1186/s12877-022-03322-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Dual sensory impairment is affecting over 10% of older adults worldwide. However, the long-term effect of dual sensory impairment (DSI) on the risk of mortality remains controversial. We aim to investigate the impact of single or/and dual sensory impairment on the risk of mortality in a large population-based sample of the adult in the UK with 14-years of follow-up. METHODS This population-based prospective cohort study included participants aged 40 and over with complete records of visual and hearing functions from the UK Biobank study. Measurements of visual and hearing functions were performed at baseline examinations between 2006 and 2010, and data on mortality was obtained by 2021. Dual sensory impairment was defined as concurrent visual and hearing impairments. Cox proportional hazards regression models were employed to evaluate the impact of sensory impairment (dual sensory impairment, single visual or hearing impairment) on the hazard of mortality. RESULTS Of the 113,563 participants included in this study, the mean age (standard deviation) was 56.8 (8.09) years, and 61,849 (54.5%) were female. At baseline measurements, there were 733 (0.65%) participants with dual sensory impairment, 2,973 (2.62%) participants with single visual impairment, and 13,560 (11.94%) with single hearing impairment. After a follow-up period of 14 years (mean duration of 11 years), 5,992 (5.28%) participants died from all causes. Compared with no sensory impairment, dual sensory impairment was significantly associated with an estimated 44% higher hazard of mortality (hazard ratio: 1.44 [95% confidence interval, 1.11-1.88], p = 0.007) after multiple adjustments. CONCLUSIONS Individuals with dual sensory impairment were found to have an independently 44% higher hazard of mortality than those with neither sensory impairment. Timely intervention of sensory impairment and early prevention of its underlying causes should help to reduce the associated risk of mortality.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Yueye Wang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wenyi Hu
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Xianwen Shang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Yifan Chen
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katerina V Kiburg
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Mingguang He
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China. .,Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia.
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China. .,Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia.
| |
Collapse
|
93
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
94
|
Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel) 2022; 11:antiox11081450. [PMID: 35892652 PMCID: PMC9330887 DOI: 10.3390/antiox11081450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
Collapse
|
95
|
Yamahara K, Yamamoto N, Kuwata F, Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems. Histol Histopathol 2022; 37:609-619. [PMID: 35170014 DOI: 10.14670/hh-18-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insulin-like growth factor 1 (IGF1) exerts an influence on almost every organ system in the body and plays an important role in growth, development, and metabolism. In the nervous system, IGF1 acts by promoting the development and growth of neurons and glial cells, differentiation of Schwann cells and their migration to axons, neurite outgrowth, and neuronal survival. The lack of IGF1 is associated with several pathological conditions, including severe prenatal growth retardation, postnatal growth failure, microcephaly, mental retardation, and bilateral sensorineural hearing loss. In addition to its physiological effects, based on the findings of in vivo and in vitro experiments and clinical trials, IGF1 is considered to play a potential role in the treatment of various types of neuronal damage. In this review, we discuss the potential use of IGF1 as a therapeutic molecule in the nervous system: (1) auditory system, including hair cells, cochlear ribbon synapses, auditory nerve, and central nervous systems, and (2) other peripheral nervous systems, especially the olfactory system and facial nerve. The role of IGF1 in the progression of age-related sensory deficits, especially hearing loss and olfactory dysfunction, is also discussed. Recent studies on IGF1 demonstrated that exogenous IGF1 can be applied in many fields, thus supporting the continued evaluation of IGF1 as a potential therapeutic molecule. Additional scientific investigations should be conducted to further supplement recent findings.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
| |
Collapse
|
96
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
97
|
Oike H, Tomita S, Koyano H, Azami K. Garland chrysanthemum consumption ameliorates age-related hearing loss in C57BL/6 mouse; model system to explore hearing loss prevention foods in a short period. Biosci Biotechnol Biochem 2022; 86:1085-1094. [PMID: 35687003 DOI: 10.1093/bbb/zbac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022]
Abstract
Garland chrysanthemum (Glebionis coronaria L.) is an antioxidant-rich leafy vegetable. We found that garland chrysanthemum consumption ameliorated age-related hearing loss (AHL) in C57BL/6J mice, an early onset model. We also found that AHL progression was significantly ameliorated by three of ten products. Metabolome analysis of the 10 products using nuclear magnetic resonance (NMR) spectroscopy indicated that phytosterols may be involved in the amelioration of AHL. However, the direct inhibitory effect of phytosterol mixture on mouse AHL progression was not identified. These results suggest that garland chrysanthemum consumption delays AHL development in mice and its efficiency varies depending on the source of product. Our findings also suggest that phytosterol content in garland chrysanthemum function as an evaluation marker for the efficiency. Furthermore, to accelerate the search for foods that prevent AHL, we have used these data to develop an automatic threshold determination method for auditory brainstem response using machine learning.
Collapse
Affiliation(s)
- Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.,Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hitoshi Koyano
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Kayo Azami
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
98
|
Zendel BR. The importance of the motor system in the development of music-based forms of auditory rehabilitation. Ann N Y Acad Sci 2022; 1515:10-19. [PMID: 35648040 DOI: 10.1111/nyas.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing abilities decline with age, and one of the most commonly reported hearing issues in older adults is a difficulty understanding speech when there is loud background noise. Understanding speech in noise relies on numerous cognitive processes, including working memory, and is supported by numerous brain regions, including the motor and motor planning systems. Indeed, many working memory processes are supported by motor and premotor cortical regions. Interestingly, lifelong musicians and nonmusicians given music training over the course of weeks or months show an improved ability to understand speech when there is loud background noise. These benefits are associated with enhanced working memory abilities, and enhanced activity in motor and premotor cortical regions. Accordingly, it is likely that music training improves the coupling between the auditory and motor systems and promotes plasticity in these regions and regions that feed into auditory/motor areas. This leads to an enhanced ability to dynamically process incoming acoustic information, and is likely the reason that musicians and those who receive laboratory-based music training are better able to understand speech when there is background noise. Critically, these findings suggest that music-based forms of auditory rehabilitation are possible and should focus on tasks that promote auditory-motor interactions.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
99
|
Yong W, Song J, Xing C, Xu JJ, Xue Y, Yin X, Wu Y, Chen YC. Disrupted Topological Organization of Resting-State Functional Brain Networks in Age-Related Hearing Loss. Front Aging Neurosci 2022; 14:907070. [PMID: 35669463 PMCID: PMC9163682 DOI: 10.3389/fnagi.2022.907070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Age-related hearing loss (ARHL), associated with the function of speech perception decreases characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to investigate the topological features of the brain functional network and structural dysfunction of the central nervous system in ARHL using graph theory. Methods Forty-six patients with ARHL and forty-five age, sex, and education-matched healthy controls were recruited to undergo a resting-state functional magnetic resonance imaging (fMRI) scan in this study. Graph theory was applied to analyze the topological properties of the functional connectomes by studying the local and global organization of neural networks. Results Compared with healthy controls, the patient group showed increased local efficiency (Eloc) and clustering coefficient (Cp) of the small-world network. Besides, the degree centrality (Dc) and nodal efficiency (Ne) values of the left inferior occipital gyrus (IOG) in the patient group showed a decrease in contrast with the healthy control group. In addition, the intra-modular interaction of the occipital lobe module and the inter-modular interaction of the parietal occipital module decreased in the patient group, which was positively correlated with Dc and Ne. The intra-modular interaction of the occipital lobe module decreased in the patient group, which was negatively correlated with the Eloc. Conclusion Based on fMRI and graph theory, we indicate the aberrant small-world network topology in ARHL and dysfunctional interaction of the occipital lobe and parietal lobe, emphasizing the importance of dysfunctional left IOG. These results suggest that early diagnosis and treatment of patients with ARHL is necessary, which can avoid the transformation of brain topology and decreased brain function.
Collapse
Affiliation(s)
- Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajie Song
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yuanqing Wu
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yu-Chen Chen
| |
Collapse
|
100
|
Audiovisual Integration for Saccade and Vergence Eye Movements Increases with Presbycusis and Loss of Selective Attention on the Stroop Test. Brain Sci 2022; 12:brainsci12050591. [PMID: 35624979 PMCID: PMC9139407 DOI: 10.3390/brainsci12050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multisensory integration is a capacity allowing us to merge information from different sensory modalities in order to improve the salience of the signal. Audiovisual integration is one of the most used kinds of multisensory integration, as vision and hearing are two senses used very frequently in humans. However, the literature regarding age-related hearing loss (presbycusis) on audiovisual integration abilities is almost nonexistent, despite the growing prevalence of presbycusis in the population. In that context, the study aims to assess the relationship between presbycusis and audiovisual integration using tests of saccade and vergence eye movements to visual vs. audiovisual targets, with a pure tone as an auditory signal. Tests were run with the REMOBI and AIDEAL technologies coupled with the pupil core eye tracker. Hearing abilities, eye movement characteristics (latency, peak velocity, average velocity, amplitude) for saccade and vergence eye movements, and the Stroop Victoria test were measured in 69 elderly and 30 young participants. The results indicated (i) a dual pattern of aging effect on audiovisual integration for convergence (a decrease in the aged group relative to the young one, but an increase with age within the elderly group) and (ii) an improvement of audiovisual integration for saccades for people with presbycusis associated with lower scores of selective attention in the Stroop test, regardless of age. These results bring new insight on an unknown topic, that of audio visuomotor integration in normal aging and in presbycusis. They highlight the potential interest of using eye movement targets in the 3D space and pure tone sound to objectively evaluate audio visuomotor integration capacities.
Collapse
|