51
|
Liu J, Chen H, Lin X, Zhu X, Huang J, Xu W, Tan M, Su J. Melatonin Suppresses Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes Signaling and Delays the Development of Hearing Loss in the C57BL/6J Presbycusis Mouse Model. Neuroscience 2023; 517:84-95. [PMID: 36702373 DOI: 10.1016/j.neuroscience.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Melatonin supplementation has been shown to delay age-related hearing loss (ARHL) progression. Previously, melatonin was found to inhibit neuronal mitochondrial DNA (mtDNA) release, as well as inhibit cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling, thereby delaying the onset of central nervous system diseases. Therefore, we hypothesized that melatonin may delay the progression of hearing loss in the C57BL/6J presbycusis mouse model by inhibiting cGAS-STING signaling in the auditory pathway. Oral melatonin at 10 mg/kg/d was administered to 3-month-old C57BL/6J mice until 12 months of age. The auditory brainstem response (ABR) threshold was used to assess their hearing ability. By real-time polymerase chain reaction and Western blot analysis, the levels of cytosolic mtDNA, cGAS/STING, and cytokines were examined in the mouse cochlea, inferior colliculus, and auditory cortex. We found that the 12-month-old control mice exhibited significant hearing loss, increased cytosolic mtDNA, increased expression of inflammatory factors TNF-α, IL-6, IFN-β, Cxcl10, and Ifit3, up-regulated cGAS and STING expression, and enhanced interferon regulatory factor 3 (IRF3) phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. Melatonin treatment significantly improved hearing, decreased cytosolic mtDNA, suppressed the expression of inflammatory cytokines TNF-α, IL-6, IFN-β, Ifit3, and Cxcl10, down-regulated cGAS and STING expression, and attenuated IRF3 phosphorylation in the C57BL/6J mouse cochlea, inferior colliculus, and auditory cortex. This study suggested that melatonin had a protective effect on auditory function in the C57BL/6J presbycusis mouse model, which may be mediated through reducing mtDNA release, inhibiting the cGAS-STING signaling pathway in the auditory pathway.
Collapse
Affiliation(s)
- Jinlan Liu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Department of Otolaryngology-Head & Neck Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Zhu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jialin Huang
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenfeng Xu
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ming Tan
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head & Neck Surgery, First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
52
|
Schutte DL, Jenuwine ES, Templin T, Schutte BC. Perceived Hearing Impairment in a Rural Community. Res Gerontol Nurs 2023; 16:21-32. [PMID: 36692440 DOI: 10.3928/19404921-20230104-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CoSAGE Community Advisory and Ethics Committee; Age-related hearing impairment yields many negative outcomes, including alterations in mental health, functional impairments, and decreased social engagement. The purpose of the current study was to examine perceived hearing impairment and its relationship with person-centered outcomes among adults in a rural community setting. A cross-sectional, descriptive correlational design was used. Survey packets of validated instruments were distributed following all weekend services at a rural community church; 72 completed surveys were returned (26% response rate). Descriptive and inferential statistics, including Spearman's rank correlations (rs), were used to address the study aims. Mean age of participants was 54 years (SD = 17 years), 58% were female, and 97% attended church regularly. Thirty-one percent of respondents reported moderate to severe hearing impairment. Perceived hearing impairment was associated with more depressive symptoms (rs = 0.24, p = 0.052), poorer attentional function (rs = -0.29, p = 0.016), and decreased quality of life in the mental health domain (rs = -0.21, p = 0.081). Findings expand evidence supporting the relationship between hearing and person-centered outcomes, including a functional measure of cognition. These results serve as a foundation for the design of a community-driven, church-based hearing health intervention. [Research in Gerontological Nursing, 16(1), 21-32.].
Collapse
|
53
|
Guerrieri M, Di Mauro R, Di Girolamo S, Di Stadio A. Hearing and Ageing. Subcell Biochem 2023; 103:279-290. [PMID: 37120472 DOI: 10.1007/978-3-031-26576-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Age-related hearing loss (ARHL), or presbycusis, occurs in most mammals, humans included, with a different age of onset and magnitude of loss. It is associated with two major symptoms: loss of sensitivity to sound, especially for high pitches, and a reduced ability to understand speech in background noise. This phenomenon involves both the peripheral structures of the inner ear and the central acoustic pathways. Several mechanisms have been identified as pro-ageing in the human cochlea. The main one is the oxidative stress. The inner ear physiological degeneration can be affected by both intrinsic conditions, such as genetic predisposition, and extrinsic ones, such as noise exposure. The magnitude of neuronal loss precedes and exceeds that of inner hair cell loss, which is also less important than the loss of outer hair cells. Patients with HL often develop atrophy of the temporal lobe (auditory cortex) and brain gliosis can contribute to the development of a central hearing loss. The presence of white matter hyperintensities (WMHs) on the MRI, which is radiologic representation of brain gliosis, can justify a central HL due to demyelination in the superior auditory pathways. Recently, the presence of WMHs has been correlated with the inability to correctly understand words in elderly with normal auditory thresholds.
Collapse
Affiliation(s)
| | - Roberta Di Mauro
- ENT Department, MVZ Dr. Roser und Kollegen, Remchingen, Baden-Württemberg, Germany
| | | | - Arianna Di Stadio
- GF Ingrassia Department, University of Catania, Catania, Italy.
- , Rome, Italy.
| |
Collapse
|
54
|
White K, Someya S. The roles of NADPH and isocitrate dehydrogenase in cochlear mitochondrial antioxidant defense and aging. Hear Res 2023; 427:108659. [PMID: 36493529 PMCID: PMC11446251 DOI: 10.1016/j.heares.2022.108659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults. Age-related hearing loss affects one in three adults over 65 years of age and is caused by both extrinsic and intrinsic factors, including genetics, aging, and exposure to noise and toxins. All cells possess antioxidant defense systems that play an important role in protecting cells against these factors. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) serves as a co-factor for antioxidant enzymes such as glutathione reductase and thioredoxin reductase and is produced by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase 1 (IDH1) or malic enzyme 1 in the cytosol, while in the mitochondria, NADPH is generated from mitochondrial transhydrogenase, glutamate dehydrogenase, malic enzyme 3 or IDH2. There are three isoforms of IDH: cytosolic IDH1, and mitochondrial IDH2 and IDH3. Of these, IDH2 is thought to be the major supplier of NADPH to the mitochondrial antioxidant defense system. The NADP+/NADPH and NAD+/NADH couples are essential for maintaining a large array of biological processes, including cellular redox state, and energy metabolism, mitochondrial function. A growing body of evidence indicates that mitochondrial dysfunction contributes to age-related structural or functional changes of cochlear sensory hair cells and neurons, leading to hearing impairments. In this review, we describe the current understanding of the roles of NADPH and IDHs in cochlear mitochondrial antioxidant defense and aging.
Collapse
Affiliation(s)
- Karessa White
- Charlie Brigade Support Medical Company, 2/1 ABCT, United States Army, Fort Riley, KS, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
55
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
56
|
Tsuzuki N, Wasano K, Oishi N, Hentona K, Shimanuki M, Nishiyama T, Hiraga Y, Ueno M, Suzuki N, Shinden S, Ogawa K, Ozawa H. Association between atherosclerosis, hearing recovery, and hearing in the healthy ear in idiopathic sudden sensorineural hearing loss: a retrospective chart analysis. Sci Rep 2022; 12:21571. [PMID: 36513737 PMCID: PMC9747959 DOI: 10.1038/s41598-022-25593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is reported to be a risk factor for the severity of idiopathic sudden sensorineural hearing loss (ISSNHL). We evaluated the hypothesis that atherosclerosis affects the hearing thresholds of both the affected and healthy sides of ISSNHL patients. We conducted multivariate analyses on retrospectively collected data of patients with ISSNHL (N = 762) to evaluate the relationship between known factors linked to atherosclerosis and hearing thresholds on affected and healthy sides and whether these factors are prognostic for hearing recovery. Older ages, vertigo or dizziness, diabetes mellitus, and congestive heart failure were significantly related to higher hearing thresholds on the affected side. Older ages, male, and vascular disease were significantly related to higher hearing thresholds on the healthy side. Vertigo or dizziness, severe hearing loss and hearing loss at high frequencies on the affected side, higher hearing thresholds on the healthy side, regular anticoagulant medication, and delayed steroid treatment were significantly related to lack of recovery. Since several atherosclerosis-related factors are associated with higher hearing thresholds on both affected and healthy sides in ISSNHL and higher hearing thresholds on the healthy side predict poorer prognosis, diagnosis, and predicting prognosis of ISSNHL may benefit from rigorous evaluation of patients' cardiovascular comorbidities and hearing levels on both the healthy and affected sides.
Collapse
Affiliation(s)
- Nobuyoshi Tsuzuki
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.414147.30000 0004 0569 1007Department of Otolaryngology, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka-City, Kanagawa 254-0065 Japan
| | - Koichiro Wasano
- grid.265061.60000 0001 1516 6626Department of Otolaryngology, Head and Neck Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara-City, Kanagawa 259-1193 Japan ,grid.416239.bNational Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902 Japan
| | - Naoki Oishi
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| | - Ko Hentona
- grid.416239.bDepartment of Otolaryngology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo 152-8902 Japan
| | - Marie Shimanuki
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Takanori Nishiyama
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan ,grid.415107.60000 0004 1772 6908Department of Otolaryngology, Kawasaki Municipal Hospital, 12-1 Shinkawadori, Kawasaki, Kawasaki-City, Kanagawa 210-0013 Japan
| | - Yoshihiko Hiraga
- grid.410790.b0000 0004 0604 5883Department of Otolaryngology, Japanese Red Cross Shizuoka Hospital, 8-2 Outemachi, Aoi, Shizuoka-City, Shizuoka 420-0853 Japan
| | - Masafumi Ueno
- grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Narihisa Suzuki
- grid.414147.30000 0004 0569 1007Department of Otolaryngology, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka-City, Kanagawa 254-0065 Japan
| | - Seiichi Shinden
- grid.416684.90000 0004 0378 7419Department of Otolaryngology, Saiseikai Utsunomiya Hospital, 911-1 Takebayashimachi, Utsunomiya-City, Tochigi 321-0974 Japan
| | - Kaoru Ogawa
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| | - Hiroyuki Ozawa
- grid.26091.3c0000 0004 1936 9959Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo 160-8582 Japan
| |
Collapse
|
57
|
Yang YF, Yan XR, Wu RX, Li N, Chu M, Dong Y, Fu SP, Shi JR, Liu Q. Network pharmacology and experimental evidence reveal the protective mechanism of Yi-Qi Cong-Ming decoction on age-related hearing loss. PHARMACEUTICAL BIOLOGY 2022; 60:1478-1490. [PMID: 35938504 PMCID: PMC9359200 DOI: 10.1080/13880209.2022.2101671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Yi-Qi Cong-Ming (YQCM) decoction has been widely used to prevent age-related hearing loss (ARHL), the most prevalent neurodegenerative disease in the elderly. OBJECTIVE To explore the mechanism of YQCM decoction in the treatment of ARHL. MATERIALS AND METHODS The chemical constituents of YQCM were screened from the Traditional Chinese Medicine Systems Pharmacology Database. Potential targets of YQCM against ARHL were predicted by DrugBank, GeneCards, and OMIM database. Protein-protein network and enrichment analysis were used for exploring possible molecular mechanisms. Molecular docking and an in vitro model of ARHL by exposing auditory cells with 100 μM H2O2 for 3 h were applied. Cell viability and mitochondrial membrane potential (ΔΨM) were detected by CCK-8 and high-content analysis. γH2AX and cleaved caspase-3 were detected by Western blot. RESULTS The main compounds have good affinities with hub targets, especially AKT1, PTGS2, and CASP3. GO and KEGG analysis showed that the main biological process and key targets were related to negative regulation of the apoptotic process. H2O2 treatment could reduce the cell viability by 68% and impaired ΔΨM, while 90 μg/mL YQCM pre-treatment could restore the cell viability by 97.45% and increase ΔΨM (2-fold higher). YQCM pre-treatment also reduced γH2AX and cleaved caspase-3 protein levels. CONCLUSIONS Our study suggested that YQCM prevents ARHL by modulating the apoptosis process in auditory hair cells. Moreover, this study proved that bioinformatics analysis combined with molecular docking and cell model is a promising method to explore other possible pharmacological interventions of ARHL.
Collapse
Affiliation(s)
- Yi-Fang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Rui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Xin Wu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chu
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Rong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
58
|
Chen HL, Tan CT, Wu CC, Liu TC. Effects of Diet and Lifestyle on Audio-Vestibular Dysfunction in the Elderly: A Literature Review. Nutrients 2022; 14:nu14224720. [PMID: 36432406 PMCID: PMC9698578 DOI: 10.3390/nu14224720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The world's age-related health concerns continue to rise. Audio-vestibular disorders, such as hearing loss, tinnitus, and vertigo, are common complaints in the elderly and are associated with social and public health burdens. Various preventative measures can ease their impact, including healthy food consumption, nutritional supplementation, and lifestyle modification. We aim to provide a comprehensive summary of current possible strategies for preventing the age-related audio-vestibular dysfunction. METHODS A PubMed, Embase, and Cochrane review databases search was conducted to identify the relationship between diet, lifestyle, and audio-vestibular dysfunction. "Diet", "nutritional supplement", "lifestyle", "exercise", "physical activity", "tinnitus", "vertigo" and "age-related hearing loss" were used as keywords. RESULTS Audio-vestibular dysfunction develops and progresses as a result of age-related inflammation and oxidative stress. Diets with anti-inflammatory and antioxidant effects have been proposed to alleviate this illness. A high-fat diet may induce oxidative stress and low protein intake is associated with hearing discomfort in the elderly. Increased carbohydrate and sugar intake positively correlate with the incidence of audio-vestibular dysfunction, whereas a Mediterranean-style diet can protect against the disease. Antioxidants in the form of vitamins A, C, and E; physical activity; good sleep quality; smoking cessation; moderate alcohol consumption; and avoiding noise exposure are also beneficial. CONCLUSIONS Adequate diet or nutritional interventions with lifestyle modification may protect against developing audio-vestibular dysfunction in elderly individuals.
Collapse
Affiliation(s)
- Hsin-Lin Chen
- Department of Surgical Oncology, National Taiwan University Cancer Center Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
59
|
Choo OS, Lee YY, Kim YS, Kim YJ, Lee DH, Kim H, Jang JH, Choung YH. Effect of statin on age-related hearing loss via drug repurposing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119331. [PMID: 35963547 DOI: 10.1016/j.bbamcr.2022.119331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Hearing loss in the elderly cause communication difficulties, decreased quality of life, isolation, loneliness and frustration. The aim of our study was to investigate the effect of drug repurposing candidates in aging mouse. The selected candidate drugs for age-related hearing loss (ARHL) included atorvastatin (AS) and sarpogrelate. Monotherapy or fixed dose combination (FDC) products were administered via oral gavage for 6 consecutive months. Auditory outcomes showed significant hearing preservation in AS-treated aging mice compared to aging control, especially in the early stages of ARHL in both 8 and 16 kHz frequencies. However, none of the FDC products were able to prevent ARHL regardless of AS involvement. In aging mice, damage and dysfunction of mitochondria was noted as well as reactive oxygen species overproduction leading to oxidative stress and intrinsic apoptosis. These processes of ARHL were significantly prevented with administration of AS. Normal structures of mitochondria were maintained, and antioxidant activity were proceeded by activation of HSF1/Sirt1 pathway. Our study suggests that AS is a promising drug repurposing candidate to delay the progression of ARHL.
Collapse
Affiliation(s)
- Oak-Sung Choo
- Department of Otolaryngology, Uijeongbu Eulji Medical Center, Uijeongbu 11749, Republic of Korea
| | - Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Dong Ha Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hantai Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea.
| |
Collapse
|
60
|
Zhao C, Yang Z, Chen Z, Liang W, Gong S, Du Z. AAV-ie-mediated UCP2 overexpression accelerates inner hair cell loss during aging in vivo. Mol Med 2022; 28:124. [PMID: 36266633 PMCID: PMC9583487 DOI: 10.1186/s10020-022-00552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Uncoupling protein 2 (UCP2), activated by excessive reactive oxygen species (ROS) in vivo, has the dual effect of reducing ROS to protect against oxidative stress and reducing ATP production to regulate cellular metabolism. Both the UCP2 and ROS are increased in cochleae in age-related hearing loss (ARHL). However, the role of UCP2 in sensory hair cells in ARHL remains unclear. METHODS Male C57BL/6 J mice were randomly assigned to an 8-week-old group (Group 1), a 16-week-old group (Group 2), a 16-week-old + adeno-associated virus-inner ear (AAV-ie) group (Group 3), and a 16-week-old + AAV-ie-UCP2 group (Group 4). Mice aged 8 weeks were administrated with AAV-ie-GFP or AAV-ie-UCP2 via posterior semicircular canal injection. Eight weeks after this viral intervention, hearing thresholds and wave-I amplitudes were tested by auditory brainstem response (ABR). Subsequently, the cochlear basilar membrane was dissected for investigation. The number of hair cells and inner hair cell (IHC) synapses, the level of ROS, and the expression of AMP-activated protein kinase α (AMPKα), were assessed by immunofluorescence staining. In addition, mitochondrial function was determined, and the expression of AMPKα and UCP2 proteins was further evaluated using western blotting. RESULTS Mice with early-onset ARHL exhibited enhanced oxidative stress and loss of outer hair cells and IHC synapses, while UCP2 overexpression aggravated hearing loss and cochlear pathophysiological changes in mice. UCP2 overexpression resulted in a notable decrease in the number of IHCs and IHC synapses, caused ATP depletion and excessive ROS generation, increased AMPKα protein levels, and promoted IHC apoptosis, especially in the apical and middle turns of the cochlea. CONCLUSION Collectively, our data suggest that UCP2 overexpression may cause mitochondrial dysfunction via energy metabolism, which activates mitochondrion-dependent cellular apoptosis and leads to IHC loss, ultimately exacerbating ARHL.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
61
|
Daimaru K, Wagatsuma Y. Hearing loss and physical function in the general population: A cross-sectional study. PLoS One 2022; 17:e0275877. [PMID: 36206281 PMCID: PMC9544020 DOI: 10.1371/journal.pone.0275877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Hearing loss is a major public health concern. Higher physical function may be related to the maintenance of hearing acuity. Therefore, this study examined the association between hearing loss and physical function in the general population. METHODS This cross-sectional study was conducted with health checkup participants who underwent pure-tone audiometry at a regional health care center in Japan. Information for physical function included handgrip strength, vital capacity (VC), and forced expiratory volume in one second (FEV1). A hearing threshold of >30 dB at 1 kHz and/or >40 dB at 4 kHz in either ear was identified as hearing loss. The characteristics of the subjects were examined with stratification by sex and age group. Multivariable logistic regression analysis was performed to examine the association between hearing loss and physical function with adjustments for age, body mass index and current smoking. RESULTS Among the 4766 study subjects, 56.5% were male. The mean age was 47.7 years (SD: 13.8 years; range: 20-86 years), and the prevalence of hearing loss was 12.8% based on the definition stated above. For females, handgrip strength, VC, and FEV1 showed significant negative associations with hearing loss (multivariable-adjusted OR [95% CI] = 0.691 [0.560-0.852], 0.542 [0.307-0.959], and 0.370 [0.183-0.747], respectively). These associations were not found in males. CONCLUSIONS Higher physical function was associated with a lower prevalence of hearing loss among females. This study suggests that it is important to maintain physical function for hearing loss in females. Further studies are required to investigate sex differences in the relationship between physical function and hearing loss in the general population.
Collapse
Affiliation(s)
- Kaori Daimaru
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
62
|
Capshaw G, Vicencio-Jimenez S, Screven LA, Burke K, Weinberg MM, Lauer AM. Physiological Evidence for Delayed Age-related Hearing Loss in Two Long-lived Rodent Species (Peromyscus leucopus and P. californicus). J Assoc Res Otolaryngol 2022; 23:617-631. [PMID: 35882705 PMCID: PMC9613845 DOI: 10.1007/s10162-022-00860-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 10/16/2022] Open
Abstract
Deer mice (genus Peromyscus) are an emerging model for aging studies due to their longevity relative to rodents of similar size. Although Peromyscus species are well-represented in genetic, developmental, and behavioral studies, relatively few studies have investigated auditory sensitivity in this genus. Given the potential utility of Peromyscus for investigations of age-related changes to auditory function, we recorded auditory brainstem responses (ABRs) in two Peromyscus species, P. californicus, and P. leucopus, across the lifespan. We compared hearing sensitivity and ABR wave metrics measured in these species with measurements from Mus musculus (CBA/CaJ strain) to assess age-related effects on hearing across species. Recordings in young animals showed that all species had similar hearing ranges and thresholds with peak sensitivity ranging from 8 to 16 kHz; however, P. californicus and P. leucopus were more sensitive to frequencies below 8 kHz. Although M. musculus showed significant threshold shifts across a broad range of frequencies beginning at middle age and worsening among old individuals, older Peromyscus mice retained good sensitivity to sound across their lifespan. Middle-aged P. leucopus had comparable thresholds to young for frequencies below 24 kHz. P. leucopus also had notably large ABRs that were robust to age-related amplitude reductions, although response latencies increased with age. Old P. californicus were less sensitive to mid-range tones (8-16 kHz) than young individuals; however, there were no significant age-effects on ABR amplitudes or latencies in this species. These results indicate that longevity in Peromyscus mice may be correlated with delayed aging of the auditory system and highlight these species as promising candidates for longitudinal hearing research.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD USA
| | - Sergio Vicencio-Jimenez
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Laurel A. Screven
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kali Burke
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Madison M. Weinberg
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amanda M. Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
63
|
Noise overstimulation of young adult UMHET4 mice accelerates age-related hearing loss. Hear Res 2022; 424:108601. [PMID: 36126618 DOI: 10.1016/j.heares.2022.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Abstract
Many factors contribute to hearing loss commonly found in older adults. There can be natural aging of cellular elements, hearing loss previously induced by environmental factors such as noise or ototoxic drugs as well as genetic and epigenetic influences. Even when noise overstimulation does not immediately cause permanent hearing loss it has recently been shown to increase later age-related hearing loss (ARHL). The present study further investigated this condition in the UMHET4 mouse model by comparing a small arms fire (SAF)-like impulse noise exposure that has the greatest immediate effect in more apical cochlear regions to a broadband noise (BBN) exposure that has the greatest immediate effect in more basal cochlear regions. Both noise exposures were given at levels that only induced temporary auditory brainstem response (ABR) threshold shifts (TS). Mice were noise exposed at 5 months of age followed by ABR assessment at 6, 12, 18, 21, and 24 months of age. Mice that received the SAF-like impulse noise had accelerated age-related TS at 4 kHz that appeared at 12 months of age (significantly increased compared to no-noise controls). This increased TS at 4 kHz continued at 18 and 21 months but was no longer significantly greater at 24 months of age. The SAF-like impulse noise also induced a significantly greater mean TS at 48 kHz, first appearing at 18 months of age and continuing to be significantly greater than controls at 21 and 24 months. The BBN induced a different pace and pattern of enhanced age-related ABR TS. The mean TS for the BBN group first became significantly greater than controls at 18 months of age and only at 48 kHz. It remained significantly greater than controls at 21 months but was no longer significantly greater at 24 months of age. Results, therefore, show different influences on ARHL for the two different noise exposure conditions. Noise-induced enhancement appears to provide more an acceleration than overall total increase in ARHL.
Collapse
|
64
|
Saperstein AM, Meyler S, Medalia A. Hearing Loss Among People With Schizophrenia: Implications for Clinical Practice. Psychiatr Serv 2022; 74:543-546. [PMID: 36164770 DOI: 10.1176/appi.ps.20220226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors characterized hearing loss among individuals diagnosed as having schizophrenia to inform provision of routine behavioral health services to this population. METHODS Audiometry data collected between October 2019 and December 2021 from 84 community-dwelling adults with schizophrenia and 81 age-matched participants without the condition were analyzed. Rates of hearing loss were identified within groups and across age decades (20-50 years). Hearing threshold and rates of hearing loss were compared between groups. RESULTS Participants with schizophrenia had significantly higher mean hearing thresholds (p=0.006), indicating worse hearing. This difference remained significant after controlling for age (p=0.01). A significantly larger proportion of participants with schizophrenia had mild hearing loss (24%) compared with age-matched participants (6%) (p=0.002), with higher rates of mild hearing loss observed across all ages. CONCLUSIONS Screening for and detection of hearing loss among adults with schizophrenia may be an unmet need. Hearing loss is a treatable source of cognitive and psychosocial disability, warranting scalable assessment and intervention practices.
Collapse
Affiliation(s)
- Alice M Saperstein
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| | - Shanique Meyler
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| | - Alice Medalia
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons (all authors), and New York State Psychiatric Institute, New York City (Saperstein, Medalia); Graduate Center, City University of New York, New York City (Meyler)
| |
Collapse
|
65
|
Effects of pyrroloquinoline quinone on noise-induced and age-related hearing loss in mice. Sci Rep 2022; 12:15911. [PMID: 36151123 PMCID: PMC9508078 DOI: 10.1038/s41598-022-19842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated whether the oxidoreductase cofactor pyrroloquinoline quinone (PQQ) prevents noise-induced and age-related hearing loss (NIHL and ARHL) in mice. To assess NIHL, 8 week-old mice with and without PQQ administration were exposed to noise for 4 h. PQQ was orally administered for one week before and after noise exposure and subcutaneously once before noise exposure. For ARHL evaluation, mice were given drinking water with or without PQQ starting at 2 months of age. In the NIHL model, PQQ-treated mice had auditory brainstem response (ABR) thresholds of significantly reduced elevation at 8 kHz, a significantly increased number of hair cells at the basal turn, and significantly better maintained synapses beneath the inner hair cells compared to controls. In the ARHL model, PQQ significantly attenuated the age-related increase in ABR thresholds at 8 and 32 kHz at 10 months of age compared to controls. In addition, the hair cells, spiral ganglion cells, ribbon synapses, stria vascularis and nerve fibers were all significantly better maintained in PQQ-treated animals compared to controls at 10 months of age. These physiological and histological results demonstrate that PQQ protects the auditory system from NIHL and ARHL in mice.
Collapse
|
66
|
Sauvé SA, Marozeau J, Rich Zendel B. The effects of aging and musicianship on the use of auditory streaming cues. PLoS One 2022; 17:e0274631. [PMID: 36137151 PMCID: PMC9498935 DOI: 10.1371/journal.pone.0274631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Auditory stream segregation, or separating sounds into their respective sources and tracking them over time, is a fundamental auditory ability. Previous research has separately explored the impacts of aging and musicianship on the ability to separate and follow auditory streams. The current study evaluated the simultaneous effects of age and musicianship on auditory streaming induced by three physical features: intensity, spectral envelope and temporal envelope. In the first study, older and younger musicians and non-musicians with normal hearing identified deviants in a four-note melody interleaved with distractors that were more or less similar to the melody in terms of intensity, spectral envelope and temporal envelope. In the second study, older and younger musicians and non-musicians participated in a dissimilarity rating paradigm with pairs of melodies that differed along the same three features. Results suggested that auditory streaming skills are maintained in older adults but that older adults rely on intensity more than younger adults while musicianship is associated with increased sensitivity to spectral and temporal envelope, acoustic features that are typically less effective for stream segregation, particularly in older adults.
Collapse
Affiliation(s)
- Sarah A. Sauvé
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jeremy Marozeau
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Rich Zendel
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
67
|
Jung W, Kim J, Cho IY, Jeon KH, Song YM. Association between Serum Lipid Levels and Sensorineural Hearing Loss in Korean Adult Population. Korean J Fam Med 2022; 43:334-343. [PMID: 36168906 PMCID: PMC9532192 DOI: 10.4082/kjfm.21.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background Hearing loss (HL) has been suggested to be associated with impaired microcirculation of the inner ear. This cross-sectional study aimed to evaluate an association between HL and serum lipid levels. Methods The study comprised 10,356 Korean adults who participated in the fifth Korea National Health and Nutrition Examination Survey (2010–2012). We defined HL as the average hearing thresholds exceeding 25 dB at predetermined frequency levels by pure tone audiometry. Serum lipid levels were measured using an enzymatic assay. The associations between lipid levels and HL were evaluated using a multiple logistic regression model after adjusting for covariates including age, sex, hypertension, diabetes, smoking status, alcohol, physical activity, educational level, household income, and noise exposure. Stratified analyses were performed to examine the effect of the covariates on the association between lipid levels and HL. Results The high-density lipoprotein cholesterol (HDL-C) level was inversely associated with high-frequency (HF)-HL, with an odds ratio (95% confidence interval) of 0.78 (0.64–0.96) for 1-mmol/L increase in the HDL-C level. Neither the triglyceride nor the low-density lipoprotein cholesterol level was associated with HF-HL. For low-frequency HL, association with any of the serum lipid components was absent. A stratified analysis showed that the inverse association between HDL-C levels and HF-HL was evident (P trend <0.05) in some subjects with specific characteristics such as older age (≥65 years), female sex, non-hypertensive state, and non-regular physical activity. However, a significant interaction between HDL-C levels and all of the stratified variables was absent (P for interaction >0.05). Conclusion The HDL-C level has a linear inverse association with the risk of HF-HL. Given the known protective role of HDL-C against atherosclerotic changes, this finding seems to support the concept of impaired microcirculation in the inner ear as a mechanism for HF-HL.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyoung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
| | - In Young Cho
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keun Hye Jeon
- Department of Family Medicine, CHA Gumi Medical Center, Gumi, Korea
| | - Yun-Mi Song
- Department of Family Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Corresponding Author: Yun-Mi Song Tel: +82-2-3410-2442, Fax: +82-2-3410-0338, E-mail:
| |
Collapse
|
68
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
69
|
Quaio CRDAC, Coelho AVC, Moura LMS, Guedes RLM, Chen K, Ceroni JRM, Minillo RM, Caraciolo MP, Reis RDS, de Azevedo BMC, Nobrega MS, Teixeira ACB, Martinelli Lima M, da Mota TR, da Matta MC, Colichio GBC, Roncalho AL, Ferreira AFM, Campilongo GP, Perrone E, Virmond LDA, Moreno CA, Prota JRM, de França M, Cervato MC, de Almeida TF, de Oliveira Filho JB. Genomic study of nonsyndromic hearing loss in unaffected individuals: Frequency of pathogenic and likely pathogenic variants in a Brazilian cohort of 2,097 genomes. Front Genet 2022; 13:921324. [PMID: 36147510 PMCID: PMC9486813 DOI: 10.3389/fgene.2022.921324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy–Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4–15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.
Collapse
Affiliation(s)
- Caio Robledo D’ Angioli Costa Quaio
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Instituto da Criança (Children’s Hospital), Hospital Das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| | | | - Livia Maria Silva Moura
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rafael Lucas Muniz Guedes
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Kelin Chen
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | - Marcel Pinheiro Caraciolo
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | - Rodrigo de Souza Reis
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | - Thamara Rayssa da Mota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Programa de Pós Graduação em Tecnologias Energéticas e Nucleares (PROTEN), UFPE, Recife, Brazil
| | | | | | | | | | | | - Eduardo Perrone
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Araujo Moreno
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Joana Rosa Marques Prota
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Departamento de Medicina Translacional, Área de Genética Médica e Medicina Genômica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Murilo Castro Cervato
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- VarsOmics, Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, SP, Brazil
| | | | - Joao Bosco de Oliveira Filho
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- *Correspondence: Caio Robledo D’ Angioli Costa Quaio, ; Joao Bosco de Oliveira Filho,
| |
Collapse
|
70
|
Smetanina MA, Oscorbin IP, Shadrina AS, Sevost'ianova KS, Korolenya VA, Gavrilov KA, Shevela AI, Shirshova AN, Oskina NA, Zolotukhin IA, Filipenko ML. Quantitative and structural characteristics of mitochondrial DNA in varicose veins. Vascul Pharmacol 2022; 145:107021. [PMID: 35690235 DOI: 10.1016/j.vph.2022.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Fundamental Medicine of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Kseniya S Sevost'ianova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arina N Shirshova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Natalya A Oskina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Department of Faculty Surgery, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Laboratory of Molecular Diagnostics Development, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
71
|
Zhang X, Wang Y, Wang W, Hu W, Shang X, Liao H, Chen Y, Kiburg KV, Huang Y, Zhang X, Tang S, Yu H, Yang X, He M, Zhu Z. Association between dual sensory impairment and risk of mortality: a cohort study from the UK Biobank. BMC Geriatr 2022; 22:631. [PMID: 35915397 PMCID: PMC9341066 DOI: 10.1186/s12877-022-03322-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Dual sensory impairment is affecting over 10% of older adults worldwide. However, the long-term effect of dual sensory impairment (DSI) on the risk of mortality remains controversial. We aim to investigate the impact of single or/and dual sensory impairment on the risk of mortality in a large population-based sample of the adult in the UK with 14-years of follow-up. METHODS This population-based prospective cohort study included participants aged 40 and over with complete records of visual and hearing functions from the UK Biobank study. Measurements of visual and hearing functions were performed at baseline examinations between 2006 and 2010, and data on mortality was obtained by 2021. Dual sensory impairment was defined as concurrent visual and hearing impairments. Cox proportional hazards regression models were employed to evaluate the impact of sensory impairment (dual sensory impairment, single visual or hearing impairment) on the hazard of mortality. RESULTS Of the 113,563 participants included in this study, the mean age (standard deviation) was 56.8 (8.09) years, and 61,849 (54.5%) were female. At baseline measurements, there were 733 (0.65%) participants with dual sensory impairment, 2,973 (2.62%) participants with single visual impairment, and 13,560 (11.94%) with single hearing impairment. After a follow-up period of 14 years (mean duration of 11 years), 5,992 (5.28%) participants died from all causes. Compared with no sensory impairment, dual sensory impairment was significantly associated with an estimated 44% higher hazard of mortality (hazard ratio: 1.44 [95% confidence interval, 1.11-1.88], p = 0.007) after multiple adjustments. CONCLUSIONS Individuals with dual sensory impairment were found to have an independently 44% higher hazard of mortality than those with neither sensory impairment. Timely intervention of sensory impairment and early prevention of its underlying causes should help to reduce the associated risk of mortality.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Yueye Wang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wenyi Hu
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Xianwen Shang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Yifan Chen
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katerina V Kiburg
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Mingguang He
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China. .,Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia.
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China. .,Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia.
| |
Collapse
|
72
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
73
|
Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel) 2022; 11:antiox11081450. [PMID: 35892652 PMCID: PMC9330887 DOI: 10.3390/antiox11081450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
Collapse
|
74
|
Yamahara K, Yamamoto N, Kuwata F, Nakagawa T. Neuroprotective role of insulin-like growth factor 1 in auditory and other nervous systems. Histol Histopathol 2022; 37:609-619. [PMID: 35170014 DOI: 10.14670/hh-18-437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insulin-like growth factor 1 (IGF1) exerts an influence on almost every organ system in the body and plays an important role in growth, development, and metabolism. In the nervous system, IGF1 acts by promoting the development and growth of neurons and glial cells, differentiation of Schwann cells and their migration to axons, neurite outgrowth, and neuronal survival. The lack of IGF1 is associated with several pathological conditions, including severe prenatal growth retardation, postnatal growth failure, microcephaly, mental retardation, and bilateral sensorineural hearing loss. In addition to its physiological effects, based on the findings of in vivo and in vitro experiments and clinical trials, IGF1 is considered to play a potential role in the treatment of various types of neuronal damage. In this review, we discuss the potential use of IGF1 as a therapeutic molecule in the nervous system: (1) auditory system, including hair cells, cochlear ribbon synapses, auditory nerve, and central nervous systems, and (2) other peripheral nervous systems, especially the olfactory system and facial nerve. The role of IGF1 in the progression of age-related sensory deficits, especially hearing loss and olfactory dysfunction, is also discussed. Recent studies on IGF1 demonstrated that exogenous IGF1 can be applied in many fields, thus supporting the continued evaluation of IGF1 as a potential therapeutic molecule. Additional scientific investigations should be conducted to further supplement recent findings.
Collapse
Affiliation(s)
- Kohei Yamahara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.
| |
Collapse
|
75
|
Kociszewska D, Vlajkovic S. Age-Related Hearing Loss: The Link between Inflammaging, Immunosenescence, and Gut Dysbiosis. Int J Mol Sci 2022; 23:7348. [PMID: 35806352 PMCID: PMC9266910 DOI: 10.3390/ijms23137348] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
This article provides a theoretical overview of the association between age-related hearing loss (ARHL), immune system ageing (immunosenescence), and chronic inflammation. ARHL, or presbyacusis, is the most common sensory disability that significantly reduces the quality of life and has a high economic impact. This disorder is linked to genetic risk factors but is also influenced by a lifelong cumulative effect of environmental stressors, such as noise, otological diseases, or ototoxic drugs. Age-related hearing loss and other age-related disorders share common mechanisms which often converge on low-grade chronic inflammation known as "inflammaging". Various stimuli can sustain inflammaging, including pathogens, cell debris, nutrients, and gut microbiota. As a result of ageing, the immune system can become defective, leading to the accumulation of unresolved inflammatory processes in the body. Gut microbiota plays a central role in inflammaging because it can release inflammatory mediators and crosstalk with other organ systems. A proinflammatory gut environment associated with ageing could result in a leaky gut and the translocation of bacterial metabolites and inflammatory mediators to distant organs via the systemic circulation. Here, we postulate that inflammaging, as a result of immunosenescence and gut dysbiosis, accelerates age-related cochlear degeneration, contributing to the development of ARHL. Age-dependent gut dysbiosis was included as a hypothetical link that should receive more attention in future studies.
Collapse
Affiliation(s)
| | - Srdjan Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand;
| |
Collapse
|
76
|
Oike H, Tomita S, Koyano H, Azami K. Garland chrysanthemum consumption ameliorates age-related hearing loss in C57BL/6 mouse; model system to explore hearing loss prevention foods in a short period. Biosci Biotechnol Biochem 2022; 86:1085-1094. [PMID: 35687003 DOI: 10.1093/bbb/zbac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022]
Abstract
Garland chrysanthemum (Glebionis coronaria L.) is an antioxidant-rich leafy vegetable. We found that garland chrysanthemum consumption ameliorated age-related hearing loss (AHL) in C57BL/6J mice, an early onset model. We also found that AHL progression was significantly ameliorated by three of ten products. Metabolome analysis of the 10 products using nuclear magnetic resonance (NMR) spectroscopy indicated that phytosterols may be involved in the amelioration of AHL. However, the direct inhibitory effect of phytosterol mixture on mouse AHL progression was not identified. These results suggest that garland chrysanthemum consumption delays AHL development in mice and its efficiency varies depending on the source of product. Our findings also suggest that phytosterol content in garland chrysanthemum function as an evaluation marker for the efficiency. Furthermore, to accelerate the search for foods that prevent AHL, we have used these data to develop an automatic threshold determination method for auditory brainstem response using machine learning.
Collapse
Affiliation(s)
- Hideaki Oike
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.,Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Satoru Tomita
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Hitoshi Koyano
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization (NARO), 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Kayo Azami
- Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
77
|
Zendel BR. The importance of the motor system in the development of music-based forms of auditory rehabilitation. Ann N Y Acad Sci 2022; 1515:10-19. [PMID: 35648040 DOI: 10.1111/nyas.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing abilities decline with age, and one of the most commonly reported hearing issues in older adults is a difficulty understanding speech when there is loud background noise. Understanding speech in noise relies on numerous cognitive processes, including working memory, and is supported by numerous brain regions, including the motor and motor planning systems. Indeed, many working memory processes are supported by motor and premotor cortical regions. Interestingly, lifelong musicians and nonmusicians given music training over the course of weeks or months show an improved ability to understand speech when there is loud background noise. These benefits are associated with enhanced working memory abilities, and enhanced activity in motor and premotor cortical regions. Accordingly, it is likely that music training improves the coupling between the auditory and motor systems and promotes plasticity in these regions and regions that feed into auditory/motor areas. This leads to an enhanced ability to dynamically process incoming acoustic information, and is likely the reason that musicians and those who receive laboratory-based music training are better able to understand speech when there is background noise. Critically, these findings suggest that music-based forms of auditory rehabilitation are possible and should focus on tasks that promote auditory-motor interactions.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
78
|
Yong W, Song J, Xing C, Xu JJ, Xue Y, Yin X, Wu Y, Chen YC. Disrupted Topological Organization of Resting-State Functional Brain Networks in Age-Related Hearing Loss. Front Aging Neurosci 2022; 14:907070. [PMID: 35669463 PMCID: PMC9163682 DOI: 10.3389/fnagi.2022.907070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Age-related hearing loss (ARHL), associated with the function of speech perception decreases characterized by bilateral sensorineural hearing loss at high frequencies, has become an increasingly critical public health problem. This study aimed to investigate the topological features of the brain functional network and structural dysfunction of the central nervous system in ARHL using graph theory. Methods Forty-six patients with ARHL and forty-five age, sex, and education-matched healthy controls were recruited to undergo a resting-state functional magnetic resonance imaging (fMRI) scan in this study. Graph theory was applied to analyze the topological properties of the functional connectomes by studying the local and global organization of neural networks. Results Compared with healthy controls, the patient group showed increased local efficiency (Eloc) and clustering coefficient (Cp) of the small-world network. Besides, the degree centrality (Dc) and nodal efficiency (Ne) values of the left inferior occipital gyrus (IOG) in the patient group showed a decrease in contrast with the healthy control group. In addition, the intra-modular interaction of the occipital lobe module and the inter-modular interaction of the parietal occipital module decreased in the patient group, which was positively correlated with Dc and Ne. The intra-modular interaction of the occipital lobe module decreased in the patient group, which was negatively correlated with the Eloc. Conclusion Based on fMRI and graph theory, we indicate the aberrant small-world network topology in ARHL and dysfunctional interaction of the occipital lobe and parietal lobe, emphasizing the importance of dysfunctional left IOG. These results suggest that early diagnosis and treatment of patients with ARHL is necessary, which can avoid the transformation of brain topology and decreased brain function.
Collapse
Affiliation(s)
- Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiajie Song
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Radiology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Jing Xu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Xue
- Department of Otolaryngology, Nanjing Pukou Central Hospital, Pukou Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanqing Wu
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Yuanqing Wu
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Yu-Chen Chen
| |
Collapse
|
79
|
Audiovisual Integration for Saccade and Vergence Eye Movements Increases with Presbycusis and Loss of Selective Attention on the Stroop Test. Brain Sci 2022; 12:brainsci12050591. [PMID: 35624979 PMCID: PMC9139407 DOI: 10.3390/brainsci12050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multisensory integration is a capacity allowing us to merge information from different sensory modalities in order to improve the salience of the signal. Audiovisual integration is one of the most used kinds of multisensory integration, as vision and hearing are two senses used very frequently in humans. However, the literature regarding age-related hearing loss (presbycusis) on audiovisual integration abilities is almost nonexistent, despite the growing prevalence of presbycusis in the population. In that context, the study aims to assess the relationship between presbycusis and audiovisual integration using tests of saccade and vergence eye movements to visual vs. audiovisual targets, with a pure tone as an auditory signal. Tests were run with the REMOBI and AIDEAL technologies coupled with the pupil core eye tracker. Hearing abilities, eye movement characteristics (latency, peak velocity, average velocity, amplitude) for saccade and vergence eye movements, and the Stroop Victoria test were measured in 69 elderly and 30 young participants. The results indicated (i) a dual pattern of aging effect on audiovisual integration for convergence (a decrease in the aged group relative to the young one, but an increase with age within the elderly group) and (ii) an improvement of audiovisual integration for saccades for people with presbycusis associated with lower scores of selective attention in the Stroop test, regardless of age. These results bring new insight on an unknown topic, that of audio visuomotor integration in normal aging and in presbycusis. They highlight the potential interest of using eye movement targets in the 3D space and pure tone sound to objectively evaluate audio visuomotor integration capacities.
Collapse
|
80
|
Wang X, Han Y, Chen F, Wang M, Xiao Y, Wang H, Xu L, Liu W. Glutathione Peroxidase 1 Protects Against Peroxynitrite-Induced Spiral Ganglion Neuron Damage Through Attenuating NF-κB Pathway Activation. Front Cell Neurosci 2022; 16:841731. [PMID: 35401119 PMCID: PMC8983938 DOI: 10.3389/fncel.2022.841731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glutathione peroxidase 1 (GPX1) is a crucial antioxidant enzyme that prevented the harmful accumulation of intra-cellular hydrogen peroxide. GPX1 might contribute in limiting cochlear damages associated with aging or acoustic overexposure, but the function of GPX1 in the inner ear remains unclear. The present study was designed to investigate the effect of GPX1 on cochlear spiral ganglion neurons (SGNs) against oxidative stress induced by peroxynitrite, a versatile oxidant generated by the reaction of superoxide anion and nitric oxide. Here, we first found that the expression of GPX1 in cultured SGNs was downregulated after peroxynitrite exposure. Then, the GPX1 mimic ebselen and the gpx1 knockout (gpx1–/–) mice were used to investigate the role of GPX1 in SGNs treated with peroxynitrite. The pretreatment with ebselen significantly increased the survived SGN numbers, inhibited the apoptosis, and enhanced the expression of 4-HNE in the cultured SGNs of peroxynitrite + ebselen group compared with the peroxynitrite-only group. On the contrary, remarkably less survived SGNs, more apoptotic SGNs, and the higher expression level of 4-HNE were detected in the peroxynitrite + gpx1–/– group compared with the peroxynitrite-only group. Furthermore, rescue experiments with antioxidant N-acetylcysteine (NAC) showed that the expression of 4-HNE and the apoptosis in SGNs were significantly decreased, while the number of surviving SGNs was increased in peroxynitrite + NAC group compared the peroxynitrite-only group and in peroxynitrite + gpx1–/– + NAC group vs. peroxynitrite + gpx1–/– group. Finally, mechanistic studies showed that the activation of nuclear factor-kappa B (NF-κB) was involved in the SGNs damage caused by peroxynitrite and that GPX1 protected SGNs against peroxynitrite-induced damage, at least in part, via blocking the NF-κB pathway activation. Collectively, our findings suggest that GPX1 might serve as a new target for the prevention of nitrogen radical-induced SGNs damage and hearing loss.
Collapse
Affiliation(s)
- Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Fang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Institute of Otorhinolaryngology, Jinan, China
| |
Collapse
|
81
|
Bishop R, Qureshi F, Yan J. Age-related changes in neuronal receptive fields of primary auditory cortex in frequency, amplitude, and temporal domains. Hear Res 2022; 420:108504. [DOI: 10.1016/j.heares.2022.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
|
82
|
Kawata NYS, Nouchi R, Oba K, Matsuzaki Y, Kawashima R. Auditory Cognitive Training Improves Brain Plasticity in Healthy Older Adults: Evidence From a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:826672. [PMID: 35431898 PMCID: PMC9010026 DOI: 10.3389/fnagi.2022.826672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The number of older adults is increasing globally. Aging is associated with cognitive and sensory decline. Additionally, declined auditory performance and cognitive function affect the quality of life of older adults. Therefore, it is important to develop an intervention method to improve both auditory and cognitive performances. The current study aimed to investigate the beneficial effects of auditory and cognitive training on auditory ability and cognitive functions in healthy older adults. Fifty healthy older adults were randomly divided into four training groups-an auditory-cognitive training group (AC training; n = 13), an auditory training group (A training; n = 13), a cognitive training group (C training; n = 14), and an active control group (n = 12). During the training period, we reduced the sound intensity level in AC and A training groups and increase training task difficulty in AC, A, and C training groups based on participants' performance. Cognitive function measures [digit-cancelation test (D-CAT); logical memory (LM); digit span (DS)], auditory measures [pure-tone audiometry (PTA)], and magnetic resonance imaging (MRI) scans were performed before and after the training periods. We found three key findings. First, the AC training group showed difference between other training groups (A, C, and active control training groups) in regional gray matter volume (rGMV) in the right dorsolateral prefrontal cortex, the left inferior temporal gyrus (L. ITG), the left superior frontal gyrus, the left orbitofrontal cortex, the right cerebellum (lobule 7 Crus 1). Second, the auditory training factor groups (ATFGs, the AC and A training groups) improved auditory measures and increased the rGMV and functional connectivity (FC) in the left temporal pole compared to the non-ATFGs (the C training group and active control group). Third, the cognitive training factor groups (CTFGs; the AC and C training groups) showed statistically significant improvement in cognitive performances in LM and D-CAT compared to the non-CTFGs (the A training group and active control group). Therefore, the auditory training factor and cognitive training factor would be useful in enhancing the quality of life of older adults. The current AC training study, the plasticity of the brain structure was observed after 4 weeks of training.
Collapse
Affiliation(s)
- Natasha Y. S. Kawata
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
| | - Kentaro Oba
- Department of Human Brain Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yutaka Matsuzaki
- Department of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
- Smart Aging Research Center, Tohoku University, Sendai, Japan
- Department of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
83
|
Loss of audiovisual facilitation with age occurs for vergence eye movements but not for saccades. Sci Rep 2022; 12:4453. [PMID: 35292652 PMCID: PMC8924254 DOI: 10.1038/s41598-022-08072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
Though saccade and vergence eye movements are fundamental for everyday life, the way these movements change as we age has not been sufficiently studied. The present study examines the effect of age on vergence and saccade eye movement characteristics (latency, peak and average velocity, amplitude) and on audiovisual facilitation. We compare the results for horizontal saccades and vergence movements toward visual and audiovisual targets in a young group of 22 participants (mean age 25 ± 2.5) and an elderly group of 45 participants (mean age 65 + 6.9). The results show that, with increased age, latency of all eye movements increases, average velocity decreases, amplitude of vergence decreases, and audiovisual facilitation collapses for vergence eye movements in depth but is preserved for saccades. There is no effect on peak velocity, suggesting that, although the sensory and attentional mechanisms controlling the motor system does age, the motor system itself does not age. The loss of audiovisual facilitation along the depth axis can be attributed to a physiologic decrease in the capacity for sound localization in depth with age, while left/right sound localization coupled with saccades is preserved. The results bring new insight for the effects of aging on multisensory control and attention.
Collapse
|
84
|
Landry EC, Scholte M, Su MP, Horstink Y, Mandavia R, Rovers MM, Schilder AGM. Early Health Economic Modeling of Novel Therapeutics in Age-Related Hearing Loss. Front Neurosci 2022; 16:769983. [PMID: 35310110 PMCID: PMC8930912 DOI: 10.3389/fnins.2022.769983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHealth systems face challenges to accelerate access to innovations that add value and avoid those unlikely to do so. This is very timely to the field of age-related sensorineural hearing loss (ARHL), where a significant unmet market need has been identified and sizeable investments made to promote the development of novel hearing therapeutics (NT). This study aims to apply health economic modeling to inform the development of cost-effective NT.MethodsWe developed a decision-analytic model to assess the potential costs and effects of using regenerative NT in patients ≥50 with ARHL. This was compared to the current standard of care including hearing aids and cochlear implants. Input data was collected from systematic literature searches and expert opinion. A UK NHS healthcare perspective was adopted. Three different but related analyses were performed using probabilistic modeling: (1) headroom analysis, (2) scenario analyses, and (3) threshold analyses.ResultsThe headroom analysis shows an incremental net monetary benefit (iNMB) of £20,017[£11,299–£28,737] compared to the standard of care due to quality-adjusted life-years (QALY) gains and cost savings. Higher therapeutic efficacy and access for patients with all degrees of hearing loss yields higher iNMBs. Threshold analyses shows that the ceiling price of the therapeutic increases with more severe degrees of hearing loss.ConclusionNT for ARHL are potentially cost-effective under current willingness-to-pay (WTP) thresholds with considerable room for improvement in the current standard of care pathway. Our model can be used to help decision makers decide which therapeutics represent value for money and are worth commissioning, thereby paving the way for urgently needed NT.
Collapse
Affiliation(s)
- Evie C. Landry
- Division of Otolaryngology-Head and Neck Surgery, St. Paul’s Hospital, BC Rotary Hearing and Balance Centre, University of British Columbia, Vancouver, BC, Canada
- National Institute for Health Research University College London Hospitals Biomedical Research Centre Hearing Theme, London, United Kingdom
- evidENT, Ear Institute, University College London, London, United Kingdom
| | - Mirre Scholte
- Department of Operating Rooms, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthew P. Su
- National Institute for Health Research University College London Hospitals Biomedical Research Centre Hearing Theme, London, United Kingdom
- evidENT, Ear Institute, University College London, London, United Kingdom
| | - Yvette Horstink
- Department of Operating Rooms, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rishi Mandavia
- National Institute for Health Research University College London Hospitals Biomedical Research Centre Hearing Theme, London, United Kingdom
- evidENT, Ear Institute, University College London, London, United Kingdom
| | - Maroeska M. Rovers
- Department of Operating Rooms, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne G. M. Schilder
- National Institute for Health Research University College London Hospitals Biomedical Research Centre Hearing Theme, London, United Kingdom
- evidENT, Ear Institute, University College London, London, United Kingdom
- *Correspondence: Anne G. M. Schilder,
| |
Collapse
|
85
|
Xiong H, Pang J, Min X, Ye Y, Lai L, Zheng Y. miR-34a/ATG9A/TFEB signaling modulates autophagy in cochlear hair cells and correlates with age-related hearing loss. Neuroscience 2022; 491:98-109. [DOI: 10.1016/j.neuroscience.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
86
|
Chen D, Jia G, Zhang Y, Mao H, Zhao L, Li W, Chen Y, Ni Y. Sox2 overexpression alleviates noise-induced hearing loss by inhibiting inflammation-related hair cell apoptosis. J Neuroinflammation 2022; 19:59. [PMID: 35227273 PMCID: PMC8883703 DOI: 10.1186/s12974-022-02414-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The transcription factor Sox2 plays important roles in the developmental processes of multiple organs and tissues. However, whether Sox2 can protect mature or terminally differentiated cells against injury is still unknown.
Methods
We investigated the roles of Sox2 in cochlear hair cells, which are terminally differentiated cells, using conditional transgenic mice and several hearing loss models.
Results
Sox2 overexpression dramatically mitigated the degree of cochlear hair cell loss when exposed to ototoxic drugs. Noise-induced apoptosis of cochlear hair cells and hearing loss were also significantly alleviated by Sox2 overexpression. Notably, noise-induced upregulation of pro-inflammatory factors such as TNF-α and IL6 was inhibited by Sox2 overexpression. Then we used lipopolysaccharide to clarify the effect of Sox2 on cochlear inflammation, and Sox2 overexpression significantly inhibited lipopolysaccharide-induced upregulation of pro-inflammatory factors and alleviated inflammation-related cochlear hair cell death.
Conclusions
These results demonstrate a novel protective role of Sox2 in mature and terminally differentiated cochlear hair cells by inhibiting inflammation.
Collapse
|
87
|
Elliott KL, Fritzsch B, Yamoah EN, Zine A. Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Front Aging Neurosci 2022; 14:814528. [PMID: 35250542 PMCID: PMC8891613 DOI: 10.3389/fnagi.2022.814528] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is a common, increasing problem for older adults, affecting about 1 billion people by 2050. We aim to correlate the different reductions of hearing from cochlear hair cells (HCs), spiral ganglion neurons (SGNs), cochlear nuclei (CN), and superior olivary complex (SOC) with the analysis of various reasons for each one on the sensory deficit profiles. Outer HCs show a progressive loss in a basal-to-apical gradient, and inner HCs show a loss in a apex-to-base progression that results in ARHL at high frequencies after 70 years of age. In early neonates, SGNs innervation of cochlear HCs is maintained. Loss of SGNs results in a considerable decrease (~50% or more) of cochlear nuclei in neonates, though the loss is milder in older mice and humans. The dorsal cochlear nuclei (fusiform neurons) project directly to the inferior colliculi while most anterior cochlear nuclei reach the SOC. Reducing the number of neurons in the medial nucleus of the trapezoid body (MNTB) affects the interactions with the lateral superior olive to fine-tune ipsi- and contralateral projections that may remain normal in mice, possibly humans. The inferior colliculi receive direct cochlear fibers and second-order fibers from the superior olivary complex. Loss of the second-order fibers leads to hearing loss in mice and humans. Although ARHL may arise from many complex causes, HC degeneration remains the more significant problem of hearing restoration that would replace the cochlear implant. The review presents recent findings of older humans and mice with hearing loss.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, Montpellier, France
| |
Collapse
|
88
|
Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2022; 110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.
Collapse
Affiliation(s)
- Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany.
| | - Andrej Kral
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany; Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
89
|
Li P, Bing D, Wang X, Chen J, Du Z, Sun Y, Qi F, Chu H. New Target of Oxidative Stress Regulation in Cochleae: Alternative Splicing of the p62/Sqstm1 Gene. J Mol Neurosci 2022; 72:830-840. [PMID: 35048235 DOI: 10.1007/s12031-022-01969-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/06/2022] [Indexed: 01/06/2023]
Abstract
We investigated oxidative stress and antioxidant response in the p62/Sqstm1-Keap1-Nrf2 pathway in C57BL/6 mice cochleae during age-related hearing loss (ARHL) and noise-induced hearing loss (NIHL), and the function of full-length and variant p62 in the regulation of Nrf2 activation. Groups of young (2 months), old (13-14 months), control, and acoustic trauma (AT) mice were examined cochlear damage and oxidative stress as follows: auditory brainstem response and hair cell counts; malondialdehyde (MDA) levels measured by assay kit and 7,8-dihydro-8-oxoguanine (8-oxoG) detected by immunohistochemistry. Full-length and variant p62 were examined for expression in cochleae, hippocampus (HIP), and auditory cortex (AC) using immunoblotting. Keap1-Nrf2 pathway activation was based on immunoblotting of nuclear Nrf2 and quantitative real-time PCR of Nrf2 target genes HO-1/NQO-1. The oxidative function of full-length and variant p62 was examined in HEI-OC-1 cells by flow cytometry. The results showed hearing loss, and cochlear hair cell loss was associated with MDA accumulation and 8-oxoG expression during ARHL and NIHL. Nrf2 showed no obvious changes in nuclear protein. Expression levels mRNA for HO-1 and NQO1 were lower in old mice and mildly greater in AT Mice. The expression of p62 splicing variant lacking the Keap1-interacting region was greater than full-length p62 in cochleae. However, the expression of p62 splicing variant was lesser than full-length p62 in HIP and AC. For HEI-OC-1 cells, overexpression of full-length p62 decreased ROS levels induced by H2O2. Oxidative stress is closely related to ARHL and NIHL. Changing the ratio of full-length to variant p62 protein expression may be a new target to reduce the level of oxidative stress in cochleae.
Collapse
Affiliation(s)
- Pengjun Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaodi Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhihui Du
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yanbo Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Qi
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanqi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
90
|
Alvarado JC, Fuentes-Santamaría V, Juiz JM. Frailty Syndrome and Oxidative Stress as Possible Links Between Age-Related Hearing Loss and Alzheimer’s Disease. Front Neurosci 2022; 15:816300. [PMID: 35115905 PMCID: PMC8804094 DOI: 10.3389/fnins.2021.816300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
As it is well known, a worldwide improvement in life expectancy has taken place. This has brought an increase in chronic pathologies associated with aging. Cardiovascular, musculoskeletal, psychiatric, and neurodegenerative conditions are common in elderly subjects. As far as neurodegenerative diseases are concerned dementias and particularly, Alzheimer’s disease (AD) occupy a central epidemiological position given their high prevalence and their profound negative impact on the quality of life and life expectancy. The amyloid cascade hypothesis partly explains the immediate cause of AD. However, limited therapeutical success based on this hypothesis suggests more complex remote mechanisms underlying its genesis and development. For instance, the strong association of AD with another irreversible neurodegenerative pathology, without curative treatment and complex etiology such as presbycusis, reaffirms the intricate nature of the etiopathogenesis of AD. Recently, oxidative stress and frailty syndrome have been proposed, independently, as key factors underlying the onset and/or development of AD and presbycusis. Therefore, the present review summarizes recent findings about the etiology of the above-mentioned neurodegenerative diseases, providing a critical view of the possible interplay among oxidative stress, frailty syndrome, AD and presbycusis, that may help to unravel the common mechanisms shared by both pathologies. This knowledge would help to design new possible therapeutic strategies that in turn, will improve the quality of life of these patients.
Collapse
|
91
|
Miura S, Sasaki A, Kasai S, Sugawara T, Maeda Y, Goto S, Kasai T, Shimizume N, Jung S, Iwane T, Itoh K, Matsubara A. Association of mitochondrial DNA haplogroup and hearing impairment with aging in Japanese general population of the Iwaki Health Promotion Project. J Hum Genet 2022; 67:369-375. [PMID: 35034960 PMCID: PMC9130095 DOI: 10.1038/s10038-022-01011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/20/2021] [Accepted: 01/01/2022] [Indexed: 11/09/2022]
Abstract
Age-related hearing loss (ARHL) is a complex multifactorial disorder. Studies in animals, including mitochondria-mutator mice, and in human suggest that oxidative stress and mitochondrial disturbance play an important role in the pathoetiology of ARHL. Mitochondrial DNA (mtDNA) haplogroups are populations with genetically similar traits, and they have been reported to affect the mitochondrial function of oxidative phosphorylation. To gain further insights into the relationships between mitochondrial haplotypes and the susceptibility to cochlear aging, in this study, we aimed to elucidate how the differences in mtDNA haplogroups may affect ARHL development in Japanese general population. We focused on early onset ARHL, as the same mtDNA haplogroup can show either a negative or positive effect on systemic co-morbidities of ARHL that appear later in life. A total of 1167 participants of the Iwaki Health Promotion Project were surveyed in 2014, and 12 major haplotype groups (D4a, D4b, D5, G1, G2, M7a, M7b, A, B4, B5, N9, and F) were selected for the analysis. A total of 698 subjects aged 30 to 65 years were included in the statistical analysis, and the hearing loss group consisted of 112 males (40.3%) and 111 females (26.4%). Multiple logistic regression analysis showed that the male subjects belonging to haplogroup A had a significantly increased risk of hearing loss, whereas the female subjects belonging to haplogroup N9 had a significantly decreased risk of hearing loss. These results suggested that the mtDNA haplogroup may be an indicator for future risk of morbidity associated with ARHL.
Collapse
Affiliation(s)
- Shiori Miura
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akira Sasaki
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shuya Kasai
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takayuki Sugawara
- Research Institute of Bio-System Informatics, Tohoku Chemical Co., Ltd, Morioka, Japan.,Center of Innovation Research Initiatives Organization, Hirosaki University, Hirosaki, Japan
| | - Yasunori Maeda
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinichi Goto
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Kasai
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nami Shimizume
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Songee Jung
- Department of Digital Nutrition, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Takuro Iwane
- Hirosaki University COI Research Initiative Organization, Hirosaki University, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
92
|
Age-related Activation of Cyclic GMP-AMP synthase-Stimulator of Interferon Genes Signaling in the Auditory System is Associated with Presbycusis in C57BL/6J Male Mice. Neuroscience 2022; 481:73-84. [PMID: 34848262 DOI: 10.1016/j.neuroscience.2021.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 11/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), is primarily associated with sensory or transduction nerve cell degeneration in the peripheral and/or central auditory systems. During aging, the auditory system shows mitochondrial dysfunction and increased inflammatory responses. Mitochondrial dysfunction promotes leakage of mitochondrial DNA (mtDNA) into the cytosol, which activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce type I interferon and inflammatory responses. However, whether this pathway is involved in the occurrence and development of ARHL is unknown. This study aimed to determine whether there are age-related changes in the levels of cytosolic mtDNA and cGAS-STING pathway activation in the auditory pathway and to explore their relationship with ARHL. The results showed that cGAS-positive immunoreactive cells were observed in the cochlea, inferior colliculus, and auditory cortex. Levels of cytosolic mtDNA, cGAS, STING, phosphorylated interferon regulatory factor 3, and cytokines were significantly increased in the cochlea, inferior colliculus, and auditory cortex of 6-, 9-, and 12-month-old mice compared with 3-month-old mice. These findings suggested that cytosolic mtDNA may play an important role in the pathogenesis of ARHL by activating cGAS-STING-mediated type I interferon and inflammatory responses.
Collapse
|
93
|
Presbycusis and the Aging of Eye Movement: Common Attention Mechanisms. Brain Sci 2022; 12:brainsci12010107. [PMID: 35053850 PMCID: PMC8773575 DOI: 10.3390/brainsci12010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/02/2022] Open
Abstract
Presbycusis, physiological age-related hearing loss, is a major health problem because it is the most common cause of hearing impairment, and its impact will grow in the coming years with the aging population. Besides auditory consequences, the literature recently found an association between hearing loss and cognitive decline over the last two decades, emphasizing the importance of the early detection of presbycusis. However, the current hearing tests are not sufficient to detect presbycusis in some cases. Furthermore, the underlying mechanisms of this association are still under discussion, calling for a new field of research on that topic. In that context, this study investigates for the first time the interaction between presbycusis, eye movement latency and Stroop scores for a normal aging population. Hearing abilities, eye movement latency and the Stroop Victoria test were measured for 69 elderly (mean 66.7 ± 8.4) and 30 young (mean 25.3 ± 2.7) participants. The results indicated a significant relationship between saccade latency and speech audiometry in the silence score, independently from age. These promising results suggest common attentional mechanisms between speech processing and saccade latency. The results are discussed regarding the relationship between hearing and cognition, and regarding the perspective of expanding new tools for presbycusis diagnosis.
Collapse
|
94
|
Abstract
There is a lack of studies assessing how hearing impairment relates to reproductive outcomes. We examined whether childhood hearing impairment (HI) affects reproductive patterns based on longitudinal Norwegian population level data for birth cohorts 1940-1980. We used Poisson regression to estimate the association between the number of children ever born and HI. The association with childlessness is estimated by a logit model. As a robustness check, we also estimated family fixed effects Poisson and logit models. Hearing was assessed at ages 7, 10 and 13, and reproduction was observed at adult ages until 2014. Air conduction hearing threshold levels were obtained by pure-tone audiometry at eight frequencies from 0.25 to 8 kHz. Fertility data were collected from Norwegian administrative registers. The combined dataset size was N = 50,022. Our analyses reveal that HI in childhood is associated with lower fertility in adulthood, especially for men. The proportion of childless individuals among those with childhood HI was almost twice as large as that of individuals with normal childhood hearing (20.8% vs. 10.7%). The negative association is robust to the inclusion of family fixed effects in the model that allow to control for the unobserved heterogeneity that are shared between siblings, including factors related to the upbringing and parent characteristics. Less family support in later life could add to the health challenges faced by those with HI. More attention should be given to how fertility relates to HI.
Collapse
|
95
|
Yuan L, Li D, Tian Y, Sun Y. The Risk of Hearing Impairment From Ambient Air Pollution and the Moderating Effect of a Healthy Diet: Findings From the United Kingdom Biobank. Front Cell Neurosci 2022; 16:856124. [PMID: 35465613 PMCID: PMC9018982 DOI: 10.3389/fncel.2022.856124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The link between hearing impairment and air pollution has not been established, and the moderating effect of a healthy diet has never been investigated before. The purpose of this study was to investigate the association between air pollution and hearing impairment in British adults aged 37-73 years, and whether the association was modified by a healthy diet. We performed a cross-sectional population-based study with 158,811 participants who provided data from United Kingdom Biobank. A multivariate logistic regression model was used to investigate the link between air pollution and hearing impairment. Subgroup and effect modification analyses were carried out according to healthy diet scores, gender, and age. In the fully adjusted model, we found that exposure to PM10, NOX, and NO2 was associated with hearing impairment [PM10: odds ratio (OR) = 1.15, 95% confidence interval (95% CI) 1.02-1.30, P = 0.023; NOX: OR = 1.02, 95% CI 1.00-1.03, P = 0.040; NO2: OR = 1.03, 95% CI 1.01-1.06, P = 0.044], while PM2.5 and PM2.5 absorbance did not show similar associations. We discovered an interactive effect of age and air pollution on hearing impairment, but a healthy diet did not. The findings suggested that exposure to PM10, NOX and NO2 was linked to hearing impairment in British adults, whereas PM2.5 and PM2.5 absorbance did not show similar associations. These may help researchers focus more on the impact of air pollution on hearing impairment and provide a basis for developing effective prevention strategies.
Collapse
Affiliation(s)
- Lanlai Yuan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
96
|
Liu Q, Li N, Yang Y, Yan X, Dong Y, Peng Y, Shi J. Prediction of the Molecular Mechanisms Underlying Erlong Zuoci Treatment of Age-Related Hearing Loss via Network Pharmacology-Based Analyses Combined with Experimental Validation. Front Pharmacol 2021; 12:719267. [PMID: 34887749 PMCID: PMC8650627 DOI: 10.3389/fphar.2021.719267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The traditional Chinese medicine formula ErLong ZuoCi (ELZC) has been extensively used to treat age-related hearing loss (ARHL) in clinical practice in China for centuries. However, the underlying molecular mechanisms are still poorly understood. Objective: Combine network pharmacology with experimental validation to explore the potential molecular mechanisms underlying ELZC with a systematic viewpoint. Methods: The chemical components of ELZC were collected from the Traditional Chinese Medicine System Pharmacology database, and their possible target proteins were predicted using the SwissTargetPrediction database. The putative ARHL-related target proteins were identified from the database: GeneCards and OMIM. We constructed the drug-target network as well as drug-disease specific protein-protein interaction networks and performed clustering and topological property analyses. Functional annotation and signaling pathways were performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Finally, in vitro experiments were also performed to validate ELZC’s key target proteins and treatment effects on ARHL. Results: In total, 63 chemical compounds from ELZC and 365 putative ARHL-related targets were identified, and 1860 ARHL-related targets were collected from the OMIM and GeneCards. A total of 145 shared targets of ELZC and ARHL were acquired by Venn diagram analysis. Functional enrichment analysis suggested that ELZC might exert its pharmacological effects in multiple biological processes, such as cell proliferation, apoptosis, inflammatory response, and synaptic connections, and the potential targets might be associated with AKT, ERK, and STAT3, as well as other proteins. In vitro experiments revealed that ELZC pretreatment could decrease senescence-associated β-galactosidase activity in hydrogen peroxide-induced auditory hair cells, eliminate DNA damage, and reduce cellular senescence protein p21 and p53. Finally, Western blot analysis confirmed that ELZC could upregulate the predicted target ERK phosphorylation. Conclusion: We provide an integrative network pharmacology approach, in combination with in vitro experiments to explore the underlying molecular mechanisms governing ELZC treatment of ARHL. The protective effects of ELZC against ARHL were predicted to be associated with cellular senescence, inflammatory response, and synaptic connections which might be linked to various pathways such as JNK/STAT3 and ERK cascade signaling pathways. As a prosperous possibility, our experimental data suggest phosphorylation ERK is essential for ELZC to prevent degeneration of cochlear.
Collapse
Affiliation(s)
- Qing Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xirui Yan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinting Peng
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianrong Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
97
|
Diao T, Ma X, Zhang J, Duan M, Yu L. The Correlation Between Hearing Loss, Especially High-Frequency Hearing Loss and Cognitive Decline Among the Elderly. Front Neurosci 2021; 15:750874. [PMID: 34867162 PMCID: PMC8634596 DOI: 10.3389/fnins.2021.750874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: The relation between cognition and hearing loss has been increasingly paid high attention, however, few studies have focused on the role of high-frequency hearing loss in cognitive decline. This study is oriented to role of hearing loss especially high-frequency hearing loss in cognitive impairment among elderly people (age ≥ 60 years). Methods: The Montreal Cognitive Assessment Scale (MoCA) and pure tone audiometry were used to investigate the hearing loss and cognitive function of 201 elderly people older than 60 years. Factors possibly related to cognitive impairment including age, years of education, occupation, living conditions, history of otologic diseases, and high blood pressure were registered. This study consisted of two parts. First, univariate analysis and multiple linear regressions were performed to analyze the possible influencing factors of cognitive function among the 201 elderly people. Second, average hearing thresholds of low frequencies (250, 500 Hz), intermediate frequencies (1 k, 2 kHz), and high frequencies (4 k, 8 kHz) were calculated to screen out 40 cases with high-frequency hearing loss alone and 18 cases with normal hearing. Univariate analysis was used to compare the general condition, cognitive function, and each cognitive domain between the two groups, analyzing the relation between high-frequency hearing loss and cognitive function. Result: We found that age, years of education, pure tone average (PTA), occupation, living condition, history of otologic diseases, years of self-reported hearing loss, and hypertension history were related to cognitive function. Furthermore, age, education experience, duration of self-reported hearing loss, and hypertension were independent factors (p < 0.05). PTA was negatively related with attention, orientation, and general cognition (p < 0.05). There were only 18 cases (9.0%) with normal hearing, and 40 cases (19.9%) with abnormal high-frequency hearing alone. The overall cognitive function showed no significant difference between them (p > 0.05); in contrast, the speech and abstract ability were significantly decreased in cases with high-frequency hearing loss (p < 0.05). Conclusion: The increase of PTA among the elderly may affect the overall cognition by reducing attention and orientation. High-frequency hearing loss alone can affect the language and abstract ability to a certain extent, which is worthy of more attention.
Collapse
Affiliation(s)
- Tongxiang Diao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Xin Ma
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| | - Junbo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Maoli Duan
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Otolaryngology, Head and Neck Surgery & Audiology and Neurotology, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Lisheng Yu
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, China
| |
Collapse
|
98
|
Caspar KR, Heinrich A, Mellinghaus L, Gerhardt P, Begall S. Evoked auditory potentials from African mole-rats and coruros reveal disparity in subterranean rodent hearing. J Exp Biol 2021; 224:272630. [PMID: 34704596 DOI: 10.1242/jeb.243371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
Hearing in subterranean rodents exhibits numerous peculiarities, including low sensitivity and restriction to a narrow range of comparatively low frequencies. Past studies provided two conflicting hypotheses explaining how these derived traits evolved: structural degeneration and adaptive specialization. To further elucidate this issue, we recorded auditory brainstem responses from three species of social subterranean rodents that differ in the degree of specialization to the underground habitat: the naked mole-rat (Heterocephalus glaber) and the Mashona mole-rat (Fukomys darlingi), which represent the ancient lineage of African mole-rats (Bathyergidae), and the coruro (Spalacopus cyanus), a South American rodent (Octodontidae) that adopted a subterranean lifestyle in more recent geological time. Additionally, we measured call amplitudes of social vocalizations to study auditory vocal coupling. We found elevated auditory thresholds and severe hearing range restrictions in the African mole-rats, with hearing in naked mole-rats tending to be more sensitive than in Mashona mole-rats, in which hearing notably deteriorated with increasing age. In contrast, hearing in coruros was similar to that of epigeic rodents, with its range extending into ultrasonic frequencies. However, as in the mole-rats, the coruros' region of best hearing was located at low frequencies close to 1 kHz. We argue that the auditory sensitivity of African mole-rats, although remarkably poor, has been underestimated by recent studies, whereas data on coruros conform to previous results. Considering the available evidence, we propose to be open to both degenerative and adaptive interpretations of hearing physiology in subterranean mammals, as each may provide convincing explanations for specific auditory traits observed.
Collapse
Affiliation(s)
- Kai R Caspar
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Alexandra Heinrich
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Lea Mellinghaus
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - Patricia Gerhardt
- Institute of Physiology, Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sabine Begall
- Department of General Zoology, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| |
Collapse
|
99
|
Salam SA, Mostafa F, Alnamshan MM, Elshewemi SS, Sorour JM. Thymoquinone ameliorates age-related hearing loss in C57BL/6J mice by modulating Sirt1 activity and Bak1 expression. Biomed Pharmacother 2021; 143:112149. [PMID: 34507120 DOI: 10.1016/j.biopha.2021.112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Age-related hearing loss (AHL) is the most common sensory disorder of aged population. Currently, one of the most important sources of experimental medicine for AHL is medicinal plants. This study performed the first investigation of the effect of thymoquinone (TQ), a potent antioxidant, on AHL. Here, we used inbred C57BL/6J mice (B6 mice) as a successful experimental model of the early onset of AHL. The behavioral assessment of hearing revealed that the injection of a high dose of TQ (40 mg/kg; TQ40) significantly improved the auditory sensitivity of B6 mice at all tested frequencies (8, 16 and 22 kHz). Histological sections of cochlea from B6 mice injected with a low dose (20 mg/kg; TQ20) and high dose showed relatively less degenerative signs in the modiolus, hair cells and spiral ligaments, the main constituents of the cochlea. In addition, TQ40 completely restored the normal pattern of hair cells in B6 mice, as shown in scanning electron micrographs. Our data indicated that TQ20 and TQ40 reduced levels of Bak1-mediated apoptosis in the cochlea of B6 mice. Interestingly, the level of Sirt1, a positive regulator of autophagy, was significantly increased in B6 mice administered TQ40. In conclusion, TQ relieves the symptoms of AHL by downregulating Bak1 and activating Sirt1 in the cochlea of B6 mice.
Collapse
Affiliation(s)
- Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Fatma Mostafa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mashael M Alnamshan
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Salma S Elshewemi
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Jehan M Sorour
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
100
|
Miyata J, Umesawa M, Yoshioka T, Iso H. Association between high systolic blood pressure and objective hearing impairment among Japanese adults: a facility-based retrospective cohort study. Hypertens Res 2021; 45:155-161. [PMID: 34690351 DOI: 10.1038/s41440-021-00737-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 11/09/2022]
Abstract
This retrospective longitudinal study examined the association between systolic blood pressure and hearing impairment among 13,187 Japanese individuals (men, 46.5%) aged 20-59 years. The systolic blood pressure of participants was categorized as <120, 120-129, 130-139, 140-149, 150-159, and ≥160 mmHg. Using pure-tone audiometry, hearing impairment at 1 and 4 kHz was defined as hearing thresholds in either ear >30 and >40 dB, respectively. We performed multivariable Cox proportional-hazards regression analysis to examine the association using two multiple-imputation methods (fully conditional specification and Markov chain Monte Carlo). There were 695 and 774 hearing-impairment cases at 1 and 4 kHz, respectively, during ~77,000 person-years of follow-up. Compared with the <120 mmHg group, the hazard ratios (95% confidence intervals) of hearing impairment for the 120-129, 130-139, 140-149, 150-159, and ≥160 mmHg groups after adjustment for age, sex, body mass index, high serum glucose, current smoking, and other potential confounders were 1.35 (1.12-1.63), 1.45 (1.13-1.86), 1.07 (0.73-1.58), 1.91 (1.18-3.07), and 1.81 (1.01-3.25), respectively, at 1 kHz using the first imputation method; 1.36 (1.13-1.63), 1.48 (1.17-1.86), 1.09 (0.76-1.58), 1.99 (1.29-3.06), and 1.92 (1.08-3.41), respectively, at 1 kHz using the second imputation method; 1.04 (0.86-1.24), 1.14 (0.91-1.43), 1.13 (0.83-1.54), 1.45 (0.96-2.19), and 1.35 (0.82-2.23), respectively, at 4 kHz using the first imputation method; and 1.03 (0.86-1.24), 1.17 (0.95-1.44), 1.15 (0.87-1.53), 1.54 (1.06-2.24), and 1.44 (0.88-2.35), respectively, at 4 kHz using the second imputation method. In conclusion, higher systolic blood pressure was associated with hearing impairment at 1 kHz. No clear association was observed at 4 kHz.
Collapse
Affiliation(s)
- Jun Miyata
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.,Department of Family Medicine, Medical Center for the Entire Family, Keiju Medical Center, 94 Tomiokacho, Nanao, Ishikawa, Japan
| | - Mitsumasa Umesawa
- Department of Public Health, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi, Japan
| | - Tetsuya Yoshioka
- Department of Family Medicine, Medical Center for the Entire Family, Keiju Medical Center, 94 Tomiokacho, Nanao, Ishikawa, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|