51
|
Chhikara S, Singh Y, Long S, Minocha R, Musante C, White JC, Dhankher OP. Overexpression of bacterial γ-glutamylcysteine synthetase increases toxic metal(loid)s tolerance and accumulation in Crambe abyssinica. PLANT CELL REPORTS 2024; 43:270. [PMID: 39443376 DOI: 10.1007/s00299-024-03351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Transgenic Crambe abyssinica lines overexpressing γ-ECS significantly enhance tolerance to and accumulation of toxic metal(loid)s, improving phytoremediation potential and offering an effective solution for contaminated soil management. Phytoremediation is an attractive environmental-friendly technology to remove metal(loid)s from contaminated soils and water. However, tolerance to toxic metals in plants is a critical limiting factor. Transgenic Crambe abyssinica lines were developed that overexpress the bacterial γ-glutamylcysteine synthetase (γ-ECS) gene to increase the levels of non-protein thiol peptides such as γ-glutamylcysteine (γ-EC), glutathione (GSH), and phytochelatins (PCs) that mediate metal(loid)s detoxification. The present study investigated the effect of γ-ECS overexpression on the tolerance to and accumulation of toxic As, Cd, Pb, Hg, and Cr supplied individually or as a mixture of metals. Compared to wild-type plants, γ-ECS transgenics (γ-ECS1-8 and γ-ECS16-5) exhibited a significantly higher capacity to tolerate and accumulate these elements in aboveground tissues, i.e., 76-154% As, 200-254% Cd, 37-48% Hg, 26-69% Pb, and 39-46% Cr, when supplied individually. This is attributable to enhanced production of GSH (82-159% and 75-87%) and PC2 (27-33% and 37-65%) as compared to WT plants under AsV and Cd exposure, respectively. The levels of Cys and γ-EC were also increased by 56-67% and 450-794% in the overexpression lines compared to WT plants under non-stress conditions, respectively. This likely enhanced the metabolic pathway associated with GSH biosynthesis, leading to the ultimate synthesis of PCs, which detoxify toxic metal(loid)s through chelation. These findings demonstrate that γ-ECS overexpressing Crambe lines can be used for the enhanced phytoremediation of toxic metals and metalloids from contaminated soils.
Collapse
Affiliation(s)
- Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Stephanie Long
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Rakesh Minocha
- USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
52
|
Shen C, Wang M, Su J, Sun H, Hu W, Lin K, Wu J, Liu F, Chen X, Sha C. Characteristics, Source Apportionment, and Health Risk of Heavy Metals in the Soils of Peri-urban Shanghai Chongming Island. ACS OMEGA 2024; 9:42734-42745. [PMID: 39464434 PMCID: PMC11500163 DOI: 10.1021/acsomega.4c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Heavy metals resulting from human activities pose significant threats to human health and the soil ecosystem. In the current study, 917 soil samples from Chongming Island in Shanghai, China, were examined for eight heavy metals. The sources of contamination were identified by using a Positive Matrix Factorization (PMF) model. Meanwhile, spatial interpolation and Moran's I index were applied to validate the model in terms of spatial linkages. The results revealed that the average concentrations of As, Cd, Hg, Pb, Cr, Cu, Zn, and Ni in the soil were 8.87, 0.19, 0.06, 28.75, 76.01, 37.74, 88.93, and 30.33 mg kg-1, respectively. The PMF analysis proved that heavy metals in the soil of the study area are mainly influenced by traffic sources (Cr and Pb), industrial sources (Zn, Cd, and Cu), station sources (Hg), and natural sources (As and Ni), with contribution rates of 22.23, 26.25, 36.38, and 15.14%, respectively. The combination of Moran's index and the spatial analysis method not only verified the analytical results of the receptor model on the one hand but also served as a supplementary explanation for the sources of heavy metals in the soil. The health risk assessment indicated that noncarcinogenic values were below the threshold values. The total carcinogenic risk (R T) of different heavy metals has a descending order of Cr > As > Ni > Cd. The R T values of multiple heavy metals for children and adults were 5.28 × 10-04 and 4.10 × 10-05, respectively, which were close to the risk threshold. Therefore, attention should be paid to the health risks, especially for children's skin contact, which is the main exposure pathway.
Collapse
Affiliation(s)
- Cheng Shen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Min Wang
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Jinghua Su
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| | - Huilun Sun
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Wenan Hu
- School
of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kuangfei Lin
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Jian Wu
- Shanghai
Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai 200235, China
| | - Fuwen Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiurong Chen
- State
Environmental Protection Key Laboratory of Environmental Risk Assessment
and Control on Chemical Process, School of Resources and Environmental
Engineering, East China University of Science
and Technology, Shanghai 200237, China
| | - Chenyan Sha
- State
Environmental Protection Engineering Center for Urban Soil Contamination
Control and Remediation, Shanghai Academy
of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
53
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
54
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
55
|
Pinto TG, Dias TA, Renno ACM, Dos Santos JN, Cury PR, Ribeiro DA. The Impact of Genetic Polymorphisms for Detecting Genotoxicity in Workers Occupationally Exposed to Metals: A Systematic Review. J Appl Toxicol 2024. [PMID: 39428972 DOI: 10.1002/jat.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
The present study aims to provide a systematic review of studies on the essential and nonessential metal exposure at occupational level, genotoxicity, and polymorphisms and to answer the following questions: Are genetic polymorphisms involved in metal-induced genotoxicity? In this study, 14 publications were carefully analyzed in this setting. Our results pointed out an association between polymorphism and genotoxicity in individuals exposed to metals, because 13 studies (out of 14) revealed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing and DNA repair genes. Regarding the quality of these findings, they can be considered reliable, as the vast majority of the studies (12 out of 14) were categorized as strong or moderate in the quality assessment. Taken as a whole, occupational exposure to metals (essentials or not) induces genotoxicity in peripheral blood or oral mucosa cells. Additionally, professional individuals with certain genotypes may present higher or lower DNA damage as well as DNA repair potential, which will certainly impact the level of DNA damage in the occupational environment.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | | | - Patrícia Ramos Cury
- School of Dentistry, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
56
|
Lemesle P, Frøyland SH, Ask A, Zhang J, Ciesielski TM, Asimakopoulos AG, Noreikiene K, Wilson NM, Sonne C, Garbus SE, Jaspers VLB, Arzel C. From mother to egg: Variability in maternal transfer of trace elements and steroid hormones in common eider (Somateria mollissima). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:176935. [PMID: 39427911 DOI: 10.1016/j.scitotenv.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
The Baltic Sea is among the most polluted seas worldwide with elevated concentrations of trace elements (TEs). TEs can induce negative effects on organisms and may be transferred to eggs causing endocrine-disrupting effects on embryos. The Baltic Sea population of common eider (Somateria mollissima) has declined over the last thirty years, but the potential contribution of TEs to this decline is understudied. The aim of this study was to assess maternal transfer of TEs during the incubation period. Associations between TEs and steroid hormone concentrations in eggs (androstenedione, testosterone, pregnenolone and progesterone) were also investigated. Ten nests from Bengtskär (Finland) were monitored, for which hens at the beginning and end of the egg-laying were blood-sampled and their clutches were collected. Red blood cells from females (n = 10) and homogenized eggs (n = 44) were analyzed for 10 TEs (As, Ca, Cd, Cu, Hg, Mg, Ni, Pb, Se and Zn). Maternal and egg concentrations were correlated for Cu, Hg and Se (R2 = 0.51, R2 = 0.51, R2 = 0.52, respectively and all p-values ≤0.01). Three eggs had the highest Pb concentrations (1.43-2.24 μg g-1 ww) ever reported for this species. Although maternal and egg Pb concentrations were not significantly correlated, those eggs were laid by the same female, also having the highest Pb concentration (3.4 μg g-1 ww). Most blood TE concentrations in females were below known toxicity limits, except for Pb where 20 % of 10 females (including one outlier) had concentrations above the toxicity limit reported for subclinical poisoning in Anatini (> 0.2 μg g-1 ww). Steroid hormones in eggs were interrelated, but not correlated to TEs. Overall, the results call for more urgent research into the origin and consequences of high Pb concentrations and continued monitoring of the common eider populations in the Baltic Sea.
Collapse
Affiliation(s)
- Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
| | - Sunniva H Frøyland
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Amalie Ask
- Department of Biology, University of Turku, Vesilinnanite 5, 20014 Turku, Finland
| | - Junjie Zhang
- Department of Chemistry, NTNU, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Tomasz M Ciesielski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
| | | | - Kristina Noreikiene
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu 51006, Estonia; Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave 7, 10257 Vilnius, Lithuania
| | - Nora M Wilson
- Faculty of Science and Engineering, Åbo Akademi University, Tuomiokirkontori 3, 20500 Turku, Finland
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Svend Erik Garbus
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Céline Arzel
- Department of Biology, University of Turku, Vesilinnanite 5, 20014 Turku, Finland
| |
Collapse
|
57
|
Mohandoss S, Velu KS, Wahab R, Ahmad N, Palanisamy S, You S, Aslam M, Lee YR, Kim SC. Highly selective and sensitive ratiometric detection of Hg 2+ ions with NFS co-doped carbon dots: Real sample analysis, antibacterial properties, and cellular imaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125300. [PMID: 39432942 DOI: 10.1016/j.saa.2024.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
A simple, low-cost hydrothermal method was employed to synthesize highly fluorescent nitrogen-, fluorine-, and sulfur-co-doped carbon dots (NFS-CDs) using flufenamic acid and L-cysteine as precursors. The synthesized NFS-CDs exhibited dual emission peaks at 490 and 580 nm with a quantum yield of 24.7 %. They exhibit excellent stability, excitation-dependent fluorescent, and particle sizes ranging from 2 to 8 nm. The fluorescent chemosensor probe, NFS-CDs, showed strong selectivity and sensitivity for Hg2+ over other metal ions investigated in aqueous solutions (pH ∼ 7.4). Strong fluorescent enhancement at 490 nm and considerable quenching at 580 nm was observed in the presence of Hg2+ ions. The stoichiometric ratio of the NFS-CDs/Hg2+ complex was optimized to 1:1 according to the Benesi-Hildebrand and Stern-Volmer plot methods. The NFS-CDs exhibited a linear dynamic detection range from 0 to 10 × 10-6 M for Hg2+ ions with a lower detection limit of 18.0 and 67.5 × 10-9 M, respectively, at 490 and 580 nm. Practical applications of NFS-CDs in detecting Hg2+ ions in natural water samples showed high recovery rates (98.9-104.6 %) and low relative standard deviation (RSD ≤ 2.47 %). The NFS-CDs/Hg2+ achieved 78.7 ± 2.6 % and 83.4 ± 2.3 % antibacterial activity against E. coli and S. aureus as NFS-CDs/Hg2+ could damage the bacterial walls when they entered the bacteria. Furthermore, the NFS-CDs were used to detect Hg2+ ions intracellularly in HCT116 cells with low toxicity using live cell imaging.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rizwan Wahab
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - SangGuan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
58
|
Hunger J, Buchner R, Hefter G. Ion Association and Hydration of Some Heavy-Metal Nitrate Salts in Aqueous Solution. J Phys Chem B 2024; 128:10238-10246. [PMID: 39361423 PMCID: PMC11492267 DOI: 10.1021/acs.jpcb.4c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Aqueous solutions of four heavy-metal nitrate salts (AgNO3, TlNO3, Cd(NO3)2 and Pb(NO3)2) have been studied at 25 °C using broadband dielectric relaxation spectroscopy (DRS) at frequencies 0.27 ≤ ν/GHz ≤ 115 over the approximate concentration range 0.2 ≲ c/mol L-1 ≲ 2.0 (0.08 ≲ c/mol L-1 ≲ 0.4 for the less-soluble TlNO3). The spectra for AgNO3, TlNO3, and Pb(NO3)2 were best described by assuming the presence of three relaxation processes. These consisted of one solute-related Debye mode centered at ∼2 GHz and two higher-frequency solvent-related modes: one an intense Cole-Cole mode centered at ∼18 GHz and the other a small-amplitude Debye mode at ∼500 GHz. These modes can be assigned, respectively, to the rotational diffusion of contact ion pairs (CIPs), the cooperative relaxation of solvent water molecules, and its preceding fast H-bond flip. For Cd(NO3)2 solutions an additional solute-related Debye mode of small-amplitude, centered at ∼0.5 GHz, was required to adequately fit the spectra. This mode was consistent with the presence of small amounts of solvent-shared ion pairs. Detailed analysis of the solvent modes indicated that all the cations are strongly solvated with, at infinite dilution, effective total hydration numbers (Zt0 values) of irrotationally bound water molecules of ∼5 for both Ag+ and Tl+, ∼10 for Pb2+, and ∼20 for Cd2+. These results clearly indicate the presence of a partial second hydration shell for Pb2+(aq) and an almost complete second shell for Cd2+(aq). However, the hydration numbers decline considerably with increasing solute concentration due to ion-ion interactions. Association constants for the formation of contact ion pairs indicated weak complexation that varies in the order: Tl+ < Ag+ < Pb2+ < Cd2+, consistent with the charge/radius ratios of the cations and their Gibbs energies of hydration. Where comparisons were possible the present constants mostly agreed well with the rather uncertain literature values.
Collapse
Affiliation(s)
- Johannes Hunger
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Glenn Hefter
- Chemistry
Department, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
59
|
Das N, Kumar A, Rayavarapu RG. Nanoarchitectonics of tunable aminosalicylate sodium encapsulated gold nanoparticles enabling multi-faceted role as capping, reducing, stabilizing and colorimetric detection of metal ions. NANOTECHNOLOGY 2024; 36:015601. [PMID: 39362239 DOI: 10.1088/1361-6528/ad82f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Despite all the advancements in aqueous synthesis of gold nanoparticles, certain features like one-pot/one-step method with minimal reactants using greener solvents are still demanding. The challenge in the aqueous phase synthesis is to balance the nucleation and precise growth of nanoparticles avoiding aggregation. In this work, we report a unique versatile unexplored molecule aminosalicylate sodium (Na-4-ASA) which functions as a capping, reducing, stabilizing and more interestingly as an encapsulating agent for gold nanoparticles. This multi-faceted molecule showed excellent control in synthesizing monodisperse tunable encapsulated nanoparticles of sizes (60 nm, 53 nm and 12 nm) exhibiting absorbance bands at 560 nm, 540 nm and 520 nm respectively. X-ray diffraction and Fourier Transmission Infra-Red validated crystalline structure and binding of Na-4-ASA onto gold nanoparticles surface respectively. Furthermore, the AuNPs were investigated for their ability to detect metal ions through colorimetric change where purification via centrifugation turned out to be a key parameter in enabling the detection. Selectivity towards Al3+was observed with the 12 nm sized nanoparticles at 0.5 ppm metal ion concentration. The AuNPs of sizes 60 nm and 53 nm detected Al3+/Cr3+/Fe3+and Al3+/Fe3+respectively indicating the impact of size in heavy metal ions detection. The greater the size of AuNPs, lower is the selectivity where detection of three metal ions were observed and vice versa i.e. smaller-sized AuNPs showed high selectivity by detecting single metal ion. Also, the time duration for detection increased with decreasing size of the AuNPs. Finally, LOD for the heavy metal ions Al3+, Cr3+, and Fe3+were calculated as 67 ppb, 78 ppb, 76 ppb respectively.
Collapse
Affiliation(s)
- Nabojit Das
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Kumar
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
60
|
Domingo JL. Human Exposure through the Diet to Arsenic and Other Toxic Elements: A Literature Review of Scientific Studies Conducted in Catalonia, Spain, in the Current Century. TOXICS 2024; 12:749. [PMID: 39453169 PMCID: PMC11510889 DOI: 10.3390/toxics12100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Human exposure to arsenic and other toxic elements such as cadmium, lead and mercury may lead to a wide range of adverse health effects. In relation to this, it is well established that the diet is the main route of exposure to both essential and toxic trace elements. In recent years, the levels of toxic elements in foodstuffs have been measured in numerous studies conducted all over the world. Scientific databases show that, in the current century, China and Spain have been the countries where the most surveys on this topic have been carried out. Regarding Spain, Catalonia is the region where most studies aimed at determining the concentrations of trace elements in food have been performed. The objective of this paper was to review the studies carried out in Catalonia on the concentrations of As and toxic metals (including Cd, Hg and Pb) in food, as well as their estimated dietary intakes (EDIs). The results of total diet studies (TDSs) and duplicate diet (DD) studies have been included. For most toxic elements, a continued reduction in the EDI has been observed. This reduction is associated with a decrease in their concentrations in food, and with certain changes in dietary habits. Fish and seafood is the food group showing the highest content of toxic elements. However, none of the adult groups exceeded-in general-the safety thresholds for As, Cd, Hg and Pb established by the European Food Safety Agency (EFSA).
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, San Llorens 21, 43201 Reus, Spain
| |
Collapse
|
61
|
Kumar A, Dadhwal M, Mukherjee G, Srivastava A, Gupta S, Ahuja V. Phytoremediation: Sustainable Approach for Heavy Metal Pollution. SCIENTIFICA 2024; 2024:3909400. [PMID: 39430119 PMCID: PMC11490348 DOI: 10.1155/2024/3909400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Rapid industrialization, mining, and other anthropogenic activities have poisoned our environment with heavy metals, negatively impacting all forms of life. Heavy metal pollution causes physiological and neurological disorders, as heavy metals are endocrine disrupters, carcinogenic, and teratogenic. Therefore, it becomes mandatory to address the challenge of heavy metal contamination on a global scale. Physical and chemical approaches have been employed for pollutant removal and detoxification, but these methods cannot be adopted universally due to high cost, labor intensiveness, and possible negative impact on natural microflora. Phytoremediation is one of the preferred and safest approaches for environmental management due to its high efficiency and low cost of investment. The plant can uptake the pollutants and heavy metals from water and soil through an intense root network via rhizofiltration and process via phytostabilization, phytovolatilization, and accumulation. At a cellular level, the phytoremediation process relies on natural mechanisms of plant cells, e.g., absorption, transpiration, intracellular storage, and accumulation to counter the detrimental effects of pollutants. It is widely accepted because of its novelty, low cost, and high efficiency; however, the process is comparatively slower. In addition, plants can store pollutants for a long time but again become a challenge at the end of the life cycle. The current review summarizes phytoremediation as a potential cure for heavy metal pollutants, released from natural as well as anthropogenic sources. It will provide insight into the advancement and evolution of advanced techniques like nanoremediation that can improve the rate of phytoremediation, along with making it sustainable, cost-effective, and economically viable.
Collapse
Affiliation(s)
- Abhijit Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Mishika Dadhwal
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Apeksha Srivastava
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Saurabh Gupta
- Department of Microbiology, Mata Gujri College (Affiliated to Punjabi University), Fatehgarh Sahib 140406, Punjab, India
| | - Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
- University Centre for Research & Development, Chandigarh University, Gharuan, Punjab, India
| |
Collapse
|
62
|
Yin J, Wu Z, Li H, Cao B, Wang W. Monitoring of mercury ion in environmental media and biological systems using a red emissive fluorescent probe with a large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125272. [PMID: 39418676 DOI: 10.1016/j.saa.2024.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The development of practical fluorescent probe for detecting toxic mercury ions (Hg2+) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg2+ both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg2+ levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg2+ under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.
Collapse
Affiliation(s)
- Juan Yin
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Heng Li
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bianli Cao
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wanzhi Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
63
|
Puente-Marin S, Havarinasab S. Exposure to Gold Induces Autoantibodies against Nuclear Antigens in A.TL Mice. BIOLOGY 2024; 13:812. [PMID: 39452121 PMCID: PMC11505499 DOI: 10.3390/biology13100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
To demonstrate causation or/and assess pathogenic mechanisms of environment-induced autoimmunity, various animal models that mimic the characteristics of the human autoimmune diseases need to be developed. Experimental studies in mice reveal the genetic factors that contribute to autoimmune diseases. Here, the immune response of two mouse strains congenic for non-H-2 genes, A.TL (H-2tl) and A.SW (H-2s), was evaluated after 15 weeks' exposure to gold aurothiomalate (AuTM). AuTM-treated A.TL mice showed anti-nuclear antibodies (ANA) with homogenous and/or fine speckled staining patterns and serum autoantibodies to ds-DNA, chromatin, histones, and ribonucleoproteins (RNP). Female A.TL mice showed a stronger immune response than males, as well as an increase of B cells in their spleen after 15 weeks of gold exposure. A.SW exposed for AuTM showed the induction of anti-nucleolar antibodies (ANoA) with a clumpy staining pattern, as well as an increase in splenic B and T cells. The serum autoantibodies levels in A.SW mice were limited compared to those of A.TL mice. Overall, A.TL presents a stronger immune response after gold exposure than A.SW. The immune response developed in A.TL presents similarities with the clinical manifestations in human autoimmune diseases. Thus, gold-exposed A.TL could constitute a potential experimental mouse model for the study of autoimmunity.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden;
| | - Said Havarinasab
- Division of Clinical Chemistry and Pharmacology (KKF), Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
64
|
Lourembam J, Haobam B, Singh KB, Verma S, Rajan JP. The molecular insights of cyanobacterial bioremediations of heavy metals: the current and the future challenges. Front Microbiol 2024; 15:1450992. [PMID: 39464393 PMCID: PMC11502398 DOI: 10.3389/fmicb.2024.1450992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, overexplorations of ore and the growth of industries are the prime factors in the release of heavy metals in environments. As a result, the food crops and water bodies are contaminated with metals which may have several adverse effects on the health of humans and other living species. These metals and metalloids, such as Zn, Cu, Mn, Ni, Cr, Pb, Cd, and As, upset the biochemical pathways of metabolite synthesis in living organisms and contribute to the etiology of different diseases. Microorganisms include bacteria, archaea, viruses, and many unicellular eukaryotes, which can span three domains of life-Archaea, Bacteria, and Eukarya-and some microorganisms, such as cyanobacteria, have shown high efficiency in the biosorption rate of heavy metals. Cyanobacteria are suitable for bioremediation as they can grow in adverse environments, have a less negative impact on the surrounding environment, and are relatively cheaper to manage. The structure of cyanobacteria has shown no extensive internal-bound membranes, so it can directly employ the physiological mechanisms to uptake heavy metals from contamination sites. Such biochemical makeups are suitable for managing and bioremediating heavy metal concentrations in polluted environments. This review aims to explore the potential of cyanobacteria in the bioremediation of heavy metals and metalloids in water bodies. Additionally, we have identified the prospects for enhancing bioremediation effectiveness.
Collapse
Affiliation(s)
- Jinita Lourembam
- Department of Zoology, School of Life Sciences, Manipur University, Canchipur, India
| | - Banaraj Haobam
- Department of Biotechnology, Kamakhya Pemton College, Hiyangthang, -Imphal, India
| | | | - Savita Verma
- Chemistry Department, School of Engineering, Presidency University, Bengaluru, India
| | - Jay Prakash Rajan
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, India
| |
Collapse
|
65
|
Bashir MH, Farhan M, Samreen T, Shehzad MT. Effectiveness of constructed wetland technology-treated industrial wastewater on the spinach (Spinacia oleracea) health risks and biochar efficiency. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:469. [PMID: 39382710 DOI: 10.1007/s10653-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
In peri-urban areas, use of industrial wastewater for irrigation is a common practice. Industrial wastewater contains cadmium, chromium, lead, nickel, and other elements that deteriorate food quality and affect human health. Biochar has been proven to remediate heavy metal contaminated soil by reducing their mobility and bioavailability. A pot experiment was conducted to evaluate the efficiency of different levels of biochar on spinach growth with low heavy metal concentration and to minimize associated health issues. The experiment lasted two months and the treatments: Control (tap water), untreated and treated industrial wastewater and both in combination with biochar (0.5% and 1%) were applied in completely randomized design. Findings suggested that treated industrial wastewater with 1% biochar resulted in maximum plant height, shoot weight, chlorophyll contents (SPAD value), photosynthetic and transpiration rate. Biochar significantly reduced heavy metal mobility in soil due to its porous structure, high pH, higher CEC, and variety of surface functional groups. The cumulative hazard index (HI), hazard quotient, cancer risk, and total cancer risk (TCR) were calculated using method provided by US-EPA for each metal. All treatments had HI values of < 1, however applying 1% biochar significantly reduced the HI values to 2.00E-01 and 2.88E-01 in adults and children, respectively. TCR for all treatments was < 1, while treated industrial wastewater and biochar (1%) has significantly reduced to 1.55E-02 and 1.91E-03 for adults and children, respectively. Thus, it was determined that irrigation with industrial effluents caused toxicity in vegetables, which had a negative impact on human health. Biochar effectively mitigated metal toxicity in both soil and spinach plants that resulted in reduced health/cancer risk.
Collapse
Affiliation(s)
- Muhammad Hassan Bashir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Farhan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tayyaba Samreen
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Tahir Shehzad
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| |
Collapse
|
66
|
Shen L, Kang J, Wang J, Shao S, Zhou H, Yu X, Huang M, Zeng W. Dissecting the mechanism of synergistic interactions between Aspergillus fumigatus and the microalgae Synechocystis sp. PCC6803 under Cd(II) exposure: insights from untargeted metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135354. [PMID: 39126852 DOI: 10.1016/j.jhazmat.2024.135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Co-culturing fungi and microalgae may effectively remediate wastewater containing Cd and harvest microalgae. Nevertheless, a detailed study of the mechanisms underlying the synergistic interactions between fungi and microalgae under Cd(II) exposure is lacking. In this study, Cd(II) exposure resulted in a significant enhancement of antioxidants, such as glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide dismutase (SOD) compared to the control group, suggesting that the cellular antioxidant defense response was activated. Extracellular proteins and extracellular polysaccharides of the symbiotic system were increased by 60.61 % and ,24.29 %, respectively, after Cd(II) exposure for 72 h. The adsorption behavior of Cd(II) was investigated using three-dimensional fluorescence excitation-emission matrix (3D-EEM), fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). Metabolomics results showed that the TCA cycle provided effective material and energy supply for the symbiotic system to resist the toxicity of Cd(II); Proline, histidine, and glutamine strengthened the synergistic adsorption capacity of the fungus and microalgae. Overall, the theoretical foundation for a deep comprehension of the beneficial interactions between fungi and microalgae under Cd(II) exposure and the role of the fungal-algal symbiotic system in the management of heavy metal pollution is provided by this combined physiological and metabolomic investigation.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, Hunan 410083, China.
| |
Collapse
|
67
|
Howard JA, David L, Lux F, Tillement O. Low-level, chronic ingestion of lead and cadmium: The unspoken danger for at-risk populations. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135361. [PMID: 39116748 DOI: 10.1016/j.jhazmat.2024.135361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The long-term effects of low-level, chronic exposure to lead and cadmium through ingestion are often overlooked, despite the urgency surrounding the clinical onset and worsening of certain pathologies caused by these metals. This work reviews current legislation, global ingestion levels, and blood levels in the general population to emphasize the need for reactivity towards this exposure, especially in at-risk populations, including patients with early-stage renal and chronic kidney disease. Global data indicates persistent chronic ingestion of lead and cadmium, with no decreasing trend in recent years, and a daily consumption of tens of micrograms worldwide. Moreover, the average blood lead and cadmium levels in the general population are concerning in many countries with some significantly exceeding healthy limits, particularly for children. Technologies developed to cleanse soil and prevent heavy metal contamination in food are not yet applicable on a global scale and remain financially inaccessible for many communities. Addressing this chronic ingestion at the human level may prove more beneficial in delaying the onset of associated clinical pathologies or preventing them all together.
Collapse
Affiliation(s)
- Jordyn Ann Howard
- MexBrain, 13 Avenue Albert Einstein, 69100 Villeurbanne, France; Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monet, CNRS, UMR 5223 Ingénierie des Matériaux Polymères (IMP), 15 Bd A. Latarjet, F-69622 Villeurbanne Cedex, France
| | - Francois Lux
- Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France; Institut Universitaire de France (IUF), France.
| | - Olivier Tillement
- Institute of Light and Matter, UMR 5306, University of Lyon 1-CNRS, University of Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
68
|
Olasehinde TA, Olaniran AO. Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39365032 DOI: 10.1002/tox.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
69
|
Khanzada AK, Al-Hazmi HE, Kurniawan TA, Majtacz J, Piechota G, Kumar G, Ezzati P, Saeb MR, Rabiee N, Karimi-Maleh H, Lima EC, Mąkinia J. Hydrochar as a bio-based adsorbent for heavy metals removal: A review of production processes, adsorption mechanisms, kinetic models, regeneration and reusability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173972. [PMID: 38897477 DOI: 10.1016/j.scitotenv.2024.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removal of heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions, and ion exchange mechanisms. This review focuses on removing heavy metals by hydrochar adsorbents from water bodies. The article discusses factors affecting the adsorption capacity of hydrochars, such as contact time, pH, initial metal concentration, temperature, and competing ions. Literature on optimization approaches such as surface modification, composite development, and hybrid systems are reviewed to enlighten mechanisms undertaking the efficiency of hydrochars in heavy metals removal from wastewater. The review also addresses challenges such as hydrochar regeneration and reusability, alongside potential issues related to its disposal and metal leaching. Integration with current water purification methods and the significance of ongoing research and initiatives promoting hydrochar-based technologies were also outlined. The article concludes that combining hydrochar with modern technologies such as nanotechnology and advanced oxidation techniques holds promise for improving heavy metal remediation. Overall, this comprehensive analysis provides valuable insights to guide future studies and foster the development of effective, affordable, and environmentally friendly heavy metal removal technologies to ensure the attainment of safer drinking water for communities worldwide.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland.
| | | | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republicof Korea
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
70
|
Metin B, Bozyiğit GD, Zaman BT, Er EÖ, Turak F, Bakırdere S. Microwave-assisted synthesis of γ-alooh nanoflowers as an adsorbent for cadmium removal from domestic wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:996. [PMID: 39352559 DOI: 10.1007/s10661-024-13175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
In this study, cadmium ions were effectively removed from domestic wastewaters using an adsorptive treatment strategy based on γ-AlOOH nanoflowers. A novel, rapid, and simple procedure was developed for the synthesis of the nanoflowers. Characterization studies were performed using X-ray powder diffraction patterns and scanning electron microscope images. The synthesized nanoflowers were utilized as adsorbent in the batch adsorption experiments. The influential parameters of the adsorption process were optimized, and a flame atomic absorption spectrophotometry (FAAS) system was used to determine maximum percent removal of cadmium ions. Matrix-matched calibration strategy, in which the calibration plot was developed in wastewater medium, was utilized for the accurate and precise quantification of cadmium in the effluent samples. The percentage removal efficiency values were calculated between 84 and 98% for different concentrations of cadmium ions in the wastewater samples. Equilibrium data was fitted to the four different linearization methods of the Langmuir isotherm model, as well as the Freundlich isotherm model and Elovich isotherm model. The best fitting was achieved for the Langmuir model with a high R2 value of 0.9956 and maximum adsorption capacity was calculated as 6.23 mg/g.
Collapse
Affiliation(s)
- Berfin Metin
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Türkiye
- Neutec Pharmaceutical, Yildiz Technical University Teknopark, Istanbul, 34220, Türkiye
| | - Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Istanbul, 34220, Türkiye
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Türkiye
| | - Elif Öztürk Er
- Department of Chemical Engineering, İstanbul Technical University, Istanbul, 34469, Türkiye
| | - Fatma Turak
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Türkiye.
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, 06670, Ankara, Türkiye.
| |
Collapse
|
71
|
Jayapaul A, Lin YC, Chen YC, Liu TY, Chung RJ. Visible-light-prompted photoelectrochemical sensors fabricated using Er 3NbO 7/P@g-C 3N 4/SnS 2 nanocomposite for detecting mercury ion in environmental water samples. CHEMOSPHERE 2024; 365:143336. [PMID: 39277039 DOI: 10.1016/j.chemosphere.2024.143336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002-0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.
Collapse
Affiliation(s)
- Abishek Jayapaul
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Ying-Chu Chen
- Department of Civil Engineering, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ting-Yu Liu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; College of Engineering & Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, 320315, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan.
| |
Collapse
|
72
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
73
|
Singh D, Bist P, Choudhary S. Co-exposure to multiple heavy metals and metalloid induces dose dependent modulation in antioxidative, inflammatory, DNA damage and apoptic pathways progressing to renal dysfunction in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104537. [PMID: 39214194 DOI: 10.1016/j.etap.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Humans are exposed to a cocktail of heavy metal toxicants at the same time in the environment rather than single metal. The kidney is often a site of early damage due to high renal contact to these pollutants. This study was done to examine the cumulative toxic effect of multiple elements prevalent in the environment. To explore the effect of subchronic exposure to heavy metal mixture male and female Swiss albino mice were randomly divided into 14 groups and given varying doses [MPL (maximum permissible limit), 1X, 5X, 10X, 50X, or 100X] of the multiple metals and metalloid mixtures via drinking water for 8 weeks. It was determined that metal treatment caused increased metal load in renal tissue. The kidney function deteriorated in response to 10X, 50X, 100X concentration of the dosing mixture was found associated to oxidative stress, glomerular damage, necrosis, cell death and further exacerbation of the inflammation.
Collapse
Affiliation(s)
- Damini Singh
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Priyanka Bist
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
74
|
Hossain MM, Tripty SJ, Shishir MZA, Wang S, Hossain I, Geng A, Han S, Zhu D. Malondialdehyde and heavy metal contents in Piper betel: Possible risks of heavy metals in human health. J Food Compost Anal 2024; 134:106540. [DOI: 10.1016/j.jfca.2024.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
75
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
76
|
Bhuyan MS, Islam MT, Haider SMB, Yacoubi L, Khan M, Ali MM, Pandit D, Huda MM, Akter S, Rabbi MRI, Kundu NK, Hasan MM, Mojumder IA, Mansour L, Rabaoui LJ. Assessment of heavy metals and proximate composition in jellyfish (Lobonemoides robustus Stiasny, 1920) collected from Cox's Bazar coast: Human health risk assessment. MARINE POLLUTION BULLETIN 2024; 207:116899. [PMID: 39232411 DOI: 10.1016/j.marpolbul.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Jellyfish are known for experiencing periodic blooms in population, which occur when their density increases suddenly. The present study assessed the level of heavy metals and proximate composition in the jellyfish Lobonemoides robustus collected from Cox's Bazar coast of Bangladesh. This is the first study conducted in Bangladesh. Most of the studied metals were not possible to detect in L. robustus samples because concentrations were below the detection limit. Ca, Na, Se, and Mg were found to have safe levels in the L. robustus while the amount of Pb was recorded 0.39 ppm. The findings of Target Hazard Quotient, and Carcinogenic Risk indicate that the L. robustus is safe for human consumption (both for children and adults). Hence, it is suitable for consumption and can be exported. This study emphasizes the need for regular marine environment monitoring to ensure that the seafood harvested from these waters is safe for consumption.
Collapse
Affiliation(s)
- Md Simul Bhuyan
- Bangladesh Oceanographic Research Institute (BORI), Cox's Bazar-4730, Bangladesh; Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Md Tarikul Islam
- Bangladesh Oceanographic Research Institute (BORI), Cox's Bazar-4730, Bangladesh
| | | | - Lamia Yacoubi
- University of Tunis El Manar, Faculty of Science of Tunis, Laboratory of Biodiversity & Parasitology of Aquatic Ecosystems (LR18ES05), University Campus, 2092 Tunis, Tunisia
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Debasish Pandit
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Department of Fishery Resources Conservation and Management, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Mainul Huda
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Sheuly Akter
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | | | - Nayan Kumer Kundu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | | | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
77
|
Liu Y, Jin Z, Fu S. Threshold and combined effects of heavy metals on the risk of phenotypic age acceleration among U.S. adults. Biometals 2024; 37:1279-1288. [PMID: 38819692 DOI: 10.1007/s10534-024-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Accumulation of heavy metals in the body has been shown to affect the phenotypic age (PhenoAge). However, the combined and threshold effects of blood heavy metals on the risk of PhenoAge acceleration (PhenoAgeAccel) are not well understood. A cross-sectional study was conducted using blood heavy metal data (N = 7763, age ≥18 years) from the 2015-2018 National Health and Nutrition Examination Survey. PhenoAgeAccel was calculated from actual age and nine biomarkers. Multiple regression equations were used to describe the relationship between heavy metals and PhenoAgeAccel. Least Absolute Shrinkage and Selection Operator (LASSO) regression modeling was used to explore the relationship between the combined effects of heavy metals and PhenoAgeAccel. Threshold effect and multiple regression analyses were performed to explore the linear and nonlinear relationships between heavy metals and PhenoAgeAccel. Threshold effect analysis showed that blood mercury (Hg) concentration was linearly associated with PhenoAgeAccel. In contrast, lead (Pb), cadmium (Cd), manganese (Mn), and combined exposure were nonlinearly associated with PhenoAgeAccel. In addition, the combination of Pb, Cd, Hg, and Mn significantly affected PhenoAgeAccel. The risk of PhenoAgeAccel was increased by 207% (P < 0.0001). Meanwhile, a threshold relationship was found between blood Pb, Cd, Mn, and the occurrence of PhenoAgeAccel. Overall, our results indicate that combined exposure to heavy metals may increase the risk of PhenoAgeAccel. This study underscores the need to reduce heavy metal pollution in the environment and provides a reference threshold for future studies.
Collapse
Affiliation(s)
- Yalan Liu
- Nanan District Center for Disease Control and Prevention, Chongqing, 401336, China
| | - Zhaofeng Jin
- Kweichow Moutai Hospital, Renhuai, 564500, Guizhou, China
| | - Shihao Fu
- Nanan District Center for Disease Control and Prevention, Chongqing, 401336, China.
| |
Collapse
|
78
|
Barłóg P, Hlisnikovský L, Łukowiak R, Kunzová E. Effect of long-term application of pig slurry and NPK fertilizers on trace metal content in the soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60004-60022. [PMID: 39365533 PMCID: PMC11519191 DOI: 10.1007/s11356-024-34993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
One of the goals of sustainable agricultural production is to avoid soil contamination by elements defined as trace metals (TMs). The aim of this study was to assess the long-term impact of the use of pig slurry (PS) and NPK mineral fertilizers on the soil content of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn). In a 9-year crop rotation, PS was used three times only before root crops. The same four levels of NPK doses (N0P0K0, N1P1K1, N3P2K2, N4P2K2) were applied to both plots with and without PS. Soil samples were collected in early spring from topsoil (0-0.3 m) and subsoil (0.3-0.6 m). Three forms of TMs were determined in the soil: pseudo-total (Aqua regia); bioavailable (Mehlich 3 method) and readily bioavailable (mobile) forms (1 M NH4NO3). The tested factors did not have a significant impact on the Cd, Cu and Pb content, regardless of the form analyzed and the soil depth. PS application significantly increased the content of bioavailable forms of Zn regardless of the year, and the content of pseudo-total Zn only in the sugar beet year, i.e. after manure application. Increasing NPK doses increased the content of mobile Zn in the topsoil, especially in PS plots. A tendency to accumulate mobile forms of Cd and Pb was also observed on NPK-fertilized plots. Thus, long-term application of high NPK doses may increase the risk of contamination of the food chain with these metals. The content of mobile Cd and Zn was positively related to the content of total nitrogen in the soil and negatively related to pH.
Collapse
Affiliation(s)
- Przemysław Barłóg
- Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland.
| | - Lukáš Hlisnikovský
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, CZ-161 01 Prague 6, Ruzyně, Czech Republic
| | - Remigiusz Łukowiak
- Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznań University of Life Sciences, Wojska Polskiego 71F, 60-625, Poznań, Poland
| | - Eva Kunzová
- Department of Nutrition Management, Crop Research Institute, Drnovská 507, CZ-161 01 Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
79
|
Almeida-Silva D, Hipolito M, da Fonseca Martins AMCRP, Batista BL, Pedron T, Dias GM, Verdade VK. Frog hepatic health and metal pollution: An assemblage-level approach in a hotspot in southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59457-59471. [PMID: 39354261 DOI: 10.1007/s11356-024-35162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Chemical pollutants include the harmful effects of various substances on soils, water bodies, and biodiversity. Amphibians are one of the most endangered groups of vertebrates and are impacted by chemical pollutants in various ways due to their complex life cycles. Since trace pollutant concentrations vary across environments, different frog ecomorphs (classified by their microhabitat use) may have different exposures. We aimed to determine the association between frog ecomorphs and the occurrence of histopathological hepatic lesions (HHLs) as an indicator of contaminant exposure. We focused on small forest streams near a large urban region in Brazil, heavily polluted in the 1980s. We examined 104 frog specimens from various families. All specimens exhibited HHLs, with melanomacrophages being the most common (n = 99). Arboreal frogs exhibited more vascular congestion, while terrestrial frogs showed structural hepatic damage. Higher cobalt levels were linked to increased liver necrosis in arboreal frogs and structural issues in both arboreal and terrestrial frogs. Cadmium was associated with hepatitis in terrestrial frogs. Although metal levels had no significant effects on rheophilic frogs, the prevalence of hepatitis and necrosis indicated complex exposure pathways. Iron and aluminum were linked to fewer lesions in rheophilic frogs, suggesting resilience. The high prevalence of HHLs signals an ongoing issue, with variations among ecomorphs suggesting differential exposure to pollutants and posing a complex challenge for community conservation.
Collapse
Affiliation(s)
- Diego Almeida-Silva
- CONICET Tucumán, Unidad Ejecutora Lillo, Miguel Lillo, 251, 4000, San Miguel de Tucumán, Tucumán, Argentina.
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil.
| | - Marcio Hipolito
- Laboratório Interinstitucional de Sanidade Em Aquicultura, Instituto Biológico Do Estado de São Paulo, Av. Conselheiro Rodrigues Alves, 1252, CEP 04016-035, São Paulo, SP, Brazil
| | | | - Bruno Lemos Batista
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Tatiana Pedron
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Gustavo Muniz Dias
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| | - Vanessa Kruth Verdade
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, Avenida Dos Estados, 5001, CEP 09210-971, Santo André, SP, Brazil
| |
Collapse
|
80
|
Koné DCE, Jacob S, Huet M, Philippe H, Legrand D. The phenotypic and demographic response to the combination of copper and thermal stressors strongly varies within the ciliate species, Tetrahymena thermophila. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13307. [PMID: 39344497 PMCID: PMC11440147 DOI: 10.1111/1758-2229.13307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/08/2024] [Indexed: 10/01/2024]
Abstract
Copper pollution can alter biological and trophic functions. Organisms can utilise different tolerance strategies, including accumulation mechanisms (intracellular vacuoles, external chelation, etc.) to maintain themselves in copper-polluted environments. Accumulation mechanisms can influence the expression of other phenotypic traits, allowing organisms to deal with copper stress. Whether copper effects on accumulation strategies interact with other environmental stressors such as temperature and how this may differ within species are still unsolved questions. Here, we tested experimentally whether the combined effect of copper and temperature modulates traits linked to demography, morphology, movement and accumulation in six strains of the ciliate Tetrahymena thermophila. We also explored whether copper accumulation might modulate environmental copper concentration effects on phenotypic and demographic traits. Results showed high intraspecific variability in the phenotypic and demographic response to copper, with interactive effects between temperature and copper. In addition, they suggested an attenuation effect of copper accumulation on the sensitivity of traits to copper, but with great variation between strains, temperatures and copper concentrations. Diversity of responses among strains and their thermal dependencies pleads for the integration of intraspecific variability and multiple stressors approaches in ecotoxicological studies, thus improving the reliability of assessments of the effects of pollutants on biodiversity.
Collapse
Affiliation(s)
| | - Staffan Jacob
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Michèle Huet
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Hervé Philippe
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| | - Delphine Legrand
- Centre National de la Recherche ScientifiqueStation d'Ecologie Théorique et Expérimentale, UAR2029MoulisAriègeFrance
| |
Collapse
|
81
|
Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon 2024; 10:e37545. [PMID: 39309893 PMCID: PMC11416300 DOI: 10.1016/j.heliyon.2024.e37545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organisms encounter reactive oxidants through intrinsic metabolism and environmental exposure to toxicants. Reactive oxygen and nitrogen species (ROS, RNS) are generally considered detrimental because they induce oxidative stress. In order to combat oxidative stress, a potential modulator of cellular defense nuclear factor erythroid 2-related factor 2 (Nrf2) and its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1) operate as a common, genetically preserved intrinsic defense system. There has been a significant increase in the amount of harmful metalloids and metals that individuals are exposed to through their food, water, and air, primarily due to human activities. Many studies have looked at the connection between the emergence of different ailments in humans and ecological exposure to metalloids, i.e., arsenic (As) and metals viz., chromium (Cr), mercury (Hg), cadmium (Cd), cobalt (Co), and lead (Pb). It is known that they can produce ROS in several organs by both direct and indirect means. Studies suggest that Nrf2 signaling is a crucial mechanism in maintaining antioxidant balance and can have two roles, depending on the particular biological setting. From one perspective, Nrf2 is an essential defense mechanism against metal-induced toxicity. Still, it may also operate as a catalyst for metal-induced carcinogenesis in situations involving protracted exposure and persistent activation. Therefore, this review aims to provide an overview of the antioxidant defense mechanism of Nrf2-Keap1 signaling and the interrelation between Nrf2 signaling and the toxic elements.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad - 380009, India
| | - Gitika Kharkwal
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University Kanpur - 208024, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| |
Collapse
|
82
|
Chimerad M, Borjian P, Pathak P, Fasano J, Cho HJ. A Miniaturized, Fuel-Free, Self-Propelled, Bio-Inspired Soft Actuator for Copper Ion Removal. MICROMACHINES 2024; 15:1208. [PMID: 39459082 PMCID: PMC11509375 DOI: 10.3390/mi15101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
We present a novel miniaturized, gear-shaped, fuel-free actuator capable of autonomously propelling itself in an aquatic environment to absorb heavy metals, such as copper ions. While hydrogel-based absorbents are promising solutions for cationic pollutant remediation, their stationary nature limits their effectiveness in areas where contaminants are unevenly distributed. To address this, we developed a bio-inspired soft actuator that mimics natural propulsion mechanisms. The Marangoni effect, driven by its inherent chemical properties, demonstrated a self-propelled motion without requiring external fuel. The proof-of-concept actuator generated a plane motion lasting up to 2 h and swept over an area approximately 400 times bigger than its size. By harnessing the chemical and optical properties of the hydrogel, we efficiently removed and quantitatively analyzed copper ions through a colorimetric method. This innovative integration of self-propelled movement and efficient copper ion absorption underscores its potential for advancing miniaturized devices in environmental remediation, paving the way for more active and efficient pollutant removal systems in challenging aquatic environments.
Collapse
Affiliation(s)
| | | | | | | | - Hyoung J. Cho
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL 32816, USA; (M.C.); (P.B.); (P.P.); (J.F.)
| |
Collapse
|
83
|
Banerjee A, Roychoudhury A. Molecular characterization of a phytomelatonin receptor and its overexpression as a 'one-stop' solution to nullify the toxic effects of hazardous inorganic agro-pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125041. [PMID: 39343345 DOI: 10.1016/j.envpol.2024.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Inorganic toxicants like arsenic, copper, lead, nickel and fluoride are notorious agro-pollutants, impeding plant-productivity due to high bioaccumulation. Consumption of such contaminated plant-parts causes irreversible health hazards. We identified a G-protein coupled receptor, serving as melatonin receptor (MelR) in Nicotiana tabacum (NtMelR), that relayed downstream-signaling after binding melatonin, a potent growth regulator and antioxidant. Using inhibitors against G-protein-α and NADPH oxidase (NOX), and by supplementing epidermal strips with exogenous melatonin and H2O2, we established that NtMelR acted upstream of reactive oxygen species (ROS) production in guard cells. Transgenic lines of N. benthamiana overexpressing NtMelR maintained constitutive melatonin-signaling via MelR, leading to efficient stomatal closure for preventing desiccation during oxidative stress. Melatonin biosynthesis was stimulated in the transgenic lines, exposed to different agro-pollutant stress, providing a steady-abundance of ligand for NtMelR binding and activating the defence machinery, comprising of enzymatic-antioxidants like superoxide dismutase, catalase, peroxidases and glyoxalases. Due to increased antioxidant capacity, the transgenics exhibited less molecular injuries (electrolyte leakage, methylglyoxal accumulation and NOX activity), generated less ROS and bioaccumulated significantly lower levels of toxicants. Unlike the wild-type counterparts, the transgenics maintained high relative water content, photosynthetic efficiency, could flower abundantly and even produce seeds. Overall, we established that overexpression of NtMelR is a single-window strategy to generate multiple-stress tolerant genotypes.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
84
|
Sahu M, Ganguly M, Sharma P, Doi A, Negishi Y. Simultaneous ionic cobalt sensing and toxic Congo red dye removal: a circular economic approach involving silver-enhanced fluorescence. NANOSCALE ADVANCES 2024:d4na00588k. [PMID: 39391627 PMCID: PMC11459683 DOI: 10.1039/d4na00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
A highly fluorescent quinone-capped silver hydrosol (AgOSA) was obtained using salicylaldehyde and an ionic silver solution. Such metal-enhanced fluorescence was efficiently quenched with Congo red dye (CR), producing CRAgOSA, due to the strong silver-sulfur interaction, replacing the capping of quinone (oxidized salicylaldehyde). The introduction of cobalt ions restored the fluorescence by engaging CR (CoCRAgOSA). Cobalt-induced fluorescence enhancement was 8.3 times higher than that of AgOSA due to the freeing of CR and the release of self-quenching of excess quinone molecules in CoCRAgOSA. The mammoth and selective fluorescence enhancement with ionic cobalt assisted in designing a turn-on ionic cobalt sensor with a limit of detection (LOD) of 9.4 × 10-11 M and a linear detection range (5 × 10-5 to 10-9 M). Moreover, toxic CR dye was eliminated by quinone-capped silver nanoparticles and Co2+ due to chemisorption. Not only the fluorimetric sensing of ionic cobalt but also the colorimetric sensing of Hg2+ was designed due to the simultaneous aggregation of AgNPs and complexation with CR induced by Hg2+ (LOD 1.36 × 10-5 M and linear detection range from 1.00 × 10-4 to 5 × 10-7 M). We applied our sensing method to estimate ionic cobalt and mercury in natural samples. The experiment was a unique case of circular economy, where a toxic dye was used for making a nanosensor.
Collapse
Affiliation(s)
- Mamta Sahu
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Mainak Ganguly
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Priyanka Sharma
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Ankita Doi
- Department of Biosciences, Manipal University Jaipur Dehmi Kalan Jaipur 303007 Rajasthan India
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
85
|
Singh G, Singh G, Sushma, Kaur G, Kaur G, Singh H, Singh J. A 'click' based fluorescent probe mimicking the IMPLICATION logic gate for Cu(II) and Pb(II) sensing: DFT and molecular docking studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6429-6442. [PMID: 39225227 DOI: 10.1039/d4ay01197j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
'Click' derived 1,2,3-triazole appended scaffolds are intriguing candidates for selective metal ion recognition because of their stereospecificity and efficiency. The presented report uses the 'click' approach to introduce a glyoxal bis-(2-hydroxyanil)-based chemosensor probe (GT) via the CuAAC pathway, which can selectively detect Cu(II) and Pb(II) ions, both of which are among the most hazardous and perturbing environmental pollutants. NMR spectroscopy, IR spectroscopy, and mass spectrometry (LCMS) were used to successfully characterize the synthesized probe. The discerning recognition behaviour of the probe for Cu(II) and Pb(II) ions was established through a chemosensing investigation using fluorescence and UV-vis spectroscopy, wherein the fluorescence spectral analysis demonstrated the probe to mimic the IMPLICATION logic gate. Furthermore, the metal-ligand interaction was also validated by 1H NMR and IR spectroscopy of the synthesized GT-metal complex, and UV-vis spectroscopy was also employed to analyze the effect of time and temperature on the capacity of the probe to bind with Cu(II) and Pb(II) ions. Furthermore, the sensor's atherosclerosis-inhibition potential was investigated in silico utilizing docking analysis with tribbles-1 protein, and a density functional theory (DFT) study enhanced the understanding of its structure using the B3LYP functional and the 6311G++(d,p) basis set.
Collapse
Affiliation(s)
- Gurleen Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | - Sushma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Gagandeep Kaur
- Material Application Research Lab. (MARL), Department of Nano Science and Materials, Central University of Jammu, Jammu-181143, India
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College, Civil Lines, Ludhiana-141001, Punjab, India
| | - Harminder Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.
| | - Jandeep Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.
| |
Collapse
|
86
|
El Khattabi O, Lamwati Y, Henkrar F, Collin B, Levard C, Colin F, Smouni A, Fahr M. Lead-induced changes in plant cell ultrastructure: an overview. Biometals 2024:10.1007/s10534-024-00639-5. [PMID: 39325137 DOI: 10.1007/s10534-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.
Collapse
Affiliation(s)
- Oumaima El Khattabi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Youssef Lamwati
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille University, 13397, Marseille, France
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Blanche Collin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Clement Levard
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco.
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco.
| |
Collapse
|
87
|
Khalaf EM, Taherian M, Almalki SG, Asban P, Kareem AK, Alhachami FR, Almulla AF, Romero-Parra RM, Jawhar ZH, Kiani F, Noroozi Manesh I, Mohammadi MJ. Relationship between exposure to heavy metals on the increased health risk and carcinogenicity of urinary tract (kidney and bladder). REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:539-549. [PMID: 37076952 DOI: 10.1515/reveh-2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
In today's society, with the continuous development of manufacturing industries and factories related to chemicals, the amount of heavy metals in the inhaled air of humans, water and even food consumption has increased dramatically. The aim of this study was investigation of relationship between exposure to heavy metals on the increased carcinogenicity risk of kidney and bladder. Databases used to for searched were the Springer, Google Scholar, Web of Science, Science Direct (Scopus) and PubMed. At the end after sieve we selected 20 papers. Identify all relevant studies published 2000-2021. The results of this study showed that exposure to heavy metals due to the bio accumulative properties of these metals can cause kidney and bladder abnormalities and provide the basis through various mechanisms for malignant tumors in these organs. Based on result this study, since a limited number of heavy metals including copper, iron, zinc and nickel in very small amounts as micronutrients play a very important role in the function of enzymes and the body cells biological reactions, but exposure to some of them like arsenic, lead, vanadium and mercury will cause irreversible effects on people's health and cause various diseases including cancers of the liver, pancreas, prostate, breast, kidney and bladder. The kidneys, ureter and bladder are the most important organs in the urinary tract on human. According to the result of this study, the duty of this urinary system is to remove toxins, chemicals and heavy metals from the blood, balance electrolytes, excrete excess fluid, produce urine and transfer it to the bladder. This mechanism causes the kidneys and bladder to be highly associated with these toxins and heavy metals, which can lead to various diseases in these two important organs. According to the finding the reducing exposure to heavy metals in various ways can prevent many diseases related to this system and reduce the incidence of kidney and bladder cancers.
Collapse
Affiliation(s)
- Eman M Khalaf
- Department of Pharmacy, Al Maarif University College, Ramadi, Anbar, Iraq
| | - Masoume Taherian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Parisa Asban
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Fatemeh Kiani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Iman Noroozi Manesh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
88
|
Bayar J, Ali N, Dong Y, Ahmad U, Anjum MM, Khan GR, Zaib M, Jalal A, Ali R, Ali L. Biochar-based adsorption for heavy metal removal in water: a sustainable and cost-effective approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:428. [PMID: 39316301 DOI: 10.1007/s10653-024-02214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
The increasing contamination of aquatic bodies by heavy metals poses a significant threat to environment and human health, necessitates innovative, sustainable and cost-effective remediation strategies. Due to their persistence and toxicity, heavy metals like copper (Cu), lead (Pb), mercury (Hg), and cadmium (Cd) pose severe threats, even in trace amounts. Traditional removal methods of these heavy metals, like chemical precipitation, oxidation/reduction, filtration, ion exchange, membrane separation, and adsorption, are costly, inefficient, and have drawbacks. As an efficient and low-cost adsorbent, biochar has the potential for heavy metal remediation from water. Biochar is a versatile carbonaceous material produced through pyrolysis of organic wastes, emerged as a powerful adsorbent for heavy metal removal from contaminated water. The unique property of biochar makes it an effective medium immobilizing and capturing of heavy metals like Pb, Cd, As and Hg. Various factors affect its adsorption potential and capacity. Feedstocks type, composition, activation methods, and production processes including the pyrolysis temperature, temperature rate and residence time significantly impact the efficacy of biochar. Therefore, this review has assessed, compared, and contrasted different forms of biochar along with their production methods, modification techniques and mechanisms for their potential use as an adsorbent for heavy metal removal from the contaminated water. Modified biochar offers an environmentally friendly and cost-effective solution for water purification and remediation of toxic heavy metals from water. This review highlights the biochar potential as a crucial component for future research projects focusing on water treatment technologies, providing avenues for safer and cleaner water resources.
Collapse
Affiliation(s)
- Jalal Bayar
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| | - Nawab Ali
- Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources (CANR), Michigan State University, East Lansing, USA.
| | - Younsuk Dong
- Biosystems and Agricultural Engineering (BAE), College of Agriculture and Natural Resources (CANR), Michigan State University, East Lansing, USA.
| | - Uzair Ahmad
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Mehran Anjum
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
- AGROSCOPE, Climate Change and Agriculture Research Division, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Gul Roz Khan
- Department of Agronomy, The University of Agriculture, Peshawar, Pakistan
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex, Medicinal and Botanical Center (MBC), Peshawar, Pakistan
| | - Muhammad Zaib
- College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Arshad Jalal
- King Abdullah University of Science and Technology, Thuwal, Jeddah, Saudi Arabia
| | - Rovaid Ali
- Department of Horticulture, The University of Agriculture, Peshawar, Pakistan
| | - Liaqat Ali
- Department of Economics, Islamia College University Peshawar, Peshawar, Pakistan
| |
Collapse
|
89
|
Wołowicz A, Hubicki Z. Evaluation of Adsorption Ability of Lewatit ® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules 2024; 29:4386. [PMID: 39339381 PMCID: PMC11434107 DOI: 10.3390/molecules29184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The adsorption capacities of ion exchangers with the primary amine (Lewatit® VP OC 1065) and polyamine (Diaion™ CR20) functional groups relative to Pd(II) and Cu(II) ions were tested in a batch system, taking into account the influence of the acid concentration (HCl: 0.1-6 mol/L; HCl-HNO3: 0.9-0.1 mol/L HCl-0.1-0.9 mol/L HNO3), phase contact time (1-240 min), initial concentration (10-1000 mg/L), agitation speed (120-180 rpm), bead size (0.385-1.2 mm), and temperature (293-333 K), as well as in a column system where the variable operating parameters were HCl and HNO3 concentrations. There were used the pseudo-first order, pseudo-second order, and intraparticle diffusion models to describe the kinetic studies and the Langmuir and Freundlich isotherm models to describe the equilibrium data to obtain better knowledge about the adsorption mechanism. The physicochemical properties of the ion exchangers were characterized by the nitrogen adsorption/desorption analyses, CHNS analysis, Fourier transform infrared spectroscopy, the sieve analysis, and points of zero charge measurements. As it was found, Lewatit® VP OC 1065 exhibited a better ability to remove Pd(II) than Diaion™ CR20, and the adsorption ability series for heavy metals was as follows: Pd(II) >> Zn(II) ≈ Ni(II) >> Cu(II). The optimal experimental conditions for Pd(II) sorption were 0.1 mol/L HCl, agitation speed 180 rpm, temperature 293 K, and bead size fraction 0.43 mm ≤ f3 < 0.6 mm for Diaion™ CR20 and 0.315-1.25 mm for Lewatit® VP OC 1065. The maximum adsorption capacities were 289.68 mg/g for Lewatit® VP OC 1065 and 208.20 mg/g for Diaion™ CR20. The greatest adsorption ability of Lewatit® VP OC 1065 for Pd(II) was also demonstrated in the column studies. The working ion exchange in the 0.1 mol/L HCl system was 0.1050 g/mL, much higher compared to Diaion™ CR20 (0.0545 g/mL). The best desorption yields of %D1 = 23.77% for Diaion™ CR20 and 33.57% for Lewatit® VP OC 1065 were obtained using the 2 mol/L NH3·H2O solution.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| | - Zbigniew Hubicki
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| |
Collapse
|
90
|
Naiel MAE, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
91
|
Zhao K, Tan H, Fang C, Zhou Z, Wu C, Zhu X, Liu F, Zhang Y, Li H. An activatable fluorescence probe for rapid detection and in situ imaging of β-galactosidase activity in cabbage roots under heavy metal stress. Food Chem 2024; 452:139557. [PMID: 38728895 DOI: 10.1016/j.foodchem.2024.139557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
β-Galactosidase (β-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of β-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing β-galactoside (BC-βgal), to achieve distinct in situ imaging of β-gal in plant cells. It exhibits high sensitivity and selectivity to β-gal with a fast response (8 min). BC-βgal can be used to efficiently detect the alternations of intracellular β-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-βgal can assess β-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that β-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of β-gal biological mechanisms.
Collapse
Affiliation(s)
- Kuicheng Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Hongli Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Feng Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
92
|
Lee HJ, Lee HY. Characterization of lung function impairment and pathological changes induced by chronic lead and cadmium inhalation: Insights from a mouse model study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116776. [PMID: 39059344 DOI: 10.1016/j.ecoenv.2024.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Exposure to environmental heavy metals such as lead (Pb) and cadmium (Cd) is a global concern due to their widespread presence. However, the specific pulmonary effects of inhaled exposure, especially related to long-term effects, remain poorly understood. In this study, we developed a novel mouse model of Pb and Cd inhalation to mimic real-world conditions and investigate pulmonary effects. Mice were exposed to Pb and Cd inhalation for 6 months using a whole-body exposure system, resulting in decreased lung compliance and progression from emphysematous changes to fibrosis. In addition, the blood Pb/Cd levels of mice exposed to Pb/Cd for 6 months are like those of humans occupationally exposed to heavy metals. Histology revealed inflammation and collagen deposition. Transcriptomic analysis highlighted immune responses and macrophage activity in developing fibrosis. These results confirm an association between Pb/Cd exposure and emphysema and fibrosis, reflecting clinical findings. The study highlights the importance of long-term exposure assessment and time-course analysis for understanding Pb/Cd-induced lung disease. The relevance of the mouse model in replicating human exposure scenarios underscores its value in studying fibrosis and emphysema simultaneously. These findings provide a basis for targeted therapeutic interventions against heavy metal-induced lung injury.
Collapse
Affiliation(s)
- Ho Jin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
93
|
Andreu V, Gimeno E, Pascual JA, Campo J. The Anthropocene fingerprint: Hazardous elements in waters of a coastal Mediterranean alluvial plain (Valencia, Spain). Heliyon 2024; 10:e36044. [PMID: 39296082 PMCID: PMC11409034 DOI: 10.1016/j.heliyon.2024.e36044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
This study focuses on the alluvial plain spanning between the Turia and Jucar rivers (486 km2) in Valencia, Spain - a highly productive agricultural area that also involves a Natural Park (La Albufera). Thirty-five points across different water sources and land uses were sampled to map the spatial distribution of 14 heavy metals (Al, As, B, Cd, Co, Cr, Cu, Fe, Li, Ni, Pb, Sr, Tl, and Zn), and to study the potential influence of water characteristics and environmental factors on them. Two pollution indexes were applied, Heavy Metal Evaluation Index (HEI) and Water Pollution Index (WPI), to assess the water quality state in the area. High levels were predominantly found in the southern region, particularly within rice farming areas. For B, Sr, and Tl, all samples exceeded WHO limits, EU legislation, or EPA benchmarks, with 61.76 % and 85.71 % of samples surpassing standards for Al and Li, respectively. Water salinization parameters greatly influenced the dynamics of Al, As, B, Li, Sr, and Tl. Analysis using both indexes (HEI and WPI) revealed poor water quality in the area, particularly in rice fields, posing potential toxic effects on ecosystems and human health. The findings of this work are valuable for understanding elements of concern in coastal wetlands under global change.
Collapse
Affiliation(s)
- Vicente Andreu
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Eugenia Gimeno
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Juan Antonio Pascual
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Julián Campo
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| |
Collapse
|
94
|
Trivunac K, Mihajlović S, Vukčević M, Maletić M, Pejić B, Kalijadis A, Perić Grujić A. Modified Cellulose-Based Waste for Enhanced Adsorption of Selected Heavy Metals from Wastewater. Polymers (Basel) 2024; 16:2610. [PMID: 39339074 PMCID: PMC11435410 DOI: 10.3390/polym16182610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Due to industrial growth and its impact on the environment, the increasing amount of industrial waste requires a comprehensive approach aligned with the principles of sustainable development. The main goals are not only to preserve natural resources but also to encourage innovation in the reuse of waste materials. In an attempt to reduce the problems regarding waste disposal and wastewater treatment in the textile industry, fibrous textile waste was used as a starting material to obtain carbon adsorbents for the removal of pollutants from wastewater. Waste cotton and mixed yarns, mainly consisting of polysaccharide cellulose, were hydrothermally carbonized and activated with KOH to convert them into efficient carbon adsorbents for heavy metal removal from water. Characterization of carbonized material showed that after activation, an increase in specific surface area (up to 872 m2/g) and content of surface oxygen groups (6.04 mmol/g) leads to a higher affinity towards heavy metal ions, especially lead ions, and high adsorption capacity of 19.98 mg/g obtained for activated cotton yarns. The results of this research represent a contribution to the reduction of waste materials by modifying them into adsorbents, while the regeneration of adsorbents is an example of the practical application of polysaccharide-based materials in the purification of wastewater containing various heavy metal ions.
Collapse
Affiliation(s)
- Katarina Trivunac
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Snežana Mihajlović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Vukčević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marina Maletić
- Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Biljana Pejić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Textile School for Design, Technology and Management, Academy of Technical and Art Applied Studies Belgrade, StarineNovaka 24, 11000 Belgrade, Serbia
| | - Ana Kalijadis
- Department of Materials, "VINCA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Aleksandra Perić Grujić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
95
|
Cheng YH, Su CK. 3D-printed thermally expanded monolithic foam for solid-phase extraction of multiple trace metals. Mikrochim Acta 2024; 191:598. [PMID: 39271489 DOI: 10.1007/s00604-024-06691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Digital light processing (DLP) 3DP, commercial acrylate-based photocurable resins, and thermally expandable microspheres-incorporated flexible photocurable resins were employed to fabricate an SPE column with a thermally expanded monolithic foam for extracting Mn, Co, Ni, Cu, Zn, Cd, and Pb ions prior to the determination using inductively coupled plasma mass spectrometry. After optimization of the thermally activated foaming, the design and fabrication of the SPE column, and the automatic analytical system, the DLP 3D-printed SPE column with the thermally expanded monolithic foam extracted the metal ions with up to 14.8-fold enhancement (relative to that without incorporating the microspheres), with absolute extraction efficiencies all higher than 95.6%, and method detection limits in the range from 0.5 to 5.2 ng L-1. We validated the reliability and applicability of this method by determination of the metal ions in several reference materials (CASS-4, SLRS-5, 1643f, and Seronorm Trace Elements Urine L-2) and spiked seawater, river water, ground water, and human urine samples. The results illustrated that to incorporate the thermally expandable microspheres into the photocurable resins with a post-printing heating treatment enabled the DLP 3D-printed thermally expanded monolithic foam to substantially improve the extraction of the metal ions, thereby extending the applicability of SPE devices fabricated by vat photopolymerization 3DP techniques.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan.
| |
Collapse
|
96
|
Liendo F, Pichún B, Vega APDL, Penagos J, Serrano N, Díaz-Cruz JM, Pizarro J, Segura R, Aguirre MJ. Electrochemical Sensor Based on Glassy Carbon Electrode Modified with Carbon Nanohorns (SWCNH) for Determination of Cr(VI) via Adsorptive Cathodic Stripping Voltammetry (AdCSV) in Tap Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1465. [PMID: 39269127 PMCID: PMC11396986 DOI: 10.3390/nano14171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
In this study, a new and simple glassy carbon electrode modified with carbon nanohorns (SWCNH/GCE) was used for the determination of Cr(VI) in aqueous matrices via adsorptive cathodic stripping voltammetry (AdCSV). The modified electrode was characterized via field emission scanning electron microscopy and cyclic voltammetry, which revealed a homogeneous distribution of spherical agglomerates of SWCNH on the electrode surface. The modification increased the electrochemically active area from 0.10 cm2 ± 0.01 (GCE) to 0.16 cm2 ± 0.01 (SWCNH/GCE). The optimized analytical conditions were as follows: a supporting electrolyte (0.15 mol L-1 HCl), an accumulation potential of 0.8 V versus Ag/AgCl, and an accumulation time of 240 s. Validation of the analytical methodology was performed, obtaining a linear range between 20 and 100 µg L-1, a limit of detection of 3.5 µg L-1, and a limit of quantification of 11.6 µg L-1 with good accuracy and precision. The method was applied to the analysis of spiked tap water samples, and the results were compared using a flame atomic absorption spectrophotometer (FAAS) with no significant statistical differences.
Collapse
Affiliation(s)
- Fabiana Liendo
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Bryan Pichún
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023), Santiago 7820436, Chile
| | - Amaya Paz de la Vega
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Johisner Penagos
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jaime Pizarro
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Rodrigo Segura
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - María Jesús Aguirre
- Departamento de Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023), Santiago 7820436, Chile
| |
Collapse
|
97
|
Dawood AFA, Alharbi HM, Ismaeel FI, Khan SM, Yassa HD, Welson NN, Abd El-Aziz FEZA. Cadmium-induced pancreatic toxicity in rats: comparing vitamin C and Nigella sativa as protective agents: a histomorphometric and ultrastructural study. Toxicol Mech Methods 2024:1-16. [PMID: 39245987 DOI: 10.1080/15376516.2024.2399779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to assess the toxic effect of cadmium (Cd) on the exocrine and endocrine functions of pancreas, the changes in pancreatic tissue after Cd withdrawal, and the protective effects of vitamin C (VC) and Nigella sativa (NS) against Cd-induced damage. Rats were assigned to: control, Cd-treated (0.5 mg/kg/d intraperitoneal [IP] injection), VC and Cd-treated (receiving 100 mg/kg/d VC orally and Cd concomitantly), NS and Cd-treated (receiving 20 mg/kg/d NS and Cd, simultaneously), and Cd withdrawal (receiving Cd for 30 d then living free for recovery for other 30 d). Blood samples were collected and post-sacrifice pancreatic specimens were processed for light and electron microscope study. Quantitative analyses of pancreatic collagen area%, pancreatic islet parameters, β cell density, and insulin immunoexpression were done. Fasting blood glucose was significantly increased in Cd-treated and Cd-withdrawal groups, while co-treatment with VC and NS caused significant reductions (p < 0.05). Cd-induced extensive degenerative changes in pancreatic acini and islets at light and ultrastructure levels. Obvious fibrosis and congestion of blood vessels were noticed. Significant reductions in pancreatic islet number, volume, and surface area and diminished beta cell count and insulin immunoexpression were observed. After withdrawal of Cd, the whole pancreatic tissue still showed a serious impact. Concomitant treatment with VC or NS obviously reduced these degenerative changes and significantly improved pancreatic islet parameters and insulin immunoexpression. VC showed a better amendment than NS, but this difference was statistically insignificant. Therefore, VC and NS could be used as prophylactic agents that lessen Cd consequences on the pancreas.
Collapse
Affiliation(s)
- Asmaa F A Dawood
- Histology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Faten I Ismaeel
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Shahina M Khan
- Department of Biomedical Sciences, Faculty of Medicine, King Faisal University, Alhasa, Saudi Arabia
| | - Hanan D Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nermeen N Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | | |
Collapse
|
98
|
Soto-Varela ZE, Orozco-Sánchez CJ, Bolívar-Anillo HJ, Martínez JM, Rodríguez N, Consuegra-Padilla N, Robledo-Meza A, Amils R. Halotolerant Endophytic Bacteria Priestia flexa 7BS3110 with Hg 2+ Tolerance Isolated from Avicennia germinans in a Caribbean Mangrove from Colombia. Microorganisms 2024; 12:1857. [PMID: 39338530 PMCID: PMC11434322 DOI: 10.3390/microorganisms12091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 09/30/2024] Open
Abstract
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as the associated microbial populations that favor their growth. In the present work, the tolerance and detoxification capacity to heavy metals, especially to mercury, of a halotolerant endophytic bacterium isolated from the species Avicennia germinans located in the Balboa Swamp in the Department of Atlántico was characterized. Diverse microorganisms were isolated from superficially sterilized A. germinans leaves. Tolerance to NaCl was evaluated for each of the obtained isolates, and the most resistant was selected to assess its tolerance to Pb2+, Cu2+, Hg2+, Cr3+, Co2+, Ni2+, Zn2+, and Cd2+, many of which have been detected in high concentrations in the area of study. According to the ANI and AAI percentages, the most halotolerant strain was identified as Priestia flexa, named P. flexa 7BS3110, which was able to tolerate up to 12.5% (w/v) NaCl and presented a minimum inhibitory concentrations (MICs) of 0.25 mM for Hg, 10 mM for Pb, and 15 mM for Cr3+. The annotation of the P. flexa 7BS3110 genome revealed the presence of protein sequences associated with exopolysaccharide (EPS) production, thiol biosynthesis, specific proteins for chrome efflux, non-specific proteins for lead efflux, and processes associated with sulfur and iron homeostasis. Scanning electron microscopy (SEM) analysis showed morphological cellular changes and the transmission electron microscopy (TEM) showed an electrodense extracellular layer when exposed to 0.25 mM Hg2+. Due to the high tolerance of P. flexa 7BS3110 to Hg2+ and NaCl, its ability to grow when exposed to both stressors was tested, and it was able to thrive in the presence of 5% (w/v) NaCl and 0.25 mM of Hg2+. In addition, it was able to remove 98% of Hg2+ from the medium when exposed to a concentration of 14 mg/L of this metalloid. P. flexa 7BS3110 has the potential to bioremediate Hg2+ halophilic contaminated ecosystems.
Collapse
Affiliation(s)
- Zamira E Soto-Varela
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Christian J Orozco-Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Institute of Applied Microbiology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hernando José Bolívar-Anillo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| | - Natalia Consuegra-Padilla
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Alfredo Robledo-Meza
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
99
|
Katebe FM, Colinet G, Kyalamakasa JMK, Mubemba MM, Jijakli MH. Application of soil amendments to reduce the transfer of trace metal elements from contaminated soils of Lubumbashi (Democratic Republic of the Congo) to vegetables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:902. [PMID: 39240423 PMCID: PMC11379750 DOI: 10.1007/s10661-024-13029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The extraction of copper and cobalt from mines has led to the contamination of agricultural soils by trace metal elements (TMEs) (e.g. Cu: 204 to 1355 mg/kg). The mining industry is one of the sources of metal discharges into the environment, contributing to water, soil, and air contamination and causing metabolic disorders in the inhabitants of the city of Lubumbashi (R.D. Congo). This study assessed the effectiveness of organocalcareous soil improvers applied to TME-contaminated soils to reduce their transfer to plants. Following a factorial design, increasing doses of organic soil improvers (chicken droppings and sawdust) and agricultural lime were applied to the soils of three market gardens (high, medium, and low Cu contamination). The experiment was monitored for 60 days. Soil physicochemical properties (pH, TOC, and total and available copper, cobalt, lead, cadmium, and zinc (mg/kg)) were determined for the three gardens and in the vegetable biomass. The daily consumption index of the vegetables was determined based on total TME content. The results show that organocalcareous soil improvers did not promote plant growth and survival on soils with high and medium levels of copper contamination. However, on soils with low copper content, organocalcareous soil improvers improved germination and plant survival and reduced the transfer of metals from the soil to the plants. The best germination and plant survival rates were obtained with the lightly contaminated market garden. In addition, the organo-limestone amendments applied to the soils slightly increased the soil pH from acidic to slightly acidic, with pH values ranging from (5.43 ± 0.07 to 7.26 ± 0.33). The daily vegetable consumption index obtained for cobalt in the low-contaminated garden ranged from (0.029 to 0.465 mg/60 kg/day), i.e. from 0.5 to 8.45 times higher than the FAO/WHO limit, unlike the other trace metals (Cd, Cu and Pb) for which the daily consumption index found was lower than the FAO/WHO limit. Organocalcareous soil improvers can only be applied to soils with low levels of TME contamination, but for soils with medium to high levels of metal contamination, new soilless production techniques such as hydroponics or bioponics are needed.
Collapse
Affiliation(s)
- Félicien Mununga Katebe
- Centre de Recherches en Agriculture Urbaine (C-RAU), Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium.
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo.
| | - Gilles Colinet
- Water, Soil & Plant Exchanges TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium
| | - Jean-Marc Kaumbu Kyalamakasa
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo
| | - Michel Mpundu Mubemba
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo
| | - M Haïssam Jijakli
- Centre de Recherches en Agriculture Urbaine (C-RAU), Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
100
|
Xu WL, Wang YJ, Wang YT, Li JG, Zeng YN, Guo HW, Liu H, Dong KL, Zhang LY. Application and innovation of artificial intelligence models in wastewater treatment. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 267:104426. [PMID: 39270601 DOI: 10.1016/j.jconhyd.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
At present, as the problem of water shortage and pollution is growing serious, it is particularly important to understand the recycling and treatment of wastewater. Artificial intelligence (AI) technology is characterized by reliable mapping of nonlinear behaviors between input and output of experimental data, and thus single/integrated AI model algorithms for predicting different pollutants or water quality parameters have become a popular method for simulating the process of wastewater treatment. Many AI models have successfully predicted the removal effects of pollutants in different wastewater treatment processes. Therefore, this paper reviews the applications of artificial intelligence technologies such as artificial neural networks (ANN), adaptive network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Meanwhile, this review mainly introduces the effectiveness and limitations of artificial intelligence technology in predicting different pollutants (dyes, heavy metal ions, antibiotics, etc.) and different water quality parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) in wastewater treatment process, involving single AI model and integrated AI model. Finally, the problems that need further research together with challenges ahead in the application of artificial intelligence models in the field of environment are discussed and presented.
Collapse
Affiliation(s)
- Wen-Long Xu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Jun Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Yi-Tong Wang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China.
| | - Jun-Guo Li
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Ya-Nan Zeng
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Hua-Wei Guo
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Huan Liu
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Kai-Li Dong
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| | - Liang-Yi Zhang
- College of Metallurgy and Energy, North China University of Science and Technology, 21 Bohai Street, Tangshan 063210, China
| |
Collapse
|