51
|
Palla CA, Aguilera-Garrido A, Carrín ME, Galisteo-González F, Gálvez-Ruiz MJ. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chem 2022; 378:132132. [DOI: 10.1016/j.foodchem.2022.132132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
|
52
|
Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022; 12:biom12050690. [PMID: 35625619 PMCID: PMC9138873 DOI: 10.3390/biom12050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although vaccines and therapeutic options are available, some patients experience severe conditions and need critical care support. Hence, identifying key genes or proteins involved in immune-related severe COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel construction of an immune-related protein interaction network (IPIN) in severe cases with the use of a network diffusion technique on a human interactome network and transcriptomic data. Enrichment analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis, cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine, hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the disease apart from vaccination and conventional antiviral therapy.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
- Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Kitiporn Plaimas
- Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
53
|
Rashwan AK, Karim N, Xu Y, Hanafy NAN, Li B, Mehanni AHE, Taha EM, Chen W. An updated and comprehensive review on the potential health effects of curcumin-encapsulated micro/nanoparticles. Crit Rev Food Sci Nutr 2022; 63:9731-9751. [PMID: 35522080 DOI: 10.1080/10408398.2022.2070906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Nemany A N Hanafy
- Nanomedicine Group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Abul-Hamd E Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Eman M Taha
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
54
|
Samadizadeh S, Arabi MS, Yasaghi M, Salimi V, Tabarraei A, Moradi A, Tahamtan A. Anti-inflammatory effects of curcumin-loaded niosomes on respiratory syncytial virus infection in a mice model. J Med Microbiol 2022; 71. [PMID: 35417322 DOI: 10.1099/jmm.0.001525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in paediatrics. While antivirals are apparent candidates to treat RSV-induced diseases, they have not yet met expectations and have remained in infancy. There is growing evidence to suggest that modulating the exacerbated inflammation during RSV infection can improve disease outcome. Curcumin-loaded niosomes have anti-inflammatory effects against RSV-induced respiratory disease by reducing immune cells' infiltration and inflammatory cytokines' production. This study evaluated the effects of curcumin-loaded niosomes on RSV-induced immunopathology in a mice model. Curcumin-loaded niosomes were prepared using the thin-film hydration method and characterized in vitro. Female Balb/c mice were infected by RSV-A2 and treated daily with curcumin-loaded niosomes. The potential anti-inflammatory effects of curcumin-loaded niosomes were evaluated on day 5 after infection. Using curcumin-loaded niosomes decreased immune cell influx and the inflammatory mediators (MIP-1α, TNF-α and IFN-γ) production in the lung, resulting in alleviated lung pathology following RSV infection. These findings indicate that curcumin-loaded niosomes have anti-inflammatory potential and could be a promising candidate to alleviate RSV-associated immunopathology.
Collapse
Affiliation(s)
- Saeed Samadizadeh
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Yasaghi
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
55
|
Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Front Pharmacol 2022; 13:863082. [PMID: 35496320 PMCID: PMC9047796 DOI: 10.3389/fphar.2022.863082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei, Taiwan
| | - Jingyi Wu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Liyue Huang
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China,*Correspondence: Ching-Feng Weng, ,
| |
Collapse
|
56
|
Silva RCMC, Ribeiro JS, da Silva GPD, da Costa LJ, Travassos LH. Autophagy Modulators in Coronavirus Diseases: A Double Strike in Viral Burden and Inflammation. Front Cell Infect Microbiol 2022; 12:845368. [PMID: 35433503 PMCID: PMC9010404 DOI: 10.3389/fcimb.2022.845368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
57
|
Bousquet J, Haahtela T, Blain H, Czarlewski W, Zuberbier T, Bedbrook A, Cruz AA, Fonseca JA, Klimek L, Kuna P, Samolinski B, Valiulis A, Lemaire A, Anto JM. Available and affordable complementary treatments for COVID‐19: From hypothesis to pilot studies and the need for implementation. Clin Transl Allergy 2022; 12:e12127. [PMID: 35344297 PMCID: PMC8967265 DOI: 10.1002/clt2.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jean Bousquet
- Institute of Allergology Charité – Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- University Hospital Montpellier Montpellier France
- Allergology and Immunology Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Berlin Germany
| | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital University of Helsinki Helsinki Finland
| | - Hubert Blain
- Department of Geriatrics Montpellier University Hospital, MUSE Montpellier France
| | | | - Torsten Zuberbier
- Institute of Allergology Charité – Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany
- Allergology and Immunology Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Berlin Germany
| | | | - Alvaro A. Cruz
- Fundaçao ProAR Federal University of Bahia and GARD/WHO Planning Group Salvador Bahia Brazil
| | - Joao A. Fonseca
- Department of Community Medicine Information and Health Decision Sciences (MEDCIDS) Faculty of Medicine, University of Porto Porto Portugal
- Patient‐Centred Innovation and Technologies Group (PaCeIT) Center for Health Technology and Services Research (CINTESIS) University of Porto Porto Portugal
- Medicina, EDucaçao, I&D e Avaliaçao Lda (MEDIDA) Porto Portugal
- Imunoalergologia CUF Porto Portugal
| | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery Wiesbaden Germany
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy Barlicki University Hospital Medical University of Lodz Lodz Poland
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards, Allergology and Immunology Medical University of Warsaw Warsaw Poland
| | - Arunas Valiulis
- Institute of Clinical Medicine and Institute of Health Sciences Medical Faculty of Vilnius University Vilnius Lithuania
| | | | - Josep M. Anto
- IMIM (Hospital del Mar Medical Research Institute) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
- ISGlobal Barcelona Institute for Global Health Barcelona Spain
| |
Collapse
|
58
|
Zeng N, Chen X, Liu Z. Natural Products and Nanotechnology Against Coronavirus Disease 2019. Front Chem 2022; 10:819969. [PMID: 35223771 PMCID: PMC8866311 DOI: 10.3389/fchem.2022.819969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a new and severe infectious disease and new global disaster and is spreading rapidly worldwide. Natural products have a long history and have been widely used to treat various acute, chronic, and even life-threatening diseases worldwide. However, the natural products have reduced bioavailability and availability as they have poor kinetic properties, such as large molecular weight, inability to cross lipid membranes, and weak absorption ability. With the rapid development of nanotechnology, using novel nanotechnology in conjunction with natural products can effectively eliminate the molecular restriction of the entry of nanoproducts into the body and can be used to diagnose and treat various diseases, including COVID-19, bringing new strategies and directions for medicine. This article reviews the role and implementation of natural products against COVID-19 based on nanotechnology.
Collapse
Affiliation(s)
| | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
59
|
Kushwaha AD, Mishra KP, Singh M, Ganju L, Saraswat D. Nanocurcumin formulation: a possible therapeutic agent for post COVID inflammatory syndrome. Immunopharmacol Immunotoxicol 2022; 44:141-146. [PMID: 35130792 DOI: 10.1080/08923973.2022.2037631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last twenty months, the attention of the world has been focusing on managing the unprecedented and devastating wave of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) and mitigating its impacts. Recent findings indicated that high levels of pro-inflammatory cytokines are leading cause of poor prognosis in severely ill COVID-19 patients. Presently, the multiple variants and highly contagious nature of virus makes challenge humongous. The shortage and vaccine hesitancy also prompted to develop antiviral therapeutic agents to manage this pandemic. Nanocurcumin has potential antiviral activities and also beneficial in post COVID inflammatory complications. We have developed nanocurcumin based formulation using pyrroloquinoline quinone (PQQ) which protects cardio-pulmonary function and mitochondrial homeostasis in hypobaric hypoxia induced right ventricular hypertrophy in animal model and human ventricular cardiomyocytes. Nanocurcumin based formulation (NCF) with improved bioavailability, has proven several holistic therapeutic effects including myocardial protection, and prevents edema formation, anti-inflammatory and antioxidant properties, maintaining metabolic and mitochondrial homeostasis under hypoxic condition. The post COVID-inflammatory syndrome also reported to cause impaired heart function, lung injuries and increased C-reactive protein level in severely ill patients. Thus, we speculate that NCF could be a new treatment option to manage post COVID-19 inflammatory syndrome.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - K P Mishra
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Mrinalini Singh
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Deepika Saraswat
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
60
|
Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Int J Mol Sci 2022; 23:1771. [PMID: 35163692 PMCID: PMC8836015 DOI: 10.3390/ijms23031771] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the world has been witnessing a global pandemic with no effective therapeutics yet, while cancer continues to be a major disease claiming many lives. The natural compound curcumin is bestowed with multiple medicinal applications in addition to demonstrating antiviral and anticancer activities. In order to elucidate the impact of curcumin on COVID-19 and cancer, the current investigation has adapted several computational techniques to unfold its possible inhibitory activity. Accordingly, curcumin and similar compounds and analogues were retrieved and assessed for their binding affinities at the binding pocket of SARS-CoV-2 main protease and DDX3. The best binding pose was escalated to molecular dynamics simulation (MDS) studies to assess the time dependent stability. Our findings have rendered one compound that has demonstrated good molecular dock score complemented by key residue interactions and have shown stable MDS results inferred by root mean square deviation (RMSD), radius of gyration (Rg), binding mode, hydrogen bond interactions, and interaction energy. Essential dynamics results have shown that the systemadapts minimum energy conformation to attain a stable state. The discovered compound (curA) could act as plausible inhibitor against SARS-CoV-2 and DDX3. Furthermore, curA could serve as a chemical scaffold for designing and developing new compounds.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| |
Collapse
|
61
|
Zhang X, Chen L, Hu C, Fast D, Zhang L, Yang B, Kan J, Du J. Curcumin attenuates poly(I:C)-induced immune and inflammatory responses in mouse macrophages by inhibiting TLR3/TBK1/IFNB cascade. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
62
|
Lateh L, Kaewnopparat N, Yuenyongsawad S, Panichayupakaranant P. Enhancing the water-solubility of curcuminoids-rich extract using a ternary inclusion complex system: Preparation, characterization, and anti-cancer activity. Food Chem 2022; 368:130827. [PMID: 34411855 DOI: 10.1016/j.foodchem.2021.130827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Curcuminoids are known to exert diverse pharmacological effects and used in some pharmaceutical formulations. This study describes the preparation, characterization, and enhancement in the solubility and anticancer activity of a curcuminoids-rich extract (CRE) using a ternary inclusion complex system. CRE containing 88.9% w/w curcuminoids was prepared using a 'green' microwave extraction coupled with fractionation on a column of hydrophobic adsorbent resin. The ternary complex consisting of CRE, hydroxylpropyl-β-cyclodextrin and polyvinylpyrrolidone K30 was prepared using the solvent evaporation method and thoroughly characterized using Fourier-transform infrared spectroscopy, powder X-ray diffractograms, differential scanning calorimetry and scanning electron microscopy. The ternary complex of CRE improved the water-solubility of curcuminoids (up to 70.3 µg/mL) as well as the dissolution rate when compared to those of CRE (0 µg/mL). In addition, the ternary complex exhibited significantly stronger anticancer activity against human lung adenocarcinoma (A-549), human cervical adenocarcinoma (HeLa) and human colon adenocarcinoma (HT-29) cell lines than CRE.
Collapse
Affiliation(s)
- Likit Lateh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Nattha Kaewnopparat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supreeya Yuenyongsawad
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.
| |
Collapse
|
63
|
Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. BIOLOGY 2022; 11:biology11020177. [PMID: 35205044 PMCID: PMC8869385 DOI: 10.3390/biology11020177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary In this review, we discuss the potential use of extracellular vesicles (EVs) to deliver dietary supplements to the brain to reduce brain complications associated with HIV, COVID-19, and other brain disorders. Brain-related complications affect people with HIV and COVID-19 alike. Moreover, since HIV patients are at a higher risk of contracting COVID-19, their neurological problems can be exacerbated by COVID-19. The use of dietary supplements together with available treatment options has been shown to reduce the severity of infections. However, these treatments are not chemically compatible with the body’s blood–brain barrier defense mechanism. Therefore, a viable delivery method is needed to deliver drugs and nutraceuticals to the brain in HIV and COVID-19 comorbid patients. Abstract People living with HIV/AIDS (PLWHA) are at an increased risk of severe and critical COVID-19 infection. There is a steady increase in neurological complications associated with COVID-19 infection, exacerbating HIV-associated neurocognitive disorders (HAND) in PLWHA. Nutraceuticals, such as phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in treating and/or prophylaxis of neurological complications associated with these co-infections. However, most of these nutraceuticals have poor bioavailability and cannot cross the blood–brain barrier (BBB). To overcome this challenge, extracellular vesicles (EVs), biological nanovesicles, can be used. Due to their intrinsic features of biocompatibility, stability, and their ability to cross BBB, as well as inherent homing capabilities, EVs hold immense promise for therapeutic drug delivery to the brain. Therefore, in this review, we summarize the potential role of different nutraceuticals in reducing HIV- and COVID-19-associated neurological complications and the use of EVs as nutraceutical/drug delivery vehicles to treat HIV, COVID-19, and other brain disorders.
Collapse
|
64
|
Urošević M, Nikolić L, Gajić I, Nikolić V, Dinić A, Miljković V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics (Basel) 2022; 11:antibiotics11020135. [PMID: 35203738 PMCID: PMC8868220 DOI: 10.3390/antibiotics11020135] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.
Collapse
|
65
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
66
|
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022; 36:681-702. [PMID: 35727534 PMCID: PMC9210800 DOI: 10.1007/s40263-022-00931-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is still spreading worldwide over 2 years since its outbreak. The psychopathological implications in COVID-19 survivors such as depression, anxiety, and cognitive impairments are now recognized as primary symptoms of the "post-acute COVID-19 syndrome." Depressive psychopathology was reported in around 35% of patients at short, medium, and long-term follow-up after the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. Post-COVID-19 depressive symptoms are known to increase fatigue and affect neurocognitive functioning, sleep, quality of life, and global functioning in COVID-19 survivors. The psychopathological mechanisms underlying post-COVID-19 depressive symptoms are mainly related to the inflammation triggered by the peripheral immune-inflammatory response to the viral infection and to the persistent psychological burden during and after infection. The large number of SARS-CoV-2-infected patients and the high prevalence of post-COVID-19 depressive symptoms may significantly increase the pool of people suffering from depressive disorders. Therefore, it is essential to screen, diagnose, treat, and monitor COVID-19 survivors' psychopathology to counteract the depression disease burden and related years of life lived with disability. This paper reviews the current literature in order to synthesize the available evidence regarding epidemiology, clinical features, neurobiological underpinning, and pharmacological treatment of post-COVID-19 depressive symptoms.
Collapse
Affiliation(s)
- Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d'Ancona 20, 20127, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy.
| | - Mariagrazia Palladini
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.15496.3f0000 0001 0439 0892PhD Program in Cognitive Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, San Raffaele Turro, Via Stamira d’Ancona 20, 20127 Milan, Italy ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
67
|
Kumar S, Kumar P, Kodidela S, Duhart B, Cernasev A, Nookala A, Kumar A, Singh UP, Bissler J. Racial Health Disparity and COVID-19. J Neuroimmune Pharmacol 2021; 16:729-742. [PMID: 34499313 PMCID: PMC8426163 DOI: 10.1007/s11481-021-10014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
The infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and resultant coronavirus diseases-19 (COVID-19) disproportionally affects minorities, especially African Americans (AA) compared to the Caucasian population. The AA population is disproportionally affected by COVID-19, in part, because they have high prevalence of underlying conditions such as obesity, diabetes, and hypertension, which are known to exacerbate not only kidney diseases, but also COVID-19. Further, a decreased adherence to COVID-19 guidelines among tobacco smokers could result in increased infection, inflammation, reduced immune response, and lungs damage, leading to more severe form of COVID-19. As a result of high prevalence of underlying conditions that cause kidney diseases in the AA population coupled with tobacco smoking make the AA population vulnerable to severe form of both COVID-19 and kidney diseases. In this review, we describe how tobacco smoking interact with SARS-CoV-2 and exacerbates SARS-CoV-2-induced kidney diseases including renal failure, especially in the AA population. We also explore the role of extracellular vesicles (EVs) in COVID-19 patients who smoke tobacco. EVs, which play important role in tobacco-mediated pathogenesis in infectious diseases, have also shown to be important in COVID-19 pathogenesis and organ injuries including kidney. Further, we explore the potential role of EVs in biomarker discovery and therapeutics, which may help to develop early diagnosis and treatment of tobacco-induced renal injury in COVID-19 patients, respectively.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Benjamin Duhart
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alina Cernasev
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Nashville, TN, USA
| | | | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
68
|
Bachar SC, Mazumder K, Bachar R, Aktar A, Al Mahtab M. A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Front Pharmacol 2021; 12:732891. [PMID: 34819855 PMCID: PMC8606584 DOI: 10.3389/fphar.2021.732891] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Currently, viral infection is the most serious health issue which causing unexpected higher rate of death globally. Many viruses are not yet curable, such as corona virus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), hepatitis virus, human papilloma virus and so others. Furthermore, the toxicities and ineffective responses to resistant strains of synthetic antiviral drugs have reinforced the search of effective and alternative treatment options, such as plant-derived antiviral drug molecules. Therefore, in the present review, an attempt has been taken to summarize the medicinal plants reported for exhibiting antiviral activities available in Bangladesh along with discussing the mechanistic insights into their bioactive components against three most hazardous viruses, namely SARS-CoV-2, HIV, and HBV. The review covers 46 medicinal plants with antiviral activity from 25 families. Among the reported 79 bioactive compounds having antiviral activities isolated from these plants, about 37 of them have been reported for significant activities against varieties of viruses. Hesperidin, apigenin, luteolin, seselin, 6-gingerol, humulene epoxide, quercetin, kaempferol, curcumin, and epigallocatechin-3-gallate (EGCG) have been reported to inhibit multiple molecular targets of SARS-CoV-2 viral replication in a number of in silico investigations. Besides, numerous in silico, in vitro, and in vivo bioassays have been demonstrated that EGCG, anolignan-A, and B, ajoene, curcumin, and oleanolic acid exhibit anti-HIV activity while piperine, ursolic acid, oleanolic acid, (+)-cycloolivil-4'-O-β-d-glucopyranoside, quercetin, EGCG, kaempferol, aloin, apigenin, rosmarinic acid, andrographolide, and hesperidin possess anti-HBV activity. Thus, the antiviral medicinal plants and the isolated bioactive compounds may be considered for further advanced investigations with the aim of the development of effective and affordable antiviral drugs.
Collapse
Affiliation(s)
- Sitesh C Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh.,School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW, Australia.,School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga, NSW, Australia
| | - Ritesh Bachar
- Department of Pharmacy, School of Science and Engineering, University of Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
69
|
Kambhampati SBN, Choudhary R, Vinay K. Yellowish nail pigmentation of proximal nails secondary to turmeric intake. Int J Dermatol 2021; 61:375-376. [PMID: 34792190 DOI: 10.1111/ijd.15996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | - Rajat Choudhary
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
70
|
Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. INDUSTRIAL CROPS AND PRODUCTS 2021; 172:114050. [DOI: 10.1016/j.indcrop.2021.114050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
71
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
72
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
73
|
Biomedical Effects of the Phytonutrients Turmeric, Garlic, Cinnamon, Graviola, and Oregano: A Comprehensive Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytonutrients are plant foods that contain many natural bioactive compounds, called phytochemicals, which show specific biological activities. These phytonutrients and their phytochemicals may play an important role in health care maintaining normal organism functions (as preventives) and fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune response. This review summarizes the effects of the most studied or the most popular phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This article also presents the calculated physicochemical properties of the main phytochemicals in the selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for this article, all these phytonutrients have consistently shown great potential as preventives and therapeutics on many diseases in vitro, in vivo, and clinical studies.
Collapse
|
74
|
Potential Health Benefits of Curcumin on Female Reproductive Disorders: A Review. Nutrients 2021; 13:nu13093126. [PMID: 34579002 PMCID: PMC8471428 DOI: 10.3390/nu13093126] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin is one of the main polyphenolic compounds in the turmeric rhizome. It possesses antioxidant, anti-inflammatory, anti-cancer, anti-arthritis, anti-asthmatic, anti-microbial, anti-viral and anti-fungal properties. This review aims to provide an overview of the potential health benefits of curcumin to treat female reproductive disorders, including polycystic ovary syndrome (PCOS), ovarian failure and endometriosis. Comprehensive information on curcumin was retrieved from electronic databases, which were MEDLINE via EBSCOhost, Scopus and Google Scholar. The available evidence showed that curcumin reduced the high level of androgen in PCOS. Studies in rodents suggest that curcumin resulted in the disappearance of cysts and the appearance of healthy follicles and corpora lutea. Furthermore, animal studies showed curcumin improved the overall function of the ovary in ovarian diseases and reversed the disturbance in oxidative stress parameters. Meanwhile, in vitro and in vivo studies reported the positive effects of curcumin in alleviating endometriosis through anti-inflammatory, anti-proliferative, anti-angiogenic and pro-apoptotic mechanisms. Thus, curcumin possesses various effects on PCOS, ovarian diseases and endometriosis. Some studies found considerable therapeutic effects, whereas others found no effect. However, none of the investigations found curcumin to be harmful. Curcumin clinical trials in endometriosis and ovarian illness are still scarce; thus, future studies need to be conducted to confirm the safety and efficacy of curcumin before it could be offered as a complementary therapy agent.
Collapse
|
75
|
Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics 2021; 13:pharmaceutics13091331. [PMID: 34575407 PMCID: PMC8466083 DOI: 10.3390/pharmaceutics13091331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of −20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 μM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid–liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air–liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.
Collapse
|
76
|
Witika BA, Makoni PA, Matafwali SK, Mweetwa LL, Shandele GC, Walker RB. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules 2021; 26:4244. [PMID: 34299519 PMCID: PMC8303961 DOI: 10.3390/molecules26144244] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- ApotheCom|A MEDiSTRAVA Company (Medical Division of Huntsworth), London WC2A 1AN, UK;
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, LSHTM, London WC1E 7HT, UK;
| | - Larry Lawrence Mweetwa
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Ginnethon Chaamba Shandele
- Department of Biochemistry, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, P.O. Box 33991, Lusaka 10101, Zambia;
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
77
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
78
|
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141:111888. [PMID: 34237598 DOI: 10.1016/j.biopha.2021.111888] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Lebin Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Liyue Huang
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Department of Transfusion, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
79
|
Dourado D, Freire DT, Pereira DT, Amaral-Machado L, N Alencar É, de Barros ALB, Egito EST. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed Pharmacother 2021; 139:111578. [PMID: 33848774 PMCID: PMC8023207 DOI: 10.1016/j.biopha.2021.111578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 has become of striking interest since the number of deaths is constantly rising all over the globe, and the search for an efficient treatment is more urgent. In light of this worrisome scenario, this opinion review aimed to discuss the current knowledge about the potential role of curcumin and its nanostructured systems on the SARS-CoV-2 targets. From this perspective, this work demonstrated that curcumin urges as a potential antiviral key for the treatment of SARS-CoV-2 based on its relation to the infection pathways. Moreover, the use of curcumin-loaded nanocarriers for increasing its bioavailability and therapeutic efficiency was highlighted. Additionally, the potential of the nanostructured systems by themselves and their synergic action with curcumin on molecular targets for viral infections have been explored. Finally, a viewpoint of the studies that need to be carried out to implant curcumin as a treatment for COVID-19 was addressed.
Collapse
Affiliation(s)
- Douglas Dourado
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Danielle T Freire
- Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Daniel T Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | - Éverton N Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil
| | | | - E Sócrates T Egito
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Dispersed Systems Laboratory (LaSiD), Pharmacy Department, UFRN, Natal, Brazil.
| |
Collapse
|
80
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
81
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|