51
|
Abstract
Epilepsy is one of the most common neurologic disorders, affecting about 50 million people worldwide. The disease is characterized by recurrent seizures, which are due to aberrant neuronal networks resulting in synchronous discharges. The term epilepsy encompasses a large spectrum of syndromes and diseases with different etiopathogenesis. The recent development of imaging and epilepsy surgery techniques is now enabling the identification of structural abnormalities that are part of the epileptic network, and the removal of these lesions may result in control of seizures. Access of this clinically well-characterized neurosurgical material has provided neuropathologists with the opportunity to study a variety of structural brain abnormalities associated with epilepsy, by combining traditional routine histopathologic methods with molecular genetics and functional analysis of the resected tissue. This approach has contributed greatly to a better diagnosis and classification of these structural lesions, and has provided important new insights into their pathogenesis and epileptogenesis. The present chapter provides a detailed description of the large spectrum of histopathologic findings encountered in epilepsy surgery patients, addressing in particular the nonneoplastic pathologies, including hippocampal sclerosis, malformations of cortical development, Sturge-Weber syndrome, and Rasmussen encephalitis, and reviews current knowledge regarding the underlying molecular pathomechanisms and cellular mechanisms mediating hyperexcitability.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, the Netherlands.
| | - Angelika Mühlebner
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
52
|
The role of neuropathological markers in the interpretation of neuropsychiatric disorders: Focus on fetal and perinatal programming. Neurosci Lett 2016; 669:75-82. [PMID: 27818357 DOI: 10.1016/j.neulet.2016.10.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
The study of neuropathological markers in patients affected by mental/psychiatric disorders is relevant for the comprehension of the pathogenesis and the correlation with the clinical symptomatology. The neuropathology of Alzheimer's disease (AD) recognizes intraneuronal and extracellular neurofibrillary formation responsible for neuronal degeneration. Immunohistochemical studies discovered many interesting results for a better interpretation of the AD pathogenesis, while the "metal hypothesis" supports that metal ions might differentially influence the formation of amyloid aggregates. The most relevant pathological findings reported in schizophrenia originate from computer assisted tomography (CT), Magnetic Resonance Imaging (MRI) studies and Diffusion Tensor Imaging (DTI), suggesting the brain abnormalities involved in the pathophysiology of schizophrenia. The theory of fetal programming illustrates the epigenetic factors that may act during the intrauterine life on brain development, with relevant consequences on the susceptibility to develop AD or schizophrenia later in life. The neuropathological interpretation of AD and schizophrenia shows that the presence of severe neuropathological changes is not always associated with severe cognitive impairment. A better dialogue between psychiatrics and pathologists might help to halt insurgence and progression of neurodegenerative diseases.
Collapse
|
53
|
McFadden WC, Jaffe AE, Ye T, Paltán-Ortiz JD, Hyde TM, Kleinman JE. Assessment of genetic risk for distribution of total interstitial white matter neurons in dorsolateral prefrontal cortex: role in schizophrenia. Schizophr Res 2016; 176:141-143. [PMID: 27237599 DOI: 10.1016/j.schres.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Whitney C McFadden
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Rangos Building, Johns Hopkins Medical Campus, Baltimore, MD 21205, United States
| | - Tianzhang Ye
- Lieber Institute for Brain Development, Rangos Building, Johns Hopkins Medical Campus, Baltimore, MD 21205, United States
| | - Jose D Paltán-Ortiz
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Rangos Building, Johns Hopkins Medical Campus, Baltimore, MD 21205, United States
| | - Joel E Kleinman
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States; Lieber Institute for Brain Development, Rangos Building, Johns Hopkins Medical Campus, Baltimore, MD 21205, United States
| |
Collapse
|
54
|
Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:495-504. [PMID: 26315603 DOI: 10.1007/s00406-015-0640-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.
Collapse
|
55
|
Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. Proc Natl Acad Sci U S A 2016; 113:9892-7. [PMID: 27503885 DOI: 10.1073/pnas.1610078113] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The subplate (SP) was the last cellular compartment added to the Boulder Committee's list of transient embryonic zones [Bystron I, Blakemore C, Rakic P (2008) Nature Rev Neurosci 9(2):110-122]. It is highly developed in human and nonhuman primates, but its origin, mode, and dynamics of development, resolution, and eventual extinction are not well understood because human postmortem tissue offers only static descriptive data, and mice cannot serve as an adequate experimental model for the distinct regional differences in primates. Here, we take advantage of the large and slowly developing SP in macaque monkey to examine the origin, settling pattern, and subsequent dispersion of the SP neurons in primates. Monkey embryos exposed to the radioactive DNA replication marker tritiated thymidine ([(3)H]dT, or TdR) at early embryonic ages were killed at different intervals postinjection to follow postmitotic cells' positional changes. As expected in primates, most SP neurons generated in the ventricular zone initially migrate radially, together with prospective layer 6 neurons. Surprisingly, mostly during midgestation, SP cells become secondarily displaced and widespread into the expanding SP zone, which becomes particularly wide subjacent to the association cortical areas and underneath the summit of its folia. We found that invasion of monoamine, basal forebrain, thalamocortical, and corticocortical axons is mainly responsible for this region-dependent passive dispersion of the SP cells. Histologic and immunohistochemical comparison with the human SP at corresponding fetal ages indicates that the same developmental events occur in both primate species.
Collapse
|
56
|
Mortazavi F, Wang X, Rosene DL, Rockland KS. White Matter Neurons in Young Adult and Aged Rhesus Monkey. Front Neuroanat 2016; 10:15. [PMID: 26941613 PMCID: PMC4761867 DOI: 10.3389/fnana.2016.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 01/21/2023] Open
Abstract
In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative WMN functions and their involvement in both corticothalamic and corticocortical circuitry.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Xiyue Wang
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
57
|
Postnatal development of GABAergic interneurons in the neocortical subplate of mice. Neuroscience 2016; 322:78-93. [PMID: 26892297 DOI: 10.1016/j.neuroscience.2016.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022]
Abstract
The subplate (SP) plays important roles in developmental and functional events in the neocortex, such as thalamocortical and corticofugal projection, cortical oscillation generation and corticocortical connectivity. Although accumulated evidence indicates that SP interneurons are crucial for SP function, the molecular composition of SP interneurons as well as their developmental profile and distribution remain largely unclear. In this study, we systematically investigated dynamic development of SP thickness and chemical marker expression in SP interneurons in distinct cortical regions during the first postnatal month. We found that, although the relative area of the SP in the cerebral cortex significantly declined with postnatal development, the absolute thickness did not change markedly. We also found that somatostatin (SOM), the ionotropic serotonin receptor 3A (5HT3AR), and parvalbumin (PV) reliably identify three distinct non-overlapping subpopulations of SP interneurons. The SOM group, which represents ~30% of total SP interneurons, expresses neuronal nitric oxide synthase (nNOS) and calbindin (CB) and colocalizes entirely with neuropeptide Y (NPY). The 5HT3AR group, which accounts for ~60% of the total interneuronal population, expresses calretinin (CR) and GABA-A receptor subunit delta (GABAARδ). The PV group accounts for ~10% of total SP interneurons and coexpressed GABAARδ. Moreover, distinct interneuron subtypes show characteristic temporal and spatial distribution in the SP. nNOS(+) interneurons in the SP increase from the anterior motor cortex to posterior visual cortex, while CR(+) and CB(+) interneurons the opposite. Interestedly, the majority of GABAARδ(+) neurons in SP are non-GABAergic neurons in contrast to other cortical layers. These findings clarify and extend our understanding of SP interneurons in the developing cerebral cortex and will underpin further study of SP function.
Collapse
|
58
|
Duchatel RJ, Jobling P, Graham BA, Harms LR, Michie PT, Hodgson DM, Tooney PA. Increased white matter neuron density in a rat model of maternal immune activation - Implications for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:118-26. [PMID: 26385575 DOI: 10.1016/j.pnpbp.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
Abstract
Interstitial neurons are located among white matter tracts of the human and rodent brain. Post-mortem studies have identified increased interstitial white matter neuron (IWMN) density in the fibre tracts below the cortex in people with schizophrenia. The current study assesses IWMN pathology in a model of maternal immune activation (MIA); a risk factor for schizophrenia. Experimental MIA was produced by an injection of polyinosinic:polycytidylic acid (PolyI:C) into pregnant rats on gestational day (GD) 10 or GD19. A separate control group received saline injections. The density of neuronal nuclear antigen (NeuN(+)) and somatostatin (SST(+)) IWMNs was determined in the white matter of the corpus callosum in two rostrocaudally adjacent areas in the 12week old offspring of GD10 (n=10) or GD19 polyI:C dams (n=18) compared to controls (n=20). NeuN(+) IWMN density trended to be higher in offspring from dams exposed to polyI:C at GD19, but not GD10. A subpopulation of these NeuN(+) IWMNs was shown to express SST. PolyI:C treatment of dams induced a significant increase in the density of SST(+) IWMNs in the offspring when delivered at both gestational stages with more regionally widespread effects observed at GD19. A positive correlation was observed between NeuN(+) and SST(+) IWMN density in animals exposed to polyI:C at GD19, but not controls. This is the first study to show that MIA increases IWMN density in adult offspring in a similar manner to that seen in the brain in schizophrenia. This suggests the MIA model will be useful in future studies aimed at probing the relationship between IWMNs and schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Phillip Jobling
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Brett A Graham
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren R Harms
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| | - Paul A Tooney
- Preclinical Neurobiology Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
59
|
Halene TB, Kozlenkov A, Jiang Y, Mitchell A, Javidfar B, Dincer A, Park R, Wiseman J, Croxson P, Giannaris EL, Hof PR, Roussos P, Dracheva S, Hemby SE, Akbarian S. NeuN+ neuronal nuclei in non-human primate prefrontal cortex and subcortical white matter after clozapine exposure. Schizophr Res 2016; 170:235-44. [PMID: 26776227 PMCID: PMC4740223 DOI: 10.1016/j.schres.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/01/2022]
Abstract
Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted.
Collapse
Affiliation(s)
- Tobias B. Halene
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Corresponding author: Tobias B. Halene, MD PhD, Icahn School of Medicine at Mount Sinai, Department of Psychiatry, 1470 Madison Ave, Hess 9-105, New York, NY 10029, Tel: 646 627 5529, Fax: 646-537-9583,
| | - Alexey Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan Jiang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aslihan Dincer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Royce Park
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Wiseman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Croxson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eustathia Lela Giannaris
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott E. Hemby
- Department of Physiology and Pharmacology, Wake Forest University, Winston-Salem, NC, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
60
|
Brisch R, Bielau H, Saniotis A, Wolf R, Bogerts B, Krell D, Steiner J, Braun K, Krzyżanowska M, Krzyżanowski M, Jankowski Z, Kaliszan M, Bernstein HG, Gos T. Calretinin and parvalbumin in schizophrenia and affective disorders: a mini-review, a perspective on the evolutionary role of calretinin in schizophrenia, and a preliminary post-mortem study of calretinin in the septal nuclei. Front Cell Neurosci 2015; 9:393. [PMID: 26578879 PMCID: PMC4624860 DOI: 10.3389/fncel.2015.00393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The septal nuclei are important limbic regions that are involved in emotional behavior and connect to various brain regions such as the habenular complex. Both the septal nuclei and the habenular complex are involved in the pathology of schizophrenia and affective disorders. METHODS We characterized the number and density of calretinin-immunoreactive neurons in the lateral, medial, and dorsal subregions of the septal nuclei in three groups of subjects: healthy control subjects (N = 6), patients with schizophrenia (N = 10), and patients with affective disorders (N = 6). RESULTS Our mini-review of the combined role of calretinin and parvalbumin in schizophrenia and affective disorders summarizes 23 studies. We did not observe significant differences in the numbers of calretinin-immunoreactive neurons or neuronal densities in the lateral, medial, and dorsal septal nuclei of patients with schizophrenia or patients with affective disorders compared to healthy control subjects. CONCLUSIONS Most post-mortem investigations of patients with schizophrenia have indicated significant abnormalities of parvalbumin-immunoreactive neurons in various brain regions including the hippocampus, the anterior cingulate cortex, and the prefrontal cortex in schizophrenia. This study also provides an explanation from an evolutionary perspective for why calretinin is affected in schizophrenia.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Hendrik Bielau
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Arthur Saniotis
- School of Medicine, The University of Adelaide Adelaide, SA, Australia ; Institute of Evolutionary Medicine, University of Zurich Zurich, Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum Bochum, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Dieter Krell
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Katharina Braun
- Center for Behavioral Brain Sciences Magdeburg, Germany ; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Maciej Krzyżanowski
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk Gdańsk, Poland
| |
Collapse
|
61
|
Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants. NEUROIMAGE-CLINICAL 2015; 8:462-72. [PMID: 26106571 PMCID: PMC4474422 DOI: 10.1016/j.nicl.2015.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Thalamic structural co-variation with cortical regions has been demonstrated in preterm infants, but its relationship to cortical function and severity of non-cystic white matter injury (non-cystic WMI) is unclear. The relationship between thalamic morphology and both cortical network synchronization and cortical structural connectivity has not been established. We tested the hypothesis that in preterm neonates, thalamic volume would correlate with primary cortical visual function and microstructural integrity of cortico-cortical visual association pathways. A total of 80 term-equivalent preterm and 44 term-born infants underwent high-resolution structural imaging coupled with visual functional magnetic resonance imaging or diffusion tensor imaging. There was a strong correlation between thalamic volume and primary visual cortical activation in preterms with non-cystic WMI (r = 0.81, p-value = 0.001). Thalamic volume also correlated strongly with interhemispheric cortico-cortical connectivity (splenium) in preterm neonates with a relatively higher severity of non-cystic WMI (p-value < 0.001). In contrast, there was lower correlation between thalamic volume and intrahemispheric cortico-cortical connectivity, including the inferior longitudinal fasciculus and inferior frontal orbital fasciculus. This study shows distinct temporal overlap in the disruption of thalamo-cortical and interhemispheric cortico-cortical connectivity in preterm infants suggesting developmental synergy between thalamic morphology and the emergence of cortical networks in the last trimester.
Collapse
|
62
|
Specialization and integration of functional thalamocortical connectivity in the human infant. Proc Natl Acad Sci U S A 2015; 112:6485-90. [PMID: 25941391 DOI: 10.1073/pnas.1422638112] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.
Collapse
|
63
|
Hutsler JJ, Casanova MF. Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate. Neuropathol Appl Neurobiol 2015; 42:115-34. [PMID: 25630827 DOI: 10.1111/nan.12227] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/28/2023]
Abstract
The cerebral cortex undergoes protracted maturation during human development and exemplifies how biology and environment are inextricably intertwined in the construction of complex neural circuits. Autism spectrum disorders are characterized by a number of pathological changes arising from this developmental process. These include: (i) alterations to columnar structure that have significant implications for the organization of cortical circuits and connectivity; (ii) alterations to synaptic spines on individual cortical units that may underlie specific types of connectional changes; and (iii) alterations within the cortical subplate, a region that plays a role in proper cortical development and in regulating interregional communication in the mature brain. Although the cerebral cortex is not the only structure affected in the disorder, it is a fundamental contributor to the behaviours that characterize autism. These alterations to cortical circuitry likely underlie the behavioural phenotype in autism and contribute to the unique pattern of deficits and strengths that characterize cognitive functioning. Recent findings within the cortical subplate may indicate that alterations to cortical construction begin prenatally, before activity-dependent connections are established, and are in need of further study. A better understanding of cortical development in autism spectrum disorders will draw bridges between the microanatomical computational circuitry and the atypical behaviours that arise when that circuitry is modified. In addition, it will allow us to better exploit the constructional plasticity within the brain to design more targeted interventions that better manage atypical cortical construction and that can be applied very early in postnatal life.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Department of Psychology, Program in Neuroscience, University of Nevada, Reno, USA
| | - Manuel F Casanova
- Department of Psychiatry and Behavioral Science, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
64
|
Nam KW, Castellanos N, Simmons A, Froudist-Walsh S, Allin MP, Walshe M, Murray RM, Evans A, Muehlboeck JS, Nosarti C. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage 2015; 115:64-75. [PMID: 25871628 PMCID: PMC4463853 DOI: 10.1016/j.neuroimage.2015.04.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 11/15/2022] Open
Abstract
Very preterm birth (gestational age < 33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. Individuals born very preterm showed long-term alterations in cortical thickness Such alterations affected predominantly frontal and temporal cortices Multivariate analysis revealed between-group spatially discriminating features, with 86.5% accuracy Longitudinal cortical thickness changes were associated with executive function scores
Collapse
Affiliation(s)
- Kie Woo Nam
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK.
| | - Nazareth Castellanos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Andrew Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK; NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Seán Froudist-Walsh
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Matthew P Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Muriel Walshe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - J-Sebastian Muehlboeck
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, UK; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| |
Collapse
|
65
|
Hoerder-Suabedissen A, Molnár Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 2015; 16:133-46. [DOI: 10.1038/nrn3915] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Lao Y, Wang Y, Shi J, Ceschin R, Nelson MD, Panigrahy A, Leporé N. Thalamic alterations in preterm neonates and their relation to ventral striatum disturbances revealed by a combined shape and pose analysis. Brain Struct Funct 2014; 221:487-506. [PMID: 25366970 DOI: 10.1007/s00429-014-0921-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and to designing efficient prevention and treatment strategies. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the abnormalities within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, we aim to investigate the effect of prematurity on the thalamus and the putamen in the neonatal brain, and further investigate the associated abnormalities between these two structures. Using brain structural magnetic resonance imaging, we perform a novel combined shape and pose analysis of the thalamus and putamen between 17 preterm (41.12 ± 5.08 weeks) and 19 term-born (45.51 ± 5.40 weeks) neonates at term equivalent age. We also perform a set of correlation analyses between the thalamus and the putamen, based on the surface and pose results. We locate significant alterations on specific surface regions such as the anterior and ventral anterior (VA) thalamic nuclei, and significant relative pose changes of the left thalamus and the right putamen. In addition, we detect significant association between the thalamus and the putamen for both surface and pose parameters. The regions that are significantly associated include the VA, and the anterior and inferior putamen. We detect statistically significant surface deformations and pose changes on the thalamus and putamen, and for the first time, demonstrate the feasibility of using relative pose parameters as indicators for prematurity in neonates. Our methods show that regional abnormalities of the thalamus are associated with alterations of the putamen, possibly due to disturbed development of shared pre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal-subcortical pathways including the dorsolateral prefrontal-subcortical circuit, the lateral orbitofrontal-subcortical circuit, the motor circuit, and the oculomotor circuit. These findings reveal new insight into potential subcortical structural covariates for poor neurodevelopmental outcomes in the preterm population.
Collapse
Affiliation(s)
- Yi Lao
- Department of Radiology, University of Southern California and Children's Hospital, 4650 Sunset Blvd, MS#81, Los Angeles, CA, 90027, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Rafael Ceschin
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - Marvin D Nelson
- Department of Radiology, University of Southern California and Children's Hospital, 4650 Sunset Blvd, MS#81, Los Angeles, CA, 90027, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Southern California and Children's Hospital, 4650 Sunset Blvd, MS#81, Los Angeles, CA, 90027, USA.,Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - Natasha Leporé
- Department of Radiology, University of Southern California and Children's Hospital, 4650 Sunset Blvd, MS#81, Los Angeles, CA, 90027, USA.
| |
Collapse
|
67
|
Kostović I, Kostović-Srzentić M, Benjak V, Jovanov-Milošević N, Radoš M. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol 2014; 5:139. [PMID: 25120530 PMCID: PMC4114264 DOI: 10.3389/fneur.2014.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
Abstract
The developmental vulnerability of different classes of axonal pathways in preterm white matter is not known. We propose that laminar compartments of the developing cerebral wall serve as spatial framework for axonal growth and evaluate potential of anatomical landmarks for understanding reorganization of the cerebral wall after perinatal lesions. The 3-T MRI (in vivo) and histological analysis were performed in a series of cases ranging from 22 postconceptional weeks to 3 years. For the follow-up scans, three groups of children (control, normotypic, and preterms with lesions) were examined at the term equivalent age and after the first year of life. MRI and histological abnormalities were analyzed in the following compartments: (a) periventricular, with periventricular fiber system; (b) intermediate, with periventricular crossroads, sagittal strata, and centrum semiovale; (c) superficial, composed of gyral white matter, subplate, and cortical plate. Vulnerability of thalamocortical pathways within the crossroads and sagittal strata seems to be characteristic for early preterms, while vulnerability of long association pathways in the centrum semiovale seems to be predominant feature of late preterms. The structural indicator of the lesion of the long association pathways is the loss of delineation between centrum semiovale and subplate remnant, which is possible substrate of the diffuse periventricular leukomalacia. The enhanced difference in MR signal intensity of centrum semiovale and subplate remnant, observed in damaged children after first year, we interpret as structural plasticity of intact short cortico-cortical fibers, which grow postnatally through U-zones and enter the cortex through the subplate remnant. Our findings indicate that radial distribution of MRI signal abnormalities in the cerebral compartments may be related to lesion of different classes of axonal pathways and have prognostic value for predicting the likely outcome of prenatal and perinatal lesions.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine , Zagreb , Croatia
| | | | - Vesna Benjak
- Department of Pediatrics, Clinical Hospital Center Zagreb, University of Zagreb School of Medicine , Zagreb , Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, University of Zagreb School of Medicine , Zagreb , Croatia
| | - Milan Radoš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine , Zagreb , Croatia
| |
Collapse
|
68
|
Liu JYW, Ellis M, Brooke-Ball H, de Tisi J, Eriksson SH, Brandner S, Sisodiya SM, Thom M. High-throughput, automated quantification of white matter neurons in mild malformation of cortical development in epilepsy. Acta Neuropathol Commun 2014; 2:72. [PMID: 24927775 PMCID: PMC4229809 DOI: 10.1186/2051-5960-2-72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/09/2014] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION In epilepsy, the diagnosis of mild Malformation of Cortical Development type II (mMCD II) predominantly relies on the histopathological assessment of heterotopic neurons in the white matter. The exact diagnostic criteria for mMCD II are still ill-defined, mainly because findings from previous studies were contradictory due to small sample size, and the use of different stains and quantitative systems. Advance in technology leading to the development of whole slide imaging with high-throughput, automated quantitative analysis (WSA) may overcome these differences, and may provide objective, rapid, and reliable quantitation of white matter neurons in epilepsy. This study quantified the density of NeuN immunopositive neurons in the white matter of up to 142 epilepsy and control cases using WSA. Quantitative data from WSA was compared to two other systems, semi-automated quantitation, and the widely accepted method of stereology, to assess the reliability and quality of results from WSA. RESULTS All quantitative systems showed a higher density of white matter neurons in epilepsy cases compared to controls (P = 0.002). We found that, in particular, WSA with user-defined region of interest (manual) was superior in terms of larger sampled size, ease of use, time consumption, and accuracy in region selection and cell recognition compared to other methods. Using results from WSA manual, we proposed a threshold value for the classification of mMCD II, where 78% of patients now classified with mMCD II were seizure-free at the second post-operatively follow up. CONCLUSION This study confirms the potential role of WSA in future quantitative diagnostic histology, especially for the histopathological diagnosis of mMCD.
Collapse
|
69
|
González-Gómez M, Meyer G. Dynamic expression of calretinin in embryonic and early fetal human cortex. Front Neuroanat 2014; 8:41. [PMID: 24917793 PMCID: PMC4042362 DOI: 10.3389/fnana.2014.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 02/04/2023] Open
Abstract
Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps of human corticogenesis.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna Tenerife, Spain
| | - Gundela Meyer
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna Tenerife, Spain
| |
Collapse
|
70
|
Haukvik UK, Rimol LM, Roddey JC, Hartberg CB, Lange EH, Vaskinn A, Melle I, Andreassen OA, Dale A, Agartz I. Normal birth weight variation is related to cortical morphology across the psychosis spectrum. Schizophr Bull 2014; 40:410-9. [PMID: 23419977 PMCID: PMC3932082 DOI: 10.1093/schbul/sbt005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Normal birth weight variation affects schizophrenia risk and cognitive performance in schizophrenia patients and healthy controls. Brain cortical anatomy is altered in psychotic disorders and in low birth weight subjects, but if birth weight variation relates to cortical morphology across the psychosis spectrum is not known. METHODS Magnetic Resonance Imaging brain scans and clinical-, neurocognitive-, and medical birth registry data were collected from 359 adults including patients with a DSM-IV diagnosis of schizophrenia (n = 90, mean age 29.4±10.2 [95% CI], 62% male), bipolar disorder (n = 79, age 29.4±11.8, 39% male) or other psychosis (n = 40, age 26.3±10.0, 56% male), and healthy controls (n = 140, age 30.8±12.0,53% male). We explored the relationship between whole-range birth weight variation and cortical surface area and thickness and their possible associations to cognitive performance. RESULTS Across all groups, lower birth weight was associated with smaller total surface area (t = 3.87, P = .0001), within specific regions of the temporal, parietal, and frontal cortex bilaterally. There were no associations between birth weight and cortical thickness, and no diagnosis by birth weight interaction effects on cortical thickness or surface area. Smaller cortical area (t = 2.50, P = .013) and lower birth weight (t = 2.53, P = .012) were significantly related to poorer working memory performance in all diagnostic groups except schizophrenia. CONCLUSION Birth weight relates to adult cortical surface area, but not cortical thickness, in patients across the psychosis spectrum and in healthy controls. Cortical area appears to be a diagnosis-independent general marker of early neurodevelopment, with a dose-response association to normal birth weight variation.
Collapse
Affiliation(s)
- Unn K. Haukvik
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; ,K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;,*To whom correspondence should be addressed; PO Box 85 Vinderen, 0319 Oslo, Norway; tel: +47 22029800, fax: +47 22495862, e-mail:
| | - Lars M. Rimol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; ,K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - J. Cooper Roddey
- Department of Neurosciences, University of California San Diego, La Jolla, CA
| | | | - Elisabeth H. Lange
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; ,K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anja Vaskinn
- K. G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;,K. G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A. Andreassen
- K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway;,K. G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA;,Department of Radiology, University of CaliforniaSan Diego, La Jolla, CA
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; ,K. G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
71
|
Liao CC, Lee LJ. Presynaptic 5-HT1B receptor-mediated synaptic suppression to the subplate neurons in the somatosensory cortex of neonatal rats. Neuropharmacology 2014; 77:81-9. [DOI: 10.1016/j.neuropharm.2013.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022]
|
72
|
Groeschel S, Tournier JD, Northam GB, Baldeweg T, Wyatt J, Vollmer B, Connelly A. Identification and interpretation of microstructural abnormalities in motor pathways in adolescents born preterm. Neuroimage 2013; 87:209-19. [PMID: 24185027 DOI: 10.1016/j.neuroimage.2013.10.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 10/09/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022] Open
Abstract
There has been extensive interest in assessing the long-term effects of preterm birth on brain white matter microstructure using diffusion MRI. Our aim in this study is to explore diffusion MRI differences between adolescents born preterm and term born controls, with a specific interest in characterising how such differences are manifested in white matter regions containing predominantly single or crossing fibre populations. Probabilistic high angular resolution tractography together with large deformation spatial normalisation were used to objectively investigate diffusion tensor parameters at regular intervals along fibre tracts of 45 adolescents born before 33 weeks of gestation and 30 term-born typically developing adolescents. Diffusion parameters were significantly different between preterms and controls at several levels along the cortico-spinal, thalamo-cortical and transcallosal pathways. Within the predominantly single fibre regions of the corpus callosum and internal capsule, in the preterms mean diffusivity (MD) was found to be increased while fractional anisotropy (FA) was decreased compared to controls. In contrast, however, where these pathways traversed the centrum semiovale, FA and MD were both significantly increased. The major contributor to reduced FA in preterms in predominantly single fibre regions was the increased radial eigenvalue (i.e. increased radial diffusivity). In predominantly crossing-fibre regions, the tensor eigenvalues are not meaningful, and the observed increase in FA is likely to be due to a decrease in anisotropy in one of the contributing fibre bundles. Similar differences (although less pronounced) were observed after excluding preterms with radiological signs of preterm brain injury from the sample. In summary, white matter microstructure was found to be altered in motor pathways in adolescents born preterm. Disruption of white matter (WM) microstructure in a single fibre region with resulting higher radial diffusivity leads to lower FA, whereas selective disruption of one fibre population in a crossing fibre region is observed to lead to higher FA. These findings challenge the common simplistic interpretation of FA as a measure of WM tract integrity.
Collapse
Affiliation(s)
| | - J-Donald Tournier
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | | | | | | - Brigitte Vollmer
- Karolinska Institutet, Stockholm, Sweden; University of Southampton, Southampton, UK
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
73
|
de Lacy N, King BH. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu Rev Clin Psychol 2013; 9:555-87. [PMID: 23537488 DOI: 10.1146/annurev-clinpsy-050212-185627] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia and autism have been linked since their earliest descriptions. Both are disorders of cerebral specialization originating in the embryonic period. Genetic, molecular, and cytologic research highlights a variety of shared contributory mechanisms that may lead to patterns of abnormal connectivity arising from altered development and topology. Overt behavioral pathology likely emerges during or after neurosensitive periods in which resource demands overwhelm system resources and the individual's ability to compensate using interregional activation fails. We are at the threshold of being able to chart autism and schizophrenia from the inside out. In so doing, the door is opened to the consideration of new therapeutics that are developed based upon molecular, synaptic, and systems targets common to both disorders.
Collapse
Affiliation(s)
- Nina de Lacy
- University of Washington and Seattle Children's Hospital, Seattle, Washington 98195, USA
| | | |
Collapse
|
74
|
Guseynov AG. Formation of cortical inhibition in ontogenesis. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Anand KJS, Papanicolaou AC, Palmer FB. Repetitive neonatal pain and neurocognitive abilities in ex-preterm children. Pain 2013; 154:1899-1901. [PMID: 23792285 DOI: 10.1016/j.pain.2013.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Kanwaljeet J S Anand
- St. Jude Endowed Chair for Critical Care Medicine, University of Tennessee Health Science Center, Memphis, TN, USA Boling Center for Developmental Disabilities, University of Tennessee Health Science Center, Memphis, TN, USA Division of Clinical Neurosciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | |
Collapse
|
76
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
77
|
Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proc Natl Acad Sci U S A 2013; 110:3555-60. [PMID: 23401504 DOI: 10.1073/pnas.1218510110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders.
Collapse
|
78
|
Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 2012; 219:231-53. [DOI: 10.1007/s00429-012-0496-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022]
|
79
|
Blüml S, Wisnowski JL, Nelson MD, Paquette L, Gilles FH, Kinney HC, Panigrahy A. Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 2012; 23:2944-55. [PMID: 22952278 DOI: 10.1093/cercor/bhs283] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Between birth and late adolescence, the human brain undergoes exponential maturational changes. Using in vivo magnetic resonance spectroscopy, we determined the developmental profile for 6 metabolites in 5 distinct brain regions based on spectra from 309 children from 0 to 18 years of age. The concentrations of N-acetyl-aspartate (an indicator for adult-type neurons and axons), creatine (energy metabolite), and glutamate (excitatory neurotransmitter) increased rapidly between birth and 3 months, a period of rapid axonal growth and synapse formation. Myo-inositol, implicated in cell signaling and a precursor of membrane phospholipid, as well as an osmolyte and astrocyte marker, declined rapidly during this period. Choline, a membrane metabolite and indicator for de novo myelin and cell membrane synthesis, peaked from birth until approximately 3 months, and then declined gradually, reaching a plateau at early childhood. Similarly, taurine, involved in neuronal excitability, synaptic potentiation, and osmoregulation, was high until approximately 3 months and thereafter declined. These data indicate that the first 3 months of postnatal life are a critical period of rapid metabolic changes in the development of the human brain. This study of the developmental profiles of the major brain metabolites provides essential baseline information for future analyses of the pediatric health and disease.
Collapse
|
80
|
Increased density of prohibitin-immunoreactive oligodendrocytes in the dorsolateral prefrontal white matter of subjects with schizophrenia suggests extraneuronal roles for the protein in the disease. Neuromolecular Med 2012; 14:270-80. [PMID: 22711522 DOI: 10.1007/s12017-012-8185-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/01/2012] [Indexed: 12/22/2022]
Abstract
Prohibitin has previously been implicated in the synaptic pathology of schizophrenia. The recently discovered abundant expression of prohibitin in human prefrontal oligodendrocytes raises the issue, whether this protein might also be part of the well-known white matter abnormalities in schizophrenia. Hence, post-mortem brains of ten patients with schizophrenia and ten matched control cases were investigated. Using a direct, 3D-counting technique we morphometrically analyzed the number and density of prohibitin-immunoreactive oligodendroglial cells in the left and right dorsolateral, anterior cingulate, and orbitofrontal cortex white matter. Additionally, we studied the prohibitin expression in different neuronal and non-neuronal cell populations in rat cell cultures. We could confirm the strong expression of prohibitin in oligodendrocytes. Intracellularly, the protein was localized to mitochondria and some cell nuclei. In schizophrenia, the numerical density of prohibitin-expressing oligodendrocytes was significantly increased in the right dorsolateral white matter area. Taking into consideration the dual intracellular localization of prohibitin in oligodendrocyte mitochondria and cell nuclei, one may suggest an involvement of the protein in mitochondrial dysfunction and/or cycle abnormalities in schizophrenia.
Collapse
|
81
|
Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc Natl Acad Sci U S A 2012; 109:11366-71. [PMID: 22689983 DOI: 10.1073/pnas.1203350109] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prenatal life encompasses a critical phase of human brain development, but neurodevelopmental consequences of normative differences in prenatal growth among full-term pregnancies remain largely uncharted. Here, we combine the power of a within-monozygotic twin study design with longitudinal neuroimaging methods that parse dissociable components of structural brain development between ages 3 and 30 y, to show that subtle variations of the in utero environment, as indexed by mild birth weight (BW) variation within monozygotic pairs, are accompanied by statistically significant (i) differences in postnatal intelligence quotient (IQ) and (ii) alterations of brain anatomy that persist at least into late adolescence. Greater BW within the normal range confers a sustained and generalized increase in brain volume, which in the cortical sheet, is specifically driven by altered surface area rather than cortical thickness. Surface area is maximally sensitive to BW variation within cortical regions implicated in the biology of several mental disorders, the risk for which is modified by normative BW variation. We complement this near-experimental test of prenatal environmental influences on human brain development by replicating anatomical findings in dizygotic twins and unrelated singletons. Thus, using over 1,000 brain scans, across three independent samples, we link subtle differences in prenatal growth, within ranges seen among the majority of human pregnancies, to protracted surface area alterations, that preferentially impact later-maturing associative cortices important for higher cognition. By mapping the sensitivity of postnatal human brain development to prenatal influences, our findings underline the potency of in utero life in shaping postnatal outcomes of neuroscientific and public health importance.
Collapse
|
82
|
Hoerder-Suabedissen A, Molnár Z. Molecular Diversity of Early-Born Subplate Neurons. Cereb Cortex 2012; 23:1473-83. [DOI: 10.1093/cercor/bhs137] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
83
|
Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ. Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 2012; 71:397-406. [PMID: 22451205 DOI: 10.1002/ana.22612] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The cellular basis of cognitive abnormalities in preterm infants with periventricular leukomalacia (PVL) is uncertain. One important possibility is that damage to white matter and subplate neurons that are critical to the formation of the cerebral cortex occurs in conjunction with oligodendrocyte and axonal injury in PVL. We tested the hypothesis that the overall density of neurons in the white matter and subplate region is significantly lower in PVL cases compared to non-PVL controls. METHODS We used a computer-based method for the determination of the density of microtubule-associated protein 2-immunolabeled neurons in the ventricular/subventricular region, periventricular white matter, central white matter, and subplate region in PVL cases and controls. RESULTS There were 5 subtypes of subcortical neurons: granular, unipolar, bipolar, inverted pyramidal, and multipolar. The neuronal density of the granular neurons in each of the 4 regions was 54 to 80% lower (p≤0.01) in the PVL cases (n=15) compared to controls adjusted for age and postmortem interval (n=10). The overall densities of unipolar, bipolar, multipolar, and inverted pyramidal neurons did not differ significantly between the PVL cases and controls. No granular neurons expressed markers of neuronal and glial immaturity (Tuj1, doublecortin, or NG2). INTERPRETATION These data suggest that quantitative deficits in susceptible granular neurons occur in the white matter distant from periventricular foci, including the subplate region, in PVL, and may contribute to abnormal cortical formation and cognitive dysfunction in preterm survivors.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Myers MM, Grieve PG, Izraelit A, Fifer WP, Isler JR, Darnall RA, Stark RI. Developmental profiles of infant EEG: overlap with transient cortical circuits. Clin Neurophysiol 2012; 123:1502-11. [PMID: 22341979 DOI: 10.1016/j.clinph.2011.11.264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To quantify spectral power in frequency specific bands and commonly observed types of bursting activities in the EEG during early human development. METHODS An extensive archive of EEG data from human infants from 35 to 52 weeks postmenstrual age obtained in a prior multi-center study was analyzed using power spectrum analyses and a high frequency burst detection algorithm. RESULTS Low frequency power increased with age; however, high frequency power decreased from 35 to 45 weeks. This unexpected decrease was largely attributable to a rapid decline in the number of high frequency bursts. CONCLUSIONS The decline in high frequency bursting activity overlaps with a developmental shift in GABA's actions on neurons from depolarizing to hyperpolarizing and the dissolution of the gap junction circuitry of the cortical subplate. SIGNIFICANCE We postulate that quantitative characterization of features of the EEG unique to early development provide indices for tracking changes in specific neurophysiologic mechanisms that are critical for normal development of brain function.
Collapse
Affiliation(s)
- M M Myers
- Department of Psychiatry, Columbia University, New York, NY 10032 United States.
| | | | | | | | | | | | | |
Collapse
|
85
|
Marenco S, Stein JL, Savostyanova AA, Sambataro F, Tan HY, Goldman AL, Verchinski BA, Barnett AS, Dickinson D, Apud JA, Callicott JH, Meyer-Lindenberg A, Weinberger DR. Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 2012; 37:499-507. [PMID: 21956440 PMCID: PMC3242311 DOI: 10.1038/npp.2011.215] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to examine measures of anatomical connectivity between the thalamus and lateral prefrontal cortex (LPFC) in schizophrenia and to assess their functional implications. We measured thalamocortical connectivity with diffusion tensor imaging (DTI) and probabilistic tractography in 15 patients with schizophrenia and 22 age- and sex-matched controls. The relationship between thalamocortical connectivity and prefrontal cortical blood-oxygenation-level-dependent (BOLD) functional activity as well as behavioral performance during working memory was examined in a subsample of 9 patients and 18 controls. Compared with controls, schizophrenia patients showed reduced total connectivity of the thalamus to only one of six cortical regions, the LPFC. The size of the thalamic region with at least 25% of model fibers reaching the LPFC was also reduced in patients compared with controls. The total thalamocortical connectivity to the LPFC predicted working memory task performance and also correlated with LPFC BOLD activation. Notably, the correlation with BOLD activation was accentuated in patients as compared with controls in the ventral LPFC. These results suggest that thalamocortical connectivity to the LPFC is altered in schizophrenia with functional consequences on working memory processing in LPFC.
Collapse
Affiliation(s)
- Stefano Marenco
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Jason L Stein
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Antonina A Savostyanova
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabio Sambataro
- Brain Center for Motor and Social Cognition, Italian Institute of Technology, Parma, Italy
| | - Hao-Yang Tan
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Aaron L Goldman
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Beth A Verchinski
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Alan S Barnett
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Dwight Dickinson
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - José A Apud
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Joseph H Callicott
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Germany
| | - Daniel R Weinberger
- Clinical Brain Disorders Branch, Genes, Cognition, and Psychosis Program, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
86
|
Late development of the GABAergic system in the human cerebral cortex and white matter. J Neuropathol Exp Neurol 2011; 70:841-58. [PMID: 21937910 DOI: 10.1097/nen.0b013e31822f471c] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the key role of γ-aminobutyric acid (GABA) neurons in the modulation of cerebral cortical output, little is known about their development in the human cortex. We analyzed several GABAergic parameters in standardized regions of the cerebral cortex and white matter in a total of 38 human fetuses and infants from 19 gestational weeks to 2.7 postnatal years using immunocytochemistry, Western blotting, tissue autoradiography, and computer-based cellular quantitation. At least 20% of GABAergic neurons in the white matter migrated toward the cortex over late gestation. After term, migration declined and ended within 6 postnatal months. In parallel, the GABAergic neuronal density increased in the cortex over late gestation, also with a peak at term. From midgestation to infancy, the pattern of GABAA receptor binding changed from uniformly low across all cortical layers to high levels concentrated in the middle laminae; glutamic acid decarboxylase (GAD65 and GAD67) levels differentially increased. Thus, the second half of gestation is a period of rapid development of the cortical GABAergic system that continues into early infancy. This period corresponds to the peak window of vulnerability to perinatal hypoxia-ischemia in which GABAergic neurons are potentially developmentally susceptible, including in the preterm infant.
Collapse
|
87
|
Liao CC, Lee LJ. Neonatal fluoxetine exposure affects the action potential properties and dendritic development in cortical subplate neurons of rats. Toxicol Lett 2011; 207:314-21. [PMID: 21986067 DOI: 10.1016/j.toxlet.2011.09.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 01/26/2023]
Abstract
Selective serotonin reuptake inhibitor (SSRI)-type antidepressants might be given to depressive pregnant women and the developing fetuses are thus exposed to these drugs. Since serotonin plays important roles in the maturation of the nervous system, early SSRI exposure might influence the fetal brain development. To test this hypothesis, we treated the neonatal rat pups with fluoxetine (Flx) from the day of birth to postnatal day (P) 4, comparable to the third trimester of human gestation, and observed the physiological and morphological features of subplate neurons (SPns), a group of cells important for early cortical development and vulnerable to neonatal neural insults. Using whole-cell patch-clamp recording technique, we examined the passive membrane properties and characteristics of action potential (AP). In SPns of Flx-treated rats, the rheobase for generating an AP was increased and the width of APs was reduced, especially in the falling phase. In the morphological aspect, the dendritic remodeling of SPns including dendritic branching, elongation and pruning were affected by early Flx treatment. Together, our results demonstrate that the teratogenic effect of early SSRI exposure on the structure and function of developing SPns and these changes may lead to undesired brain activity and distorted behaviors later in life.
Collapse
Affiliation(s)
- Chun-Chieh Liao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
88
|
Oeschger FM, Wang WZ, Lee S, García-Moreno F, Goffinet AM, Arbonés ML, Rakic S, Molnár Z. Gene expression analysis of the embryonic subplate. ACTA ACUST UNITED AC 2011; 22:1343-59. [PMID: 21862448 PMCID: PMC4972418 DOI: 10.1093/cercor/bhr197] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.
Collapse
Affiliation(s)
- Franziska M Oeschger
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3QX, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Montiel JF, Wang WZ, Oeschger FM, Hoerder-Suabedissen A, Tung WL, García-Moreno F, Holm IE, Villalón A, Molnár Z. Hypothesis on the dual origin of the Mammalian subplate. Front Neuroanat 2011; 5:25. [PMID: 21519390 PMCID: PMC3078748 DOI: 10.3389/fnana.2011.00025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/25/2011] [Indexed: 12/23/2022] Open
Abstract
The development of the mammalian neocortex relies heavily on subplate. The proportion of this cell population varies considerably in different mammalian species. Subplate is almost undetectable in marsupials, forms a thin, but distinct layer in mouse and rat, a larger layer in carnivores and big-brained mammals as pig, and a highly developed embryonic structure in human and non-human primates. The evolutionary origin of subplate neurons is the subject of current debate. Some hypothesize that subplate represents the ancestral cortex of sauropsids, while others consider it to be an increasingly complex phylogenetic novelty of the mammalian neocortex. Here we review recent work on expression of several genes that were originally identified in rodent as highly and differentially expressed in subplate. We relate these observations to cellular morphology, birthdating, and hodology in the dorsal cortex/dorsal pallium of several amniote species. Based on this reviewed evidence we argue for a third hypothesis according to which subplate contains both ancestral and newly derived cell populations. We propose that the mammalian subplate originally derived from a phylogenetically ancient structure in the dorsal pallium of stem amniotes, but subsequently expanded with additional cell populations in the synapsid lineage to support an increasingly complex cortical plate development. Further understanding of the detailed molecular taxonomy, somatodendritic morphology, and connectivity of subplate in a comparative context should contribute to the identification of the ancestral and newly evolved populations of subplate neurons.
Collapse
Affiliation(s)
- Juan F Montiel
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N. Populations of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 2011; 217:381-99. [PMID: 20979586 DOI: 10.1111/j.1469-7580.2010.01284.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains.
Collapse
Affiliation(s)
- Miloš Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, Zagreb, Croatia.
| | | | | | | |
Collapse
|
91
|
Judaš M, Sedmak G, Pletikos M. Early history of subplate and interstitial neurons: from Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat 2010; 217:344-67. [PMID: 20979585 PMCID: PMC2992413 DOI: 10.1111/j.1469-7580.2010.01283.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2010] [Indexed: 12/29/2022] Open
Abstract
In this historical review, we trace the early history of research on the fetal subplate zone, subplate neurons and interstitial neurons in the white matter of the adult nervous system. We arrive at several general conclusions. First, a century of research clearly testifies that interstitial neurons, subplate neurons and the subplate zone were first observed and variously described in the human brain - or, in more general terms, in large brains of gyrencephalic mammals, characterized by an abundant white matter and slow and protracted prenatal and postnatal development. Secondly, the subplate zone cannot be meaningfully defined using a single criterion - be it a specific population of cells, fibres or a specific molecular or genetic marker. The subplate zone is a highly dynamic architectonic compartment and its size and cellular composition do not remain constant during development. Thirdly, it is important to make a clear distinction between the subplate zone and the subplate (and interstitial) neurons. The transient existence of the subplate zone (as a specific architectonic compartment of the fetal telencephalic wall) should not be equated with the putative transient existence of subplate neurons. It is clear that in rodents, and to an even greater extent in humans and monkeys, a significant number of subplate cells survive and remain functional throughout life.
Collapse
Affiliation(s)
- Miloš Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Salata 12, Zagreb, Croatia.
| | | | | |
Collapse
|