51
|
The role of IL-6 in TBI and PTSD, a potential therapeutic target? Clin Neurol Neurosurg 2022; 218:107280. [PMID: 35567833 DOI: 10.1016/j.clineuro.2022.107280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 01/14/2023]
Abstract
This literature review focuses on the role of IL-6 in TBI or PTSD-induced neuroinflammation. While TBI and PTSD are widely prevalent, these diagnoses are particularly common amongst veterans. Given the role of IL-6 in neuroprotection acutely, compared to detrimental chronically, targeting this cytokine at specific time points may be beneficial in modulating neuroinflammation. Current treatments for TBI or PTSD are variably affective. By reviewing the role of IL-6 in these two diagnoses, future studies can focus on therapeutics to treat neuroinflammation and ultimately reduce the devastating impacts of neuroinflammation on cognition in PTSD and TBI.
Collapse
|
52
|
Wang L, Mohanasundaram P, Lindström M, Asghar MN, Sultana G, Misiorek JO, Jiu Y, Chen H, Chen Z, Toivola DM, Cheng F, Eriksson JE. Vimentin Suppresses Inflammation and Tumorigenesis in the Mouse Intestine. Front Cell Dev Biol 2022; 10:862237. [PMID: 35399505 PMCID: PMC8993042 DOI: 10.3389/fcell.2022.862237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Vimentin has been implicated in wound healing, inflammation, and cancer, but its functional contribution to intestinal diseases is poorly understood. To study how vimentin is involved during tissue injury and repair of simple epithelium, we induced colonic epithelial cell damage in the vimentin null (Vim−/−) mouse model. Vim−/− mice challenged with dextran sodium sulfate (DSS) had worse colitis manifestations than wild-type (WT) mice. Vim−/− colons also produced more reactive oxygen and nitrogen species, possibly contributing to the pathogenesis of gut inflammation and tumorigenesis than in WT mice. We subsequently describe that CD11b+ macrophages served as the mainly cellular source of reactive oxygen species (ROS) production via vimentin-ROS-pSTAT3–interleukin-6 inflammatory pathways. Further, we demonstrated that Vim−/− mice did not develop colitis-associated cancer model upon DSS treatment spontaneously but increased tumor numbers and size in the distal colon in the azoxymethane/DSS model comparing with WT mice. Thus, vimentin has a crucial role in protection from colitis induction and tumorigenesis of the colon.
Collapse
Affiliation(s)
- Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ponnuswamy Mohanasundaram
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michelle Lindström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Muhammad Nadeem Asghar
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Giulia Sultana
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Julia O Misiorek
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zhi Chen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| |
Collapse
|
53
|
CD4 + T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector T cell survival. Cell Rep 2022; 38:110565. [PMID: 35354043 DOI: 10.1016/j.celrep.2022.110565] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.
Collapse
|
54
|
Li J, Chen D, Shen M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front Med (Lausanne) 2022; 9:869010. [PMID: 35402443 PMCID: PMC8984105 DOI: 10.3389/fmed.2022.869010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most devastating diseases that accounts for numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic signaling activation, significantly contribute to CRC progression and metastasis. Recent accumulating evidence suggests that the CRC microenvironment also profoundly promotes or represses this process. As the roles of the tumor microenvironment (TME) in CRC progression and metastasis is gradually uncovered, the importance of these non-cell-autonomous signaling pathways is appreciated. However, we are still at the beginning of this TME function exploring process. In this review, we summarize the current understanding of the TME in CRC progression and metastasis by focusing on the gut microbiota and host cellular and non-cellular components. We also briefly discuss TME-remodeling therapies in CRC.
Collapse
Affiliation(s)
- Jun Li
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dawei Chen
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Minhong Shen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology and Microenvironment Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, United States
- *Correspondence: Minhong Shen,
| |
Collapse
|
55
|
Kim B, Lee K, Park B. Minecoside promotes apoptotic progression through STAT3 inactivation in breast cancer cells. Oncol Lett 2022; 23:94. [PMID: 35154425 PMCID: PMC8822415 DOI: 10.3892/ol.2022.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide, and is a major cause of mortality and morbidity in cancer patients. Constitutive activation of STAT3 has been found in a variety of malignant tumors, including breast cancer. Since STAT3 activation is capable of regulating various important features of tumor cells, identification of a novel STAT3 inhibitor is considered a potential strategy for treating breast cancer. The aim of the present study was to examine whether minecoside (MIN), an active compound extracted from Veronica peregrina L., exerts an antitumor effect by inhibiting STAT3 signaling pathway in MDA-MB-231 cells. The results revealed that MIN inhibited the constitutive STAT3 activation in a dose- and time-dependent manner. MIN also blocked the nuclear translocation of STAT3 and suppressed STAT3-DNA binding. In addition, MIN downregulated the STAT3-mediated expression of proteins such as Bcl-xL, Bcl-2, CXCR4, VEGF, and cyclin D1. Subsequently, MIN promoted the caspase-dependent apoptosis in MDA-MB-231 cells. Overall, results of the present study provide evidence that MIN exerted anticancer activity via inhibition of the STAT3 signaling pathway. Further studies using animal models are required to determine the potential of this molecule as an anticancer drug.
Collapse
Affiliation(s)
- Buyun Kim
- College of Pharmacy, Keimyung University, Dalseo‑Gu, Daegu, North Gyeongsang 704‑701, Republic of Korea
| | - Ki Lee
- College of Pharmacy, Korea University, Sejong 339‑770, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalseo‑Gu, Daegu, North Gyeongsang 704‑701, Republic of Korea
| |
Collapse
|
56
|
Zahirović A, Plavec TV, Berlec A. Dual Functionalized Lactococcus lactis Shows Tumor Antigen Targeting and Cytokine Binding in Vitro. Front Bioeng Biotechnol 2022; 10:822823. [PMID: 35155394 PMCID: PMC8826564 DOI: 10.3389/fbioe.2022.822823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 01/19/2023] Open
Abstract
Pro-inflammatory cytokines play an important role in the development and progression of colorectal cancer (CRC). Tumor-targeting bacteria that can capture pro-inflammatory cytokines in the tumor microenvironment and thus block their tumor-promoting effects might provide clinical benefits in inflammation-associated CRC. The aim of this study was to develop bacteria with dual functionality for selective delivery of cytokine-binding proteins to the tumor by targeting specific receptors on cancer cells. We engineered a model lactic acid bacterium, Lactococcus lactis, to co-display on its surface a protein ligand for tumor antigens (EpCAM-binding affitin; HER2-binding affibody) and a ligand for pro-inflammatory cytokines (IL-8-binding evasin; IL-6-binding affibody). Genes that encoded protein binders were cloned into a lactococcal dual promoter plasmid, and protein co-expression was confirmed by Western blotting. To assess the removal of IL-8 and IL-6 by the engineered bacteria, we established inflammatory cell models by stimulating cytokine secretion in human colon adenocarcinoma cells (Caco-2; HT-29) and monocyte-like cells (THP-1; U-937). The engineered L. lactis removed considerable amounts of IL-8 from the supernatant of Caco-2 and HT-29 cells, and depleted IL-6 from the supernatant of THP-1 and U-937 cells as determined by ELISA. The tumor targeting properties of the engineered bacteria were evaluated in human embryonic kidney epithelial cells HEK293 transfected to overexpress EpCAM or HER2 receptors. Fluorescence microscopy revealed that the engineered L. lactis specifically adhered to transfected HEK293 cells, where the EpCAM-targeting bacteria exhibited greater adhesion efficiency than the HER2-targeting bacteria. These results confirm the concept that L. lactis can be efficiently modified to display two proteins simultaneously on their surface: a tumor antigen binder and a cytokine binder. Both proteins remain biologically active and provide the bacteria with tumor antigen targeting and cytokine binding ability.
Collapse
Affiliation(s)
- Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Aleš Berlec,
| |
Collapse
|
57
|
Gut microbiome dysbiosis in inflammatory bowel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:179-204. [DOI: 10.1016/bs.pmbts.2022.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
59
|
Berg AF, Ettich J, Weitz HT, Krusche M, Floss DM, Scheller J, Moll JM. Exclusive inhibition of IL-6 trans-signaling by soluble gp130 FlyRFc. Cytokine X 2021; 3:100058. [PMID: 34927050 PMCID: PMC8649222 DOI: 10.1016/j.cytox.2021.100058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
A variety of sgp130Fc muteins was generated. Introduction of a gp130 SNP (R281Q) into sgp130Fc increases IL-6 specificity. The sgp130Fc variant sgp130FlyR exclusively affects IL-6 trans-signaling.
gp130 is the signal-transducing receptor for the Interleukin (IL)-6 type cytokines IL-6 and IL-11. To induce signaling, IL-6 forms a complex with IL-6 receptor (IL-6R) and IL-11 with IL-11 receptor (IL-11R). Membrane-bound IL-6R and IL-11R in complex with gp130 and the cytokine mediate classic-signaling, whereas trans-signaling needs soluble IL-6R and IL-11R variants. Interleukin (IL)-6 trans-signaling is of particular importance because it drives the development of autoimmune diseases, including rheumatoid arthritis and chronic inflammatory bowel diseases, whereas a role for IL-11 trans-signaling remains elusive. Soluble gp130 selectively inhibits trans-signaling of IL-6 whereas both, classic- and trans-signaling are abrogated by IL-6- and IL-6R-antibodies. Recently, we described an optimized sgp130 variant, which carries three amino acid substitutions T102Y/Q113F/N114L (sgp130FlyFc) resulting in reduced inhibition of IL-11 trans-signaling by increasing the affinity of sgp130 for the site I of IL-6. Moreover, we described that the patient mutation R281Q in gp130 results in reduced IL-11 signaling. Here, we show that the combination of T102Y/Q113F/N114L and R281Q in the new variant sgp130FlyRFc results in complete preservation of IL-11 mediated trans-signaling, whereas inhibition of IL-6 trans-signaling is maintained. Since sgp130Fc (olamkicept) has successfully completed a phase IIa trial in Crohn’s disease (CD) and ulcerative colitis, sgp130FlyRFc might serve as second-generation therapeutic to diminish IL-11 trans-signaling cross-reactivity.
Collapse
Affiliation(s)
- Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
60
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
61
|
Manganese-Doped N-Hydroxyphthalimide-Derived Carbon Dots-Theranostics Applications in Experimental Breast Cancer Models. Pharmaceutics 2021; 13:pharmaceutics13111982. [PMID: 34834397 PMCID: PMC8674762 DOI: 10.3390/pharmaceutics13111982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Theranostics, a novel concept in medicine, is based on the use of an agent for simultaneous diagnosis and treatment. Nanomaterials provide promising novel approaches to theranostics. Carbon Dots have been shown to exhibit anti-tumoral properties in various cancer models. The aim of the present study is to develop gadolinium, Fe3+, and Mn2+-doped N-hydroxyphthalimide-derived Carbon Dots. The resulted doped Carbon Dots should preserve the anti-tumoral properties while gaining magnetic resonance imaging properties. METHODS Normal and cancer cell lines have been treated with doped Carbon Dots, and the cell viability has been measured. The doped Carbon Dots that exhibited the most prominent anti-tumoral effect accompanied by the lowest toxicity have been further in vivo tested. Magnetic resonance imaging evaluates both in vitro and in vivo the possibility of using doped Carbon Dots as a contrast agent. RESULTS According to the results obtained from both the in vitro and in vivo experimental models used in our study, Mn2+-doped Carbon Dots (Mn-CDs-NHF) exhibit anti-tumoral properties, do not significantly impair the cell viability of normal cells, and reduce lung metastasis and the volume of mammary primary tumors while allowing magnetic resonance imaging. CONCLUSIONS Our findings prove that Mn-CDs-NHF can be used as theranostics agents in pre-clinical models.
Collapse
|
62
|
Sánchez-Maldonado JM, Cáliz R, López-Nevot MÁ, Cabrera-Serrano AJ, Moñiz-Díez A, Canhão H, Ter Horst R, Quartuccio L, Sorensen SB, Glintborg B, Hetland ML, Filipescu I, Pérez-Pampin E, Conesa-Zamora P, Swierkot J, den Broeder AA, De Vita S, Petersen ERB, Li Y, Ferrer MA, Escudero A, Netea MG, Coenen MJH, Andersen V, Fonseca JE, Jurado M, Bogunia-Kubik K, Collantes E, Sainz J. Validation of GWAS-Identified Variants for Anti-TNF Drug Response in Rheumatoid Arthritis: A Meta-Analysis of Two Large Cohorts. Front Immunol 2021; 12:672255. [PMID: 34777329 PMCID: PMC8579100 DOI: 10.3389/fimmu.2021.672255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
We aimed to validate the association of 28 GWAS-identified genetic variants for response to TNF inhibitors (TNFi) in a discovery cohort of 1361 rheumatoid arthritis (RA) patients monitored in routine care and ascertained through the REPAIR consortium and DANBIO registry. We genotyped selected markers and evaluated their association with response to TNFi after 6 months of treatment according to the change in disease activity score 28 (ΔDAS28). Next, we confirmed the most interesting results through meta-analysis of our data with those from the DREAM cohort that included 706 RA patients treated with TNFi. The meta-analysis of the discovery cohort and DREAM registry including 2067 RA patients revealed an overall association of the LINC02549rs7767069 SNP with a lower improvement in DAS28 that remained significant after correction for multiple testing (per-allele ORMeta=0.83, PMeta=0.000077; PHet=0.61). In addition, we found that each copy of the LRRC55rs717117G allele was significantly associated with lower improvement in DAS28 in rheumatoid factor (RF)-positive patients (per-allele ORMeta=0.67, P=0.00058; PHet=0.06) whereas an opposite but not significant effect was detected in RF-negative subjects (per-allele ORMeta=1.38, P=0.10; PHet=0.45; PInteraction=0.00028). Interestingly, although the identified associations did not survive multiple testing correction, the meta-analysis also showed overall and RF-specific associations for the MAFBrs6071980 and CNTN5rs1813443 SNPs with decreased changes in DAS28 (per-allele ORMeta_rs6071980 = 0.85, P=0.0059; PHet=0.63 and ORMeta_rs1813443_RF+=0.81, P=0.0059; PHet=0.69 and ORMeta_rs1813443_RF-=1.00, P=0.99; PHet=0.12; PInteraction=0.032). Mechanistically, we found that subjects carrying the LINC02549rs7767069T allele had significantly increased numbers of CD45RO+CD45RA+ T cells (P=0.000025) whereas carriers of the LINC02549rs7767069T/T genotype showed significantly increased levels of soluble scavengers CD5 and CD6 in serum (P=0.00037 and P=0.00041). In addition, carriers of the LRRC55rs717117G allele showed decreased production of IL6 after stimulation of PBMCs with B burgdorferi and E coli bacteria (P=0.00046 and P=0.00044), which suggested a reduced IL6-mediated anti-inflammatory effect of this marker to worsen the response to TNFi. In conclusion, this study confirmed the influence of the LINC02549 and LRRC55 loci to determine the response to TNFi in RA patients and suggested a weak effect of the MAFB and CNTN5 loci that need to be further investigated.
Collapse
Affiliation(s)
- Jose Manuel Sánchez-Maldonado
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Rafael Cáliz
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Department of Rheumatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Ángel López-Nevot
- Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Immunology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Ana Moñiz-Díez
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Helena Canhão
- EpiDoC Unit, CEDOC, NOVA Medical School and National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), NOVA Medical School, Lisbon, Portugal
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Luca Quartuccio
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy
| | - Signe B Sorensen
- Molecular Diagnostic and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bente Glintborg
- The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (DANBIO) Registry, The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete L Hetland
- The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (DANBIO) Registry, The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ileana Filipescu
- Rheumatology Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Eva Pérez-Pampin
- Rheumatology Unit, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Conesa-Zamora
- Clinical Analysis Department, Santa Lucía University Hospital, Cartagena, Spain
| | - Jerzy Swierkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Alfons A den Broeder
- Radboud Institute for Health Sciences, Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Salvatore De Vita
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy
| | - Eva Rabing Brix Petersen
- Department of Biochemistry and Immunology, University Hospital of Southern Jutland, Aabenraa, Denmark
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands.,Centre for Individualised Infection Medicine (CiiM) & Centre for Experimental and Clinical Infection Research (TWINCORE), Helmholtz-Centre for Infection Research (HZI) and The Hannover Medical School (MHH), Hannover, Germany
| | - Miguel A Ferrer
- Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Alejandro Escudero
- Rheumatology Department, Reina Sofía Hospital/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba, Córdoba, Spain
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands.,Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Marieke J H Coenen
- Radboud Institute for Health Sciences, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vibeke Andersen
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy.,Molecular Diagnostic and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Regional Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - João E Fonseca
- Rheumatology and Metabolic Bone Diseases Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHLN), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Manuel Jurado
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Eduardo Collantes
- Rheumatology Department, Reina Sofía Hospital/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba, Córdoba, Spain
| | - Juan Sainz
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| |
Collapse
|
63
|
Stanilov N, Grigorova A, Velikova T, Stanilova SA. Genetic variation of TGF-ΒR2 as a protective genotype for the development of colorectal cancer in men. World J Gastrointest Oncol 2021; 13:1766-1780. [PMID: 34853649 PMCID: PMC8603459 DOI: 10.4251/wjgo.v13.i11.1766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of transforming growth factor beta (TGF-β) signaling, including both the cytokine and their receptors, in the etiology of colorectal cancer (CRC) has been of particular interest lately. AIM To investigate the association between promoter polymorphism in TGF-β receptor 2 TGF-ΒR2G[-875]A with a CRC risk in a cohort of Bulgarian patients using a case-control gene association study approach, as well as the protein levels of TGF-β1 in the peripheral blood. METHODS A cohort of 184 CRC patients and 307 sex and age-matched healthy subjects were recruited in the study. A genotyping of the TGF-ΒR2G[-875]A (rs3087465) polymorphism was performed by primer-introduced restriction analyses-polymerase chain reaction approaches. RESULTS The frequency of TGF-ΒR2G[-875]A genotype was decreased in male patients with CRC than in healthy men (31.3% vs 44.8%; P = 0.058). Among males, the TGF-ΒR2G[-509]G genotype was related to a significantly increased risk of CRC development (OR = 1.820, 95%CI: 0.985-3.362, P = 0.055) than the GA + AA genotype. Also, TGF-ΒR2[-875]*A-allele itself was rarer in men with CRC than healthy men (19.1% vs 26.9%, P = 0.086) and was associated with a protective effect (OR = 0.644; 95%CI: 0.389-1.066; P = 0.086). Regarding the genotypes, we found that TGF-β1 serum levels were higher in GG genotype in healthy persons above 50 years than the CRC patients [36.3 ng/mL interquartile range (IQR) 19.9-56.5 vs 22.4 ng/mL IQR 14.8-29.7, P = 0.014]. We found significant differences between higher levels of TGF-β1 serum levels in healthy controls above 50 years (GG genotype) and CRC patients (GG genotype) at the early stage (36.3 ng/mL IQR 19.9-56.5 vs 22.8 ng/mL IQR 14.6-28.6, P = 0.037) and advanced CRC (36.3 ng/mL IQR 19.9-56.5 vs 21.6 ng/mL IQR 15.9-33.9, P = 0.039). CONCLUSION In summary, our results demonstrated that TGF-ΒR2 AG and AA genotypes were associated with a reduced risk of CRC, as well as circulating levels of TGF-β could prevent CRC development in a gender-specific manner. Notably, male carriers of TGF-ΒR2 -875A allele genotypes had a lower risk of CRC development and progression, suggesting that TGF-ΒR2 -875A/G polymorphism significantly affects the protective biological factors that also impact the risk of colon and rectal carcinogenesis.
Collapse
Affiliation(s)
- Noyko Stanilov
- Oncoplastic Unit, University College London Hospital, London NW1 2BU, United Kingdom
| | - Antonia Grigorova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| |
Collapse
|
64
|
Rose-John S. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Lett 2021; 596:557-566. [PMID: 34738234 DOI: 10.1002/1873-3468.14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokine, the level of which is highly elevated in most, if not all, inflammatory states. IL-6 triggers cell type-specific responses and acts on target cells via a specific interleukin-6 receptor (IL-6R), which, together with IL-6, binds to and induces the dimerization of a second receptor subunit, gp130. IL-6 also binds to soluble IL-6R, and this complex interacts with gp130, regardless of IL-6R expression. This allows cells that do not express IL-6R and would be otherwise insensitive to IL-6 to respond to it. We have generated a constitutively active version of gp130 by forced leucine-zipper-mediated dimerization, named L-gp130. Once inserted into the Rosa26 locus of mice, L-gp130 can be activated in a cell-autonomous manner by crossing these mice with any Cre-recombinase transgenic mouse strain. Activation of gp130 in hepatocytes produced liver-specific effects such as the induction of acute-phase proteins, but it also had profound systemic effects on the immune system. Such local and systemic effects of interleukin-6 will be reviewed.
Collapse
|
65
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
66
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
67
|
Stuelten CH, Zhang YE. Transforming Growth Factor-β: An Agent of Change in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:764727. [PMID: 34712672 PMCID: PMC8545984 DOI: 10.3389/fcell.2021.764727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming Growth Factor-β (TGF-β) is a key regulator of embryonic development, adult tissue homeostasis, and lesion repair. In tumors, TGF-β is a potent inhibitor of early stage tumorigenesis and promotes late stage tumor progression and metastasis. Here, we review the roles of TGF-β as well as components of its signaling pathways in tumorigenesis. We will discuss how a core property of TGF-β, namely its ability to change cell differentiation, leads to the transition of epithelial cells, endothelial cells and fibroblasts to a myofibroblastoid phenotype, changes differentiation and polarization of immune cells, and induces metabolic reprogramming of cells, all of which contribute to the progression of epithelial tumors.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Ying E. Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
68
|
Lokau J, Kespohl B, Kirschke S, Garbers C. The role of proteolysis in interleukin-11 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119135. [PMID: 34624437 DOI: 10.1016/j.bbamcr.2021.119135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Although interleukin-11 (IL-11) was discovered more than 30 years ago, it remains an understudied member of the IL-6 family of cytokines. While it was originally discovered as a secreted factor that could foster megakaryocyte maturation and was therefore used as a recombinant protein to increase platelet production in patients with thrombocytopenia, recent research has established important roles for IL-11 in inflammation, fibrosis and cancer. In order to initiate signal transduction, IL-11 binds first to a non-signaling membrane-bound IL-11 receptor (IL-11R, classic signaling), which subsequently induces the formation of a heterodimer of the signal-transducing receptor gp130 that is shared with the other family members. Complex formation initiates several intracellular signaling cascades, most notably the Janus kinase/Signal Transducer and Activator of Transcription (Jak/STAT) pathway. We have recently identified a trans-signaling mechanism, in which IL-11 binds to soluble forms of the IL-11R (sIL-11R) and the agonistic IL-11/sIL-11R complex can activate cells that do not express the IL-11R and would usually not respond to IL-11. The generation of sIL-11R and thus the initiation of IL-11 trans-signaling is mediated by proteolytic cleavage. In this review, we summarize the current state of knowledge regarding IL-11R cleavage, highlight recent developments in IL-11 biology and discuss therapeutic opportunities and challenges in the light of IL-11 classic and trans-signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Sophia Kirschke
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
69
|
Rose-John S. Blocking only the bad side of IL-6 in inflammation and cancer. Cytokine 2021; 148:155690. [PMID: 34474215 DOI: 10.1016/j.cyto.2021.155690] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-6 (IL-6) is considered an inflammatory cytokine, which is involved not only in most inflammatory states but it also plays a prominent role in inflammation associated cancers. The response of cells to the cytokine strictly depends on the presence of the IL-6 receptor (IL-6R),which presents IL-6 to the signal transducing receptor subunit gp130, which is expressed on all cells of the body. The expression of IL-6R is limited to some cells, which are therefore IL-6 target cells. The IL-6R can be cleaved by proteases and the thus generated soluble IL-6R (sIL-6R) still binds the ligand IL-6. The complex of IL-6 and sIL-6R can bind to gp130 on any cell, induce dimerization of gp130 and intracellular signaling. This process has been named IL-6 trans-signaling. A fusion protein of soluble gp130 with the constant portion of human IgG1 (sgp130Fc) turned out to be a potent and specific inhibitor of IL-6 trans-signaling. In many animal models of human diseases the significance of IL-6 trans-signaling has been analyzed. It turned out that the activities of IL-6 mediated by the sIL-6R are the pro-inflammatory activities of the cytokine whereas activities of IL-6 mediated by the membrane-bound IL-6R are rather protective and regenerative. The sgp130Fc protein has recently been developed into a biologic. The possible consequences of a specific IL-6 trans-signaling blockade is discussed in the light of the recent successfully concluded phase II clinical trials in patients with inflammatory bowel disease.
Collapse
|
70
|
Mo S, Pei Z, Dai L. Construction of a Signature Composed of 14 Immune Genes to Judge the Prognosis and Immune Infiltration of Colon Cancer. Genet Test Mol Biomarkers 2021; 25:163-178. [PMID: 33734891 DOI: 10.1089/gtmb.2020.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Colon cancer (CC) is an immunogenic tumor and immune-targeting disease. In this study, we analyzed differentially expressed genes (DEGs) from the expression profile data in CC of The Cancer Genome Atlas. Methods and Results: Using univariate and multivariate Cox regression analysis, an immune gene-risk model containing 14 immune genes was established. Four hundred seventeen CC samples were divided into high-risk and low-risk groups, and Kaplan-Meier analysis revealed that high-risk score predicted poor survival. Meanwhile, we found the model was an independent prognostic factor for CC. Weighted gene coexpression network analysis was used to identify key gene modules between high- and low-risk groups. The methods of CIBERSORT and single-sample Gene Set Enrichment Analysis were used to evaluate the correlation between immune cells and our model. Conclusion: Taken together, our study suggested that the immune gene-related risk model may be developed as a potential tool in the prognostic assessment of CC.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Zhenle Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Leijie Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
71
|
Heise D, Derrac Soria A, Hansen S, Dambietz C, Akbarzadeh M, Berg AF, Waetzig GH, Jones SA, Dvorsky R, Ahmadian MR, Scheller J, Moll JM. Selective inhibition of IL-6 trans-signaling by a miniaturized, optimized chimeric soluble gp130 inhibits T H17 cell expansion. Sci Signal 2021; 14:eabc3480. [PMID: 34404751 DOI: 10.1126/scisignal.abc3480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cytokine interleukin-6 (IL-6) signals through three mechanisms called classic signaling, trans-signaling, and trans-presentation. IL-6 trans-signaling is distinctly mediated through a soluble form of its transmembrane receptor IL-6R (sIL-6R) and the coreceptor gp130 and is implicated in multiple autoimmune diseases. Although a soluble form of gp130 (sgp130) inhibits only IL-6 trans-signaling, it also blocks an analogous trans-signaling mechanism of IL-11 and its soluble receptor sIL-11R. Here, we report miniaturized chimeric soluble gp130 variants that efficiently trap IL-6:sIL-6R but not IL-11:sIL-11R complexes. We designed a novel IL-6 trans-signaling trap by fusing a miniaturized sgp130 variant to an IL-6:sIL-6R complex-binding nanobody and the Fc portion of immunoglobulin G (IgG). This trap, called cs-130Fc, exhibited improved inhibition of as well as increased selectivity for IL-6 trans-signaling compared to the conventional fusion protein sgp130Fc. We introduced affinity-enhancing mutations in cs-130Fc and sgp130Fc that further improved selectivity toward IL-6 trans-signaling. Moreover, cs-130Fc efficiently inhibited the expansion of T helper 17 (TH17) cells in cultures of mouse CD4+ T cells treated with IL-6:sIL-6R. Thus, these variants may provide or lead to the development of more precisely targeted therapeutics for inflammatory disorders associated with IL-6 trans-signaling.
Collapse
Affiliation(s)
- Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Alicia Derrac Soria
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Selina Hansen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Christine Dambietz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- CONARIS Research Institute AG, Kiel 24118, Germany
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| |
Collapse
|
72
|
The Relationship between Inflammation Markers (CRP, IL-6, sCD40L) and Colorectal Cancer Stage, Grade, Size and Location. Diagnostics (Basel) 2021; 11:diagnostics11081382. [PMID: 34441316 PMCID: PMC8393680 DOI: 10.3390/diagnostics11081382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was the evaluation whether in primary colorectal cancer (CRC) patients (n = 55): age, sex, TNM classification results, WHO grade, tumor location (proximal colon, distal colon, rectum), tumor size, platelet count (PLT), mean platelet volume (MPV), mean platelet component (MCP), levels of carcinoembryonic antigen (CEA), cancer antigen (CA 19-9), as well as soluble lectin adhesion molecules (L-, E-, and P-selectins) may influence circulating inflammatory biomarkers: IL-6, CRP, and sCD40L. We found that CRP concentration evaluation in routine clinical practice may have an advantage as a prognostic biomarker in CRC patients, as this protein the most comprehensively reflects clinicopathological features of the tumor. Univariate linear regression analysis revealed that in CRC patients: (1) with an increase in PLT by 10 × 103/μL, the mean concentration of CRP increases by 3.4%; (2) with an increase in CA 19-9 of 1 U/mL, the mean concentration of CRP increases by 0.7%; (3) with the WHO 2 grade, the mean CRP concentration increases 3.631 times relative to the WHO 1 grade group; (4) with the WHO 3 grade, the mean CRP concentration increases by 4.916 times relative to the WHO 1 grade group; (5) with metastases (T1-4N+M+) the mean CRP concentration increases 4.183 times compared to non-metastatic patients (T1-4N0M0); (6) with a tumor located in the proximal colon, the mean concentration of CRP increases 2.175 times compared to a tumor located in the distal colon; (7) in patients with tumor size > 3 cm, the CRP concentration is about 2 times higher than in patients with tumor size ≤ 3 cm. In the multivariate linear regression model, the variables that influence the mean CRP value in CRC patients included: WHO grade and tumor localization. R2 for the created model equals 0.50, which indicates that this model explains 50% of the variance in the dependent variable. In CRC subjects: (1) with the WHO 2 grade, the mean CRP concentration rises 3.924 times relative to the WHO 1 grade; (2) with the WHO 3 grade, the mean CRP concentration increases 4.721 times in relation to the WHO 1 grade; (3) with a tumor located in the rectum, the mean CRP concentration rises 2.139 times compared to a tumor located in the distal colon; (4) with a tumor located in the proximal colon, the mean concentration of CRP increases 1.998 times compared to the tumor located in the distal colon; if other model parameters are fixed.
Collapse
|
73
|
Saneei Totmaj A, Haghighat S, Jaberzadeh S, Navaei M, Vafa S, Janani L, Emamat H, Salehi Z, Izad M, Zarrati M. The Effects of Synbiotic Supplementation on Serum Anti-Inflammatory Factors in the Survivors of Breast Cancer with Lymphedema following a Low Calorie Diet: A Randomized, Double-Blind, Clinical Trial. Nutr Cancer 2021; 74:869-881. [PMID: 34085881 DOI: 10.1080/01635581.2021.1933096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Breast cancer-related lymphedema (BCRL) is a treatment-related inflammatory complication in breast cancer survivors (BCSs). This study was aimed to evaluate the effect of synbiotic supplementation on serum concentrations of IL-10, TGF-β, VEGF, adiponectin, and edema volume among overweight or obese BCSs with lymphedema following a low-calorie diet (LCD). METHOD In a randomized double-blind, controlled clinical trial, 88 obese and overweight BCSs women were randomized to synbiotic supplement (n = 44) or placebo (n = 44) groups and both groups followed an LCD for 10 weeks. Pre- and post-intervention comparisons were made regarding the anti-inflammatory markers which included IL-10, TGF-β, VEGF, adiponectin, edema volume, and anthropometric measurements. Also, the same factors were analyzed to find inter-group disparities. RESULTS There were no significant differences among participants in the baseline, except for IL-10 and adiponectin. Post-intervention, no significant differences were observed regarding the anti-inflammatory markers, including IL-10, VEGF, adiponectin, and TGF-β between the groups. After 10 weeks of intervention edema volume significantly decreased in the synbiotic group; additionally, anthropometric measurements (body weight, BMI, body fat percent, and WC) decreased in both groups significantly (P < 0.001 and P < 0.005; respectively). CONCLUSION Synbiotic supplementation coupled with an LCD in a 10-week intervention had beneficial effects on increasing the serum TGF-β, IL-10, and adiponectin levels in women with BCRL. It also reduced arm lymphedema volume. Therefore, synbiotic supplementation can be effective in improving health status in BCRL patients.
Collapse
Affiliation(s)
- Ali Saneei Totmaj
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Mehraban Navaei
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Emamat
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
74
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
75
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
76
|
Local Immune Changes in Early Stages of Inflammation and Carcinogenesis Correlate with the Collagen Scaffold Changes of the Colon Mucosa. Cancers (Basel) 2021; 13:cancers13102463. [PMID: 34070183 PMCID: PMC8158480 DOI: 10.3390/cancers13102463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Chronic colitis and colon cancer develop for alteration of the mucosa homeostatic regulation, also involving TGF-β1. Dextran sulphate sodium (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal carcinogenesis animal models allow for the investigation of the pathological evolution steps. Since chronic inflammation is a common factor, we aimed to explore in rat models the colon mucosa immunological and structural conditions at one month after the end of the inductions, a transition period between acute effects and established lesions. We found, in comparison to healthy controls, downregulation of inflammatory cytokines (except IL-6) and of TGF-β1. At the same time, the collagen scaffold was significantly remodelled in both groups. We conclude that the pro-inflammatory cytokines, in front of a downregulated TGF-β1, sustained a smouldering inflammation with structural changes preparing the niche of both pathologies (ulcerative colitis with fibrosis; tumour). The collagen scaffold changes pointing to an unnoticed inflammation may be suggested as a possible pre-neoplastic condition marker. Abstract Continuous activation of the immune system inside a tissue can lead to remodelling of the tissue structure and creation of a specific microenvironment, such as during the tumour development. Chronic inflammation is a central player in stimulating changes that alter the tissue stroma and can lead to fibrotic evolution. In the colon mucosa, regulatory mechanisms, including TGF-β1, avoid damaging inflammation in front of the continuous challenge by the intestinal microbiome. Inducing either DSS colitis or AOM colorectal carcinogenesis in AVN-Wistar rats, we evaluated at one month after the end of each treatment whether immunological changes and remodelling of the collagen scaffold were already in development. At this time point, we found in both models a general downregulation of pro-inflammatory cytokines and even of TGF-β1, but not of IL-6. Moreover, we demonstrated by multi-photon microscopy the simultaneously presence of pro-fibrotic remodelling of the collagen scaffold, with measurable changes in comparison to the control mucosa. The scaffold was significantly modified depending on the type of induced stimulation. These results suggest that at one month after the end of the DSS or AOM inductions, a smouldering inflammation is present in both induced conditions, since the pro-inflammatory cytokines still exceed, in proportion, the local homeostatic regulation of which TGF-β1 is a part (inflammatory threshold). Such an inflammation appears sufficient to sustain remodelling of the collagen scaffold that may be taken as a possible pathological marker for revealing pre-neoplastic inflammation.
Collapse
|
77
|
McElrath C, Espinosa V, Lin JD, Peng J, Sridhar R, Dutta O, Tseng HC, Smirnov SV, Risman H, Sandoval MJ, Davra V, Chang YJ, Pollack BP, Birge RB, Galan M, Rivera A, Durbin JE, Kotenko SV. Critical role of interferons in gastrointestinal injury repair. Nat Commun 2021; 12:2624. [PMID: 33976143 PMCID: PMC8113246 DOI: 10.1038/s41467-021-22928-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.
Collapse
Affiliation(s)
- Constance McElrath
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Vanessa Espinosa
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Jian-Da Lin
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jianya Peng
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Raghavendra Sridhar
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Orchi Dutta
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Hsiang-Chi Tseng
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Sergey V Smirnov
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Heidi Risman
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Marvin J Sandoval
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Cell Signaling, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark Galan
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Amariliz Rivera
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Joan E Durbin
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Center for Cell Signaling, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
78
|
Fantini MC, Guadagni I. From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig Liver Dis 2021; 53:558-565. [PMID: 33541800 DOI: 10.1016/j.dld.2021.01.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The risk of colorectal cancer (CRC) is higher in patients with inflammatory bowel disease (IBD). Population-based data from patients with ulcerative colitis (UC) estimate that the risk of CRC is approximately 2- to 3-fold that of the general population; patients with Crohn's disease appear to have a similar increased risk. However, the true extent of colitis-associated cancer (CAC) in undertreated IBD is unclear. Data suggest that the size (i.e., severity and extent) and persistence of the inflammatory process is largely responsible for the development of CRC in IBD. As patients with IBD and CRC have a worse prognosis than those without a history of IBD, the impact of current therapies for IBD on CAC is of importance. Chronic inflammation of the gut has been shown to increase the risk of developing CAC in both UC and CD. Therefore, control of inflammation is pivotal to the prevention of CAC. This review presents an overview of the current knowledge of CAC in IBD patients, focusing on the role of inflammation in the pathogenesis of CAC and the potential for IBD drugs to interfere with the process of carcinogenesis by reducing the inflammatory process or by modulating pathways directly involved in carcinogenesis.
Collapse
Affiliation(s)
- Massimo Claudio Fantini
- Department of Medical Science and Public Health, Gastroenterology Unit, University of Cagliari, Cittadella Universitaria di Monserrato - Asse Didattico I, SS 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy.
| | | |
Collapse
|
79
|
Turano M, Cammarota F, Duraturo F, Izzo P, De Rosa M. A Potential Role of IL-6/IL-6R in the Development and Management of Colon Cancer. MEMBRANES 2021; 11:membranes11050312. [PMID: 33923292 PMCID: PMC8145725 DOI: 10.3390/membranes11050312] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second greatest cause of cancer deaths. About 75% of all CRCs are sporadic cancers and arise following somatic mutations, while about 10% are hereditary cancers caused by germline mutations in specific genes. Several factors, such as growth factors, cytokines, and genetic or epigenetic alterations in specific oncogenes or tumor-suppressor genes, play a role during the adenoma-carcinoma sequence. Recent studies have reported an increase in interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) levels in the sera of patients affected by colon cancer that correlate with the tumor size, suggesting a potential role for IL-6 in colon cancer progression. IL-6 is a pleiotropic cytokine showing both pro- and anti-inflammatory roles. Two different types of IL-6 signaling are known. Classic IL-6 signaling involves the binding of IL-6 to its membrane receptor on the surfaces of target cells; alternatively, IL-6 binds to sIL-6R in a process called IL-6 trans-signaling. The activation of IL-6 trans-signaling by metalloproteinases has been described during colon cancer progression and metastasis, involving a shift from membrane-bound interleukin-6 receptor (IL-6R) expression on the tumor cell surface toward the release of soluble IL-6R. In this review, we aim to shed light on the role of IL-6 signaling pathway alterations in sporadic colorectal cancer and the development of familial polyposis syndrome. Furthermore, we evaluate the possible roles of IL-6 and IL-6R as biomarkers useful in disease follow-up and as potential targets for therapy, such as monoclonal antibodies against IL-6 or IL-6R, or a food-based approach against IL-6.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.C.); (F.D.); (P.I.)
- Ceinge Biotecnologie Avanzate, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
80
|
Afzal SM, Vafa A, Rashid S, Shree A, Islam J, Ali N, Sultana S. Amelioration of N,N'-dimethylhydrazine induced colon toxicity by epigallocatechin gallate in Wistar rats. Hum Exp Toxicol 2021; 40:1558-1571. [PMID: 33754881 DOI: 10.1177/09603271211002884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colon cancer is a life-threatening disease all over the world and is linked to constant oxidative stress and inflammation. Epigallocatechin gallate (EGCG), is a naturally occurring flavone possessing health benefiting pharmacological properties including antioxidant, anti-inflammatory and free radical scavenging properties. Our study investigates the role of EGCG on N,N'-dimethylhydrazine (DMH), a toxic environmental pollutant, induced colon toxicity. To investigate the effect of EGCG, Wistar rats were given EGCG for 7 days at the two doses of 10 and 20 mg/kg body weight and DMH was injected on the seventh day in all the group rats except the control. Our results indicate that DMH administration increased the oxidative stress (MDA) and depleted the glutathione and antioxidant enzyme activities (SOD, CAT, GR, GST and GPx) which was significantly ameliorated by EGCG treatment. Additionally DMH treatment upregulated inflammatory markers expression (NF-κB, COX-2 and IL-6) and enhanced mucosal damage in the colon. EGCG treatment significantly reduced inflammation and restored the normal histoarchitecture of the colon. We can conclude from the present study findings that EGCG protects the colon from DMH toxicity through its antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- S M Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - A Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - S Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, 204568Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - A Shree
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - J Islam
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| | - N Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India.,Department of Pharmacology and Toxicology, College of Pharmacy, 37850King Saud University, Riyadh, Saudi Arabia
| | - S Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, 28848Jamia Hamdard, New Delhi, India
| |
Collapse
|
81
|
Petrenko O, Li J, Cimica V, Mena-Taboada P, Shin HY, D’Amico S, Reich NC. IL-6 promotes MYC-induced B cell lymphomagenesis independent of STAT3. PLoS One 2021; 16:e0247394. [PMID: 33651821 PMCID: PMC7924759 DOI: 10.1371/journal.pone.0247394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eμ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eμ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eμ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eμ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eμ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Velasco Cimica
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- American Type Culture Collection, City of Manassas, Virginia, United States of America
| | - Patricio Mena-Taboada
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- University Frontera, Temuco, Chile
| | - Ha Youn Shin
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, Korea
| | - Stephen D’Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
82
|
Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, Zhong J, Pan L, Zhang X, Guo Y, Liu Y, Jin S, Tan Y, Yu X. MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci 2021; 17:869-881. [PMID: 33767595 PMCID: PMC7975698 DOI: 10.7150/ijbs.56152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) plays an important role in necroptosis, but the role and mechanism of MLKL in intestinal tumorigenesis remain unclear. Here, we found that hematopoietic- and nonhematopoietic-derived MLKL affected intestinal inflammation, but nonhematopoietic-derived MLKL primarily inhibited intestinal tumorigenesis. Loss of MLKL enhanced intestinal regeneration and the susceptibility to intestinal tumorigenesis in Apcmin/+ mice by hyperactivating the Janus kinase 2 (JAK2)/ signal transducer and activator of transcription 3 (STAT3) axis. Furthermore, MLKL deficiency increased interleukin-6 (IL-6) production in dendritic cells. Administration of anti-IL-6R antibody therapy reduced intestinal tumorigenesis in Apcmin/+Mlkl-/- mice. Notably, low MLKL expression in human colorectal tumors, which enhanced STAT3 activation, was associated with decreased overall survival. Together, our results reveal that MLKL exhibits a suppressive effect during intestinal tumorigenesis by suppressing the IL-6/JAK2/STAT3 signals.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinran Cheng
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Li Kuang
- Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jianhua Ren
- Department of Oncology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jing Zhong
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Zhang
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences & Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
83
|
Heo G, Lee Y, Im E. Interplay between the Gut Microbiota and Inflammatory Mediators in the Development of Colorectal Cancer. Cancers (Basel) 2021; 13:734. [PMID: 33578830 PMCID: PMC7916585 DOI: 10.3390/cancers13040734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
| | | | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (G.H.); (Y.L.)
| |
Collapse
|
84
|
Mahapatro M, Erkert L, Becker C. Cytokine-Mediated Crosstalk between Immune Cells and Epithelial Cells in the Gut. Cells 2021; 10:cells10010111. [PMID: 33435303 PMCID: PMC7827439 DOI: 10.3390/cells10010111] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small proteins that are secreted by a vast majority of cell types in the gut. They not only establish cell-to-cell interactions and facilitate cellular signaling, but also regulate both innate and adaptive immune responses, thereby playing a central role in genetic, inflammatory, and infectious diseases of the gut. Both, immune cells and gut epithelial cells, play important roles in intestinal disease development. The epithelium is located in between the mucosal immune system and the gut microbiome. It not only establishes an efficient barrier against gut microbes, but it also signals information from the gut lumen and its composition to the immune cell compartment. Communication across the epithelial cell layer also occurs in the other direction. Intestinal epithelial cells respond to immune cell cytokines and their response influences and shapes the microbial community within the gut lumen. Thus, the epithelium should be seen as a translator or a moderator between the microbiota and the mucosal immune system. Proper communication across the epithelium seems to be a key to gut homeostasis. Indeed, current genome-wide association studies for intestinal disorders have identified several disease susceptibility loci, which map cytokine signatures and their related signaling genes. A thorough understanding of this tightly regulated cytokine signaling network is crucial. The main objective of this review was to shed light on how cytokines can orchestrate epithelial functions such as proliferation, cell death, permeability, microbe interaction, and barrier maintenance, thereby safeguarding host health. In addition, cytokine-mediated therapy for inflammation and cancer are discussed.
Collapse
|
85
|
S N Chaitanya N, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review. Life Sci 2021; 269:118968. [PMID: 33417959 DOI: 10.1016/j.lfs.2020.118968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Cellular homeostasis maintained by several cellular processes such as autophagy, apoptosis, inflammation, oxidative stress, aging, and neurodegeneration, contribute to cell growth and development. Cancer cells undergo aberrant changes from a normal cell that show abnormal behaviour such as reduced apoptosis and autophagy, increased oxidative stress and inflammation. Various pharmacological and genetic inhibitors have been reported as drug candidates to control cancer cells, but the use of natural molecules as anti-cancer agents are limited. There is an emerging need for the development of alternative natural therapeutic agents that maintain cellular homeostasis without affecting cell viability and physiology. This review highlights the multifunctional roles of Trehalose, a natural disaccharide that can target various cellular processes in the cancer. Trehalose possessing an antioxidant activity also has effect on cancer, which is explained through targeting cell progression, angiogenesis and metastasis pathways at molecular level targeting EGFR, PI3K, Akt, VEGF and MMP 9 proteins inside the cell.
Collapse
Affiliation(s)
- Nyshadham S N Chaitanya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana State 500046, India
| | - Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Sibani Sahu
- Department of Human Genetics, Andhra University, Visakhapatnam, Andhra Pradesh 530001, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
86
|
Mackiewicz T, Sowa A, Fichna J. Biomarkers for Early Detection of Colitis-associated Colorectal Cancer - Current Concepts, Future Trends. Curr Drug Targets 2021; 22:137-145. [PMID: 32077822 DOI: 10.2174/1389450121666200220123844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
Colitis-associated colorectal cancer (CAC) remains a critical complication of ulcerative colitis (UC) with a mortality of approximately 15%, which makes early CAC diagnosis crucial. The current standard of surveillance, with repetitive colonoscopies and histological testing of biopsied mucosa samples, is burdensome and expensive, and therefore less invasive methods and reliable biomarkers are needed. Significant progress has been made, thanks to continuous extensive research in this field, however, no clinically relevant biomarker has been established so far. This review of the current literature presents the genetic and molecular differences between CAC and sporadic colorectal cancer and covers progress made in the early detection of CAC carcinogenesis. It focuses on biomarkers under development, which can easily be tested in samples of body fluids or breath and, once made clinically available, will help to differentiate between progressors (UC patients who will develop dysplasia) from non-progressors and enable early intervention to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Tomasz Mackiewicz
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Jakub Fichna
- Department Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
87
|
Policastro G, Brunelli M, Tinazzi M, Chiamulera C, Emerich DF, Paolone G. Cytokine-, Neurotrophin-, and Motor Rehabilitation-Induced Plasticity in Parkinson's Disease. Neural Plast 2020; 2020:8814028. [PMID: 33293946 PMCID: PMC7714573 DOI: 10.1155/2020/8814028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson's disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.
Collapse
Affiliation(s)
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | | | | - Giovanna Paolone
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
88
|
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, Yu XM, Zhao MS, Ye B. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:56-65. [PMID: 33277208 DOI: 10.1016/j.joim.2020.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High-fat diet is one of the main risk factors that disrupt the balance of gut microbiota, which eventually will induce colorectal cancer (CRC). Evodiamine (EVO) is a wildly used multifunctional traditional Chinese medicine extract. In this study, we investigated the role of gut microbiota in high-fat diet-propelled CRC and the potential of EVO for CRC chemoprevention. METHODS Gut microbiota, serum d-lactic acid and endotoxin from 38 patients with colon cancer and 18 healthy subjects were detected by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). In addition, body mass index, phospho-signal transducer and activator of transcription 3 (p-STAT3) expression in cancer tissues and paracancerous tissues were detected by immunohistochemistry. A mouse intestinal inflammatory tumor model was established by azomethane/sodium dextran sulfate, followed by treatment with EVO and 5-aminosalicylic acid (ASA). Gut microbiota and inflammatory factors were detected by quantitative polymerase chain reaction, while serum d-lactic acid and endotoxin were detected by ELISA. Furthermore, cell proliferation, cell apoptosis, and interleukin (IL)-6/STAT3/P65 pathway were evaluated by 5-ethynyl-2'-deoxyuridine, terminal-deoxynucleotidyl transferase-mediated nick-end labeling, and Western blot assays. RESULTS In patients with colon cancer, the numbers of Enterococcus faecalis and Escherichia coli were increased, while those of Bifidobacterium, Campylobacter and Lactobacillus were decreased. Serum endotoxin and d-lactic acid levels and p-STAT3 levels were significantly increased. In the mouse model, both EVO and ASA inhibited tumor formation, decreased the proliferation of tumor cells, and induced apoptosis of tumor cells. Compared with the control group, the numbers of E. faecalis and E. coli were decreased, while Bifidobacterium, Campylobacter and Lactobacillus numbers were increased. In the EVO group, serum endotoxin and d-lactic acid levels and inflammatory factors were significantly decreased. Further, the IL6/STAT3/P65 signaling pathway was inhibited in the EVO group. CONCLUSION EVO may inhibit the occurrence of colon cancer by regulating gut microbiota and inhibiting intestinal inflammation. The potential mechanism involves inhibition of the IL6/STAT3/P65 signaling pathway, revealing its potential therapeutic significance in clinical applications.
Collapse
Affiliation(s)
- Li-Qing Zhu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China; Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Jia Zhang
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China
| | - Guo-Lin Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Dan-Dan Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Xiao-Min Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325023, Zhejiang Province, China
| | - Mi-Sheng Zhao
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou 325023, Zhejiang Province, China.
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China; Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
89
|
Ibrahim ML, Lu C, Klement JD, Redd PS, Yang D, Smith AD, Liu K. Expression profiles and function of IL6 in polymorphonuclear myeloid-derived suppressor cells. Cancer Immunol Immunother 2020; 69:2233-2245. [PMID: 32488308 PMCID: PMC11027602 DOI: 10.1007/s00262-020-02620-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
IL6 is an inflammatory cytokine with pleiotropic functions in both immune and nonimmune cells, and its expression level is inversely correlated with disease prognosis in patients with cancer. However, blocking IL6 alone has only yielded minimal efficacy in human cancer patients. We aimed at defining IL6 expression profiles under inflammatory conditions and cancer, and elucidating the mechanism underlying IL6 intrinsic signaling in colon carcinoma. We report here that colonic inflammation induces IL6 expression primarily in the CD11b+Ly6G+Ly6Clo polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in colon. Although both tumor cells, T cells and myeloid cells all express IL6, PMN-MDSCs are the primary cell type that express IL6 in colon carcinoma, suggesting that IL6 up-regulation is a response to inflammation in colon epithelium and tumor microenvironment. Furthermore, we determined that IL6 activates STAT3 to up-regulate DNMT1 and DNMT3b expression in colon tumor cells, thereby revealing an epigenetic mechanism that mediates the IL6-STAT3 signaling pathway in colon carcinoma. Surprisingly, knocking out IL6 in colon tumor cells did not significantly alter tumor growth in WT mice. Conversely, IL6-sufficient colon and pancreatic tumor grow at similar rate in WT and IL6-deficient mice. However, overexpression of IL6 in colon tumor cells significantly increases tumor growth in vivo. Our findings determine that a high tumor local IL6 threshold is essential for IL6 function in colon tumor promotion and targeting the IL6-expressing PMN-MDSCs is potentially an effective approach to suppress colon tumor growth in vivo.
Collapse
Affiliation(s)
- Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
90
|
Montrose DC, Makino T, Basu S, Ito N, Dannenberg AJ. Induction of colitis-associated neoplasia in mice using azoxymethane and dextran sodium sulfate. Methods Cell Biol 2020; 163:123-135. [PMID: 33785161 DOI: 10.1016/bs.mcb.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long-standing inflammatory bowel diseases (IBD) increase the risk for the development of colorectal cancer (CRC). This increase is due in large part to chronic intestinal inflammation which exposes the epithelium to pro-carcinogenic factors. Moreover, enhanced mucosal proliferation associated with repetitive wound healing events following an inflammatory episode, further enhance this pro-tumorigenic environment. Although multiple factors involved in IBD pathogenesis and its associated neoplasia have been identified, more work is needed to develop and improve therapies to ameliorate disease and thus reduce CRC risk. Murine models have served as useful tools to identify factors involved in the pathogenesis of colitis-associated neoplasia and test therapies. These include both chemically-induced and genetic engineering approaches, resulting in chronic inflammation and tumor development. Here, we present a step-by-step method of inducing inflammation-associated colon neoplasia by combining administration of azoxymethane and dextran sodium sulfate in mice. A detailed description of this methodology will facilitate its use in the scientific community with the goals of further elucidating the mechanisms underlying colitis-associated tumorigenesis and developing risk reducing interventions.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States; Stony Brook Cancer Center, Stony Brook, NY, United States.
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Srijani Basu
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Naotake Ito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
91
|
Eberhardt W, Haeussler K, Nasrullah U, Pfeilschifter J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int J Mol Sci 2020; 21:ijms21207532. [PMID: 33066016 PMCID: PMC7590211 DOI: 10.3390/ijms21207532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial–mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.
Collapse
|
92
|
Zhao D, Cai C, Chen Q, Jin S, Yang B, Li N. High-Fat Diet Promotes DSS-Induced Ulcerative Colitis by Downregulated FXR Expression through the TGFB Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3516128. [PMID: 33029504 PMCID: PMC7537687 DOI: 10.1155/2020/3516128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis is one of the IBD which cause a chronic intestinal inflammation and dysfunctional of the mucosal barrier. For now, the incident of UC was steadily increased all over the world. It has become a novel independent risk factor of several severe diseases especially colon-rectal cancer. However, the etiology of UC was still obscure. Previous studies show that high-fat diet contributed to the pathogenesis of immune system dysregulation, and farnesoid X receptor (FXR) was also implicated in the pathogenesis of various inflammatory symptoms. Yet, their inner roles in the pathogenesis of UC have not been mentioned. In this study, we aim to investigate the role of FXR in UC. High-fat diet (HFD) promotes the progression of DSS-induced UC, shows an increasing secretion of bile acid in serum, and leads to a downregulation of FXR target genes (FXRα, Shp, and lbabp). Adding FXR agonist FexD rescues the phenotype induced by high-fat diet, whereas TGFBRI inhibitor SB431542 abrogates the restoration by FexD in DSS-induced UC mice. To further verify the relationship between the FXR and TGFB signaling pathway, we made a UC-HFD model in the Caco2 cell line. Results shows the same conclusion that FXR mitigate UC inflammation through a TGFB-dependent pathway. These results expand the role of FXR in ulcerative colitis and suggest that FXR activation may be considered a therapeutic strategy for UC.
Collapse
Affiliation(s)
- Di Zhao
- Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenwen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qiyi Chen
- Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuang Jin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bo Yang
- Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Colorectal Disease, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
93
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1200] [Impact Index Per Article: 240.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
94
|
Josa V, Ferenczi S, Szalai R, Fuder E, Kuti D, Horvath K, Hegedus N, Kovacs T, Bagamery G, Juhasz B, Winkler Z, Veres DS, Zrubka Z, Mathe D, Baranyai Z. Thrombocytosis and Effects of IL-6 Knock-Out in a Colitis-Associated Cancer Model. Int J Mol Sci 2020; 21:ijms21176218. [PMID: 32867390 PMCID: PMC7504541 DOI: 10.3390/ijms21176218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
There is an increasing number of studies showing that thrombocytosis—accompanying a variety of solid tumors including colorectal cancer (CRC)—is associated with shorter survival and earlier development of metastases. The mechanisms of cancer-associated thrombocytosis are not completely understood yet. The aim of our study was to evaluate the role of IL-6 in tumor development and thrombocytosis in mice with inflammation-induced CRC, using a CRISPR/cas9 IL-6 knockout (KO) strain. Adult male FB/Ant mice (n = 39) were divided into four groups: (1) IL-6 KO controls (n = 5); (2) IL-6 KO CRC model group (n = 18); (3) Wild-type (WT) controls (n = 6); and (4) WT CRC model group (n = 10). CRC model animals in (2) and (4) received azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment to induce inflammation-related CRC. Plasma and liver tissues were obtained to determine platelet counts, IL-6 and thrombopoietin-1 (TPO) levels. In 1 WT and 2 IL-6 KO mice in vivo confocal endomicroscopy and 18F-fluorodeoxyglucose (FDG) PET/MRI examinations were performed to evaluate the inflammatory burden and neoplastic transformation. At the end of the study, tumorous foci could be observed macroscopically in both CRC model groups. Platelet counts were significantly elevated in the WT CRC group compared to the IL-6 KO CRC group. TPO levels moved parallelly with platelet counts. In vivo fluorescent microscopy showed signs of disordered and multi-nuclear crypt morphology with increased mucus production in a WT animal, while regular mucosal structure was prominent in the IL-6 KO animals. The WT animal presented more intense and larger colonic FDG uptake than IL-6 KO animals. Our study confirmed thrombocytosis accompanying inflammation-related CRC and the crucial role of IL-6 in this process. Significantly higher platelet counts were found in the WT CRC group compared to both the control group and the IL-6 KO group. Concomitantly, the tumor burden of WT mice was also greater than that of IL-6 KO mice. Our findings are in line with earlier paraneoplastic IL-6 effect suggestions.
Collapse
Affiliation(s)
- Valeria Josa
- Jahn Ferenc Del-pesti Korhaz es Rendelointezet, Department of Otorhinolaryngology and Head and Neck Surgery, 1135 Budapest, Hungary
- Correspondence:
| | - Szilamer Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 1083 Budapest, Hungary; (S.F.); (D.K.); (K.H.); (B.J.); (Z.W.)
| | - Rita Szalai
- Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary;
| | - Eniko Fuder
- Department of Pathology, Uzsoki utcai Hospital, 1145 Budapest, Hungary;
| | - Daniel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 1083 Budapest, Hungary; (S.F.); (D.K.); (K.H.); (B.J.); (Z.W.)
| | - Krisztina Horvath
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 1083 Budapest, Hungary; (S.F.); (D.K.); (K.H.); (B.J.); (Z.W.)
| | - Nikolett Hegedus
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.H.); (D.S.V.); (D.M.)
- CROmed Translational Research Ltd., 1094 Budapest, Hungary
| | - Tibor Kovacs
- Department of Biophysics and Radiation Biology, University of Pannonia, Institute of Radiochemistry and Radioecology, 8200 Veszprém, Hungary;
| | - Gergo Bagamery
- Mediso Medical Imaging Systems Ltd., 1037 Budapest, Hungary;
| | - Balazs Juhasz
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 1083 Budapest, Hungary; (S.F.); (D.K.); (K.H.); (B.J.); (Z.W.)
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, 1083 Budapest, Hungary; (S.F.); (D.K.); (K.H.); (B.J.); (Z.W.)
| | - Daniel S. Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.H.); (D.S.V.); (D.M.)
| | - Zsombor Zrubka
- University Research, Innovation and Service Center, University of Óbuda, 1034 Budapest, Hungary;
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.H.); (D.S.V.); (D.M.)
- CROmed Translational Research Ltd., 1094 Budapest, Hungary
- Hungarian Center for Excellence in Molecular Medicine, 6723 Szeged, Hungary
| | - Zsolt Baranyai
- 1st Department of Surgery, Semmelweis University, 1082 Budapest, Hungary;
| |
Collapse
|
95
|
Canh NX, Giang NV, Nghia VX, Sopjani M, Ngan NTT, Hoang NH, Xuan NT. Regulation of cell activation by A20 through STAT signaling in acute lymphoblastic leukemia. J Recept Signal Transduct Res 2020; 41:331-338. [PMID: 32808859 DOI: 10.1080/10799893.2020.1808678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the hematologic malignancy characterized by the aberrant proliferation of immature lymphoid cells. A20 is a deubiquitinase gene that inhibits functional activation of immune cells mediated through NF-κB/STAT pathways and frequently found inactivated in lymphoma. IL-6 is a pro-inflammatory cytokine secreted by immune cells under the pathogenic conditions and regulated by STAT signaling. Little is known about the role of A20 in regulating the function of ALL blasts and underlying molecular mechanisms. The present study, therefore, explored whether A20 expression contributes to IL-6 induced cell migration and activation of myeloid cells in ALL. To this end, blood samples of thirty-five adult ALL patients were examined. Gene expression profile was determined by quantitative RT-PCR, immunophenotype by flow cytometry, secretion of inflammatory cytokines by ELISA, and cell migration by a transwell migration assay. As a result, the expression of A20 was inactivated in ALL. Immunophenotypic analysis indicated that percent of CD11b+CD40+ expressing cells present in ALL was significantly reduced when transfected with PEM-T easy A20. Importantly, IL6-induced CXCL12-mediated migration of ALL blasts was dependent on the presence of A20. The inhibitory effects of A20 on activated myeloid cells and migration of ALL blasts were mediated through the STAT pathway upon IL-6 challenge. In addition, the CA-125 level was much higher in elderly females than either young female or male ALL patients or healthy donors. In conclusion, the inhibitory effects of A20 on activation of ALL blasts are expected to affect the immune response to treatment for adult ALL patients.
Collapse
Affiliation(s)
- Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | | | - Mentor Sopjani
- Faculty of Medicine, University of Prishtina, Prishtinë, Kosova
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| |
Collapse
|
96
|
Schumacher N, Rose-John S, Schmidt-Arras D. ADAM-Mediated Signalling Pathways in Gastrointestinal Cancer Formation. Int J Mol Sci 2020; 21:ijms21145133. [PMID: 32698506 PMCID: PMC7404302 DOI: 10.3390/ijms21145133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tumour growth is not solely driven by tumour cell-intrinsic mechanisms, but also depends on paracrine signals provided by the tumour micro-environment. These signals comprise cytokines and growth factors that are synthesized as trans-membrane proteins and need to be liberated by limited proteolysis also termed ectodomain shedding. Members of the family of A disintegrin and metalloproteases (ADAM) are major mediators of ectodomain shedding and therefore initiators of paracrine signal transduction. In this review, we summarize the current knowledge on how ADAM proteases on tumour cells but also on cells of the tumour micro-environment contribute to the formation of gastrointestinal tumours, and discuss how these processes can be exploited pharmacologically.
Collapse
|
97
|
Zhong Q, Fang Y, Lai Q, Wang S, He C, Li A, Liu S, Yan Q. CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:132. [PMID: 32653013 PMCID: PMC7353816 DOI: 10.1186/s13046-020-01637-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
Background Crosstalk between cancer cells and tumor-associated macrophages (TAMs) mediates tumor progression in colorectal cancer (CRC). Cytoplasmic polyadenylation element binding protein 3 (CPEB3) has been shown to exhibit tumor-suppressive role in CRC. Methods The expression of CPEB3, CD68, CD86 and CD163 was determined in CRC tissues. SW480 or HCT116 cells overexpressing CPEB3 and LoVo or RKO cells with CPEB3 knockdown were constructed. Stably transfected CRC cells were co-cultured with THP-1 macrophages to determine the malignant phenotype of CRC cells, macrophage polarization, and secretory signals. The inhibition of CPEB3 on tumor progression and M2-like TAM polarization was confirmed in nude mice. Results Decreased CPEB3 expression in CRC was associated with fewer CD86+ TAMs and more CD163+ TAMs. CPEB3 knockdown in CRC cells increased the number of CD163+ TAMs and the expression of IL1RA, IL-6, IL-4 and IL-10 in TAM supernatants. TAMs enhanced CRC cell proliferation and invasion via IL-6, and then activated the IL-6R/STAT3 pathway in CRC cells. However, CPEB3 reduced the IL-6R protein levels by directly binding to IL-6R mRNA, leading to decreased phosphorylated-STAT3 expression in CRC cells. CCL2 was significantly increased in CPEB3 knockdown cells, while CCL2 antibody treatment rescued the effect of CPEB3 knockdown in promoting CD163+ TAM polarization. Eventually, we confirmed that CPEB3 inhibits tumor progression and M2-like TAM polarization in vivo. Conclusions CPEB3 is involved in the crosstalk between CRC cells and TAMs by targeting IL-6R/STAT3 signaling.
Collapse
Affiliation(s)
- Qian Zhong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shanci Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Qun Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838th North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
98
|
Pickert G, Wirtz S, Matzner J, Ashfaq-Khan M, Heck R, Rosigkeit S, Thies D, Surabattula R, Ehmann D, Wehkamp J, Aslam M, He G, Weigert A, Foerster F, Klotz L, Frick JS, Becker C, Bockamp E, Schuppan D. Wheat Consumption Aggravates Colitis in Mice via Amylase Trypsin Inhibitor-mediated Dysbiosis. Gastroenterology 2020; 159:257-272.e17. [PMID: 32251667 DOI: 10.1053/j.gastro.2020.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/06/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Wheat has become the world's major staple and its consumption correlates with prevalence of noncommunicable disorders such as inflammatory bowel diseases. Amylase trypsin inhibitors (ATIs), a component of wheat, activate the intestine's innate immune response via toll-like receptor 4 (TLR4). We investigated the effects of wheat and ATIs on severity of colitis and fecal microbiota in mice. METHODS C57BL/6 wild-type and Tlr4-/- mice were fed wheat- or ATI-containing diets or a wheat-free (control) diet and then given dextran sodium sulfate to induce colitis; we also studied Il10-/- mice, which develop spontaneous colitis. Changes in fecal bacteria were assessed by taxa-specific quantitative polymerase chain reaction and 16S ribosomal RNA metagenomic sequencing. Feces were collected from mice on wheat-containing, ATI-containing, control diets and transplanted to intestines of mice with and without colitis on control or on ATI-containing diets. Intestinal tissues were collected and analyzed by histology, immunohistochemistry, and flow cytometry. Bacteria with reported immunomodulatory effects were incubated with ATIs and analyzed in radial diffusion assays. RESULTS The wheat- or ATI-containing diets equally increased inflammation in intestinal tissues of C57BL/6 mice with colitis, compared with mice on control diets. The ATI-containing diet promoted expansion of taxa associated with development of colitis comparable to the wheat-containing diet. ATIs inhibited proliferation of specific human commensal bacteria in radial diffusion assays. Transplantation of microbiota from feces of mice fed the wheat- or ATI-containing diets to intestines of mice on control diets increased the severity of colitis in these mice. The ATI-containing diet did not increase the severity of colitis in Tlr4-/- mice. CONCLUSIONS Consumption of wheat or wheat ATIs increases intestinal inflammation in mice with colitis, via TLR4, and alters their fecal microbiota. Wheat-based, ATI-containing diets therefore activate TLR4 signaling and promote intestinal dysbiosis.
Collapse
Affiliation(s)
- Geethanjali Pickert
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Johannes Matzner
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Muhammad Ashfaq-Khan
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Rosario Heck
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Dorothe Thies
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Rambabu Surabattula
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Dirk Ehmann
- Department of Internal Medicine 1, University Hospital Tübingen, Germany
| | - Jan Wehkamp
- Department of Internal Medicine 1, University Hospital Tübingen, Germany
| | - Misbah Aslam
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Guiwei He
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedrich Foerster
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Department of Internal Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Luisa Klotz
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Research Center for Immunotherapy, Univ. Medical Center, Johannes Gutenberg University Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
99
|
Liu JH, Chen C, Li ZY, Zou ZM, Gao DC, Zhang X, Kuang XW, Sun ZH, Zheng WJ, Zhou P, Sun SR. The MyD88 inhibitor TJ-M2010-2 suppresses proliferation, migration and invasion of breast cancer cells by regulating MyD88/GSK-3β and MyD88/NF-κB signalling pathways. Exp Cell Res 2020; 394:112157. [PMID: 32610185 DOI: 10.1016/j.yexcr.2020.112157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
MyD88 has been implicated in the tumourigenesis, metastasis and recurrence of breast cancer (BC). Here we utilized TJ-M2010-2 (TJ), an inhibitor of MyD88 homodimerimerization, and siMyD88 to suppress the function of MyD88 in MCF-7 and MDA-MB-231 cells. BC cells were treated in vitro and xenografted into nude mice to generate a model in vivo. TJ inhibited BC cell growth by impeding proliferation rather than by promoting apoptosis in vitro. Additionally, TJ and siMyD88 significantly attenuated cell migration and invasion, inhibited EMT-like progression and reduced cytokine (IL-6, IL-8, TGF-β1 and TNF-α) secretion induced by LPS. In vivo, TJ significantly hindered tumour growth in mice. Notably, TJ also decreased the secretion of IL-6, IL-8, TGF-β1, and TNF-α and M2 macrophage infiltration in the tumour microenvironment. The expression of MyD88, TRAF6, NF-κB p65, Snail, MMP-2, MMP-9, p-GSK-3β and p-Akt was significantly downregulated by TJ in BC cells and tumour tissues. Collectively, these results suggest that a MyD88 inhibitor (TJ) may be a promising therapeutic modality for treating BC patients.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ze-Yang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi-Miao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Cheng Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xue Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Wei-Jie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| |
Collapse
|
100
|
Robinson R, Srinivasan M, Shanmugam A, Ward A, Ganapathy V, Bloom J, Sharma A, Sharma S. Interleukin-6 trans-signaling inhibition prevents oxidative stress in a mouse model of early diabetic retinopathy. Redox Biol 2020; 34:101574. [PMID: 32422539 PMCID: PMC7231846 DOI: 10.1016/j.redox.2020.101574] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual disability and blindness in diabetic patients. Chronic hyperglycemia leads to increased oxidative stress and inflammation in the retina, resulting in microvascular damage. Our recent in vitro studies have demonstrated that inhibition of interleukin-6 (IL-6) trans-signaling significantly reduces oxidative stress in retinal endothelial cells. The purpose of this study was to further explore the relationship between IL-6 trans-signaling and oxidative stress using a streptozotocin (STZ) induced mouse model of early diabetic retinopathy. Methods Diabetes was induced in eight week-old male C57BL/6J mice using STZ injections. sgp130Fc (mouse sgp130Fc protein) treatment was used for inhibition of IL-6 trans-signaling. Studies were conducted to evaluate the effects of IL-6 trans-signaling on oxidative balance at the systemic and retinal level. Results Decreased antioxidant capacity and increased oxidative stress was observed in diabetic mice, which returned to near-normal levels with sgp130Fc treatment. Similarly, superoxide levels, lipid peroxidation, and markers of oxidative DNA damage were increased in the diabetic retina, and these effects were abrogated by sgp130Fc treatment. Inhibition of IL-6 trans-signaling also restored normal expression of catalase and endothelial nitric oxide synthase in mouse retinas. Conclusions Inhibition of IL-6 trans-signaling significantly reduces diabetes-induced oxidative damage at the systemic level and in the retina. These findings provide further evidence for the role of IL-6 trans-signaling in diabetes-mediated oxidative stress. Decreased antioxidant capacity and increased oxidative stress in mice with DR. Inhibition of L-6 trans-signaling restores catalase and eNOS in the retina. Inhibition of IL-6 trans-signaling reduces retinal oxidative damage.
Collapse
Affiliation(s)
- Rebekah Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mukund Srinivasan
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Arul Shanmugam
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alexander Ward
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Veena Ganapathy
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Justin Bloom
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|