51
|
Feng E, Balint E, Poznanski SM, Ashkar AA, Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells 2021; 10:708. [PMID: 33806810 PMCID: PMC8004738 DOI: 10.3390/cells10030708] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022] Open
Abstract
As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; (E.F.); (E.B.); (S.M.P.); (M.L.)
| | | |
Collapse
|
52
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Shadbad MA, Hajiasgharzadeh K, Derakhshani A, Silvestris N, Baghbanzadeh A, Racanelli V, Baradaran B. From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past. Front Immunol 2021; 12:623639. [PMID: 33692796 PMCID: PMC7937699 DOI: 10.3389/fimmu.2021.623639] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Although melanoma remains the deadliest skin cancer, the current treatment has not resulted in the desired outcomes. Unlike chemotherapy, immunotherapy has provided more tolerable approaches and revolutionized cancer therapy. Although dendritic cell-based vaccines have minor side effects, the undesirable response rates of traditional approaches have posed questions about their clinical translation. The immunosuppressive tumor microenvironment can be the underlying reason for their low response rates. Immune checkpoints and indoleamine 2,3-dioxygenase have been implicated in the induction of immunosuppressive tumor microenvironment. Growing evidence indicates that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Protein kinase B (PKB) (PI3K/AKT) pathways, as the main oncogenic pathways of melanoma, can upregulate the tumoral immune checkpoints, like programmed death-ligand 1. This study briefly represents the main oncogenic pathways of melanoma and highlights the cross-talk between these oncogenic pathways with indoleamine 2,3-dioxygenase, tumoral immune checkpoints, and myeloid-derived suppressor cells. Moreover, this study sheds light on a novel tumor antigen on melanoma, which has substantial roles in tumoral immune checkpoints expression, indoleamine 2,3-dioxygenase secretion, and stimulating the oncogenic pathways. Finally, this review collects the lessons from the previous unsuccessful trials and integrates their lessons with new approaches in RNA-modified dendritic cell vaccines. Unlike traditional approaches, the advances in single-cell RNA-sequencing techniques and RNA-modified dendritic cell vaccines along with combined therapy of the immune checkpoint inhibitors, indoleamine 2,3-dioxygenase inhibitor, and RNA-modified dendritic cell-based vaccine can overcome these auto-inductive loops and pave the way for developing robust dendritic cell-based vaccines with the most favorable response rate and the least side effects.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immune Checkpoint Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/therapeutic use
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Escape
- Tumor Microenvironment
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/therapeutic use
- mRNA Vaccines
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
54
|
The immune potential of decidua-resident CD16 +CD56 + NK cells in human pregnancy. Hum Immunol 2021; 82:332-339. [PMID: 33583640 DOI: 10.1016/j.humimm.2021.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Human CD56+CD3- NK cells can be subdivided into two different subsets according to the expression pattern of CD56 and CD16. CD56+/brightCD16- (CD16-) NK cells are prominently cytokine producers with little cytotoxicity whereas CD56+/dimCD16+ (CD16+) NK cells are efficient killers with poorer cytokine production potential. In human pregnancy, CD56+ decidual (d)NK cells accumulate in the maternal fetal interface to regulate placental immunity and development. Unlike peripheral blood (pb)NK cells, the majority of dNK cells are CD56 positive with limited CD16 reactivity. Our results demonstrated that in normal and pathological pregnancies, CD16+ dNK cells are a unique population in comparison to CD16- dNK subset. The expression of NK activation receptors CD335, CD336, CD244 and CD314 on CD16+ dNK subpopulation was lower than that on CD16- dNK cells. Upon cytokine stimulation with rhIL-12/15/18 or TGFβ blockade, the CD16+ dNK subset exhibited more robust response on the expression of IFNG, IL-8 and CD107a, compared to that of the CD16- dNK subpopulation. Functions of the CD16+ dNK subset were shown to be independent of cellular interaction with trophoblast cells. Studies of preeclamptic patients revealed lower proportions of CD16+ dNK cells, suggesting potential protective roles of these cells during normal gestations.. Therefore, we suggest that the CD16+ dNK subset, through compensating CD16- dNK cell function, is an indispensable componentto regulate decidual immune response and to support placentation.
Collapse
|
55
|
López-Yglesias AH, Burger E, Camanzo E, Martin AT, Araujo AM, Kwok SF, Yarovinsky F. T-bet-dependent ILC1- and NK cell-derived IFN-γ mediates cDC1-dependent host resistance against Toxoplasma gondii. PLoS Pathog 2021; 17:e1008299. [PMID: 33465134 PMCID: PMC7875365 DOI: 10.1371/journal.ppat.1008299] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2021] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
Host resistance against intracellular pathogens requires a rapid IFN-γ mediated immune response. We reveal that T-bet-dependent production of IFN-γ is essential for the maintenance of inflammatory DCs at the site of infection with a common protozoan parasite, Toxoplasma gondii. A detailed analysis of the cellular sources for T-bet-dependent IFN-γ identified that ILC1s and to a lesser degree NK, but not TH1 cells, were involved in the regulation of inflammatory DCs via IFN-γ. Mechanistically, we established that T-bet dependent innate IFN-γ is critical for the induction of IRF8, an essential transcription factor for cDC1s. Failure to upregulate IRF8 in DCs resulted in acute susceptibility to T. gondii infection. Our data identifies that T-bet dependent production of IFN-γ by ILC1 and NK cells is indispensable for host resistance against intracellular infection via maintaining IRF8+ inflammatory DCs at the site of infection.
Collapse
Affiliation(s)
- Américo H. López-Yglesias
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Elise Burger
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Ellie Camanzo
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Andrew T. Martin
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Alessandra M. Araujo
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Samantha F. Kwok
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
56
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
57
|
Dermal IRF4+ dendritic cells and monocytes license CD4+ T helper cells to distinct cytokine profiles. Nat Commun 2020; 11:5637. [PMID: 33159073 PMCID: PMC7647995 DOI: 10.1038/s41467-020-19463-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Antigen (Ag)-presenting cells (APC) instruct CD4+ helper T (Th) cell responses, but it is unclear whether different APC subsets contribute uniquely in determining Th differentiation in pathogen-specific settings. Here, we use skin-relevant, fluorescently-labeled bacterial, helminth or fungal pathogens to track and characterize the APC populations that drive Th responses in vivo. All pathogens are taken up by a population of IRF4+ dermal migratory dendritic cells (migDC2) that similarly upregulate surface co-stimulatory molecules but express pathogen-specific cytokine and chemokine transcripts. Depletion of migDC2 reduces the amount of Ag in lymph node and the development of IFNγ, IL-4 and IL-17A responses without gain of other cytokine responses. Ag+ monocytes are an essential source of IL-12 for both innate and adaptive IFNγ production, and inhibit follicular Th cell development. Our results thus suggest that Th cell differentiation does not require specialized APC subsets, but is driven by inducible and pathogen-specific transcriptional programs in Ag+ migDC2 and monocytes.
Collapse
|
58
|
Kumrić M, Tičinović Kurir T, Borovac JA, Božić J. The Role of Natural Killer (NK) Cells in Acute Coronary Syndrome: A Comprehensive Review. Biomolecules 2020; 10:E1514. [PMID: 33167533 PMCID: PMC7694449 DOI: 10.3390/biom10111514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
With poor outcomes and an immense financial burden, acute coronary syndrome (ACS) and its ischemic repercussions still present a major global health problem. Unfavorable outcomes seem to be mainly due to adverse cardiac remodeling. Since the inflammatory response takes an important role in remodeling secondary to myocardial infarction (MI), and as inflammation in this manner has not been completely elucidated, we attempted to give rise to a further understanding of ACS pathophysiology. Hence, in this review, we integrated current knowledge of complex communication networks between natural killer (NK) cells and immune and resident heart cells in the context of ACS. Based on available data, the role of NK cells seems to be important in the infarcted myocardium, where it affects heart remodeling. On the other hand, in atherosclerotic plaque, NK cells seem to be mere passers-by, except in the case of chronic infections by atherogenic pathogens. In that case, NK cells seem to support proinflammatory milieu. NK cell research is challenging due to ethical reasons, convergent evolution, and phenotypic diversity among individuals. Therefore, we argue that further research of NK cells in ACS is valuable, given their therapeutic potential in improving postischemic heart remodeling.
Collapse
Affiliation(s)
- Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Endocrinology Clinic, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Josip A. Borovac
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
- Institute of Emergency Medicine of Split-Dalmatia County (ZHM SDZ), Spinčićeva 1, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.K.); (T.T.K.); (J.A.B.)
| |
Collapse
|
59
|
Putative biomarkers for early diagnosis and prognosis of congenital ocular toxoplasmosis. Sci Rep 2020; 10:16757. [PMID: 33028847 PMCID: PMC7541609 DOI: 10.1038/s41598-020-73265-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
In the present study we have evaluated the performance of several immunological biomarkers for early diagnosis and prognosis of congenital toxoplasmosis. Our results showed that ex vivo serum levels of CXCL9, and the frequencies of circulating CD4+CD25+ T-cells and T. gondii-specific IFN-γ+CD4+ T-cells measured 30–45 days after birth presented high accuracy to distinguish T. gondii-infected infants from healthy age-matched controls (Global Accuracy/AUC = 0.9; 0.9 and 0.8, respectively). Of note was the enhanced performance (Accuracy = 96%) achieved by using a combined stepwise analysis of CD4+CD25+ T-cells and CXCL9. In addition, high global accuracy (AUC = 0.9) with elevated sensitivity (Se = 98%) was also reached by using the total frequency of in vitro IFN-γ-producing T. gondii-specific T-cells (∑ IFN-γ+ CD4+ & CD8+) as a biomarker of congenital toxoplasmosis. Furthermore, the analysis of in vitro T. gondii-specific IL5+CD4+ T-cells and IFN-γ+NK-cells displayed a high accuracy for early prognosis of ocular lesion in infant with congenital toxoplasmosis (Global Accuracy/AUC = 0.8 and 0.9, respectively). Together, these findings support the relevance of employing the elements of the cell-mediated immune response as biomarkers with potential to endorse early diagnosis and prognosis of congenital ocular toxoplasmosis to contribute for a precise clinical management and effective therapeutic intervention.
Collapse
|
60
|
Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity 2020; 53:745-758.e4. [PMID: 33010223 DOI: 10.1016/j.immuni.2020.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.
Collapse
|
61
|
Clavijo-Salomon MA, Salcedo R, Roy S, das Neves RX, Dzutsev A, Sales-Campos H, Borbely KSC, Silla L, Orange JS, Mace EM, Barbuto JAM, Trinchieri G. Human NK cells prime inflammatory DC precursors to induce Tc17 differentiation. Blood Adv 2020; 4:3990-4006. [PMID: 32841340 PMCID: PMC7448590 DOI: 10.1182/bloodadvances.2020002084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Adaptive immune responses are acknowledged to evolve from innate immunity. However, limited information exists regarding whether encounters between innate cells direct the generation of specialized T-cell subsets. We aim to understand how natural killer (NK) cells modulate cell-mediated immunity in humans. We found that human CD14+CD16- monocytes that differentiate into inflammatory dendritic cells (DCs) are shaped at the early stages of differentiation by cell-to-cell interactions with NK cells. Although a fraction of monocytes is eliminated by NK-cell-mediated cytotoxicity, the polarization of interferon-γ (IFN-γ) at the NKp30-stabilized synapses triggers a stable IFN-γ signature in surviving monocytes that persists after their differentiation into DCs. Notably, NK-cell-instructed DCs drive the priming of type 17 CD8+ T cells (Tc17) with the capacity to produce IFN-γ and interleukin-17A. Compared with healthy donors, this cellular network is impaired in patients with classical NK-cell deficiency driven by mutations in the GATA2 gene. Our findings reveal a previously unrecognized connection by which Tc17-mediated immunity might be regulated by NK-cell-mediated tuning of antigen-presenting cells.
Collapse
Affiliation(s)
- Maria A Clavijo-Salomon
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Center of Translational Research in Oncology, Institute of Cancer of São Paulo (ICESP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosalba Salcedo
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Soumen Roy
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rodrigo X das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amiran Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Helioswilton Sales-Campos
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karen Steponavicius-Cruz Borbely
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Nutrition Faculty, Federal University of Alagoas, Maceio, Brazil
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Lucia Silla
- Cellular Technology and Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Cell and Molecular Therapy Center (NETCEM), University of São Paulo, São Paulo, Brazil
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
62
|
Tussiwand R, Behnke MS, Kretzer NM, Grajales-Reyes GE, Murphy TL, Schreiber RD, Murphy KM, Sibley LD. An Important Role for CD4 + T Cells in Adaptive Immunity to Toxoplasma gondii in Mice Lacking the Transcription Factor Batf3. mSphere 2020; 5:e00634-20. [PMID: 32669460 PMCID: PMC7364223 DOI: 10.1128/msphere.00634-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-γ) production by NK cells, while at later stages it is primarily mediated by CD8 T cells. We decided to explore the requirement for CD4 T cells during T. gondii infection in Batf3-/- mice, which lack CD8α+ dendritic cells (DCs) that are necessary for cross-presentation of cell-associated antigens to CD8 T cells. We show that in this immunodeficient background on a BALB/c background, CD4 T cells become important effector cells and are able to protect Batf3-/- mice from infection with the avirulent strain RHΔku80Δrop5 Independently of the initial NK cell activation, CD4 T cells in wild-type and Batf3-/- mice were the major source of IFN-γ. Importantly, memory CD4 T cells were sufficient to provide protective immunity following transfer into Batf3-/- mice and secondary challenge with the virulent RHΔku80 strain. Collectively, these results show that under situations where CD8 cell responses are impaired, CD4 T cells provide an important alternative immune response to T. gondiiIMPORTANCEToxoplasma gondii is a widespread parasite of animals that causes zoonotic infections in humans. Although healthy individuals generally control the infection with only moderate symptoms, it causes serious illness in newborns and those with compromised immune systems such as HIV-infected AIDS patients. Because rodents are natural hosts for T. gondii, laboratory mice provide an excellent model for studying immune responses. Here, we used a combination of an attenuated mutant strain of the parasite that effectively vaccinates mice, with a defect in a transcriptional factor that impairs a critical subset of dendritic cells, to studying the immune response to infection. The findings reveal that in BALB/c mice, CD4 memory T cells play a dominant role in producing IFN-γ needed to control chronic infection. Hence, BALB/c mice may provide a more appropriate model for declining immunity seen in HIV-AIDS patients where loss of CD4 cells is associated with emergence of opportunistic infections.
Collapse
Affiliation(s)
- Roxane Tussiwand
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Michael S Behnke
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nicole M Kretzer
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
- Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
63
|
Briukhovetska D, Ohm B, Mey FT, Aliberti J, Kleingarn M, Huber-Lang M, Karsten CM, Köhl J. C5aR1 Activation Drives Early IFN-γ Production to Control Experimental Toxoplasma gondii Infection. Front Immunol 2020; 11:1397. [PMID: 32733463 PMCID: PMC7362728 DOI: 10.3389/fimmu.2020.01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a parasite infecting animals and humans. In intermediate hosts, such as humans or rodents, rapidly replicating tachyzoites drive vigorous innate and adaptive immune responses resulting in bradyzoites that survive within tissue cysts. Activation of the innate immune system is critical during the early phase of infection to limit pathogen growth and to instruct parasite-specific adaptive immunity. In rodents, dendritic cells (DCs) sense T. gondii through TLR11/12, leading to IL-12 production, which activates NK cells to produce IFN-γ as an essential mechanism for early parasite control. Further, C3 can bind to T. gondii resulting in limited complement activation. Here, we determined the role of C5a/C5aR1 axis activation for the early innate immune response in a mouse model of peritoneal T. gondii infection. We found that C5ar1−/− animals suffered from significantly higher weight loss, disease severity, mortality, and parasite burden in the brain than wild type control animals. Severe infection in C5ar1−/− mice was associated with diminished serum concentrations of IL-12, IL-27, and IFN-γ. Importantly, the serum levels of pro-inflammatory cytokines, including IL-1α, IL-6, and TNF-α, as well as several CXC and CC chemokines, were decreased in comparison to wt animals, whereas anti-inflammatory IL-10 was elevated. The defect in IFN-γ production was associated with diminished Ifng mRNA expression in the spleen and the brain, reduced frequency of IFN-γ+ NK cells in the spleen, and decreased Nos2 expression in the brain of C5ar1−/− mice. Mechanistically, DCs from the spleen of C5ar1−/− mice produced significantly less IL-12 in response to soluble tachyzoite antigen (STAg) stimulation in vivo and in vitro. Our findings suggest a model in which the C5a/C5aR1 axis promotes IL-12 induction in splenic DCs that is critical for IFN-γ production from NK cells and subsequent iNOS expression in the brain as a critical mechanism to control acute T. gondii infection.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Birte Ohm
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fabian T Mey
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julio Aliberti
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
64
|
Ivanova DL, Krempels R, Denton SL, Fettel KD, Saltz GM, Rach D, Fatima R, Mundhenke T, Materi J, Dunay IR, Gigley JP. NK Cells Negatively Regulate CD8 T Cells to Promote Immune Exhaustion and Chronic Toxoplasma gondii Infection. Front Cell Infect Microbiol 2020; 10:313. [PMID: 32733814 PMCID: PMC7360721 DOI: 10.3389/fcimb.2020.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
NK cells regulate CD4+ and CD8+ T cells in acute viral infection, vaccination, and the tumor microenvironment. NK cells also become exhausted in chronic activation settings. The mechanisms causing these ILC responses and their impact on adaptive immunity are unclear. CD8+ T cell exhaustion develops during chronic Toxoplasma gondii (T. gondii) infection resulting in parasite reactivation and death. How chronic T. gondii infection impacts the NK cell compartment is not known. We demonstrate that NK cells do not exhibit hallmarks of exhaustion. Their numbers are stable and they do not express high PD1 or LAG3. NK cell depletion with anti-NK1.1 is therapeutic and rescues chronic T. gondii infected mice from CD8+ T cell exhaustion dependent death, increases survival after lethal secondary challenge and alters cyst burdens in brain. Anti-NK1.1 treatment increased polyfunctional CD8+ T cell responses in spleen and brain and reduced CD8+ T cell apoptosis in spleen. Chronic T. gondii infection promotes the development of a modified NK cell compartment, which does not exhibit normal NK cell characteristics. NK cells are Ly49 and TRAIL negative and are enriched for expression of CD94/NKG2A and KLRG1. These NK cells are found in both spleen and brain. They do not produce IFNγ, are IL-10 negative, do not increase PDL1 expression, but do increase CD107a on their surface. Based on the NK cell receptor phenotype we observed NKp46 and CD94-NKG2A cognate ligands were measured. Activating NKp46 (NCR1-ligand) ligand increased and NKG2A ligand Qa-1b expression was reduced on CD8+ T cells. Blockade of NKp46 rescued the chronically infected mice from death and reduced the number of NKG2A+ cells. Immunization with a single dose non-persistent 100% protective T. gondii vaccination did not induce this cell population in the spleen, suggesting persistent infection is essential for their development. We hypothesize chronic T. gondii infection induces an NKp46 dependent modified NK cell population that reduces functional CD8+ T cells to promote persistent parasite infection in the brain. NK cell targeted therapies could enhance immunity in people with chronic infections, chronic inflammation and cancer.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ryan Krempels
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Giandor M Saltz
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - David Rach
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Rida Fatima
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Tiffany Mundhenke
- Molecular Biology, University of Wyoming, Laramie, WY, United States.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joshua Materi
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
65
|
Panda AK, Gangaplara A, Buszko M, Natarajan K, Boyd LF, Sharma S, Margulies DH, Shevach EM. Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:567-572. [PMID: 32601097 DOI: 10.4049/jimmunol.2000412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 01/10/2023]
Abstract
NK cells recognize MHC class I (MHC-I) Ags via stochastically expressed MHC-I-specific inhibitory receptors that prevent NK cell activation via cytoplasmic ITIM. We have identified a pan anti-MHC-I mAb that blocks NK cell inhibitory receptor binding at a site distinct from the TCR binding site. Treatment of unmanipulated mice with this mAb disrupted immune homeostasis, markedly activated NK and memory phenotype T cells, enhanced immune responses against transplanted tumors, and augmented responses to acute and chronic viral infection. mAbs of this type represent novel checkpoint inhibitors in tumor immunity, potent tools for the eradication of chronic infection, and may function as adjuvants for the augmentation of the immune response to weak vaccines.
Collapse
Affiliation(s)
- Abir K Panda
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Arunakumar Gangaplara
- Laboratory of Early Sickle Mortality Prevention, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Maja Buszko
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Suveena Sharma
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Ethan M Shevach
- Cellular Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892;
| |
Collapse
|
66
|
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17:587-599. [PMID: 32433540 DOI: 10.1038/s41423-020-0465-0] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| |
Collapse
|
67
|
Marino AP, Dos Santos LI, Henriques PM, Roffe E, Vasconcelos-Santos DV, Sher A, Jankovic D, Gomes MS, Amaral LR, Campi-Azevedo AC, Teixeira-Carvalho A, Martins-Filho OA, Gazzinelli RT, Antonelli LR. Circulating inflammatory mediators as biomarkers of ocular toxoplasmosis in acute and in chronic infection. J Leukoc Biol 2020; 108:1253-1264. [PMID: 32421913 DOI: 10.1002/jlb.4ma0420-702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/27/2020] [Indexed: 11/08/2022] Open
Abstract
Toxoplasmosis is highly endemic worldwide. In Brazil, depending on the geographical region and socioeconomic status, 40-70% of individuals become seropositive at some point in their lives. A significant proportion of Toxoplasma gondii-chronically infected individuals who are otherwise immunocompetent develop recurrent ocular lesions. The inflammatory/immune mechanisms involved in development of ocular lesion are still unknown and, despite previous investigation, there are no reliable immune biomarkers to predict/follow disease outcome. To better understand the impact of the immune response on parasite control and immunopathology of ocular toxoplasmosis, and to provide insights on putative biomarkers for disease monitoring, we assessed the production of a large panel of circulating immune mediators in a longitudinal study of patients with postnatally acquired toxoplasmosis stratified by the presence of ocular involvement, both at the early acute stage and 6 months later during chronic infection, correlating them with presence of ocular involvement. We found that T. gondii-infected patients, especially during the acute stage of the disease, display high levels of chemokines, cytokines, and growth factors involved in the activation, proliferation, and migration of inflammatory cells to injured tissues. In particular, major increases were found in the IFN-induced chemokines CXCL9 and CXCL10 in T. gondii-infected patients regardless of disease stage or clinical manifestations. Moreover, a specific subgroup of circulating cytokines and chemokines including GM-CSF, CCL25, CCL11, CXCL12, CXCL13, and CCL2 was identified as potential biomarkers that accurately distinguish different stages of infection and predict the occurrence of ocular toxoplasmosis. In addition to serving as predictors of disease development, these host inflammatory molecules may offer promise as candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Pmp Marino
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luara I Dos Santos
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil.,Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Priscilla M Henriques
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ester Roffe
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Molecular Immunology, Molecular Signaling Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel V Vasconcelos-Santos
- Department of Ophthalmology and Otorinolaryngology, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matheus S Gomes
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Minas Gerais, Brasil.,Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Patos de Minas, Minas Gerais, Brasil
| | - Laurence R Amaral
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Minas Gerais, Brasil.,Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Patos de Minas, Minas Gerais, Brasil
| | - Ana C Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Gazzinelli
- Laboratório de Imunopatologia, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Lis R Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
68
|
Farsakoglu Y, Palomino-Segura M, Latino I, Zanaga S, Chatziandreou N, Pizzagalli DU, Rinaldi A, Bolis M, Sallusto F, Stein JV, Gonzalez SF. Influenza Vaccination Induces NK-Cell-Mediated Type-II IFN Response that Regulates Humoral Immunity in an IL-6-Dependent Manner. Cell Rep 2020; 26:2307-2315.e5. [PMID: 30811982 DOI: 10.1016/j.celrep.2019.01.104] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The role of natural killer (NK) cells in the immune response against vaccines is not fully understood. Here, we examine the function of infiltrated NK cells in the initiation of the inflammatory response triggered by inactivated influenza virus vaccine in the draining lymph node (LN). We observed that, following vaccination, NK cells are recruited to the interfollicular and medullary areas of the LN and become activated by type I interferons (IFNs) produced by LN macrophages. The activation of NK cells leads to their early production of IFNγ, which in turn regulates the recruitment of IL-6+ CD11b+ dendritic cells. Finally, we demonstrate that the interleukin-6 (IL-6)-mediated inflammation is important for the development of an effective humoral response against influenza virus in the draining LN.
Collapse
Affiliation(s)
- Yagmur Farsakoglu
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Miguel Palomino-Segura
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Silvia Zanaga
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Nikolaos Chatziandreou
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Diego Ulisse Pizzagalli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute of Computational Science (ICS), Università della Svizzera italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Laboratory of Molecular Biology, Instituto di Ricerche Farmacologiche Mario Negri IRCCS, via Giuseppe La Masa 19, 20156 Milano, Italy
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland; Institute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute (TKI), University of Bern, Freiestrasse 1, 3000 Bern, Switzerland
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.
| |
Collapse
|
69
|
Park J, Hunter CA. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol 2020; 42:e12712. [PMID: 32187690 DOI: 10.1111/pim.12712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
The ability of Toxoplasma gondii to cause clinical disease in immune-competent and immune-deficient hosts coupled with its ease of use in vitro and availability of murine models has led to its use as a model organism to study how the immune system controls an intracellular infection. This article reviews the studies that established the role of the cytokine IFN-γ in the activation of macrophages to control T gondii and the events that lead to the mobilization and expansion of macrophage populations and their ability to limit parasite replication. Macrophages also have pro-inflammatory functions that promote protective NK and T-cell activities as well as regulatory properties that facilitate the resolution of inflammation. Nevertheless, while macrophages are important in determining the outcome of infection, T gondii has evolved mechanisms to subvert macrophage activation and can utilize their migratory activities to promote dissemination and these two properties underlie the ability of this parasite to persist and cause disease.
Collapse
Affiliation(s)
- Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, Korea
| | | |
Collapse
|
70
|
Velásquez SY, Himmelhan BS, Kassner N, Coulibaly A, Schulte J, Brohm K, Lindner HA. Innate Cytokine Induced Early Release of IFNγ and CC Chemokines from Hypoxic Human NK Cells Is Independent of Glucose. Cells 2020; 9:cells9030734. [PMID: 32192004 PMCID: PMC7140646 DOI: 10.3390/cells9030734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are among the first innate immune cells to arrive at sites of tissue inflammation and regulate the immune response to infection and tumors by the release of cytokines including interferon (IFN)γ. In vitro exposure to the innate cytokines interleukin 15 (IL-15) and IL-12/IL-18 enhances NK cell IFNγ production which, beyond 16 h of culture, was shown to depend on metabolic switching to glycolysis. NK effector responses are, however, rapid by comparison. Therefore, we sought to evaluate the importance of glycolysis for shorter-term IFNγ production, considering glucose deprivation and hypoxia as adverse tissue inflammation associated conditions. Treatments with IL-15 for 6 and 16 h were equally effective in priming early IFNγ production in human NK cells in response to secondary IL-12/IL-18 stimulation. Short-term priming was not associated with glycolytic switching but induced the release of IFNγ and, additionally, CCL3, CCL4 and CCL5 from both normoxic and hypoxic NK cells in an equally efficient and, unexpectedly, glucose independent manner. We conclude that release of IFNγ and CC chemokines in the early innate immune response is a metabolically autonomous NK effector program.
Collapse
|
71
|
Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy. Cancer Immunol Immunother 2020; 69:1191-1204. [PMID: 32144446 PMCID: PMC7303058 DOI: 10.1007/s00262-020-02534-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Tumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100–300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface. Moreover, we show that TTFields treatment promotes the engulfment of cancer cells by dendritic cells (DCs) and DCs maturation in vitro, as well as recruitment of immune cells in vivo. Additionally, our study demonstrates that the combination of TTFields with anti-PD-1 therapy results in a significant decline of tumor volume and increase in the percentage of tumor-infiltrating leukocytes in two tumor models. In orthotopic lung tumors, these infiltrating leukocytes, specifically macrophages and DCs, showed elevated expression of PD-L1. Compatibly, cytotoxic T-cells isolated from these tumors demonstrated increased production of IFN-γ. In colon cancer tumors, T-cells infiltration was significantly increased following long treatment duration with TTFields plus anti-PD-1. Collectively, our results suggest that TTFields therapy can induce anticancer immune response. Furthermore, we demonstrate robust efficacy of concomitant application of TTFields and anti-PD-1 therapy. These data suggest that integrating TTFields with anti-PD-1 therapy may further enhance antitumor immunity, hence achieve better tumor control.
Collapse
|
72
|
Transcriptional regulation of DC fate specification. Mol Immunol 2020; 121:38-46. [PMID: 32151907 PMCID: PMC7187805 DOI: 10.1016/j.molimm.2020.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells function in the immune system to instruct adaptive immune cells to respond accordingly to different threats. While conventional dendritic cells can be subdivided into two main subtypes, termed cDC1s and cDC2s, it is clear that further heterogeneity exists within these subtypes, particularly for cDC2s. Understanding the signals involved in specifying each of these lineages and subtypes thereof is crucial to (i) enable us to determine their specific functions and (ii) put us in a position to be able to target these cells to promote or prevent a specific function in any given disease setting. Although we still have much to learn regarding the specification of these cells, here we review the most recent advances in our understanding of this and highlight some of the next questions for the future.
Collapse
|
73
|
Selective reconstitution of IFN‑γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathog 2020; 16:e1008279. [PMID: 32023327 PMCID: PMC7028289 DOI: 10.1371/journal.ppat.1008279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/18/2020] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
IFN-γ is an enigmatic cytokine that shows direct anti-viral effects, confers upregulation of MHC-II and other components relevant for antigen presentation, and that adjusts the composition and balance of complex cytokine responses. It is produced during immune responses by innate as well as adaptive immune cells and can critically affect the course and outcome of infectious diseases, autoimmunity, and cancer. To selectively analyze the function of innate immune cell-derived IFN-γ, we generated conditional IFN-γOFF mice, in which endogenous IFN-γ expression is disrupted by a loxP flanked gene trap cassette inserted into the first intron of the IFN-γ gene. IFN-γOFF mice were intercrossed with Ncr1-Cre or CD4-Cre mice that express Cre mainly in NK cells (IFN-γNcr1-ON mice) or T cells (IFN-γCD4-ON mice), respectively. Rosa26RFP reporter mice intercrossed with Ncr1-Cre mice showed selective RFP expression in more than 80% of the NK cells, while upon intercrossing with CD4-Cre mice abundant RFP expression was detected in T cells, but also to a minor extent in other immune cell subsets. Previous studies showed that IFN-γ expression is needed to promote survival of vaccinia virus (VACV) infection. Interestingly, during VACV infection of wild type and IFN-γCD4-ON mice two waves of serum IFN-γ were induced that peaked on day 1 and day 3/4 after infection. Similarly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses, of which the first one was moderately and the second one profoundly reduced when compared with WT mice. Furthermore, IFN-γNcr1-ON as well as IFN-γCD4-ON mice survived VACV infection, whereas IFN-γOFF mice did not. As expected, ex vivo analysis of splenocytes derived from VACV infected IFN-γNcr1-ON mice showed IFN-γ expression in NK cells, but not T cells, whereas IFN-γOFF mice showed IFN-γ expression neither in NK cells nor T cells. VACV infected IFN-γNcr1-ON mice mounted normal cytokine responses, restored neutrophil accumulation, and showed normal myeloid cell distribution in blood and spleen. Additionally, in these mice normal MHC-II expression was detected on peripheral macrophages, whereas IFN-γOFF mice did not show MHC-II expression on such cells. In conclusion, upon VACV infection Ncr1 positive cells including NK cells mount two waves of early IFN-γ responses that are sufficient to promote the induction of protective anti-viral immunity. Viral infections induce interferon (IFN) responses that constitute a first line of defense. Type II IFN (IFN-γ) is required for protection against lethal vaccinia virus (VACV) infection. To address the cellular origin of protective IFN-γ responses during VACV infection, we generated IFN-γOFF mice, in which the endogenous IFN-γ gene function can be reconstituted in a Cre-dependent manner. IFN-γOFF mice were intercrossed with Ncr1-Cre mice that express Cre selectively in Ncr1+ innate cell subsests such as NK cells. Surprisingly, VACV infected IFN-γNcr1-ON mice mounted two waves of IFN-γ responses. Reconstitution of innate IFN-γ was sufficient to restore cytokine responses that supported normal myeloid cell distribution and survival upon VACV infection. In conclusion, IFN-γ derived from Ncr1+ innate immune cells is sufficient to elicit fully effective immune responses upon VACV infection. Our new mouse model is suitable to further address the role of Ncr1+ cell-derived IFN-γ also in other models of infection, as well as of autoimmunity and cancer.
Collapse
|
74
|
Meira-Strejevitch CS, Pereira IDS, Hippólito DDC, Maia MM, Cruz AB, Gava R, Brandão de Mattos CC, Frederico FB, Siqueira RC, Mattos LC, Pereira-Chioccola VL. Ocular toxoplasmosis associated with up-regulation of miR-155-5p/miR-29c-3p and down-regulation of miR-21-5p/miR-125b-5p. Cytokine 2020; 127:154990. [PMID: 31945658 DOI: 10.1016/j.cyto.2020.154990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Ocular toxoplasmosis (OT) is one of the most common manifestations of Toxoplasma gondii infection and can be related with congenital or acquired infections. OT cause posterior uveitis that cause serious sequelae as complete loss of vision. microRNAs (miRNAs) are small non-coding RNAs, which have regulatory roles in cells by silencing messenger RNA. This study evaluated gene expression of miR-155-5p, miR-146a-5p, miR-21-5p, miR-29c-3p and miR-125b-5p in plasma of 51 patients with ocular toxoplasmosis (OT Group), 26 individuals with asymptomatic toxoplasmosis (AT Group), and 25 healthy individuals seronegative for toxoplasmosis (NC Group). Peripherical blood samples were collected in tube with EDTA for plasma isolation, laboratorial diagnosis for toxoplasmosis and RNA extraction. miRNA expression of each sample was performed by qPCR and values were expressed in Relative Quantification (RQ). Results showed that miR-155-5p and miR-29c-3p were up-expressed in OT patients than AT individuals. On the other hand, miR-21-5p and miR-125b-5p were down-expressed in OT patients. Differences were statistically significant. miR-146a-5p expression was similar in OT patients and AT individuals, without significant difference. In addition, comparative analysis for miRNA levels between AT and OT groups confirms these results. So far, this is the first study to evaluate circulating miRNA levels in ocular toxoplasmosis. These findings may contribute to further studies evaluating the exact role of these miRNAs in the course of infection, which may help in understanding the complex parasite-host interaction and future use in diagnosis, prognosis and therapeutic control in ocular toxoplasmosis.
Collapse
Affiliation(s)
| | | | | | - Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil.
| | | | - Fábio Batista Frederico
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil.
| | - Rubens Camargo Siqueira
- Ambulatório de Oftalmologia, Fundação Faculdade Regional de Medicina-Hospital de Base, São José do Rio Preto, Brazil.
| | - Luiz Carlos Mattos
- Laboratório de Imunogenética, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil.
| | | |
Collapse
|
75
|
Fernø J, Strand K, Mellgren G, Stiglund N, Björkström NK. Natural Killer Cells as Sensors of Adipose Tissue Stress. Trends Endocrinol Metab 2020; 31:3-12. [PMID: 31597606 DOI: 10.1016/j.tem.2019.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
76
|
Imaging the dynamic recruitment of monocytes to the blood-brain barrier and specific brain regions during Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2019; 116:24796-24807. [PMID: 31727842 DOI: 10.1073/pnas.1915778116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain infection by the parasite Toxoplasma gondii in mice is thought to generate vulnerability to predation by mechanisms that remain elusive. Monocytes play a key role in host defense and inflammation and are critical for controlling T. gondii However, the dynamic and regional relationship between brain-infiltrating monocytes and parasites is unknown. We report the mobilization of inflammatory (CCR2+Ly6Chi) and patrolling (CX3CR1+Ly6Clo) monocytes into the blood and brain during T. gondii infection of C57BL/6J and CCR2RFP/+CX3CR1GFP/+ mice. Longitudinal analysis of mice using 2-photon intravital imaging of the brain through cranial windows revealed that CCR2-RFP monocytes were recruited to the blood-brain barrier (BBB) within 2 wk of T. gondii infection, exhibited distinct rolling and crawling behavior, and accumulated within the vessel lumen before entering the parenchyma. Optical clearing of intact T. gondii-infected brains using iDISCO+ and light-sheet microscopy enabled global 3D detection of monocytes. Clusters of T. gondii and individual monocytes across the brain were identified using an automated cell segmentation pipeline, and monocytes were found to be significantly correlated with sites of T. gondii clusters. Computational alignment of brains to the Allen annotated reference atlas [E. S. Lein et al., Nature 445:168-176 (2007)] indicated a consistent pattern of monocyte infiltration during T. gondii infection to the olfactory tubercle, in contrast to LPS treatment of mice, which resulted in a diffuse distribution of monocytes across multiple brain regions. These data provide insights into the dynamics of monocyte recruitment to the BBB and the highly regionalized localization of monocytes in the brain during T. gondii CNS infection.
Collapse
|
77
|
Ivanova DL, Mundhenke TM, Gigley JP. The IL-12- and IL-23-Dependent NK Cell Response Is Essential for Protective Immunity against Secondary Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2944-2958. [PMID: 31604804 DOI: 10.4049/jimmunol.1801525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
NK cells can develop cell-intrinsic memory-like characteristics. Whether they develop these characteristics during Toxoplasma gondii infection is unknown. We addressed this question and dissected the mechanisms involved in secondary NK cell responses using a vaccine-challenge mouse model of T. gondii infection. NK cells were required for control of and survival after secondary T. gondii infection. NK cells increased in number at the reinfection site and produced IFN-γ. To test if these T. gondii experienced NK cells were intrinsically different from naive NK cells, we performed NK cell adoptive transfer into RAG2/cγ-chain-/- mice, NK cell fate mapping, and RAG1-/- mice vaccine-challenge experiments. Although NK cells contributed to immunity after reinfection, they did not develop cell-intrinsic memory-like characteristics after T. gondii vaccination. The mechanisms required for generating these secondary NK cell responses were investigated. Secondary NK cell responses were CD4+ or CD8+ T cell independent. Although IL-12 alone is required for NK cell IFN-γ production during primary T. gondii infection, in the absence of IL-12 using IL-12p35-/- mice or anti-IL-12p70, secondary NK cell responses were only partially reduced after reinfection. IL-23 depletion with anti-IL-23p19 in vivo also significantly reduced the secondary NK cell response. IL-12 and IL-23 blockade with anti-IL-12p40 treatment completely eliminated secondary NK cell responses. Importantly, blockade of IL-12, IL-23, or both significantly reduced control of parasite reinfection and increased parasite burden. Our results define a previously unknown protective role for NK cells during secondary T. gondii infection that is dependent on IL-12 and IL-23.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | | | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
78
|
Hirako IC, Assis PA, Galvão-Filho B, Luster AD, Antonelli LR, Gazzinelli RT. Monocyte-derived dendritic cells in malaria. Curr Opin Microbiol 2019; 52:139-150. [PMID: 31542508 DOI: 10.1016/j.mib.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/03/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The pathogenesis of malaria is a multifactorial syndrome associated with a deleterious inflammatory response that is responsible for many of the clinical manifestations. While dendritic cells (DCs) play a critical role in initiating acquired immunity and host resistance to infection, they also play a pathogenic role in inflammatory diseases. In our recent studies, we found in different rodent malaria models that the monocyte-derived DCs (MO-DCs) become, transiently, a main DC population in spleens and inflamed non-lymphoid organs. These studies suggest that acute infection with Plasmodium berghei promotes the differentiation of splenic monocytes into inflammatory monocytes (iMOs) and thereafter into MO-DCs that play a pathogenic role by promoting inflammation and tissue damage. The recruitment of MO-DCs to the lungs and brain are dependent on expression of CCR4 and CCR5, respectively, and expression of respective chemokine ligands in each organ. Once they reach the target organ the MO-DCs produce the CXCR3 ligands (CXCL9 and CXCL10), recruit CD8+ T cells, and produce toxic metabolites that play an important role in the development of experimental cerebral malaria (ECM) and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Isabella C Hirako
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | - Patrícia A Assis
- University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | | | - Andrew D Luster
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lis Rv Antonelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Ricardo T Gazzinelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States; Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
79
|
Pandori WJ, Lima TS, Mallya S, Kao TH, Gov L, Lodoen MB. Toxoplasma gondii activates a Syk-CARD9-NF-κB signaling axis and gasdermin D-independent release of IL-1β during infection of primary human monocytes. PLoS Pathog 2019; 15:e1007923. [PMID: 31449558 PMCID: PMC6730955 DOI: 10.1371/journal.ppat.1007923] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/06/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022] Open
Abstract
IL-1β is a potent pro-inflammatory cytokine that promotes immunity and host defense, and its dysregulation is associated with immune pathology. Toxoplasma gondii infection of myeloid cells triggers the production and release of IL-1β; however, the mechanisms regulating this pathway, particularly in human immune cells, are incompletely understood. We have identified a novel pathway of T. gondii induction of IL-1β via a Syk-CARD9-NF-κB signaling axis in primary human peripheral blood monocytes. Syk was rapidly phosphorylated during T. gondii infection of primary monocytes, and inhibiting Syk with the pharmacological inhibitors R406 or entospletinib, or genetic ablation of Syk in THP-1 cells, reduced IL-1β release. Inhibition of Syk in primary cells or deletion of Syk in THP-1 cells decreased parasite-induced IL-1β transcripts and the production of pro-IL-1β. Furthermore, inhibition of PKCδ, CARD9/MALT-1 and IKK reduced p65 phosphorylation and pro-IL-1β production in T. gondii-infected primary monocytes, and genetic knockout of PKCδ or CARD9 in THP-1 cells also reduced pro-IL-1β protein levels and IL-1β release during T. gondii infection, indicating that Syk functions upstream of this NF-κB-dependent signaling pathway for IL-1β transcriptional activation. IL-1β release from T. gondii-infected primary human monocytes required the NLRP3-caspase-1 inflammasome, but interestingly, was independent of gasdermin D (GSDMD) cleavage and pyroptosis. Moreover, GSDMD knockout THP-1 cells released comparable amounts of IL-1β to wild-type THP-1 cells after T. gondii infection. Taken together, our data indicate that T. gondii induces a Syk-CARD9/MALT-1-NF-κB signaling pathway and activation of the NLRP3 inflammasome for the release of IL-1β in a cell death- and GSDMD-independent manner. This research expands our understanding of the molecular basis for human innate immune regulation of inflammation and host defense during parasite infection.
Collapse
Affiliation(s)
- William J. Pandori
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
| | - Tatiane S. Lima
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
| | - Tiffany H. Kao
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
| | - Lanny Gov
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
| | - Melissa B. Lodoen
- Department of Molecular Biology & Biochemistry and the Institute for Immunology, University of California, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
80
|
Abstract
Immuno-oncology is an emerging field that has revolutionized cancer treatment. Most immunomodulatory strategies focus on enhancing T cell responses, but there has been a recent surge of interest in harnessing the relatively underexplored natural killer (NK) cell compartment for therapeutic interventions. NK cells show cytotoxic activity against diverse tumour cell types, and some of the clinical approaches originally developed to increase T cell cytotoxicity may also activate NK cells. Moreover, increasing numbers of studies have identified novel methods for increasing NK cell antitumour immunity and expanding NK cell populations ex vivo, thereby paving the way for a new generation of anticancer immunotherapies. The role of other innate lymphoid cells (group 1 innate lymphoid cell (ILC1), ILC2 and ILC3 subsets) in tumours is also being actively explored. This Review provides an overview of the field and summarizes current immunotherapeutic approaches for solid tumours and haematological malignancies.
Collapse
|
81
|
Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 2019; 18:545-558. [PMID: 29921905 DOI: 10.1038/s41577-018-0029-z] [Citation(s) in RCA: 706] [Impact Index Per Article: 141.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IFNγ is a cytokine with important roles in tissue homeostasis, immune and inflammatory responses and tumour immunosurveillance. Signalling by the IFNγ receptor activates the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) pathway to induce the expression of classical interferon-stimulated genes that have key immune effector functions. This Review focuses on recent advances in our understanding of the transcriptional, chromatin-based and metabolic mechanisms that underlie IFNγ-mediated polarization of macrophages to an 'M1-like' state, which is characterized by increased pro-inflammatory activity and macrophage resistance to tolerogenic and anti-inflammatory factors. In addition, I describe the newly discovered effects of IFNγ on other leukocytes, vascular cells, adipose tissue cells, neurons and tumour cells that have important implications for autoimmunity, metabolic diseases, atherosclerosis, neurological diseases and immune checkpoint blockade cancer therapy.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA. .,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
82
|
Shin KS, Jeon I, Kim BS, Kim IK, Park YJ, Koh CH, Song B, Lee JM, Lim J, Bae EA, Seo H, Ban YH, Ha SJ, Kang CY. Monocyte-Derived Dendritic Cells Dictate the Memory Differentiation of CD8 + T Cells During Acute Infection. Front Immunol 2019; 10:1887. [PMID: 31474983 PMCID: PMC6706816 DOI: 10.3389/fimmu.2019.01887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived dendritic cells (moDCs) have been shown to robustly expand during infection; however, their roles in anti-infectious immunity remain unclear. Here, we found that moDCs were dramatically increased in the secondary lymphoid organs during acute LCMV infection in an interferon-γ (IFN-γ)-dependent manner. We also found that priming by moDCs enhanced the differentiation of memory CD8+ T cells compared to differentiation primed by conventional dendritic cells (cDCs) through upregulation of Eomesodermin (Eomes) and T cell factor-1 (TCF-1) expression in CD8+ T cells. Consequently, impaired memory formation of CD8+ T cells in mice that had reduced numbers of moDCs led to defective clearance of pathogens upon rechallenge. Mechanistically, attenuated interleukin-2 (IL-2) signaling in CD8+ T cells primed by moDCs was responsible for the enhanced memory programming of CD8+ T cells. Therefore, our findings unveil a specialization of the antigen-presenting cell subsets in the fate determination of CD8+ T cells during infection and pave the way for the development of a novel therapeutic intervention on infection.
Collapse
Affiliation(s)
- Kwang-Soo Shin
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Jun Park
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jiyoung Lim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
83
|
Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. Proc Natl Acad Sci U S A 2019; 116:17480-17491. [PMID: 31413201 DOI: 10.1073/pnas.1904637116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In contrast to the importance of type II interferon-γ (IFN-γ) in control of toxoplasmosis, the role of type I IFN is less clear. We demonstrate here that TgIST, a secreted effector previously implicated in blocking type II IFN-γ signaling, also blocked IFN-β responses by inhibiting STAT1/STAT2-mediated transcription in infected cells. Consistent with a role for type I IFN in cell intrinsic control, ∆Tgist mutants were more susceptible to growth inhibition by murine and human macrophages activated with IFN-β. Additionally, type I IFN was important for production of IFN-γ by natural killer (NK) cells and recruitment of inflammatory monocytes at the site of infection. Mice lacking type I IFN receptors (Ifnar1-/-) showed increased mortality following infection with wild-type parasites and decreased virulence of ∆Tgist parasites was restored in Ifnar1-/- mice. The findings highlight the importance of type I IFN in control of toxoplasmosis and illuminate a parasite mechanism to counteract the effects of both type I and II IFN-mediated host defenses.
Collapse
|
84
|
Park E, Patel S, Wang Q, Andhey P, Zaitsev K, Porter S, Hershey M, Bern M, Plougastel-Douglas B, Collins P, Colonna M, Murphy KM, Oltz E, Artyomov M, Sibley LD, Yokoyama WM. Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. eLife 2019; 8:47605. [PMID: 31393266 PMCID: PMC6703900 DOI: 10.7554/elife.47605] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Innate lymphoid cells (ILCs) were originally classified based on their cytokine profiles, placing natural killer (NK) cells and ILC1s together, but recent studies support their separation into different lineages at steady-state. However, tumors may induce NK cell conversion into ILC1-like cells that are limited to the tumor microenvironment and whether this conversion occurs beyond this environment remains unknown. Here, we describe Toxoplasma gondii infection converts NK cells into ILC1-like cells that are distinct from both steady-state NK cells and ILC1s in uninfected mice. These cells were Eomes-dependent, indicating that NK cells can give rise to Eomes- Tbet-dependent ILC1-like cells that circulate widely and persist independent of ongoing infection. Moreover, these changes appear permanent, as supported by epigenetic analyses. Thus, these studies markedly expand current concepts of NK cells, ILCs, and their potential conversion.
Collapse
Affiliation(s)
- Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Swapneel Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Prabhakar Andhey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Konstantin Zaitsev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Computer Technologies Department, ITMO University, Saint Petersburg, Russia
| | - Sophia Porter
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Maxwell Hershey
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Michael Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Patrick Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eugene Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Microbial Infection and Immunity, Ohio State University Wexner School of Medicine, Columbus, United States
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
85
|
Bonanni V, Sciumè G, Santoni A, Bernardini G. Bone Marrow NK Cells: Origin, Distinctive Features, and Requirements for Tissue Localization. Front Immunol 2019; 10:1569. [PMID: 31354722 PMCID: PMC6635729 DOI: 10.3389/fimmu.2019.01569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
NK cell maturation is a continuous process, which initiates in the bone marrow and proceeds in peripheral tissues, where NK cells follow distinct differentiation routes. Drastic phenotypic changes are observed during progression from precursors to mature NK cells, including changes of expression and functionalities of several chemoattractant receptors. Upon differentiation, mature NK cells migrate outside the bone marrow; as well, peculiar subsets of NK cells can also home back to or localize in this anatomic compartment to play specific functions. In humans, NK cells with a tissue resident phenotype have been identified in bone marrow, sharing similarities with tissue resident memory CD8+ T cells; while in mouse, long-lived NK cells undergo homeostatic proliferation in this site during viral infections. The mechanisms underlying NK cell subset localization in the bone marrow have only recently started to be investigated, especially in pathological settings such as tumors or infections. In this review, we discuss the phenotype and function of NK cells as well as their requirements for bone marrow maintenance and/or homing.
Collapse
Affiliation(s)
- Valentina Bonanni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
- IRCCS, Neuromed, Isernia, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| |
Collapse
|
86
|
Cervantes-Barragan L, Cortez VS, Wang Q, McDonald KG, Chai JN, Di Luccia B, Gilfillan S, Hsieh CS, Newberry RD, Sibley LD, Colonna M. CRTAM Protects Against Intestinal Dysbiosis During Pathogenic Parasitic Infection by Enabling Th17 Maturation. Front Immunol 2019; 10:1423. [PMID: 31312200 PMCID: PMC6614434 DOI: 10.3389/fimmu.2019.01423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract hosts the largest collection of commensal microbes in the body. Infections at this site can cause significant perturbations in the microbiota, known as dysbiosis, that facilitate the expansion of pathobionts, and can elicit inappropriate immune responses that impair the intestinal barrier function. Dysbiosis typically occurs during intestinal infection with Toxoplasma gondii. Host resistance to T. gondii depends on a potent Th1 response. In addition, a Th17 response is also elicited. How Th17 cells contribute to the host response to T. gondii remains unclear. Here we show that class I-restricted T cell-associated molecule (CRTAM) expression on T cells is required for an optimal IL-17 production during T. gondii infection. Moreover, that the lack of IL-17, results in increased immunopathology caused by an impaired antimicrobial peptide production and bacterial translocation from the intestinal lumen to the mesenteric lymph nodes and spleen.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keely G McDonald
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jiani N Chai
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
87
|
Lee AJ, Mian F, Poznanski SM, Stackaruk M, Chan T, Chew MV, Ashkar AA. Type I Interferon Receptor on NK Cells Negatively Regulates Interferon-γ Production. Front Immunol 2019; 10:1261. [PMID: 31214198 PMCID: PMC6558015 DOI: 10.3389/fimmu.2019.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
NK cells are a key antiviral component of the innate immune response to HSV-2, particularly through their production of IFN-γ. It is still commonly thought that type I IFN activates NK cell function; however, rather than requiring the type I IFN receptor themselves, we have previously found that type I IFN activates NK cells through an indirect mechanism involving inflammatory monocytes and IL-18. Here, we further show that direct action of type I IFN on NK cells, rather than inducing IFN-γ, negatively regulates its production during HSV-2 infection and cytokine stimulation. During infection, IFN-γ is rapidly induced from NK cells at day 2 post-infection and then immediately downregulated at day 3 post-infection. We found that this downregulation of IFN-γ release was not due to a loss of NK cells at day 3 post-infection, but negatively regulated through IFN signaling on NK cells. Absence of IFNAR on NK cells led to a significantly increased level of IFN-γ compared to WT NK cells after HSV-2 infection in vitro. Further, priming of NK cells with type I IFN was able to suppress cytokine-induced IFN-γ production from both human and mouse NK cells. We found that this immunosuppression was not mediated by IL-10. Rather, we found that type I IFN induced a significant increase in Axl expression on human NK cells. Overall, our data suggests that type I IFN negatively regulates NK cell IFN-γ production through a direct mechanism in vitro and during HSV-2 infection.
Collapse
Affiliation(s)
- Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Firoz Mian
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Michele Stackaruk
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tiffany Chan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
88
|
Zaric M, Becker PD, Hervouet C, Kalcheva P, Doszpoly A, Blattman N, A O' Neill L, Yus BI, Cocita C, Kwon SY, Baker AH, Lord GM, Klavinskis LS. Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8 + effector recruitment to mucosal tissues. Nat Commun 2019; 10:2214. [PMID: 31101810 PMCID: PMC6525176 DOI: 10.1038/s41467-019-09969-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
CD8+ T cells provide a critical defence from pathogens at mucosal epithelia including the female reproductive tract (FRT). Mucosal immunisation is considered essential to initiate this response, however this is difficult to reconcile with evidence that antigen delivered to skin can recruit protective CD8+ T cells to mucosal tissues. Here we dissect the underlying mechanism. We show that adenovirus serotype 5 (Ad5) bio-distributes at very low level to non-lymphoid tissues after skin immunisation. This drives the expansion and activation of CD3- NK1.1+ group 1 innate lymphoid cells (ILC1) within the FRT, essential for recruitment of CD8+ T-cell effectors. Interferon gamma produced by activated ILC1 is critical to licence CD11b+Ly6C+ monocyte production of CXCL9, a chemokine required to recruit skin primed CXCR3+ CD8+T-cells to the FRT. Our findings reveal a novel role for ILC1 to recruit effector CD8+ T-cells to prevent virus spread and establish immune surveillance at barrier tissues.
Collapse
Affiliation(s)
- Marija Zaric
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Pablo D Becker
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Catherine Hervouet
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Petya Kalcheva
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Andor Doszpoly
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Negin Blattman
- Biodesign Institute, Centre for Infectious Disease and Vaccinology, Arizona State University, Tempe, AZ, 85287, USA
| | - Lauren A O' Neill
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Barbara Ibarzo Yus
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Clement Cocita
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | | | - Andrew H Baker
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Graham M Lord
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Linda S Klavinskis
- School of Immunobiology and Microbial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
89
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
90
|
Toxoplasma gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6152489. [PMID: 31080827 PMCID: PMC6475534 DOI: 10.1155/2019/6152489] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.
Collapse
|
91
|
Galvão-Filho B, de Castro JT, Figueiredo MM, Rosmaninho CG, Antonelli LRDV, Gazzinelli RT. The emergence of pathogenic TNF/iNOS producing dendritic cells (Tip-DCs) in a malaria model of acute respiratory distress syndrome (ARDS) is dependent on CCR4. Mucosal Immunol 2019; 12:312-322. [PMID: 30337650 PMCID: PMC6375779 DOI: 10.1038/s41385-018-0093-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) and acute lung injury (ALI) are complications that cause lung damage and often leads to death. The MA-ARDS/ALI is associated with a Type 1 inflammatory response mediated by T lymphocytes and IFN-γ. Here, we used the Plasmodium berghei NK65 (PbN)-induced MA-ALI/ARDS model that resembles human disease and confirmed that lung CD4+ and CD8+ T cells predominantly expressed Tbet and IFN-γ. Surprisingly, we found that development of MA-ALI/ARDS was dependent on functional CCR4, known to mediate the recruitment of Th2 lymphocytes and regulatory T cells. However, in this Type 1 inflammation-ARDS model, CCR4 was not involved in the recruitment of T lymphocytes, but was required for the emergence of TNF-α/iNOS producing dendritic cells (Tip-DCs) in the lungs. In contrast, recruitment of Tip-DCs and development of MA-ALI/ARDS were not altered in CCR2-/- mice. Importantly, we showed that NOS2-/- mice are resistant to PbN-induced lung damage, indicating that reactive nitrogen species produced by Tip-DCs play an essential role in inducing MA-ARDS/ALI. Lastly, our experiments suggest that production of IFN-γ primarily by CD8+ T cells is required for inducing Tip-DCs differentiation in the lungs and the development of MA-ALI/ARDS model.
Collapse
Affiliation(s)
- Bruno Galvão-Filho
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Júlia Teixeira de Castro
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Maria Marta Figueiredo
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Claudio Gonçalves Rosmaninho
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto Rene Rachou, FIOCRUZ-MG, 30190-002, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil,Department of Medicine, University of Massachusetts Medical School, 01605, Worcester, MA, USA,Plataforma de Medicinal Translacional-Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
92
|
Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Munoz Gutierrez J, Bangoura B, Dunay IR, Gigley JP. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Front Immunol 2019; 10:196. [PMID: 30873151 PMCID: PMC6403415 DOI: 10.3389/fimmu.2019.00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Apicomplexans are a diverse and complex group of protozoan pathogens including Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., Eimeria spp., and Babesia spp. They infect a wide variety of hosts and are a major health threat to humans and other animals. Innate immunity provides early control and also regulates the development of adaptive immune responses important for controlling these pathogens. Innate immune responses also contribute to immunopathology associated with these infections. Natural killer (NK) cells have been for a long time known to be potent first line effector cells in helping control protozoan infection. They provide control by producing IL-12 dependent IFNγ and killing infected cells and parasites via their cytotoxic response. Results from more recent studies indicate that NK cells could provide additional effector functions such as IL-10 and IL-17 and might have diverse roles in immunity to these pathogens. These early studies based their conclusions on the identification of NK cells to be CD3–, CD49b+, NK1.1+, and/or NKp46+ and the common accepted paradigm at that time that NK cells were one of the only lymphoid derived innate immune cells present. New discoveries have lead to major advances in understanding that NK cells are only one of several populations of innate immune cells of lymphoid origin. Common lymphoid progenitor derived innate immune cells are now known as innate lymphoid cells (ILC) and comprise three different groups, group 1, group 2, and group 3 ILC. They are a functionally heterogeneous and plastic cell population and are important effector cells in disease and tissue homeostasis. Very little is known about each of these different types of ILCs in parasitic infection. Therefore, we will review what is known about NK cells in innate immune responses during different protozoan infections. We will discuss what immune responses attributed to NK cells might be reconsidered as ILC1, 2, or 3 population responses. We will then discuss how different ILCs may impact immunopathology and adaptive immune responses to these parasites.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Juan Munoz Gutierrez
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Berit Bangoura
- Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
93
|
Lee KS, Kronbichler A, Pereira Vasconcelos DF, Pereira da Silva FR, Ko Y, Oh YS, Eisenhut M, Merkel PA, Jayne D, Amos CI, Siminovitch KA, Rahmattulla C, Lee KH, Shin JI. Genetic Variants in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Bayesian Approach and Systematic Review. J Clin Med 2019; 8:E266. [PMID: 30795559 PMCID: PMC6406345 DOI: 10.3390/jcm8020266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
A number of genome-wide association studies (GWASs) and meta-analyses of genetic variants have been performed in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. We reinterpreted previous studies using false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP). This study searched publications in PubMed and Excerpta Medica Database (EMBASE) up to February 2018. Identification of noteworthy associations were analyzed using FPRP and BFDP, and data (i.e., odds ratio (OR), 95% confidence interval (CI), p-value) related to significant associations were separately extracted. Using filtered gene variants, gene ontology (GO) enrichment analysis and protein⁻protein interaction (PPI) networks were performed. Overall, 241 articles were identified, and 7 were selected for analysis. Single nucleotide polymorphisms (SNPs) discovered by GWASs were shown to be noteworthy, whereas only 27% of significant results from meta-analyses of observational studies were noteworthy. Eighty-five percent of SNPs with borderline p-values (5.0 × 10-8 < p < 0.05) in GWASs were found to be noteworthy. No overlapping SNPs were found between PR3-ANCA and MPO-ANCA vasculitis. GO analysis revealed immune-related GO terms, including "antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class II", "interferon-gamma-mediated (IFN-γ) signaling pathway". By using FPRP and BFDP, network analysis of noteworthy genetic variants discovered genetic risk factors associated with the IFN-γ pathway as novel mechanisms potentially implicated in the complex pathogenesis of ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Kwang Seob Lee
- Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| | | | | | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 17035, Korea.
| | - Yeon Su Oh
- Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Michael Eisenhut
- Department of Pediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Luton LU4 0DZ, UK.
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA.
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19146, USA.
| | - David Jayne
- Vasculitis and Lupus Clinic, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Katherine A Siminovitch
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto General Research Institute and University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Chinar Rahmattulla
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
94
|
Blecher-Gonen R, Bost P, Hilligan KL, David E, Salame TM, Roussel E, Connor LM, Mayer JU, Bahar Halpern K, Tóth B, Itzkovitz S, Schwikowski B, Ronchese F, Amit I. Single-Cell Analysis of Diverse Pathogen Responses Defines a Molecular Roadmap for Generating Antigen-Specific Immunity. Cell Syst 2019; 8:109-121.e6. [PMID: 30772378 DOI: 10.1016/j.cels.2019.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022]
Abstract
The immune system generates pathogen-tailored responses. The precise innate immune cell types and pathways that direct robust adaptive immune responses have not been fully characterized. By using fluorescent pathogens combined with massively parallel single-cell RNA-seq, we comprehensively characterized the initial 48 h of the innate immune response to diverse pathogens. We found that across all pathogens tested, most of the lymph node cell types and states showed little pathogen specificity. In contrast, the rare antigen-positive cells displayed pathogen-specific transcriptional programs as early as 24 h after immunization. In addition, mycobacteria activated a specific NK-driven IFNγ response. Depletion of NK cells and IFNγ showed that IFNγ initiated a monocyte-specific signaling cascade, leading to the production of major chemokines and cytokines that promote Th1 development. Our systems immunology approach sheds light on early events in innate immune responses and may help further development of safe and efficient vaccines.
Collapse
Affiliation(s)
| | - Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel; Systems Biology Group, Center for Bioinformatics, Biostatistics, and Integrative Biology (C3BI) and USR 3756, Institut Pasteur CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, F-75005 Paris, France
| | - Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington 6201, New Zealand; Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington 6201, New Zealand
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Meir Salame
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elsa Roussel
- Malaghan Institute of Medical Research, Wellington 6201, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, Wellington 6201, New Zealand
| | - Johannes U Mayer
- Malaghan Institute of Medical Research, Wellington 6201, New Zealand
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benno Schwikowski
- Systems Biology Group, Center for Bioinformatics, Biostatistics, and Integrative Biology (C3BI) and USR 3756, Institut Pasteur CNRS, Paris 75015, France
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington 6201, New Zealand.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
95
|
Kim IK, Koh CH, Jeon I, Shin KS, Kang TS, Bae EA, Seo H, Ko HJ, Kim BS, Chung Y, Kang CY. GM-CSF Promotes Antitumor Immunity by Inducing Th9 Cell Responses. Cancer Immunol Res 2019; 7:498-509. [PMID: 30728152 DOI: 10.1158/2326-6066.cir-18-0518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/09/2018] [Accepted: 01/28/2019] [Indexed: 11/16/2022]
Abstract
GM-CSF as an adjuvant has been shown to promote antitumor immunity in mice and humans; however, the underlying mechanism of GM-CSF-induced antitumor immunity remains incompletely understood. In this study, we demonstrate that GM-CSF potentiates the efficacy of cancer vaccines through IL9-producing Th (Th9) cells. GM-CSF selectively enhanced Th9 cell differentiation by regulating the COX2-PGE2 pathway while inhibiting the differentiation of induced regulatory T (iTreg) cells in vitro and in vivo GM-CSF-activated monocyte-derived dendritic cells converted tumor-specific naïve Th cells into Th9 cells, and delayed tumor growth by inducing antitumor CTLs in an IL9-dependent manner. Our findings reveal a mechanism for the adjuvanticity of GM-CSF and provide a rationale for the use of GM-CSF in cancer vaccines.
Collapse
Affiliation(s)
- Il-Kyu Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae-Seung Kang
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Ja Ko
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea.,Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
96
|
Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis. Dig Dis Sci 2019; 64:324-344. [PMID: 30370494 DOI: 10.1007/s10620-018-5351-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Vitamin D has immunomodulatory, anti-inflammatory, antioxidant, and anti-fibrotic actions that may impact on the occurrence and outcome of immune-mediated disease. The goals of this review are to describe the nature of these expanded roles, examine the implications of vitamin D deficiency in autoimmune hepatitis, and identify opportunities for future investigation. Abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Vitamin D receptors are expressed on the principal cell populations involved in the innate and adaptive immune responses. Macrophages and dendritic cells can produce 1,25-dihydroxyvitamin D within the microenvironment. This active form of vitamin D can inhibit immune cell proliferation, promote an anti-inflammatory cytokine profile, expand regulatory T cells, enhance glucocorticoid actions, increase glutathione production, and inhibit hepatic stellate cells. Vitamin D deficiency has been commonly present in patients with immune-mediated liver and non-liver diseases, and it has been associated with histological severity, advanced hepatic fibrosis, and non-response to conventional glucocorticoid therapy in autoimmune hepatitis. Vitamin D analogues with high potency, low calcemic effects, and independence from hepatic hydroxylation are possible interventions. In conclusion, vitamin D has properties that could ameliorate immune-mediated disease, and vitamin D deficiency has been a common finding in immune-mediated liver and non-liver diseases, including autoimmune hepatitis. Loss of vitamin D-dependent homeostatic mechanisms may promote disease progression. Vitamin D analogues that are independent of hepatic hydroxylation constitute an investigational opportunity to supplement current management of autoimmune hepatitis.
Collapse
|
97
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
98
|
Yang K, Liang Y, Sun Z, Liu L, Liao J, Xu H, Zhu M, Fu YX, Peng H. T cell-derived lymphotoxin limits Th1 response during HSV-1 infection. Sci Rep 2018; 8:17727. [PMID: 30531962 PMCID: PMC6286317 DOI: 10.1038/s41598-018-36012-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
Though lymphotoxin (LT) is highly expressed by type I helper T (Th1) cells, its contribution to CD4+ T cell differentiation during infections and diseases remains a mystery. In HSV-1 infection, we observed that LTβR signaling is required to limit the Th1 response. Using bone marrow chimeric mice, mixed-T-cell chimeric mice, and LTβR in vivo blockades, we unexpectedly observed that LT, especially T cell-derived LT, played an indispensable role in limiting the Th1 response. The LTβR-Ig blockade promoted the Th1 response by increasing infiltration of monocytes and monocyte-derived DCs and up-regulating IL-12 secretion in the lymphoid environment. Our findings identified a novel role for T cell-derived LT in manipulating Th1 differentiation.
Collapse
Affiliation(s)
- Kaiting Yang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Liang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhichen Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jing Liao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hairong Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
99
|
Dwivedi M, Patel DN, Pathak VN, Laddha NC, Begum R, Desai B. Insertion-deletion polymorphism of angiotensin converting enzyme and susceptibility to rheumatoid arthritis in South Gujarat population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
100
|
Chen Y, Sharma S, Assis PA, Jiang Z, Elling R, Olive AJ, Hang S, Bernier J, Huh JR, Sassetti CM, Knipe DM, Gazzinelli RT, Fitzgerald KA. CNBP controls IL-12 gene transcription and Th1 immunity. J Exp Med 2018; 215:3136-3150. [PMID: 30442645 PMCID: PMC6279399 DOI: 10.1084/jem.20181031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/05/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
These studies reveal a previously unrecognized role for Cnbp as a novel transcriptional regulator engaged downstream of innate immune receptors controlling the c-Rel–IL-12–Th1 axis, which has important implications for both host defense and inflammatory disease. An inducible program of inflammatory gene expression is a hallmark of antimicrobial defenses. Recently, cellular nucleic acid–binding protein (CNBP) was identified as a regulator of nuclear factor-kappaB (NF-κB)–dependent proinflammatory cytokine gene expression. Here, we generated mice lacking CNBP and found that CNBP regulates a very restricted gene signature that includes IL-12β. CNBP resides in the cytosol of macrophages and translocates to the nucleus in response to diverse microbial pathogens and pathogen-derived products. Cnbp-deficient macrophages induced canonical NF-κB/Rel signaling normally but were impaired in their ability to control the activation of c-Rel, a key driver of IL-12β gene transcription. The nuclear translocation and DNA-binding activity of c-Rel required CNBP. Lastly, Cnbp-deficient mice were more susceptible to acute toxoplasmosis associated with reduced production of IL-12β, as well as a reduced T helper type 1 (Th1) cell IFN-γ response essential to controlling parasite replication. Collectively, these findings identify CNBP as important regulator of c-Rel–dependent IL-12β gene transcription and Th1 immunity.
Collapse
Affiliation(s)
- Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Shruti Sharma
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Department of Immunology, Tufts University School of Medicine, Boston, MA
| | - Patricia A Assis
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Roland Elling
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - Saiyu Hang
- Division of Immunology, Department of Microbiology and Immunology, Harvard Medical School, Boston, MA
| | - Jennifer Bernier
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jun R Huh
- Division of Immunology, Department of Microbiology and Immunology, Harvard Medical School, Boston, MA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - David M Knipe
- Department of Microbiology and Immunology, Harvard Medical School, Boston, MA
| | - Ricardo T Gazzinelli
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA.,Departamento de Bioquímica e Imunologia, Universidade Federal of Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA .,Centre for Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Trondheim, Norway
| |
Collapse
|