51
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2022:S0168-0102(22)00304-2. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
52
|
Young AP, Denovan-Wright EM. The microglial endocannabinoid system is similarly regulated by lipopolysaccharide and interferon gamma. J Neuroimmunol 2022; 372:577971. [PMID: 36150252 DOI: 10.1016/j.jneuroim.2022.577971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 12/31/2022]
Abstract
Perturbation of the endocannabinoid system can have profound effects on immune function and synaptic plasticity. Microglia are one of few cell types with a self-contained endocannabinoid system and are positioned at the interface between the immune system and the central nervous system. Past work has produced conflicting results with respect to the effects of pro-inflammatory conditions on the microglial endocannabinoid system. Thus, we systematically investigated the relationship between the concentration of two distinct pro-inflammatory stimuli, lipopolysaccharide and interferon gamma, on the abundance of components of the endocannabinoid system within microglia. Here we show that lipopolysaccharide and interferon gamma influence messenger RNA abundances of the microglial endocannabinoid system in a concentration-dependent manner. Furthermore, we demonstrate that the efficacy of different synthetic cannabinoid treatments with respect to inhibition of microglia nitric oxide release is dependent on the concentration and type of pro-inflammatory stimuli presented to the microglia. This indicates that different pro-inflammatory stimuli influence the capacity of microglia to synthesize, degrade, and respond to cannabinoids which has implications for the development of cannabinoid-based treatments for neuroinflammation.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
53
|
Basilico B, Ferrucci L, Khan A, Di Angelantonio S, Ragozzino D, Reverte I. What microglia depletion approaches tell us about the role of microglia on synaptic function and behavior. Front Cell Neurosci 2022; 16:1022431. [PMID: 36406752 PMCID: PMC9673171 DOI: 10.3389/fncel.2022.1022431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are dynamic cells, constantly surveying their surroundings and interacting with neurons and synapses. Indeed, a wealth of knowledge has revealed a critical role of microglia in modulating synaptic transmission and plasticity in the developing brain. In the past decade, novel pharmacological and genetic strategies have allowed the acute removal of microglia, opening the possibility to explore and understand the role of microglia also in the adult brain. In this review, we summarized and discussed the contribution of microglia depletion strategies to the current understanding of the role of microglia on synaptic function, learning and memory, and behavior both in physiological and pathological conditions. We first described the available microglia depletion methods highlighting their main strengths and weaknesses. We then reviewed the impact of microglia depletion on structural and functional synaptic plasticity. Next, we focused our analysis on the effects of microglia depletion on behavior, including general locomotor activity, sensory perception, motor function, sociability, learning and memory both in healthy animals and animal models of disease. Finally, we integrated the findings from the reviewed studies and discussed the emerging roles of microglia on the maintenance of synaptic function, learning, memory strength and forgetfulness, and the implications of microglia depletion in models of brain disease.
Collapse
Affiliation(s)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Azka Khan
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Davide Ragozzino
- Laboratory Affiliated to Institute Pasteur Italia – Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- *Correspondence: Davide Ragozzino,
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Ingrid Reverte,
| |
Collapse
|
54
|
Chen M, Xie CR, Shi YZ, Tang TC, Zheng H. Gut microbiota and major depressive disorder: A bidirectional Mendelian randomization. J Affect Disord 2022; 316:187-193. [PMID: 35961601 DOI: 10.1016/j.jad.2022.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/22/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Observational studies showed an association between gut microbiota and depression, but the causality relationship between them is unclear. We aimed to determine whether there is a bidirectional causal relationship between the composition of gut microbiota and major depressive disorders (MDD) and explore the role of gut microbiota in decreasing the risk of MDD. METHODS Our two-sample Mendelian randomization (MR) study acquired top SNPs associated with the composition of gut microbiota (n = 18,340) and with MDDs (n = 480,359) from publicly available genome-wide association studies (GWAS). The SNPs estimates were pooled using inverse-variance weighted meta-analysis, with sensitivity analyses-weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS The Actinobacteria class had protective causal effects on MDD (OR 0.88, 95%CI 0.87 to 0.9). The Bifidobacterium (OR 0.89, 95%CI 0.88 to 0.91) were further found to have similar effects as the Actinobacteria class. The genus Ruminococcus1 had a protective effect on MDD (OR 0.88, 95%CI 0.76 to 0.99) while the Streptococcaceae family and its genus had an anti-protective effect on MDD (OR 1.07, 95%CI 1.01 to 1.13), but these findings were not supported by the MR-Egger analysis. Bidirectional MR showed no effect of MDD on gut microbiota composition. LIMITATIONS The use of summary-level data, the risk of sample overlap and low statistical power are the major limiting factors. CONCLUSIONS Our MR analysis showed a protective effect of Actinobacteria, Bifidobacterium, and Ruminococcus and a potentially anti-protective effect of Streptococcaceae on MDD pathogenesis. Further studies are needed to transform the findings into practice.
Collapse
Affiliation(s)
- Min Chen
- Department of colorectal diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chao-Rong Xie
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yun-Zhou Shi
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Tai-Chun Tang
- Department of colorectal diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Zheng
- The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
55
|
Chen X, Huang L, Cui L, Xiao Z, Xiong X, Chen C. Sodium-glucose cotransporter 2 inhibitor ameliorates high fat diet-induced hypothalamic-pituitary-ovarian axis disorders. J Physiol 2022; 600:4549-4568. [PMID: 36048516 PMCID: PMC9826067 DOI: 10.1113/jp283259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023] Open
Abstract
High-fat diet (HFD) consumption is known to be associated with ovulatory disorders among women of reproductive age. Previous studies in animal models suggest that HFD-induced microglia activation contributes to hypothalamic inflammation. This causes the dysfunction of the hypothalamic-pituitary-ovarian (HPO) axis, leading to subfertility. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of lipid-soluble antidiabetic drugs that target primarily the early proximal tubules in kidney. Recent evidence revealed an additional expression site of SGLT2 in the central nervous system (CNS), indicating a promising role of SGLT2 inhibitors in the CNS. In type 2 diabetes patients and rodent models, SGLT2 inhibitors exhibit neuroprotective properties through reduction of oxidative stress, alleviation of cerebral atherosclerosis and suppression of microglia-induced neuroinflammation. Furthermore, clinical observations in patients with polycystic ovary syndrome (PCOS) demonstrated that SGLT2 inhibitors ameliorated patient anthropometric parameters, body composition and insulin resistance. Therefore, it is of importance to explore the central mechanism of SGLT2 inhibitors in the recovery of reproductive function in patients with PCOS and obesity. Here, we review the hypothalamic inflammatory mechanisms of HFD-induced microglial activation, with a focus on the clinical utility and possible mechanism of SGLT2 inhibitors in promoting reproductive fitness.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of EndocrinologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lili Huang
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Ling Cui
- Department of Reproduction and InfertilityChengdu Women's and Children's Central HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhuoni Xiao
- Reproductive Medical CenterRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Chen Chen
- School of Biomedical ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
56
|
Zhang H, Wei M, Sun N, Wang H, Fan H. Melatonin attenuates chronic stress-induced hippocampal inflammatory response and apoptosis by inhibiting ADAM17/TNF-α axis. Food Chem Toxicol 2022; 169:113441. [PMID: 36162616 DOI: 10.1016/j.fct.2022.113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/22/2022]
Abstract
Melatonin, as a dietary supplement, has a potent neuroprotective effect and exerts a certain antidepressant effect. This study explored the molecular mechanisms and targets of melatonin on chronic stress-induced hippocampal damage from the perspective of inhibiting inflammatory cytokines release. Our results indicated that melatonin alleviated chronic restraint stress (CRS)-induced inflammatory response and apoptosis, thus improving hippocampal structural damage and subsequent depression-like behaviors in rats. The radar map displayed that the change of TNF-α content was the most significant. Meanwhile, correlation analysis showed that TNF-α content was highly positively correlated with apoptosis. Molecular autodocking studies suggested that TNF-α converting enzyme ADAM17 as a potential target has a priority in docking with melatonin. Molecular mechanism studies indicated that melatonin inhibited CRS-induced activation of the ADAM17/TNF-α axis and its downstream proteins p38 and p53 phosphorylation in the hippocampus. Analogously, Both ADAM17 inhibitor TMI-1 and TNF-α inhibitor thalidomide relieved the effects of CRS on ADAM17/TNF-α axis and its downstream proteins phosphorylation, hippocampal apoptosis, hippocampal inflammatory response, and depression-like behaviors in rats. Altogether, these findings reveal that melatonin relieves CRS-induced inflammatory response and apoptosis, and subsequent depression-like behaviors by inhibiting ADAM17/TNF-α axis.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mian Wei
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
57
|
Masanetz RK, Winkler J, Winner B, Günther C, Süß P. The Gut-Immune-Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:11111. [PMID: 36232412 PMCID: PMC9570400 DOI: 10.3390/ijms231911111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
58
|
Liu J, Wang S, Chen Z, Wu R, Yu H, Yang S, Xu J, Guo Y, Ding Y, Li G, Zeng X, Ma Y, Gong Y, Wu C, Zhang L, Zeng Y, Lai B. Therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.. [DOI: 10.21203/rs.3.rs-2026215/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Background: After spinal cord transection injury, the inflammatory microenvironment formed in the injury site and the cascade of secondary injury results in limited regeneration of injured axons and the apoptosis of neurons in the sensorimotor cortex (SMC). It is crucial to reverse these adverse processes for the recovery of voluntary movement. In this study, transcranial intermittent theta-burst stimulation (iTBS) was used for the treatment of complete spinal cord transection in rats. The mechanism of transcranial iTBS as a new non-invasive neural regulation paradigm in promoting axonal regeneration and motor function repair was explored.
Methods: Rats from the iTBS group were treated with transcranial iTBS 72h after spinal cord injury (SCI). Each rat was received behavioral testing. Inflammation, neuronal apoptosis, neuroprotective effect, regeneration and synaptic plasticity were measured by immunofluorescence staining, western blotting and mRNA sequencing 2 or 4w after SCI. Each rat was received anterograde tracings in the SMC or the long descending propriospinal neurons and tested for motor evoked potentials. Regeneration of corticospinal tract (CST) and 5-hydroxytryptamine (5-HT) nerve fibers were detected eight weeks after SCI.
Results: Compared with the control group and the sham iTBS group, rats of the iTBS group showed reduced inflammatory responses and neuronal apoptosis in the SMC two weeks after treatment. After four weeks, the neuroimmune microenvironment at the injury site was improved, and neuroprotective effects were seen to promote axonal regeneration and synaptic plasticity. Significantly, eight weeks after treatment, transcranial iTBS also increased the regeneration of CST, 5-HT nerve fibers, and the long descending propriospinal tract (LDPT). Moreover, motor evoked potentials and hindlimb motor function were significantly improved at eight weeks.
Conclusions: Collectively, our results verified that iTBS has the potential to provide neuroprotective effects at early injury stages and pro-regeneration effects related to the 1) CST–5-HT; 2) CST–LDPT; and 3) CST–5-HT–LDPT descending motor pathways and revealed the relationships among neural pathway activation, neuroimmune regulation, neuroprotection, and axonal regeneration, as well as the interaction network of key genes. The proposed non-invasive transcranial iTBS treatment is expected to provide a serviceable practical and theoretical support for spinal cord injury.
Collapse
Affiliation(s)
- Jialin Liu
- Shengjing Hospital affiliated to China Medical University
| | - Shuai Wang
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | - Zhenghong Chen
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | | | | | | | | | | | | | - Ge Li
- Guangdong Academy of Medical Science
| | | | - Yuanhuan Ma
- Guangzhou Institute of Clinical Medicine, South China University of Technology
| | - Yulai Gong
- Sichuan Provincial Rehabilitation Hospital
| | | | - Lixin Zhang
- Shengjing Hospital affiliated to China Medical University
| | | | | |
Collapse
|
59
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|
60
|
Zhang H, Wang J, Ruan C, Gao Z, Zhu Q, Li S. Co-exposure of chronic stress and alumina nanoparticles aggravates hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129093. [PMID: 35569374 DOI: 10.1016/j.jhazmat.2022.129093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Combined exposure of chronic stress and alumina nanoparticles (AlNPs) aggravates hippocampal injury, but the pathogenesis is unevaluated. This study aimed to investigate the effect and mechanism of co-exposure to chronic stress and AlNPs on hippocampal microglia pyroptosis. In this study, chronic restraint stress (CRS) alone caused NLRP3-mediated hippocampal microglia pyroptosis, but AlNPs did not. Moreover, co-exposure to CRS and AlNPs exacerbated hippocampal microglia pyroptosis, resulting in more severe hippocampal damage and behavioral deficits in rats. Protein-protein interaction network predicted that cathepsin B was a potential regulatory protein of NLRP3. CRS up-regulated cathepsin B expression which had a more pronounced increase in co-exposure group. Whereas, caspase-1 inhibitor VX-765 alleviated hippocampal microglia pyroptosis and behavioral deficits in rats. Consistent with in vivo results, co-exposure of corticosterone and AlNPs aggravated NLRP3-mediated pyroptosis and cathepsin B expression in HAPI cells. Nevertheless, the pyroptosis of HAPI cells was inhibited by cathepsin B inhibitor CA-074Me and NLRP3 knockout, respectively. NLRP3 agonist nigericin failed to promote the pyroptosis of HAPI cells in the presence of cathepsin B inhibition. These results demonstrated that co-exposure to chronic stress and AlNPs could aggravate hippocampal microglia pyroptosis by activating cathepsin B/NLRP3 signaling pathway, resulting in hippocampal damage and behavioral deficits.
Collapse
Affiliation(s)
- Haiyang Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China.
| | - Jibin Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Chuqian Ruan
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhicheng Gao
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Qiuxiang Zhu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangdong Technological Engineering Research Center for Pets, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
61
|
Jung H, Lee SY, Lim S, Choi HR, Choi Y, Kim M, Kim S, Lee Y, Han KH, Chung WS, Kim CH. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat Med 2022; 28:1802-1812. [PMID: 35927581 DOI: 10.1038/s41591-022-01926-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/30/2022] [Indexed: 12/22/2022]
Abstract
Clearing amyloid-β (Aβ) through immunotherapy is one of the most promising therapeutic approaches to Alzheimer's disease (AD). Although several monoclonal antibodies against Aβ have been shown to substantially reduce Aβ burden in patients with AD, their effects on improving cognitive function remain marginal. In addition, a significant portion of patients treated with Aβ-targeting antibodies experience brain edema and microhemorrhage associated with antibody-mediated Fc receptor activation in the brain. Here, we develop a phagocytosis inducer for Aβ consisting of a single-chain variable fragment of an Aβ-targeting monoclonal antibody fused with a truncated receptor binding domain of growth arrest-specific 6 (Gas6), a bridging molecule for the clearance of dead cells via TAM (TYRO3, AXL, and MERTK) receptors. This chimeric fusion protein (αAβ-Gas6) selectively eliminates Aβ plaques through TAM receptor-dependent phagocytosis without inducing NF-kB-mediated inflammatory responses or reactive gliosis. Furthermore, αAβ-Gas6 can induce synergistic clearance of Aβ by activating both microglial and astrocytic phagocytosis, resulting in better behavioral outcomes with substantially reduced synapse elimination and microhemorrhage in AD and cerebral amyloid angiopathy model mice compared with Aβ antibody treatment. Our results suggest that αAβ-Gas6 could be a novel immunotherapeutic agent for AD that overcomes the side effects of conventional antibody therapy.
Collapse
Affiliation(s)
- Hyuncheol Jung
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Se Young Lee
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seongjoon Lim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyeong Ryeol Choi
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yeseong Choi
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minjin Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Segi Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yujean Lee
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Ho Han
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, Republic of Korea
| | - Won-Suk Chung
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Chan Hyuk Kim
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
62
|
Hikosaka M, Kawano T, Wada Y, Maeda T, Sakurai T, Ohtsuki G. Immune-Triggered Forms of Plasticity Across Brain Regions. Front Cell Neurosci 2022; 16:925493. [PMID: 35978857 PMCID: PMC9376917 DOI: 10.3389/fncel.2022.925493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
63
|
Bi Q, Wang C, Cheng G, Chen N, Wei B, Liu X, Li L, Lu C, He J, Weng Y, Yin C, Lin Y, Wan S, Zhao L, Xu J, Wang Y, Gu Y, Shen XZ, Shi P. Microglia-derived PDGFB promotes neuronal potassium currents to suppress basal sympathetic tonicity and limit hypertension. Immunity 2022; 55:1466-1482.e9. [PMID: 35863346 DOI: 10.1016/j.immuni.2022.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Although many studies have addressed the regulatory circuits affecting neuronal activities, local non-synaptic mechanisms that determine neuronal excitability remain unclear. Here, we found that microglia prevented overactivation of pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) at steady state. Microglia constitutively released platelet-derived growth factor (PDGF) B, which signaled via PDGFRα on neuronal cells and promoted their expression of Kv4.3, a key subunit that conducts potassium currents. Ablation of microglia, conditional deletion of microglial PDGFB, or suppression of neuronal PDGFRα expression in the PVN elevated the excitability of pre-sympathetic neurons and sympathetic outflow, resulting in a profound autonomic dysfunction. Disruption of the PDGFBMG-Kv4.3Neuron pathway predisposed mice to develop hypertension, whereas central supplementation of exogenous PDGFB suppressed pressor response when mice were under hypertensive insult. Our results point to a non-immune action of resident microglia in maintaining the balance of sympathetic outflow, which is important in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Bi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Wang
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guo Cheng
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ningting Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bo Wei
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoli Liu
- Department of Neurology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Li
- Department of Pharmacy, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Cheng Lu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jian He
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuancheng Weng
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chunyou Yin
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yunfan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314400, China
| | - Shu Wan
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Yi Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiao Z Shen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
64
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
65
|
Zhang Y, Xing CJ, Liu X, Li YH, Jia J, Feng JG, Yang CJ, Chen Y, Zhou J. Thioredoxin-Interacting Protein (TXNIP) Knockdown Protects against Sepsis-Induced Brain Injury and Cognitive Decline in Mice by Suppressing Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8645714. [PMID: 35571246 PMCID: PMC9098358 DOI: 10.1155/2022/8645714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is linked to increased morbidity and mortality rates in patients with sepsis. Increased cytokine production and neuronal apoptosis are implicated in the pathogenesis of the SAE. Neuroinflammation plays a major role in sepsis-induced brain injury. Thioredoxin-interacting protein (TXNIP), an inhibitor of thioredoxin, is associated with oxidative stress and inflammation. However, whether the TXNIP is involved in the sepsis-induced brain injury and the underlying mechanism is yet to be elucidated. Therefore, the present study was aimed at elucidating the effects of TXNIP knockdown on sepsis-induced brain injury and cognitive decline in mice. Lipopolysaccharide (LPS) was injected intraperitoneally to induce sepsis brain injury in mice. The virus-carrying control or TXNIP shRNA was injected into the lateral ventricle of the brain 4 weeks before the LPS treatment. The histological changes in the hippocampal tissues, encephaledema, and cognitive function were detected, respectively. Also, the 7-day survival rate was recorded. Furthermore, the alterations in microglial activity, oxidative response, proinflammatory factors, apoptosis, protein levels (TXNIP and NLRP3 inflammasome), and apoptosis were examined in the hippocampal tissues. The results demonstrated that the TXNIP and NLRP3 inflammasome expression levels were increased at 6, 12, and 24 h post-LPS injection. TXNIP knockdown dramatically ameliorated the 7-day survival rate, cognitive decline, brain damage, neuronal apoptosis, and the brain water content, inhibited the activation of microglia, downregulated the NLRP3/caspase-1 signaling pathway, and reduced the oxidative stress and the neuroinflammatory cytokine levels at 24 h post-LPS injection. These results suggested a crucial effect of TXNIP knockdown on the mechanism of brain injury and cognitive decline in sepsis mice via suppressing oxidative stress and neuroinflammation. Thus, TXNIP might be a potential therapeutic target for SAE patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng-Jun Xing
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
66
|
Hua R, Ding Y, Liu X, Niu B, Chen X, Zhang J, Liu K, Yang P, Zhu X, Xue J, Wang H. Lonicerae Japonicae Flos Extract Promotes Sleep in Sleep-Deprived and Lipopolysaccharide-Challenged Mice. Front Neurosci 2022; 16:848588. [PMID: 35495054 PMCID: PMC9040552 DOI: 10.3389/fnins.2022.848588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lonicerae Japonicae Flos (LJF) is commonly used in Chinese herbal medicines and exhibits anti-viral, anti-oxidative, and anti-inflammatory properties. The reciprocal relationship between sleep, the immune system and the central nervous system is well-established in the animal models. In this study, we used the mouse model to analyze the beneficial effects of the LJF on the dysregulated sleep-wakefulness cycle in response to acute sleep deprivation and lipopolysaccharide (LPS)-induced inflammation and the potential underlying mechanisms. Polysomnography data showed that LJF increased the time spent in non-rapid eye movement (NREM) sleep during the day under basal conditions. Furthermore, latency to sleep was reduced and the time spent in rapid eye movement (REM) sleep was increased during recovery from acute sleep deprivation. Furthermore, LJF-treated mice showed increased REM sleep and altered electroencephalogram (EEG) power spectrum in response to intra-peritoneal injection of LPS. LJF significantly reduced the levels of proinflammatory cytokines such as IL-6, TNF-α, and IL-1β in the blood serum as well as hippocampus, and medial prefrontal cortex (mPFC) tissues in the LPS-challenged mice by inhibiting microglial activation. Moreover, LJF increased the time spent in REM sleep in the LPS-challenged mice compared to the control mice. These results suggested that LJF stimulated the sleep drive in response to acute sleep deprivation and LPS-induced inflammation, thereby increasing REM sleep for recovery and neuroprotection. In conclusion, our findings demonstrate that the clinical potential of LJF in treating sleep disorders related to sleep deprivation and neuro-inflammation.
Collapse
Affiliation(s)
- Ruifang Hua
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yan Ding
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaolong Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bingxuan Niu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Jingjing Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Kerui Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Pei Yang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Xiaofei Zhu,
| | - Jintao Xue
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Jintao Xue,
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Hui Wang,
| |
Collapse
|
67
|
Cao LH, Zhao YY, Bai M, Geliebter D, Geliebter J, Tiwari R, He HJ, Wang ZZ, Jia XY, Li J, Li XM, Miao MS. Mechanistic Studies of Gypenosides in Microglial State Transition and its Implications in Depression-Like Behaviors: Role of TLR4/MyD88/NF-κB Signaling. Front Pharmacol 2022; 13:838261. [PMID: 35370734 PMCID: PMC8973912 DOI: 10.3389/fphar.2022.838261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Depression is a prevalent psychiatric disorder. Microglial state transition has been found in many neurological disorders including depression. Gypenosides (Gypenosides I-LXXVIII, Gps) are saponin extracts isolated from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino that exert anti-inflammatory and neuroprotective activities and regulate depression-like behaviors. However, its effect on microglial state transition in depression remains unknown. We aimed to evaluate the potential relationship between Gps and TLR4/MyD88/NF-κB signaling in microglial state transition in vitro and in vivo. First, BV-2 cells (microglial cell line) were exposed to lipopolysaccharides (LPS) and treated with 10 or 5 μg/ml Gps. Second, the chronic unpredictable mild stress (CUMS)-induced depression mouse model was used to investigate the antidepressant-like behaviors effects of Gps (100 or 50 mg/kg). We determined depression-like behaviors using the open-field test (OFT), forced swim test (FST), and sucrose preference test (SPT). Proteins and inflammatory factors in the TLR4/MyD88/NF-κB signaling pathway and the different microglial reaction states markers were subsequently conducted using enzyme-linked immunosorbent assay, immunocytochemistry, immunofluorescence, qPCR, or Western blotting analyses to evaluate the anti-inflammatory and antidepressant properties of Gps and the underlying molecular mechanisms. We found that Gps regulated the microglial cell line state transition in LPS-exposed BV-2 cells, as evidenced by the significantly decreased expression of inflammatory parameters iNOS, IL-1β, IL-6, and TNF-α and significantly promoted anti-inflammatory microglial phenotypes markers CD206 (Mrc1) and IL-10. More importantly, Gps protected against the loss of monoamine neurotransmitters and depression-like behavior in a mouse model of depression, which was accompanied by a regulation of the microglial state transition. Mechanistically, Gps inhibited TLR4/MyD88/NF-κB signaling, which reduced the release of downstream inflammatory cytokines (IL-1β, IL-6, and TNF-α) and promoted microglial phenotype transition, which all together contributed to the antidepressant effect. Our results suggest that Gps prevents depression-like behaviors by regulating the microglial state transition and inhibiting the TLR4/MyD88/NF-κB signaling pathway. Thus, Gps could be a promising therapeutic strategy to prevent and treat depression-like behaviors and other psychiatric disorders.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | | | - Jan Geliebter
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Raj Tiwari
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Jin Li
- Department of Neurology, New York Medical College, Westchester Medical Center, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
68
|
García-Juárez M, Camacho-Morales A. Defining the role of anti- and pro-inflammatory outcomes of Interleukin-6 in mental health. Neuroscience 2022; 492:32-46. [DOI: 10.1016/j.neuroscience.2022.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
|
69
|
Mandolesi M, Rødahl I, Steiner L, Grönwall C, Smed-Sörensen A. KiiM retreat 2021: local immunology to fit global need? Scand J Immunol 2022; 95:e13161. [PMID: 35298038 DOI: 10.1111/sji.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Karolinska Institutet Inflammation and Immunology Network (KiiM) has, for more than a decade, gathered immunologists at the annual KiiM retreat. This well attended conference not only provides appreciated opportunities for KI immunologists to network and exchange their latest research findings but also attracts a number of renowned national and international invited speakers, setting a high scientific standard and making the KiiM retreat a noteworthy Swedish immunology meeting. The 12th KiiM retreat on October 7-8, 2021 was the first in person retreat since the start of the COVID-19 pandemic in 2020, and for many a long awaited return to face-to-face conferences. However, to address public health concerns and the presence of travel restrictions in the fall of 2021, the meeting was for the first time run as a hybrid on site - virtual meeting. Here, we briefly report the scientific content of the meeting and discuss the potential benefits of local, hybrid scientific meetings to unite researchers locally and globally.
Collapse
Affiliation(s)
- Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Inga Rødahl
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Loïc Steiner
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
70
|
Zhu H, Guo Y, Huang A, Shen H, Chen Y, Song J, Guan A, Wu L, Wang H, Deng B. HDAC3-Regulated PGE2 Production by Microglia Induces Phobic Anxiety Susceptibility After Stroke and Pointedly Exploiting a Signal-Targeted Gamma Visual Stimulation New Therapy. Front Immunol 2022; 13:845678. [PMID: 35251047 PMCID: PMC8895955 DOI: 10.3389/fimmu.2022.845678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/28/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Phobic anxiety present after stroke (called poststroke anxiety, PSA) can hamper the rehabilitation of patients and disrupt their usual activities. Besides, the symptoms and mechanisms of PSA are different from those in nonstroke populations that have generalized anxiety disorder. What's more, the treatment approaches for phobic anxiety are confined to unitary or general methods with poor efficiency. METHODS Behavioural test screen combined bioinformatics analysis explored molecular changes between generalized anxiety disorder in nonstroke mice (restraint stress, RS) and photothrombotic stroke mice exposed to environmental stress (PTS + RS, mimicking PSA). Multiple molecular biological and neurobiological methods were employed to explain mechanisms in vitro and in vivo. And exploiting gamma flicker stimulation device for therapy. RESULTS Microglial (MG) overactivation is a prominent characteristic of PTS + RS. HDAC3 was mainly upregulated in activated-microglia from damaged cortex and that local prostaglandin E2 (PGE2) production increased in MG via HDAC3-mediated activation of NF-κB signalling by p65 deacetylation. A high content of PGE2 in damaged ischaemic cortex could diffuse freely to amygdala, eliciting anxiety susceptibility of PSA via EP2. Importantly, gamma flicker stimulation relieved anxious behaviour of PTS + RS by modulating the HDAC3/Cox1/EP2 network at some extent. CONCLUSIONS HDAC3-regulated PGE2 production by microglia constitutes phobic anxiety susceptibility after stroke and a protective approach of gamma visual stimulation can be a candidate new therapy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Guo
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Ailing Huang
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huidan Shen
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Chen
- Department of Neurology, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Jingyi Song
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, China
| | - Liang Wu
- School of Medicine, Xiamen University, Xiamen, China
| | - Huiting Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Bin Deng
- Department of Anesthesiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
71
|
Hennessy MB, Miller JA, Carter KA, Molina AL, Schiml PA, Deak T. Sensitization of depressive‐like behavior is attenuated by disruption of prostaglandin synthesis days following brief early attachment‐figure isolation. Dev Psychobiol 2022; 64:e22237. [DOI: 10.1002/dev.22237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022]
Affiliation(s)
| | - John A. Miller
- Department of Psychology Wright State University Dayton Ohio USA
| | - Kendra A. Carter
- Department of Psychology Wright State University Dayton Ohio USA
| | - Andrea L. Molina
- Department of Psychology Wright State University Dayton Ohio USA
| | | | - Terrence Deak
- Behavioral Neuroscience Program Department of Psychology Binghamton University Binghamton New York USA
| |
Collapse
|
72
|
Cvetkovic C, Patel R, Shetty A, Hogan MK, Anderson M, Basu N, Aghlara-Fotovat S, Ramesh S, Sardar D, Veiseh O, Ward ME, Deneen B, Horner PJ, Krencik R. Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids. J Cell Biol 2022; 221:212997. [PMID: 35139144 PMCID: PMC8842185 DOI: 10.1083/jcb.202107135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/28/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Astrocyte reactivity can directly modulate nervous system function and immune responses during disease and injury. However, the consequence of human astrocyte reactivity in response to specific contexts and within neural networks is obscure. Here, we devised a straightforward bioengineered neural organoid culture approach entailing transcription factor-driven direct differentiation of neurons and astrocytes from human pluripotent stem cells combined with genetically encoded tools for dual cell-selective activation. This strategy revealed that Gq-GPCR activation via chemogenetics in astrocytes promotes a rise in intracellular calcium followed by induction of immediate early genes and thrombospondin 1. However, astrocytes also undergo NF-κB nuclear translocation and secretion of inflammatory proteins, correlating with a decreased evoked firing rate of cocultured optogenetic neurons in suboptimal conditions, without overt neurotoxicity. Altogether, this study clarifies the intrinsic reactivity of human astrocytes in response to targeting GPCRs and delivers a bioengineered approach for organoid-based disease modeling and preclinical drug testing.
Collapse
Affiliation(s)
- Caroline Cvetkovic
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | | | - Arya Shetty
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Matthew K Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Morgan Anderson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Nupur Basu
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Samira Aghlara-Fotovat
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX.,Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| | - Robert Krencik
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
| |
Collapse
|
73
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
74
|
Allison RL, Welby E, Khayrullina G, Burnett BG, Ebert AD. Viral mediated knockdown of GATA6 in SMA iPSC-derived astrocytes prevents motor neuron loss and microglial activation. Glia 2022; 70:989-1004. [PMID: 35088910 PMCID: PMC9303278 DOI: 10.1002/glia.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA), a pediatric genetic disorder, is characterized by the profound loss of spinal cord motor neurons and subsequent muscle atrophy and death. Although the mechanisms underlying motor neuron loss are not entirely clear, data from our work and others support the idea that glial cells contribute to disease pathology. GATA6, a transcription factor that we have previously shown to be upregulated in SMA astrocytes, is negatively regulated by SMN (survival motor neuron) and can increase the expression of inflammatory regulator NFκB. In this study, we identified upregulated GATA6 as a contributor to increased activation, pro-inflammatory ligand production, and neurotoxicity in spinal-cord patterned astrocytes differentiated from SMA patient induced pluripotent stem cells. Reducing GATA6 expression in SMA astrocytes via lentiviral infection ameliorated these effects to healthy control levels. Additionally, we found that SMA astrocytes contribute to SMA microglial phagocytosis, which was again decreased by lentiviral-mediated knockdown of GATA6. Together these data identify a role of GATA6 in SMA astrocyte pathology and further highlight glia as important targets of therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
75
|
He Y, Han Y, Liao X, Zou M, Wang Y. Biology of cyclooxygenase-2: An application in depression therapeutics. Front Psychiatry 2022; 13:1037588. [PMID: 36440427 PMCID: PMC9684729 DOI: 10.3389/fpsyt.2022.1037588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Depressive Disorder is a common mood disorder or affective disorder that is dominated by depressed mood. It is characterized by a high incidence and recurrence. The onset of depression is related to genetic, biological and psychosocial factors. However, the pathogenesis is still unclear. In recent years, there has been an increasing amount of research on the inflammatory hypothesis of depression, in which cyclo-oxygen-ase 2 (COX-2), a pro-inflammatory cytokine, is closely associated with depression. A variety of chemical drugs and natural products have been found to exert therapeutic effects by modulating COX-2 levels. This paper summarizes the relationship between COX-2 and depression in terms of neuroinflammation, intestinal flora, neurotransmitters, HPA axis, mitochondrial dysfunction and hippocampal neuronal damage, which can provide a reference for further preventive control, clinical treatment and scientific research on depression.
Collapse
Affiliation(s)
- Ying He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshan Han
- Department of Scientific Research, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.,Hunan Provincial Key Laboratory for the Prevention and Treatment of Depressive Diseases with Traditional Chinese Medicine, Changsha, China.,Hunan Key Laboratory of Power and Innovative Drugs State Key Laboratory of Ministry Training Bases, Changsha, China
| |
Collapse
|
76
|
Kozlova EV, Carabelli B, Bishay AE, Liu R, Denys ME, Macbeth JC, Piamthai V, Crawford MS, McCole DF, Zur Nieden NI, Hsiao A, Curras-Collazo MC. Induction of distinct neuroinflammatory markers and gut dysbiosis by differential pyridostigmine bromide dosing in a chronic mouse model of GWI showing persistent exercise fatigue and cognitive impairment. Life Sci 2022; 288:120153. [PMID: 34801513 PMCID: PMC9048156 DOI: 10.1016/j.lfs.2021.120153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
AIMS To characterize neuroinflammatory and gut dysbiosis signatures that accompany exaggerated exercise fatigue and cognitive/mood deficits in a mouse model of Gulf War Illness (GWI). METHODS Adult male C57Bl/6N mice were exposed for 28 d (5 d/wk) to pyridostigmine bromide (P.O.) at 6.5 mg/kg/d, b.i.d. (GW1) or 8.7 mg/kg/d, q.d. (GW2); topical permethrin (1.3 mg/kg), topical N,N-diethyl-meta-toluamide (33%) and restraint stress (5 min). Animals were phenotypically evaluated as described in an accompanying article [124] and sacrificed at 6.6 months post-treatment (PT) to allow measurement of brain neuroinflammation/neuropathic pain gene expression, hippocampal glial fibrillary acidic protein, brain Interleukin-6, gut dysbiosis and serum endotoxin. KEY FINDINGS Compared to GW1, GW2 showed a more intense neuroinflammatory transcriptional signature relative to sham stress controls. Interleukin-6 was elevated in GW2 and astrogliosis in hippocampal CA1 was seen in both GW groups. Beta-diversity PCoA using weighted Unifrac revealed that gut microbial communities changed after exposure to GW2 at PT188. Both GW1 and GW2 displayed systemic endotoxemia, suggesting a gut-brain mechanism underlies the neuropathological signatures. Using germ-free mice, probiotic supplementation with Lactobacillus reuteri produced less gut permeability than microbiota transplantation using GW2 feces. SIGNIFICANCE Our findings demonstrate that GW agents dose-dependently induce differential neuropathology and gut dysbiosis associated with cognitive, exercise fatigue and mood GWI phenotypes. Establishment of a comprehensive animal model that recapitulates multiple GWI symptom domains and neuroinflammation has significant implications for uncovering pathophysiology, improving diagnosis and treatment for GWI.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Bruno Carabelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Varadh Piamthai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | | |
Collapse
|
77
|
Bekhbat M, Treadway MT, Felger JC. Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Curr Top Behav Neurosci 2022; 58:397-419. [PMID: 34971449 DOI: 10.1007/7854_2021_294] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Anhedonia, characterized by a lack of motivation, interest, or ability to experience pleasure, is a prominent symptom of depression and other psychiatric disorders and has been associated with poor response to standard therapies. One pathophysiologic pathway receiving increased attention for its potential role in anhedonia is inflammation and its effects on the brain. Exogenous administration of inflammatory stimuli to humans and laboratory animals has reliably been found to affect neurotransmitters and neurocircuits involved in reward processing, including the ventral striatum and ventromedial prefrontal cortex, in association with reduced motivation. Moreover, a rich literature including meta-analyses describes increased inflammation in a significant proportion of patients with depression and other psychiatric illnesses involving anhedonia, as evident by elevated inflammatory cytokines, acute phase proteins, chemokines, and adhesion molecules in both the periphery and central nervous system. This endogenous inflammation may arise from numerous sources including stress, obesity or metabolic dysfunction, genetics, and lifestyle factors, many of which are also risk factors for psychiatric illness. Consistent with laboratory studies involving exogenous administration of peripheral inflammatory stimuli, neuroimaging studies have further confirmed that increased endogenous inflammation in depression is associated with decreased activation of and reduced functional connectivity within reward circuits involving ventral striatum and ventromedial prefrontal cortex in association with anhedonia. Here, we review recent evidence of relationships between inflammation and anhedonia, while highlighting translational and mechanistic work describing the impact of inflammation on synthesis, release, and reuptake of neurotransmitters like dopamine and glutamate that affects circuits to drive motivational deficits. We will then present insight into novel pharmacological strategies that target either inflammation or its downstream effects on the brain and behavior. The meaningful translation of these concepts through appropriately designed trials targeting therapies for psychiatric patients with high inflammation and transdiagnostic symptoms of anhedonia is also discussed.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
78
|
Maes ME, Wögenstein GM, Colombo G, Casado-Polanco R, Siegert S. Optimizing AAV2/6 microglial targeting identified enhanced efficiency in the photoreceptor degenerative environment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:210-224. [PMID: 34703843 PMCID: PMC8516996 DOI: 10.1016/j.omtm.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are widely used to deliver genetic material in vivo to distinct cell types such as neurons or glial cells, allowing for targeted manipulation. Transduction of microglia is mostly excluded from this strategy, likely due to the cells’ heterogeneous state upon environmental changes, which makes AAV design challenging. Here, we established the retina as a model system for microglial AAV validation and optimization. First, we show that AAV2/6 transduced microglia in both synaptic layers, where layer preference corresponds to the intravitreal or subretinal delivery method. Surprisingly, we observed significantly enhanced microglial transduction during photoreceptor degeneration. Thus, we modified the AAV6 capsid to reduce heparin binding by introducing four point mutations (K531E, R576Q, K493S, and K459S), resulting in increased microglial transduction in the outer plexiform layer. Finally, to improve microglial-specific transduction, we validated a Cre-dependent transgene delivery cassette for use in combination with the Cx3cr1CreERT2 mouse line. Together, our results provide a foundation for future studies optimizing AAV-mediated microglia transduction and highlight that environmental conditions influence microglial transduction efficiency.
Collapse
Affiliation(s)
- Margaret E Maes
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Gloria Colombo
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | | | - Sandra Siegert
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
79
|
Ding Z, Guo S, Luo L, Zheng Y, Gan S, Kang X, Wu X, Zhu S. Emerging Roles of Microglia in Neuro-vascular Unit: Implications of Microglia-Neurons Interactions. Front Cell Neurosci 2021; 15:706025. [PMID: 34712121 PMCID: PMC8546170 DOI: 10.3389/fncel.2021.706025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia, which serve as the defensive interface of the nervous system, are activated in many neurological diseases. Their role as immune responding cells has been extensively studied in the past few years. Recent studies have demonstrated that neuronal feedback can be shaped by the molecular signals received and sent by microglia. Altered neuronal activity or synaptic plasticity leads to the release of various communication messages from neurons, which in turn exert effects on microglia. Research on microglia-neuron communication has thus expanded from focusing only on neurons to the neurovascular unit (NVU). This approach can be used to explore the potential mechanism of neurovascular coupling across sophisticated receptor systems and signaling cascades in health and disease. However, it remains unclear how microglia-neuron communication happens in the brain. Here, we discuss the functional contribution of microglia to synapses, neuroimmune communication, and neuronal activity. Moreover, the current state of knowledge of bidirectional control mechanisms regarding interactions between neurons and microglia are reviewed, with a focus on purinergic regulatory systems including ATP-P2RY12R signaling, ATP-adenosine-A1Rs/A2ARs, and the ATP-pannexin 1 hemichannel. This review aims to organize recent studies to highlight the multifunctional roles of microglia within the neural communication network in health and disease.
Collapse
Affiliation(s)
- Zhe Ding
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohui Guo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihui Luo
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyuan Gan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
80
|
Ishikawa Y, Furuyashiki T. The impact of stress on immune systems and its relevance to mental illness. Neurosci Res 2021; 175:16-24. [PMID: 34606943 DOI: 10.1016/j.neures.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
Stress due to adverse and demanding conditions alters immune functions. How innate and adaptive immune systems respond to stress and affect neural processes remains unclear. Rodent studies have demonstrated crucial roles of stress-induced immune responses for depressive- and anxiety-like behaviors. In the periphery, stress evokes the mobilization of neutrophils and monocytes to the circulation via sympathetic nerves and glucocorticoids. These myeloid cells are thought to promote depressive- and anxiety-like behaviors by infiltrating the brain's perivascular space, releasing cytokines, and affecting vascular endothelial functions. In the brain, stress activates microglia via innate immune receptors TLR2/4. The activated microglia in the medial prefrontal cortex secrete cytokines and alter neuronal morphology and activity in their vicinity. In subcortical brain areas, prostaglandin (PG) E2 released from the activated microglia attenuates the dopaminergic projection to the medial prefrontal cortex via PGE receptor EP1. These multiple actions of microglia promote depressive-like behavior in concert. These rodent findings may be translatable to depression that clinical studies have associated with brain and peripheral inflammations. Understanding causal relationships between immune and neural alterations under stress might be exploitable to develop inflammation-targeting therapeutics for mental illness.
Collapse
Affiliation(s)
- Yuka Ishikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan; Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
81
|
Cuitavi J, Lorente JD, Campos-Jurado Y, Polache A, Hipólito L. Neuroimmune and Mu-Opioid Receptor Alterations in the Mesocorticolimbic System in a Sex-Dependent Inflammatory Pain-Induced Alcohol Relapse-Like Rat Model. Front Immunol 2021; 12:689453. [PMID: 34616393 PMCID: PMC8488159 DOI: 10.3389/fimmu.2021.689453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund's adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-treated female rats, the only experimental group that showed relapse-like behavior, exhibited specific alterations in the expression of phosphorylated NFκB, iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1 expression revealed a decrease of the microglial activation in PFC during abstinence and an increase of its expression in the relapse phase, together with an augmentation of this activation in the NAc in both phases that only occur in female CFA-treated rats. Additionally, the expression of IL1β also evidenced these dynamic changes through these two phases following similar expression patterns in both areas. Furthermore, the expression of the cytokine IL10 showed a different profile than that of IL1β, indicating anti-inflammatory processes occurring only during abstinence in the PFC of CFA-female rats but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a downregulation of microglial activation and pro-inflammatory processes during abstinence in the PFC, whereas an upregulation can be observed in the NAc during abstinence that is maintained during the reintroduction phase only in CFA-female rats. Secondly, our data reveal a correlation between the alterations observed in IL1β, IBA1 levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although premature, our data suggest that neuroinflammatory processes, together with neural adaptations involving MOR, might play an important role in alcohol relapse in female rats, so further investigations are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, Spain
| |
Collapse
|
82
|
Peng Z, Li X, Li J, Dong Y, Gao Y, Liao Y, Yan M, Yuan Z, Cheng J. Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice. Neurosci Bull 2021; 37:1671-1682. [PMID: 34490521 PMCID: PMC8643377 DOI: 10.1007/s12264-021-00765-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022] Open
Abstract
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K+ channels, which are reported to regulate the activation of microglia. However, little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis. In this study, we found that Dlg1 knockdown suppressed lipopolysaccharide (LPS)-induced inflammation by down-regulating the activation of nuclear factor-κB signaling and the mitogen-activated protein kinase pathway in microglia. Moreover, using an inducible Dlg1 microglia-specific knockout (Dlg1flox/flox; CX3CR1CreER) mouse line, we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depression-like behavior. In summary, our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression.
Collapse
Affiliation(s)
- Zhixin Peng
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yuan Dong
- Institutes of Brain Sciences and Disease, Medical College, Qingdao University, Qingdao, 266071, China
| | - Yuhao Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Meichen Yan
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Zengqiang Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, China. .,The Brain Science Center, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, China. .,Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
83
|
Dziabis JE, Bilbo SD. Microglia and Sensitive Periods in Brain Development. Curr Top Behav Neurosci 2021; 53:55-78. [PMID: 34463934 DOI: 10.1007/7854_2021_242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From embryonic neuronal migration to adolescent circuit refinement, the immune system plays an essential role throughout central nervous system (CNS) development. Immune signaling molecules serve as a common language between the immune system and CNS, allowing them to work together to modulate brain function both in health and disease. As the resident CNS macrophage, microglia comprise the majority of immune cells in the brain. Much like their peripheral counterparts, microglia survey their environment for pathology, clean up debris, and propagate inflammatory responses when necessary. Beyond this, recent studies have highlighted that microglia perform a number of complex tasks during neural development, from directing neuronal and axonal positioning to pruning synapses, receptors, and even whole cells. In this chapter, we discuss this literature within the framework that immune activation during discrete windows of neural development can profoundly impact brain function long-term, and thus the risk of neurodevelopmental and neuropsychiatric disorders. In this chapter, we review three sensitive developmental periods - embryonic wiring, early postnatal synaptic pruning, and adolescent circuit refinement - in order to highlight the diversity of functions that microglia perform in building a brain. In reviewing this literature, it becomes obvious that timing matters, perhaps more so than the nature of the immune activation itself; largely conserved patterns of microglial response to diverse insults result in different functional impacts depending on the stage of brain maturation at the time of the challenge.
Collapse
Affiliation(s)
- Julia E Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
84
|
Abstract
The immune system actively regulates brain activity through the engagement of immune cells and immunomodulatory molecules. In this issue of Immunity, Klawonn et al. show that the activation of microglia in the striatum triggers an IL-6-mediated autocrine loop and the release of prostaglandins, which in turn induce a negative affective state via the stimulation of medium spiny neurons.
Collapse
Affiliation(s)
- Michela Matteoli
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy; CNR Institute of Neuroscience, Milano, Italy.
| | - Davide Pozzi
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
85
|
Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 2021; 414:113463. [PMID: 34280458 DOI: 10.1016/j.bbr.2021.113463] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) can activate the extracellular regulated protein kinase (ERK)/cAMP response element binding protein (CREB) cascade revealing an important role in antidepressant effects. Here, we studied the neuroprotective effect of baicalin (BA) in mice with chronic unpredictable mild stress (CUMS)-induced via a BDNF/ERK/CREB signaling pathway. Depression was induced via six weeks of CUMS in male ICR mice, and drug therapy was given simultaneously for the last three weeks. Cognitive dysfunctions were then evaluated via sucrose preference test (SPT), open field test (OFT), Morris water maze test (MWM), tail suspension test (TST), and novelty suppressed feeding test (NSF). Western blot and real-time PCR were then used to detect the relative expression of ERK, CREB, p-ERK, and p-CREB. Integrated optical density (IOD) tests of p-ERK and p-CREB were then evaluated via immunofluorescence. The behavior results showed that the cognitive dysfunctions increased in the CUMS group versus the control (CON) group (p < 0.01). There were decreases in fluoxetine (FLU) and BA groups (p < 0.05, p < 0.01). The protein ratios of p-ERK/ERK, p-CREB/CREB and ERK mRNA, and CREB mRNA expression decreased in the CUMS group (p < 0.01) and markedly increased in the FLU and BA groups (p < 0.05, p < 0.01). The IOD value of the p-ERK and p-CREB in the CUMS group was decreased versus the CON group (p < 0.01), and these changes were improved via BA and FLU treatment (p < 0.05, p < 0.01). This study indicated that BA can improve cognitive functions and has antidepressant effects in mice, which may be associated with activation of the BDNF/ERK/CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Jinhu Zhang
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Li Chu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shaodan Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yuan Chen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
86
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
87
|
Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021; 14:ph14050416. [PMID: 34062710 PMCID: PMC8147235 DOI: 10.3390/ph14050416] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frequently underestimated, encephalopathy or delirium are common neurological manifestations associated with sepsis. Brain dysfunction occurs in up to 80% of cases and is directly associated with increased mortality and long-term neurocognitive consequences. Although the central nervous system (CNS) has been classically viewed as an immune-privileged system, neuroinflammation is emerging as a central mechanism of brain dysfunction in sepsis. Microglial cells are major players in this setting. Here, we aimed to discuss the current knowledge on how the brain is affected by peripheral immune activation in sepsis and the role of microglia in these processes. This review focused on the molecular pathways of microglial activity in sepsis, its regulatory mechanisms, and their interaction with other CNS cells, especially with neuronal cells and circuits.
Collapse
Affiliation(s)
- Carolina Araújo Moraes
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
| | - Camila Zaverucha-do-Valle
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
| | - Renaud Fleurance
- UCB Biopharma SRL, 1420 Braine L’Alleud, Belgium;
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Université de Paris Sciences et Lettres, 75006 Paris Paris, France
| | - Tarek Sharshar
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Joana Costa d’Avila
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
- School of Medicine, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil
- Correspondence:
| |
Collapse
|