51
|
Vasconcelos CC, Lopes AJO, Sousa ELF, Camelo DS, Lima FCVM, Rocha CQD, Silva GEB, Garcia JBS, Cartágenes MDSDS. Effects of Extract of Arrabidaea chica Verlot on an Experimental Model of Osteoarthritis. Int J Mol Sci 2019; 20:E4717. [PMID: 31547612 PMCID: PMC6801924 DOI: 10.3390/ijms20194717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to analyze the analgesic potential of Arrabidaea chica extract (EHA) as an alternative to osteoarthritis (OA) treatment. Thus, the extract was initially evaluated by the cyclooxygenase inhibition test. The analgesic effect of the extract, in vivo, was also verified in a model of OA induced by sodium monoiodoacetate (2 mg). EHA was administered to rats at doses of 50, 150, and 450 mg/kg between 3 and 25 days after OA induction. The animals were clinically evaluated every 7 days, euthanized at 29 days, and the liver, spleen, kidney and knee collected for histopathological analysis. The chemical composition of EHA was identified by HPLC-MS and the identified compounds submitted to molecular docking study. The results showed that the extract promoted cyclooxygenase inhibition and produced significant improvements in disability, motor activity, hyperalgesia, and OA-induced allodynia parameters, in addition to improvements in the radiological condition of the knees (but not observed in the histopathological study). Chemically the extract is rich in flavonoids. Among them, we evidence that amentoflavone showed very favorable interactions with the enzyme COX-2 in the in silico analysis. Thus, it is concluded that A. chica has important analgesic properties for the treatment of OA.
Collapse
Affiliation(s)
- Cleydlenne Costa Vasconcelos
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | - Alberto Jorge Oliveira Lopes
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | - Emerson Lucas Frazão Sousa
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | - Darleno Sousa Camelo
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | | | | | - Gyl Eanes Barros Silva
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | - João Batista Santos Garcia
- Biological and Health Sciences Center, Federal University of Maranhão, Av. dos Portugueses 1966, São Luís, MA 65085-580, Brazil.
| | | |
Collapse
|
52
|
Rong S, Wan D, Fan Y, Liu S, Sun K, Huo J, Zhang P, Li X, Xie X, Wang F, Sun T. Amentoflavone Affects Epileptogenesis and Exerts Neuroprotective Effects by Inhibiting NLRP3 Inflammasome. Front Pharmacol 2019; 10:856. [PMID: 31417409 PMCID: PMC6682693 DOI: 10.3389/fphar.2019.00856] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023] Open
Abstract
Brain inflammation is one of the main causes of epileptogenesis, a chronic process triggered by various insults, including genetic or acquired factors that enhance susceptibility to seizures. Amentoflavone, a naturally occurring biflavonoid compound that has anti-inflammatory effects, exerts neuroprotective effects against nervous system diseases. In the present study, we aimed to investigate the effects of amentoflavone on epilepsy in vivo and in vitro and elucidate the underlying mechanism. The chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ) kindling or lipopolysaccharide (LPS) stimulation. Cognitive dysfunction was tested by Morris water maze while hippocampal neuronal apoptosis was evaluated by immunofluorescence staining. The levels of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome complexes and inflammatory cytokines were determined using quantitative real-time polymerase chain reaction, Western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assay. Amentoflavone reduced seizure susceptibility, minimized PTZ-induced cognitive dysfunction, and blocked the apoptosis of hippocampal neurons in PTZ-induced kindling mice. Amentoflavone also inhibited the activation of the NLRP3 inflammasome and decreased the levels of inflammatory cytokines in the hippocampus of PTZ-induced kindling mice. Additionally, amentoflavone could alleviate the LPS-induced inflammatory response by inhibiting the NLRP3 inflammasome in LPS-induced BV2 microglial cells. Our results indicated that amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting the NLRP3 inflammasome and, thus, mediating the inflammatory process in PTZ-induced kindling mice and LPS-induced BV2 microglial cells. Therefore, amentoflavone may be a potential treatment option for epilepsy.
Collapse
Affiliation(s)
- Shikuo Rong
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ding Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yayun Fan
- Department of Gynaecology, Jingzhou Central Hospital affiliated to Huazhong University of Science and Technology, Jingzhou, China
| | - Shenhai Liu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Kuisheng Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Junming Huo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Peng Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xiaoliang Xie
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
53
|
Rezaei N, Eftekhari MH, Tanideh N, Mokhtari M, Bagheri Z. Comparison of Antioxidant and Anti-Inflammatory Effects of Honey and Spirulina platensis with Sulfasalazine and Mesalazine on Acetic Acid-Induced Ulcerative Colitis in Rats. Galen Med J 2019; 8:e1095. [PMID: 34466462 PMCID: PMC8343697 DOI: 10.31661/gmj.v8i0.1095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/20/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Antioxidant therapy has gained attention for the treatment of ulcerative colitis (UC). The excessive generation of reactive oxygen/nitrogen species in the gastrointestinal tract increases oxidative stress, thereby leading to antioxidant defense depletion, lipid peroxidation, inflammation, tissue damage, and ulceration. Spirulina platensis (SP) and honey are excellent sources of potent antioxidants such as polyphenols and other bioactive compounds. We aimed to investigate antioxidant and anti-inflammatory effects of honey and SP in comparison with sulfasalazine (SSZ) and mesalazine on acetic acid-induced colitis (AA-colitis) in rats. Materials and Methods: Fifty-six Sprague Dawley male rats were allocated to seven groups, with each group comprising eight rats. UC was induced, except in normal controls (NC). All groups received oral treatments for seven days. The normal saline solution of 2 mL was intrarectally administered to the NC group. The AA-colitis and NC groups received 2 mL acetic acid intrarectally as a single dose and 2 mL normal saline for seven consecutive days orally. The mesalazine group received 100 mg/kg mesalazine, the SSZ group 360 mg/kg SSZ, the honey or H group 1 mL honey diluted with 1 mL distilled water, the SH group 1g/kg SP and 1 mL honey, and the SP group 1g/kg SP. After clinical activity score assessment, the rats were sacrificed. Colonic weight/length ratio, prostaglandin E2 (PGE2), myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), glutathione peroxidase (GPx), total antioxidant capacity (TAC), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Colonic histopathological changes were observed microscopically. Results: Treatment of UC with SP, honey, and combination regimen significantly reduced TNF-α, IL-1β, IL-6, MDA, MPO, NO, and PGE2, and increased TAC, GSH, GPx, and SOD in interventional groups compared to the AA-colitis group (P<0.05). Conclusion: Honey and SP might be beneficial food supplements for medical nutrition therapy in UC.
Collapse
Affiliation(s)
- Nadia Rezaei
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Correspondence to: Mohammad Hassan Eftekhari, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran Telephone Number: +989177088717 Email Address:
| | - Nader Tanideh
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Bagheri
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
54
|
Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6769789. [PMID: 31139644 PMCID: PMC6500688 DOI: 10.1155/2019/6769789] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Objective Observe the protective effect of chlorogenic acid on dextran sulfate-induced ulcerative colitis in mice and explore the regulation of MAPK/ERK/JNK signaling pathway. Methods Seventy C57BL/6 mice (half males and half females) were randomly divided into 7 groups, 10 in each group: control group (CON group), UC model group (UC group), and sulfasalazine-positive control group (SASP group), chlorogenic acid low dose group (CGA-L group), chlorogenic acid medium dose group (CGA-M group), chlorogenic acid high dose group (CGA-H group), and ERK inhibitor + chlorogenic acid group (E+CGA group). The effects of chlorogenic acid on UC were evaluated by colon mucosa damage index (CMDI), HE staining, immunohistochemistry, ELISA, and Western blot. The relationship between chlorogenic acid and MAPK/ERK/JNK signaling pathway was explored by adding ERK inhibitor. Results The UC models were established successfully by drinking DSS water. Chlorogenic acid reduces DSS-induced colonic mucosal damage, inhibits DSS-induced inflammation, oxidative stress, and apoptosis in colon, and reduces ERK1/2, p -ERK, p38, p-p38, JNK, and p-JNK protein expression. ERK inhibitor U0126 reversed the protective effect of chlorogenic acid on colon tissue. Conclusion Chlorogenic acid can alleviate DSS-induced ulcerative colitis in mice, which can significantly reduce tissue inflammation and apoptosis, and its mechanism is related to the MAPK/ERK/JNK signaling pathway.
Collapse
|
55
|
da Silva VC, de Araújo AA, de Souza Araújo DF, Souza Lima MCJ, Vasconcelos RC, de Araújo Júnior RF, Langasnner SMZ, de Freitas Fernandes Pedrosa M, de Medeiros CACX, Guerra GCB. Intestinal Anti-Inflammatory Activity of the Aqueous Extract from Ipomoea asarifolia in DNBS-Induced Colitis in Rats. Int J Mol Sci 2018; 19:ijms19124016. [PMID: 30545135 PMCID: PMC6321343 DOI: 10.3390/ijms19124016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease is triggered by an uncontrolled immune response associated with genetic, environmental, and intestinal microbiota imbalance. Ipomoea asarifolia (IA), popularly known as “salsa” or “brave salsa”, belongs to the Convolvulaceae family. The aim of this approach was to study the preventive effect of IA aqueous extract in 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Rats pretreated with IA extract or sulfasalazine (SSZ) received intracolonic instillation of DNBS in 50% ethanol (v/v). IA extract presented a protective effect against intestinal inflammation, with improvement in the disease activity index and macroscopic damage. IA or SSZ significantly reduced myeloperoxidase activity, and also down-regulation of the gene expression of JNK1, NF-κβ-p65, STAT3, and decreased levels of TNFα, IL-1β, and increased IL-10, associated with a significant improvement of oxidative stress, in addition to a reduction in MDA and an increase of glutathione in colonic tissue. The protective effect of the extract was also confirmed in histological evaluation, showing preservation of the colonic cytoarchitecture. Immunohistochemical analysis revealed down-regulation of NF-κβ-p65, iNOS, IL-17, and up-regulation of SOCs-1 and MUC-2. IA extract presents antioxidant and anti-inflammatory intestinal properties, and proved to be a potential application for preventing damage induced by DNBS.
Collapse
Affiliation(s)
- Valéria Costa da Silva
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | | | - Maíra Conceição Jerônimo Souza Lima
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| | - Silvana Maria Zucolotto Langasnner
- Research Group on Bioactive Natural Products, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | - Matheus de Freitas Fernandes Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| | | | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil.
| |
Collapse
|
56
|
Amentoflavone Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Appl Environ Microbiol 2018; 84:AEM.01804-18. [PMID: 30315078 DOI: 10.1128/aem.01804-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis, an important zoonotic pathogen, has caused considerable economic losses in the swine industry and severe public health issues worldwide. The development of a novel effective strategy for the prevention and therapy of S. suis is urgently needed. Here, amentoflavone, a natural biflavonoid compound isolated from Chinese herbs that has negligible anti-S. suis activity, was identified as a potent antagonist of suilysin (SLY)-mediated hemolysis without interfering with the expression of SLY. Amentoflavone effectively inhibited SLY oligomerization, which is critical for its pore-forming activity. The treatment with amentoflavone reduced S. suis-induced cytotoxicity in macrophages (J774 cells). Furthermore, S. suis-infected mice that received amentoflavone exhibited lower mortality and bacterial burden. Additionally, amentoflavone significantly decreased the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in an S. suis-infected cell model. Analyses of signaling pathways demonstrated that amentoflavone reduced S. suis-induced inflammation in S. suis serotype 2 (SS2)-infected cells by regulating the p38, Jun N-terminal protein kinase 1 and 2 (JNK1/2), and NF-κB pathways. The antivirulence and anti-inflammatory properties of amentoflavone against S. suis infection provide the possibility for future pharmaceutical application of amentoflavone in the treatment of S. suis infection.IMPORTANCE The widespread use of antibiotics in therapy and in the prevention of Streptococcus suis infection in the swine industry raises concerns for the emergence of a resistant strain. The use of antivirulence agents has potential benefits, mainly because of the reduced selective pressure for the development of bacterial resistance. In this study, we found that amentoflavone is an effective agent against S. suis serotype 2 (SS2) infection both in vitro and in vivo Our results demonstrated that amentoflavone is a promising anti-infective therapeutic for S. suis infections, due to its antivirulence and anti-inflammatory effects without antibacterial activity, with fewer side effects than conventional antibacterial agents.
Collapse
|
57
|
Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int Immunopharmacol 2018; 66:309-316. [PMID: 30502652 DOI: 10.1016/j.intimp.2018.11.044] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
Luteoloside, a flavonoid compound, has been reported to have anti-inflammatory, anti-oxidative, antibacterial, antiviral, anticancer, and cardioprotective effects, among others, but its neuroprotective effects have rarely been studied. The purpose of this study was to investigate the protective effect of luteoloside on cerebral ischemia and explore its potential mechanism. Middle cerebral artery occlusion (MCAO) was performed to investigate the effects of luteoloside on cerebral ischemia-reperfusion (I/R). Male Sprague-Dawley rats were randomly divided into six groups: sham, MCAO, luteoloside (20 mg/kg, 40 mg/kg, 80 mg/kg) and nimodipine (4 mg/kg). The results showed that luteoloside alleviated neurologic deficits and cerebral edema as well as improved cerebral infarction and histopathological changes in MCAO rats. Luteoloside significantly inhibited I/R-induced neuroinflammation, as demonstrated by reduced levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the brain tissues of MCAO rats. Furthermore, our results demonstrated that luteoloside significantly suppressed the activation of nuclear factor-kappa B (NF-κB) signaling, upregulated the protein expression of peroxisome proliferator activated receptor gamma (PPARγ) and increased NF-E2-related factor (Nrf2) nuclear accumulation in MCAO rats. Collectively, our findings suggested that luteoloside played a crucial neuroprotective role by inhibiting NF-κB signaling in focal cerebral ischemia in rats. Furthermore, PPARγ and Nrf2 were also important for the anti-inflammatory effect of luteoloside. In addition, our data suggested that luteoloside might be an effective treatment for cerebral ischemia and other neurological disorders.
Collapse
|
58
|
Anti-Inflammatory Effects of an Extract of Polygonum hydropiper Stalks on 2,4,6-Trinitrobenzenesulphonic Acid-Induced Intestinal Inflammation in Rats by Inhibiting the NF- κB Pathway. Mediators Inflamm 2018; 2018:6029135. [PMID: 29853790 PMCID: PMC5964420 DOI: 10.1155/2018/6029135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/06/2018] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Abstract
The stalks of Polygonum hydropiper L. (PHL) have been traditionally used in clinical practice for thousands of years in China to treat various inflammatory diseases. However, little research has been conducted to investigate the anti-inflammatory effects of PHL on TNBS-induced intestinal inflammation in rats. The aim of the present study was to investigate the anti-inflammatory effects and to explain the underlying mechanism of PHL on TNBS-induced intestinal inflammation in rats. PHL (125, 250, and 500 mg/kg) was given for 7 consecutive days to rats with intestinal inflammation induced by TNBS. Oral administration of an aqueous extract of a high dose of PHL (H-PHL) significantly improved TNBS-induced symptoms such as the macroscopic score and histological examination. H-PHL treatment significantly ameliorated the activity of MPO and improved the GSH content. In addition, there was a downregulation of the TNBS-induced increase in the activity of iNOS and levels of Cox-2, TNF-α, and IL-1β while the protein expression of NF-κB was significantly unregulated after administration of H-PHL. The present findings suggested that H-PHL has a protective effect on experimental intestinal inflammation in rats and its anti-inflammatory effects are closely related to inhibition of NF-κB signal pathways.
Collapse
|
59
|
Ghattamaneni NKR, Panchal SK, Brown L. Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease. Pharmacol Res 2018; 132:99-107. [PMID: 29680446 DOI: 10.1016/j.phrs.2018.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/26/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of all or part of the digestive tract. Nutraceuticals include bioactive compounds such as polyphenols with anti-inflammatory activities, thus these products have the potential to treat chronic inflammatory diseases. We have emphasized the role of nutraceuticals in ameliorating the symptoms of IBD in rodent models of human IBD through modulation of key pathogenic mechanisms including dysbiosis, oxidative stress, increased inflammatory cytokines, immune system dysregulation, and inflammatory cell signaling pathways. Nutraceuticals have an important role in IBD patients as a preventive approach to extend remission phases and as a therapeutic intervention to suppress active IBD. Further clinical trials on nutraceuticals with positive results in rodent models are warranted.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD 4350, Australia; Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
60
|
Vascular Endothelial Dysfunction in Inflammatory Bowel Diseases: Pharmacological and Nonpharmacological Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2568569. [PMID: 29849875 PMCID: PMC5925080 DOI: 10.1155/2018/2568569] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are chronic inflammatory conditions involving primarily the gastrointestinal tract. However, they may be also associated with systemic manifestations and comorbidities. The relationship between chronic inflammation and endothelial dysfunction has been extensively demonstrated. Mucosal immunity and gastrointestinal physiology are modified in inflammatory bowel diseases, and these modifications are mainly sustained by alterations of endothelial function. The key elements involved in this process are cytokines, inflammatory cells, growth factors, nitric oxide, endothelial adhesion molecules, and coagulation cascade factors. In this review, we discuss available data in literature concerning endothelial dysfunction in patients affected by inflammatory bowel disease and we focus our attention on both pharmacological and nonpharmacological therapeutic targets.
Collapse
|
61
|
Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease. Eur J Pharmacol 2018; 824:1-10. [PMID: 29382536 DOI: 10.1016/j.ejphar.2018.01.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022]
Abstract
Sulforaphane was reported to exert neuroprotective effects via upregulating expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and has received increasing attention as an alternative candidate for treatment of Alzheimer's disease (AD). However, the mechanism to account for Nrf2 upregulation by sulforaphane in AD remains unknown. Herein, we found that sulforaphane upregulated Nrf2 expression and promoted Nrf2 nuclear translocation via decreasing DNA methylation levels of the Nrf2 promoter in mouse neuroblastoma N2a cells stably expressing human Swedish mutant amyloid precursor protein (N2a/APPswe cells), a cellular model of AD. Furthermore, sulforaphane (1.25 and 2.5 μM) decreased the levels of amyloid β 1-40 (Aβ1-40) (21.7% and 33.4% decrease for intracellular Aβ1-40; 22.0% and 30.2% decrease in culture medium), Aβ1-42 (26.4% and 42.9% decrease for intracellular Aβ1-42; 25.8% and 43.8% decrease in culture medium), reactive oxygen species (15.0% and 28.5% decrease), and malondialdehyde (MDA) (34.4% and 39.2% decrease) and increased superoxide dismutase (SOD) (60.0% and 89.3% increase) activity in N2a/APPswe cells. Sulforaphane also decreased the levels of pro-inflammatory cytokines interleukin 1β (IL-1β) (16.5% and 33.6% decrease) and IL-6 (15.6% and 26.1% decrease) and reduced phosphorylated nuclear factor-κB (NF-κB) p65 (19.2% and 32.2% decrease), cyclooxygenase-2 (COX-2) (20.5% and 28.6% decrease), and iNOS protein (40.2% and 54.7% decrease) expression levels in N2a/APPswe cells. Our study suggested that sulforaphane upregulated the expression of Nrf2 and promoted the nuclear translocation of Nrf2 by decreasing DNA demethylation levels of the Nrf2 promoter, thus leading to antioxidative and anti-inflammatory effects in a cellular model of AD.
Collapse
|
62
|
Korkmaz AG, Popov T, Peisl L, Codrea MC, Nahnsen S, Steimle A, Velic A, Macek B, von Bergen M, Bernhardt J, Frick JS. Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states. J Proteomics 2017; 180:11-24. [PMID: 29155090 DOI: 10.1016/j.jprot.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
Dendritic cells (DCs) can shape the immune system towards an inflammatory or tolerant state depending on the bacterial antigens and the environment they encounter. In this study we provide a proteomic catalogue of differentially expressed proteins between distinct DC maturation states, brought about by bacteria that differ in their endotoxicity. To achieve this, we have performed proteomics and phosphoproteomics on murine DC cultures. Symbiont and pathobiont bacteria were used to direct dendritic cells into a semi-mature and fully-mature state, respectively. The comparison of semi-mature and fully-mature DCs revealed differential expression in 103 proteins and differential phosphorylation in 118 phosphosites, including major regulatory factors of central immune processes. Our analyses predict that these differences are mediated by upstream elements such as SOCS1, IRF3, ABCA1, TLR4, and PTGER4. Our analyses indicate that the symbiont bacterial strain affects DC proteome in a distinct way, by downregulating inflammatory proteins and activating anti-inflammatory upstream regulators. Biological significance In this study we have investigated the responses of immune cells to distinct bacterial stimuli. We have used the symbiont bacterial strain B. vulgatus and the pathobiont E. coli strain to stimulate cultured primary dendritic cells and performed a shotgun proteome analysis to investigate the protein expression and phosphorylation level differences on a genome level. We have observed expression and phosphorylation level differences in key immune regulators, transcription factors and signal transducers. Moreover, our subsequent bioinformatics analysis indicated regulation at several signaling pathways such as PPAR signaling, LXR/RXR activation and glucocorticoid signaling pathways, which are not studied in detail in an inflammation and DC maturation context. Our phosphoproteome analysis showed differential phosphorylation in 118 phosphosites including those belonging to epigenetic regulators, transcription factors and major cell cycle regulators. We anticipate that our study will facilitate further investigation of immune cell proteomes under different inflammatory and non-inflammatory conditions.
Collapse
Affiliation(s)
- Ali Giray Korkmaz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany.
| | - Todor Popov
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Loulou Peisl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | | | - Sven Nahnsen
- Quantitative Biology Center, University of Tübingen, Germany
| | - Alexander Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Ana Velic
- Proteome Center, University of Tübingen, Germany
| | - Boris Macek
- Proteome Center, University of Tübingen, Germany
| | | | - Joerg Bernhardt
- Ernst-Moritz-Arndt Universität Greifswald, Institute for Microbiology, Germany
| | | |
Collapse
|
63
|
Liu DY, Gao L, Zhang J, Huo XW, Ni H, Cao L. Anti-inflammatory and Anti-oxidant Effects of Licorice Flavonoids on Ulcerative Colitis in Mouse Model. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60116-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
64
|
Zeng L, Zhang JS, Zheng JL, Wu CW. Pre-acclimation to low copper mitigated immunotoxic effects in spleen and head-kidney of large yellow croaker (Pseudosciaena crocea) when exposed subsequently to high copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:54-61. [PMID: 28601517 DOI: 10.1016/j.ecoenv.2017.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/27/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The hypothesis tested in this study was that Cu pre-acclimation would mitigate high Cu induced immunotoxic effects in large yellow croaker Pseudosciaena crocea. To the end, fish were pre-acclimation to 0 and 84μg CuL-1 for 48h and then exposed to 0 and 420μg CuL-1 for another 48h. Survival rate, Cu content, ROS, NO, activities and mRNA levels of inflammatory genes (iNOS and COX-2), and gene expressions of transcription factor NF-κB and its inhibitor IκBα were determined in spleen and head-kidney of large yellow croaker. Cu pre-acclimation significantly reduced mortality of fish exposed to 420μg CuL-1. Cu pre-acclimation triggered the up-regulation of both enzyme activities and express levels of iNOS and COX-2 in spleen under 420μg CuL-1 exposure, resulting in remarkable reduction of Cu content and ROS in this tissue. Contrast to spleen, iNOS activity remained unchanged but the mRNA level of iNOS increased, and the mRNA level of COX-2 remained constant though COX-2 activity enhanced in head-kidney, suggesting iNOS and COX-2 may be modulated by Cu at a post-transcriptional level. In this process, NF-κB/IκBα signaling molecules may play a vital role in the transcriptional activation of inflammatory genes in both spleen and head-kidney. In conclusion, low Cu pre-acclimation alleviated high Cu induced immunotoxicity in spleen and head-kidney of large yellow croaker by enhancing the activities and mRNA levels of inflammatory genes.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
65
|
Liu Y, Wang X, Hu CAA. Therapeutic Potential of Amino Acids in Inflammatory Bowel Disease. Nutrients 2017; 9:nu9090920. [PMID: 28832517 PMCID: PMC5622680 DOI: 10.3390/nu9090920] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn’s disease, is a chronic relapsing inflammation of the gastrointestinal tract, and is difficult to treat. The pathophysiology of IBD is multifactorial and not completely understood, but genetic components, dysregulated immune responses, oxidative stress, and inflammatory mediators are known to be involved. Animal models of IBD can be chemically induced, and are used to study etiology and to evaluate potential treatments of IBD. Currently available IBD treatments can decrease the duration of active disease but because of their adverse effects, the search for novel therapeutic strategies that can restore intestinal homeostasis continues. This review summarizes and discusses what is currently known of the effects of amino acids on the reduction of inflammation, oxidative stress, and cell death in the gut when IBD is present. Recent studies in animal models have identified dietary amino acids that improve IBD, but amino acid supplementation may not be adequate to replace conventional therapy. The animal models used in dietary amino acid research in IBD are described.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
66
|
Vochyánová Z, Pokorná M, Rotrekl D, Smékal V, Fictum P, Suchý P, Gajdziok J, Šmejkal K, Hošek J. Prenylated flavonoid morusin protects against TNBS-induced colitis in rats. PLoS One 2017; 12:e0182464. [PMID: 28797051 PMCID: PMC5552281 DOI: 10.1371/journal.pone.0182464] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022] Open
Abstract
Morusin is a prenylated flavonoid isolated from the root bark of Morus alba. Many studies have shown the ability of flavonoids to act as anti-inflammatory agents. The aim of this study was to evaluate the effect of morusin on experimentally colitis induced by 2,4,6-trinitrobenzensulfonic acid in Wistar rats and to compare it with sulfasalazine, a drug conventionally used in the treatment of inflammatory bowel disease. Morusin was administered by gavage at doses of 12.5, 25, or 50 mg/kg/day for five days. The colonic tissue was evaluated macroscopically, histologically, and by performing immunodetection and zymographic analysis to determine the levels of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)], interleukin (IL)-1β, and transforming growth factor (TGF)-β1 and the activities of matrix metalloproteinases (MMP) 2 and 9. The tissue damage scores were significantly reduced with increasing dose of morusin, however efficacy was not demonstrated at the highest dose. At the dose of 12.5 mg/kg, morusin exerted therapeutic effectivity similar to that of sulfasalazine (50 mg/kg). This was associated with significant reduction of TGF-β1 levels and MMP2 and MMP9 activities, and slight reduction of IL-1β. Our results suggest that morusin possesses therapeutic potential for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zora Vochyánová
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail: (ZV); (JH)
| | - Marie Pokorná
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Dominik Rotrekl
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Václav Smékal
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Fictum
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Suchý
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail: (ZV); (JH)
| |
Collapse
|
67
|
Huangqin-Tang and Ingredients in Modulating the Pathogenesis of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7016468. [PMID: 28690663 PMCID: PMC5485339 DOI: 10.1155/2017/7016468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is the most common inflammatory bowel disease worldwide. Current therapies in UC cause limitations, and herb medicine provides an important choice for UC treatment. Huangqin-Tang (HQT) is a well-known classical traditional Chinese herbal formula and has been used in China for thousands of years. A large number of pharmacological studies demonstrated HQT and its ingredients to be effective in treating UC. Though the therapeutic effect has been evaluated, comprehensive up-to-date reviews in this field are not yet available. Here we aim to review our current understanding of HQT and its ingredients in treating UC and how the agents modulate the main pathogenesis of the disease, including the intestinal environment, immune imbalance, inflammatory pathways, and oxidative stress. The summary on this issue may provide better understanding of HQT and its ingredients in treating UC and possibly help in promoting its clinical application.
Collapse
|
68
|
Ghasemi-Pirbaluti M, Motaghi E, Bozorgi H. The effect of menthol on acute experimental colitis in rats. Eur J Pharmacol 2017; 805:101-107. [PMID: 28322843 DOI: 10.1016/j.ejphar.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 01/24/2023]
Abstract
Menthol is an aromatic compound with high antiinflammatory activity. The purpose of the current research is to investigate the effectiveness of menthol on acetic acid induced acute colitis in rats. Animals were injected with menthol (20 and 50 and 80mg/kg, i.p.) 24h prior to induction of colitis for 3 consecutive days. Menthol at medium and higher doses similar to dexamethasone as a reference drug significantly reduced body weight loss, macroscopic damage score, ulcer area, colon weight, colon length and improved hematocrit in rats with colitis. The histopathological examination also confirmed anti-colitic effects of menthol. Menthol also reduced significantly the colonic levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and myeloperoxidase (MPO) activity in inflamed colons. Thus, the findings of the current study provide evidence that menthol may be beneficial in patients suffering from acute ulcerative colitis.
Collapse
Affiliation(s)
| | - Ehsan Motaghi
- Department of Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Homan Bozorgi
- Department of Pharmacology, School of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
69
|
Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017; 22:E299. [PMID: 28212342 PMCID: PMC6155574 DOI: 10.3390/molecules22020299] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
Amentoflavone (C30H18O10) is a well-known biflavonoid occurring in many natural plants. This polyphenolic compound has been discovered to have some important bioactivities, including anti-inflammation, anti-oxidation, anti-diabetes, and anti-senescence effects on many important reactions in the cardiovascular and central nervous system, etc. Over 120 plants have been found to contain this bioactive component, such as Selaginellaceae, Cupressaceae, Euphorbiaceae, Podocarpaceae, and Calophyllaceae plant families. This review paper aims to profile amentoflavone on its plant sources, natural derivatives, pharmacology, and pharmacokinetics, and to highlight some existing issues and perspectives in the future.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
70
|
Yu B, Cai W, Zhang HH, Zhong YS, Fang J, Zhang WY, Mo L, Wang LC, Yu CH. Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:71-80. [PMID: 27916586 DOI: 10.1016/j.jep.2016.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella uncinata (Desv.) Spring, known as "Cuiyuncao", is a perennial herb widely distributed in the Southeast Asian countries. In the folk medicine, the local minority commonly use it to treat cough and asthma for centuries. AIM OF THE STUDY This study was carried out to investigate the protective mechanisms of total flavonoids from S. uncinata (SUF) on airway hyperresponsiveness, cytokine release and bitter taste receptors (T2Rs) signaling with emphasis on inflammatory responses in a rat model of ovalbumin (OVA)-induced asthma. MATERIALS AND METHODS Rats were sensitized and challenged with OVA to induce typical asthmatic reactions. Pathological changes of lung tissue were examined by HE staining. The serum levels of T cell-associated cytokines (IFN-γ, IL-4, IL-5 and IL-13), total IgE and OVA-specific IgE were determined by enzyme-linked immunosorbent assay (ELISA). Gene expressions of T2R10, IP3R1 and Orai1 in lung tissue were assayed by fluorescence quantitative real-time polymerase chain reaction (FQ-PCR) while protein expressions of NFAT1 and c-Myc were assayed by western blot analysis. The activation of SUF was investigated on tansgentic T2R10-GFP HEK293 cells. RESULTS SUF treatment attenuated airway hyperresponsiveness and goblet cell hyperplasia compared with OVA-challenged asthmatic rats. The serum levels of IL-4, IL-5 and IL-13 as well as total and OVA-specific IgE were decreased while serum IFN-γ was increased in SUF-treated rats. SUF treatment significantly up-regulated T2R10 gene expression, down-regulated IP3R1 and Orai1 gene expression. SUF further suppressed eotaxin, NFAT1 and c-Myc protein expression in lung tissues of OVA-challenged rats. CONCLUSIONS These results imply that SUF exerts anti-inflammatory function through the T2R10/IP3R1/NFAT1 dependent signaling pathway, and may warrant further evaluation as a possible agent for the treatment of asthma.
Collapse
Affiliation(s)
- Bing Yu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Cai
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-You Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li Mo
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Lu-Chen Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
71
|
He Y, Tan D, Mi Y, Zhou Q, Ji S. Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food Funct 2017; 8:2275-2282. [DOI: 10.1039/c6fo01823h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ACR increased the rate of nestin-positive cells implying that ACR caused cell damage, and EGCG decreased the rates of nestin-positive cells against ACR suggesting that EGCG may promote cell regeneration.
Collapse
Affiliation(s)
- Yin He
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Dehong Tan
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Yan Mi
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Qian Zhou
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| | - Shujuan Ji
- College of Food
- Shenyang Agricultural University
- Shenyang City 110866
- People's Republic of China
| |
Collapse
|
72
|
Araújo DFDS, Guerra GCB, Júnior RFDA, Antunes de Araújo A, Antonino de Assis PO, Nunes de Medeiros A, Formiga de Sousa YR, Pintado MME, Gálvez J, Queiroga RDCRDE. Goat whey ameliorates intestinal inflammation on acetic acid-induced colitis in rats. J Dairy Sci 2016; 99:9383-9394. [PMID: 27771081 DOI: 10.3168/jds.2016-10930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
Complementary or alternative medicine is of great interest for the treatment of inflammatory bowel disease, with the aim of ameliorating the side effects of the drugs commonly used or improving their efficacy. In this study, we evaluated the ability of goat whey to prevent intestinal inflammation in the experimental model of acetic acid-induced rats and compared it to sulfasalazine. Pretreatment with goat whey (1, 2, and 4g/kg) and sulfasalazine (250mg/kg) on colitic rats improved colonic inflammatory markers, including myeloperoxidase activity, leukotriene B4 levels, as well as the production of proinflammatory cytokines IL-1β and tumor necrosis factor-α. Furthermore, the administration of goat whey significantly reduced the colonic oxidative stress by reducing malondialdehyde levels and increased total glutathione content, a potent antioxidant peptide. The histological evaluation of the colonic specimens from colitic rats confirmed these beneficial effects, as goat whey preserved the colonic tissue, especially in those rats treated with the highest dose of goat whey or with sulfasalazine. The immunohistochemistry analysis of the colonic tissue evaluation also revealed a reduction in the expression of cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-9, together with an increased expression of suppressor of cytokine signaling-1. These results suggest that goat whey exerted a preventive effect against the intestinal damage induced by acetic acid, showing a similar efficacy to that shown by sulfasalazine, therefore making it a potential treatment for human inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil.
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil
| | | | | | | | | | - Julio Gálvez
- Centro de Investigación Biomédica en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | | |
Collapse
|
73
|
Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets. Transl Res 2016; 176:38-68. [PMID: 27220087 DOI: 10.1016/j.trsl.2016.04.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/17/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are the 2 major phenotypes of inflammatory bowel disease (IBD), which are influenced by a complex interplay of immunological and genetic elements, though the precise etiology still remains unknown. With IBD developing into a globally prevailing disease, there is a need to explore new targets and a thorough understanding of the pathophysiological differences between the healthy and diseased gut could unearth new therapeutic opportunities. In this review, we provide an overview of the major aspects of IBD pathogenesis and thereafter present a comprehensive analysis of the gut pathophysiology leading to a discussion on some of the most promising targets and biologic therapies currently being explored. These include various gut proteins (CXCL-10, GATA-3, NKG2D, CD98, microRNAs), immune cells recruited to the gut (mast cells, eosinophils, toll-like receptors 2, 4), dysregulated proinflammatory cytokines (interleukin-6, -13, -18, -21), and commensal microbiota (probiotics and fecal microbiota transplantation). We also evaluate some of the emerging nonconventional therapies being explored in IBD treatment focusing on the latest developments in stem cell research, oral targeting of the gut-associated lymphoid tissue, novel anti-inflammatory signaling pathway targeting, adenosine deaminase inhibition, and the beneficial effects of antioxidant and nutraceutical therapies. In addition, we highlight the growth of biologics and their targets in IBD by providing information on the preclinical and clinical development of over 60 biopharmaceuticals representing the state of the art in ulcerative colitis and Crohn's disease drug development.
Collapse
|
74
|
Xu Y, Dong H, Ge C, Gao Y, Liu H, Li W, Zhang C. CBLB502 administration protects gut mucosal tissue in ulcerative colitis by inhibiting inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:301. [PMID: 27668221 PMCID: PMC5009027 DOI: 10.21037/atm.2016.08.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a nonspecific inflammatory disease for which medications and therapeutic strategies have only been moderately successful. CBLB502, a toll-like receptor 5 (TLR5) agonist derived from Salmonella flagellin, exhibits anticancer and radioprotective activities via modulation of TLRs and the nuclear factor kappa B (NF-κB) signaling pathway and can protect against acute renal ischemic failure. In this study, we intend to examine the effects of CBLB502 on both TLR responses and the interleukin (IL) and NF-κB signaling pathways in UC treatment. METHODS The UC mouse model was prepared in BALB/c mice by administering 2,4,6-trinitrobenzene sulfonic acid (TNBS). CBLB502 was used as the therapeutic drug. After CBLB502 therapy, the IL and tumor necrosis factor-α (TNF-α) levels were measured by ELISA. Total RNA and protein of colon samples was extracted. RESULTS We found that CBLB502 had a distinctive therapeutic effect in the UC model. In control group animals, IL-10 expression in serum was 91.48±24.38 ng/mL; this was higher than in the model group (59.36±14.46 ng/mL, P<0.05) or the treatment group (54.29±5.83 ng/mL, P<0.05). In model group animals, the concentration of TNF-α in serum was 140.11±12.70 ng/mL, which was lower than protein levels in the control group (173.86±29.26 ng/mL, P<0.05). The mRNA levels of TLR1, 2, 3, 4, 6, 7, 8, and 9 in the CBLB502 treatment group were significantly lower than in the model group (P<0.05). Western blot revealed that CBLB502 also reduced NF-κB expression in the mouse colon, but that NF-κB expression was not significantly lower than the model group. CONCLUSIONS CBLB502 can reduce mucosal damage induced by TNBS and inhibit inflammation and TLR expression. The inhibition of UC by CBLB502 is strictly TLR-IL-dependent and is dose-dependent within the efficacious dose range. Therefore, our results suggested that CBLB502 might be a candidate drug for the treatment of UC.
Collapse
Affiliation(s)
- Yang Xu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
- Department of Gastroenterology, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China
| | - Hongxia Dong
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Changhui Ge
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
| | - Yan Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
| | - Haifeng Liu
- Department of Gastroenterology, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China
| | - Weiguang Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing 100850, China
- College of Life Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
75
|
Xi M, Wang X, Ge J, Yin D. N′-[(3-[benzyloxy]benzylidene]-3,4,5-trihydroxybenzohydrazide (1) protects mice against colitis induced by dextran sulfate sodium through inhibiting NFκB/IL-6/STAT3 pathway. Biochem Biophys Res Commun 2016; 477:290-6. [DOI: 10.1016/j.bbrc.2016.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 01/14/2023]
|
76
|
Salama SM, Gwaram NS, AlRashdi AS, Khalifa SAM, Abdulla MA, Ali HM, El-Seedi HR. A Zinc Morpholine Complex Prevents HCl/Ethanol-Induced Gastric Ulcers in a Rat Model. Sci Rep 2016; 6:29646. [PMID: 27460157 PMCID: PMC4962080 DOI: 10.1038/srep29646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Zinc is a naturally occurring element with roles in wound healing and rescuing tissue integrity, particularly in the gastrointestinal system, where it can be detected in the mucosal and submucosal layers. Zinc chelates are known to have beneficial effects on the gastrointestinal mucosa and in cases of gastric ulcer. We synthesized complexes of zinc featuring a heterocyclic amine binding amino acids then investigated their ability to enhance the gastric self-repair. Zinc-morpholine complex, Zn(L)SCN, namely showed strong free-radical scavenging, promotion of the DNA and RNA polymerases reconstruction and suppression of cell damage. The complex's mode of action is proposed to involve hydrogen bond formation via its bis(thiocyanato-k)zinc moiety. Zn(L)SCN complex had potent effects on gastric enzymatic activity both in vitro and in vivo. The complex disrupted the ulcerative process as demonstrated by changes in the intermediate metabolites of the oxidative pathway - specifically, reduction in the MDA levels and elevation of reduced glutathione together with an attenuation of oxidative DNA damage. Additionally, Zn(L)SCN restored the gastric mucosa, inhibited the production of pro-inflammatory cytokines (IL-6, TNF and the caspases), and preserved the gastric mucous balance. Zn(L)SCN thus exhibited anti-oxidative, anti-inflammatory and anti-apoptotic activities, all of which have cytoprotective effects on the gastric lining.
Collapse
Affiliation(s)
- Suzy M. Salama
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nura Suleiman Gwaram
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed S. AlRashdi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaden A. M. Khalifa
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Department of Otolaryngology-Head and Neck Surgery Kumamoto University 1-1-1 Honjo, Kumamoto, Japan
| | - Mahmood A. Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hapipah M. Ali
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Experimental Hematology, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123, Uppsala, Sweden
| |
Collapse
|
77
|
Lee S, An S. Antioxidant and Antiwrinkle Effects of Amentoflavone for Cosmetic Materials Development. ACTA ACUST UNITED AC 2016. [DOI: 10.20402/ajbc.2016.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
78
|
Lin L, Sun Y, Wang D, Zheng S, Zhang J, Zheng C. Celastrol Ameliorates Ulcerative Colitis-Related Colorectal Cancer in Mice via Suppressing Inflammatory Responses and Epithelial-Mesenchymal Transition. Front Pharmacol 2016; 6:320. [PMID: 26793111 PMCID: PMC4711309 DOI: 10.3389/fphar.2015.00320] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
Celastrol, also named as tripterine, is a pharmacologically active ingredient extracted from the root of traditional Chinese herb Tripterygium wilfordii Hook F with potent anti-inflammatory and anti-tumor activities. In the present study, we investigated the effects of celastrol on ulcerative colitis-related colorectal cancer (UC-CRC) as well as CRC in vivo and in vitro and explored its underlying mechanisms. UC-CRC model was induced in C57BL/6 mice by administration of azoxymethane (AOM) and dextran sodium sulfate (DSS). Colonic tumor xenograft models were developed in BALB/c-nu mice by subcutaneous injection with HCT116 and HT-29 cells. Intragastric administration of celastrol (2 mg/kg/d) for 14 weeks significantly increased the survival ratio and reduced the multiplicity of colonic neoplasms compared with AOM/DSS model mice. Mechanically, celastrol treatment significantly prevented AOM/DSS-induced up-regulation of expression levels of oncologic markers including mutated p53 and phospho-p53, β-catenin and proliferating cell nuclear antigen (PCNA). In addition, treatment with celastrol inhibited inflammatory responses, as indicated by the decrease of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, down-regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and inactivation of nuclear factor κB (NF-κB). Moreover, celastrol obviously suppressed epithelial-mesenchymal transition (EMT) through up-regulating E-cadherin and down-regulating N-cadherin, Vimentin and Snail. Additionally, we also demonstrated that celastrol inhibited human CRC cell proliferation and attenuated colonic xenograft tumor growth via reversing EMT. Taken together, celastrol could effectively ameliorate UC-CRC by suppressing inflammatory responses and EMT, suggesting a potential drug candidate for UC-CRC therapy.
Collapse
Affiliation(s)
- Lianjie Lin
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| | - Yan Sun
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| | - Dongxu Wang
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| | - Shihang Zheng
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| | - Jing Zhang
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| | - Changqing Zheng
- Department of Gastroenterology and Hepatology, Shengjing Hospital of China Medical University Shenyang, China
| |
Collapse
|
79
|
Garlic oil inhibits dextran sodium sulfate-induced ulcerative colitis in rats. Life Sci 2016; 146:40-51. [PMID: 26780265 DOI: 10.1016/j.lfs.2016.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
AIMS Garlic oil (GO) is used for centuries in folk medicine as a therapy for many diseases including inflammatory disorders. Recently, it has exhibited potent anti-oxidant, anti-inflammatory and immunomodulatory effects. Consequently, we evaluated the possible protective effect of GO in a rat model of colitis, induced by dextran sulfate sodium (DSS). MAIN METHODS Colitis induced by allowing rats a free access to drinking water containing 5% DSS for 7 days, from day 1 to day 7. GO was administered orally in doses of 25, 50 and 100mg/kg/day. Mesalazine used as a standard medication in a dose of 15 mg/kg/day. All animals fasted for 2h, 1h before and 1h after giving the treatment, which introduced daily for 7 days, from day 1 to day 7, at 10:00 to 11:00 A.M. Animal body, and colonic weights, colonic myeloperoxidase (MPO), and superoxide dismutase (SOD) activities, colonic reduced-glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-10 levels, macroscopic and microscopic changes of colonic tissues were evaluated. KEY FINDINGS GO treatment significantly suppressed the elevated colonic weight, MPO activity, MDA, TNF-α and IL-1β levels. However, it potentiated the decrease body weight, colonic SOD activity, GSH and IL-10 levels. Moreover, it ameliorated the marked macroscopic and microscopic changes of colonic mucosa in a dose dependent manner. SIGNIFICANCE Garlic oil inhibits DSS-induced colitis in rats may be through its anti-oxidant, anti-inflammatory and immunomodulatory properties. Therefore, GO could be a promising protective agent recommended for UC patients.
Collapse
|
80
|
An J, Li Z, Dong Y, Ren J, Huo J. Amentoflavone protects against psoriasis-like skin lesion through suppression of NF-κB-mediated inflammation and keratinocyte proliferation. Mol Cell Biochem 2016; 413:87-95. [DOI: 10.1007/s11010-015-2641-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022]
|
81
|
Yang J, Liu XX, Fan H, Tang Q, Shou ZX, Zuo DM, Zou Z, Xu M, Chen QY, Peng Y, Deng SJ, Liu YJ. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0140551. [PMID: 26469068 PMCID: PMC4607447 DOI: 10.1371/journal.pone.0140551] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Qing Tang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Peng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Zhang Z, Sun T, Niu JG, He ZQ, Liu Y, Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res 2015; 10:1125-33. [PMID: 26330838 PMCID: PMC4541246 DOI: 10.4103/1673-5374.160109] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2015] [Indexed: 12/01/2022] Open
Abstract
Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.
Collapse
Affiliation(s)
- Zhen Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhen-Quan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China ; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
83
|
Rizk YS, Fischer A, Cunha MDC, Rodrigues PO, Marques MCS, Matos MDFC, Kadri MCT, Carollo CA, Arruda CCPD. In vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 2015; 109:1050-6. [PMID: 25591109 PMCID: PMC4325620 DOI: 10.1590/0074-0276140312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/27/2014] [Indexed: 11/22/2022] Open
Abstract
This study is the first phytochemical investigation of Selaginella sellowii
and demonstrates the antileishmanial activity of the hydroethanolic extract
from this plant (SSHE), as well as of the biflavonoids amentoflavone and
robustaflavone, isolated from this species. The effects of these substances were
evaluated on intracellular amastigotes of Leishmania (Leishmania)
amazonensis, an aetiological agent of American cutaneous leishmaniasis.
SSHE was highly active against intracellular amastigotes [the half maximum inhibitory
concentration (IC50) = 20.2 µg/mL]. Fractionation of the extract led to the isolation
of the two bioflavonoids with the highest activity: amentoflavone, which was about
200 times more active (IC50 = 0.1 μg/mL) and less cytotoxic than SSHE (IC50 = 2.2 and
3 μg/mL, respectively on NIH/3T3 and J774.A1 cells), with a high selectivity index
(SI) (22 and 30), robustaflavone, which was also active against L.
amazonensis (IC50 = 2.8 µg/mL), but more cytotoxic, with IC50 = 25.5
µg/mL (SI = 9.1) on NIH/3T3 cells and IC50 = 3.1 µg/mL (SI = 1.1) on J774.A1 cells.
The production of nitric oxide (NO) was lower in cells treated with amentoflavone
(suggesting that NO does not contribute to the leishmanicidal mechanism in this
case), while NO release was higher after treatment with robustaflavone. S.
sellowii may be a potential source of biflavonoids that could provide
promising compounds for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Yasmin Silva Rizk
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Alice Fischer
- Laboratório de Farmacognosia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Marillin de Castro Cunha
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Patrik Oening Rodrigues
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Maria Carolina Silva Marques
- Laboratório de Microbiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Maria de Fátima Cepa Matos
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Mônica Cristina Toffoli Kadri
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Carlos Alexandre Carollo
- Laboratório de Farmacognosia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Carla Cardozo Pinto de Arruda
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| |
Collapse
|
84
|
Niu X, Zhang H, Li W, Wang Y, Mu Q, Wang X, He Z, Yao H. Protective effect of cavidine on acetic acid-induced murine colitis via regulating antioxidant, cytokine profile and NF-κB signal transduction pathways. Chem Biol Interact 2015; 239:34-45. [PMID: 26102009 DOI: 10.1016/j.cbi.2015.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis is an inflammatory disorder characterized by neutrophils infiltration, oxidative stress, upregulation of pro-inflammatory mediators and cytokines. Cavidine possesses anti-inflammatory activity and has been used to treat various inflammatory diseases but its effect on ulcerative colitis has not been previously explored. The present study aims to evaluate the effect of cavidine on acetic acid-induced ulcerative colitis in mice. Colitis mice induced by intra-rectal acetic acid (5%, v/v) administration received cavidine (1, 5 and 10mg/kg, i.g) or sulfasalazine (500mg/kg, i.g) for seven consecutive days. After euthanized by cervical dislocation, colonic segments of mice were excised for clinical, macroscopic, biochemical and histopathological examinations. Results suggested treatment with cavidine significantly decreased mortality rate, body weight loss, disease activity index (DAI), wet colon weight, macroscopic and histological score when compared with that of acetic acid-induced controls. In addition, administration of cavidine effectively modulated expressions of MPO, GSH, SOD and MDA. Furthermore cavidine inhibited the level of TNF-α and IL-6 in the serum and colon tissue in response to the regulation of p65 NF-κB protein expression. All these results indicated cavidine exerts marked protective effect in experimental colitis, possibly by regulating the expression of oxygen metabolites, NF-κB and subsequent pro-inflammatory cytokines production.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Hailin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Yu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingli Mu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huan Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
85
|
Xu BL, Zhang GJ, Ji YB. Active components alignment of Gegenqinlian decoction protects ulcerative colitis by attenuating inflammatory and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:253-260. [PMID: 25557032 DOI: 10.1016/j.jep.2014.12.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/16/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gegenqinlian Decoction (GQD) has been used as a folk remedy for gastrointestinal diseases in China over thousands of years. It has significant treatment efficacy for patients with inflammatory bowel disease (IBD). We analyzed and showed that the active components alignment of Gegenqinlian Decoction (ACAG) possesses broad pharmacological effects including analgesic, antipyretic, anti-inflammatory, antibacterial, antiviral and antidiarrhea, as well as the effect of adjusting gastrointestinal function in our preliminary experiments. However, the exact molecular mechanisms on how ACAG exerts these pharmacological effects still remain elusive. In the present study, the plausible pharmacological effects of ACAG on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats with TNBS/ethanol-induced colitis were used. The colonic wet weight, macroscopic and histological colon injury, superoxide dismutase (SOD), malonyldialdehyde (MDA), and inducible nitric oxide synthase (iNOS) activity were observed. Pro-inflammation cytokines were determined by ELISA methods, semi-quantitative RT-PCR and Immuno-histochemistry. RESULTS We showed administration of ACAG was able to improve colitis. This was manifested by a decreased in the score of macroscopic and histological colonic injury, by lowered colonic wet weight, accompanied by significant increased of SOD activity, and decreased of MDA and iNOS activities. The treatment also significantly reduced tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) levels in colon and serum as well as the colonic mRNA levels for several inflammatory cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), macrophage inflammatory protein-2 (MIP-2), intercellular adhesion molecule-1 (ICAM-1) and toll-like receptor 2, 4 (TLR2, TLR4). In addition, we also showed that ACAG was able to inhibit the activation and translocation of transcription factors, nuclear factor kappaBp65 (NF-κBp65) in colon. CONCLUSIONS Our results suggest that ACAG exhibits protective effect in TNBS-induced ulcerative colitis. We postulate that this might be due to its modulation of oxidant/anti-oxidant balance, downregulation of productions, expressions of pro-inflammatory cytokines and inhibition of NF-κBp65 signal transduction pathways.
Collapse
Affiliation(s)
- Bei-Lei Xu
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, Heilongjiang, PR China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, Heilongjiang, PR China
| | - Gui-Jun Zhang
- School of Chinese Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, Beijing, PR China.
| | - Yu-Bin Ji
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, Heilongjiang, PR China
| |
Collapse
|
86
|
Liao S, Ren Q, Yang C, Zhang T, Li J, Wang X, Qu X, Zhang X, Zhou Z, Zhang Z, Wang S. Liquid chromatography-tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1957-1966. [PMID: 25415840 DOI: 10.1021/jf5019615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Amentoflavone (AMF) is a biflavone found in many herbal dietary supplements. To investigate the pharmacokinetic profile of AMF in rats, a sensitive, simple, and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and used to monitor AMF and its conjugated metabolites in plasma. AMF was administered to rats by oral gavage (po), or by intravenous (iv) or intraperitoneal (ip) injection. Plasma samples (with apiolin as an internal standard) were liquid/liquid extracted after hydrolysis with β-glucuronidase/sulfatase in vitro. Following chromatographic separation on a C18 column with a methanol:water:formic acid (70:30:0.1, v/v/v) mobile phase, AMF and internal standard were determined by electrospray ionization in negative ion mode and their precursor-product ion pairs (m/z 537.1 → 374.9 and m/z 269.2 → 224.9, respectively) were used for measurement. This bioanalytical method was fully validated and showed good linearity (r(2) > 0.99), wide dynamic range (0.93-930 nmol/L), and favorable accuracy and precision. After iv or ip AMF (10 mg/kg) injection, 73.2% ± 6.29% and 70.2% ± 5.18% of the total AMF detected in plasma was present as conjugated metabolites. Furthermore, AMF and AMF conjugates showed similar time courses with no significant differences in the time to reach the maximum plasma concentration (tmax) and terminal half-life (t1/2) (p > 0.05). Following po AMF administration (300 mg/kg), 90.7% ± 8.3% of the total AMF was circulating as conjugated metabolites. When compared with iv administration (with dose correction), the bioavailability of po AMF was very low (0.04% ± 0.01% for free AMF; 0.16% ± 0.04% for conjugated AMF). Collectively, these data provided a preliminary pharmacokinetic profile for AMF that should inform further evaluations of its biological efficacy and preclinical development.
Collapse
Affiliation(s)
- Sha Liao
- Beijing Institute of Pharmacology and Toxicology , 27 Taiping Road, Haidian District, Beijing, 100850 P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Witalison EE, Cui X, Hofseth AB, Subramanian V, Causey CP, Thompson PR, Hofseth LJ. Inhibiting protein arginine deiminases has antioxidant consequences. J Pharmacol Exp Ther 2015; 353:64-70. [PMID: 25635139 DOI: 10.1124/jpet.115.222745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ulcerative colitis is a dynamic, idiopathic, chronic inflammatory condition that carries a high colon cancer risk. We previously showed that Cl-amidine, a small-molecule inhibitor of the protein arginine deiminases, suppresses colitis in mice. Because colitis is defined as inflammation of the colon associated with infiltration of white blood cells that release free radicals and citrullination is an inflammation-dependent process, we asked whether Cl-amidine has antioxidant properties. Here we show that colitis induced with azoxymethane via intraperitoneal injection + 2% dextran sulfate sodium in the drinking water is suppressed by Cl-amidine (also given in the drinking water). Inducible nitric oxide synthase, an inflammatory marker, was also downregulated in macrophages by Cl-amidine. Because epithelial cell DNA damage associated with colitis is at least in part a result of an oxidative burst from overactive leukocytes, we tested the hypothesis that Cl-amidine can inhibit leukocyte activation, as well as subsequent target epithelial cell DNA damage in vitro and in vivo. Results are consistent with this hypothesis, and because DNA damage is a procancerous mechanism, our data predict that Cl-amidine will not only suppress colitis, but we hypothesize that it may prevent colon cancer associated with colitis.
Collapse
Affiliation(s)
- Erin E Witalison
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Xiangli Cui
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Anne B Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Venkataraman Subramanian
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Corey P Causey
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Paul R Thompson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina (E.E.W., X.C., A.B.H., L.J.H.); Shanxi Medical University, Taiyuan, Shanxi, China (X.C.); Department of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida (V.S.); Department of Chemistry, University of North Florida, Jacksonville, Florida (C.P.C.); and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts (P.R.T.)
| |
Collapse
|
88
|
Medicherla K, Sahu BD, Kuncha M, Kumar JM, Sudhakar G, Sistla R. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food Funct 2015; 6:2984-95. [DOI: 10.1039/c5fo00405e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral administration of geraniol ameliorates DSS-induced ulcerative colitis in mice.
Collapse
Affiliation(s)
- Kanakaraju Medicherla
- Department of Human Genetics
- College of Science and Technology
- Andhra University
- Visakhapatnam-530003
- India
| | - Bidya Dhar Sahu
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Madhusudana Kuncha
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| | - Jerald Mahesh Kumar
- Animal House Facility
- CSIR-Centre for Cellular and Molecular Biology (CCMB)
- Hyderabad-500 007
- India
| | - Godi Sudhakar
- Department of Human Genetics
- College of Science and Technology
- Andhra University
- Visakhapatnam-530003
- India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division
- CSIR-Indian Institute of Chemical Technology (IICT)
- Hyderabad-500 007
- India
| |
Collapse
|
89
|
Yu FY, Huang SG, Zhang HY, Ye H, Chi HG, Zou Y, Lv RX, Zheng XB. Effects of baicalin in CD4 + CD29 + T cell subsets of ulcerative colitis patients. World J Gastroenterol 2014; 20:15299-309. [PMID: 25386078 PMCID: PMC4223263 DOI: 10.3748/wjg.v20.i41.15299] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/08/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the role of baicalin in ulcerative colitis (UC) with regard to the CD4(+)CD29(+) T helper cell, its surface markers and serum inflammatory cytokines. METHODS Flow cytometry was used to detect the percentage of CD4(+)CD29(+) cells in patients with UC. Real time polymerase chain reaction was used to detect expression of GATA-3, forkhead box P3, T-box expressed in T cells (T-bet), and retinoic acid-related orphan nuclear hormone receptor C (RORC). Western blotting was used to analyze expression of nuclear factor-κB (NF-κB) p65, phosphorylation of NF-κB (p-NF-κB) p65, STAT4, p-STAT4, STAT6 and p-STAT6. The concentrations of interferon-γ (IFN-γ), interleukin (IL)-4, IL-5, IL-6, IL-10 and TGF-β in serum were determined by ELISA assay. RESULTS The percentages of CD4(+)CD29(+) T cells were lower in treatment with 40 and 20 μmol/L baicalin than in the treatment of no baicalin. Treatment with 40 or 20 μmol/L baicalin significantly upregulated expression of IL-4, TGF-β1 and IL-10, increased p-STAT6/STAT6 ratio, but downregulated expression of IFN-γ, IL-5, IL-6, RORC, Foxp3 and T-bet, and decreased ratios of T-bet/GATA-3, p-STAT4/STAT4 and p-NF-κB/NF-κB compared to the treatment of no baicalin. CONCLUSION The results indicate that baicalin regulates immune balance and relieves the ulcerative colitis-induced inflammation reaction by promoting proliferation of CD4(+)CD29(+) cells and modulating immunosuppressive pathways.
Collapse
|
90
|
The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation. Int Immunopharmacol 2014; 23:294-303. [PMID: 25239813 DOI: 10.1016/j.intimp.2014.09.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/19/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Baicalin holds a protective effect on inflammatory responses in several diseases. However, its molecular mechanism of anti-inflammatory activity on ulcerative colitis (UC) remains unknown. The present study was conducted to verify whether the anti-inflammation effect of baicalin on experimental colitis is via inhibiting TLR4/NF-κB pathway activation. METHODS The inflammatory response in RAW264.7 cells was induced by LPS and in rats by intrarectal administration of TNBS. Western blot analysis was carried out to examine toll-like receptor 4 (TLR4), NF-κB, p-NF-κB p65, IκB and p-IκB protein expressions in cells. Furthermore, intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), cyclo-oxygenase-2 (Cox-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 levels in cell supernatant and rat serum were detected by appropriate kits. An immunohistochemical assay was applied to examine TNF-α and IL-1β protein expression in colon tissues and TLR4 and p-NF-κB p65 protein expressions in RAW264.7 cells. RESULTS Baicalin ameliorates the considered inflammatory symptoms of induced colitis. It could also down-regulate pro-inflammatory mediators in the colon mucosa. The decline in the production of pro-inflammatory cytokines was correlated with the decrease in mucosal TLR4 protein expression. The expression of p-NF-κB p65 protein was significantly decreased, which correlated with a similar decrease in p-IκB protein. Consistent with the in vivo results, baicalin blocked LPS-stimulated nuclear translocation of p-NF-κB p65 in mouse macrophage RAW264.7 cells. CONCLUSIONS The present study indicates for the first time that the mechanism for baicalin on abrogating experimental colitis was targeted inhibition of the TLR4/NF-κB pathway activation.
Collapse
|
91
|
Leonurine Exerts Anti-Inflammatory Effect by Regulating Inflammatory Signaling Pathways and Cytokines in LPS-Induced Mouse Mastitis. Inflammation 2014; 38:79-88. [DOI: 10.1007/s10753-014-0009-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|