51
|
Karnachuk OV, Panova IA, Panov VL, Ikkert OP, Kadnikov VV, Rusanov II, Avakyan MR, Glukhova LB, Lukina AP, Rakitin AV, Begmatov S, Beletsky AV, Pimenov NV, Ravin NV. Active Sulfate-Reducing Bacterial Community in the Camel Gut. Microorganisms 2023; 11:microorganisms11020401. [PMID: 36838366 PMCID: PMC9963290 DOI: 10.3390/microorganisms11020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The diversity and activity of sulfate-reducing bacteria (SRB) in the camel gut remains largely unexplored. An abundant SRB community has been previously revealed in the feces of Bactrian camels (Camelus bactrianus). This study aims to combine the 16S rRNA gene profiling, sulfate reduction rate (SRR) measurement with a radioactive tracer, and targeted cultivation to shed light on SRB activity in the camel gut. Fresh feces of 55 domestic Bactrian camels grazing freely on semi-arid mountain pastures in the Kosh-Agach district of the Russian Altai area were analyzed. Feces were sampled in early winter at an ambient temperature of -15 °C, which prevented possible contamination. SRR values measured with a radioactive tracer in feces were relatively high and ranged from 0.018 to 0.168 nmol S cm-3 day-1. The 16S rRNA gene profiles revealed the presence of Gram-negative Desulfovibrionaceae and spore-forming Desulfotomaculaceae. Targeted isolation allowed us to obtain four pure culture isolates belonging to Desulfovibrio and Desulforamulus. An active SRB community may affect the iron and copper availability in the camel intestine due to metal ions precipitation in the form of sparingly soluble sulfides. The copper-iron sulfide, chalcopyrite (CuFeS2), was detected by X-ray diffraction in 36 out of 55 analyzed camel feces. In semi-arid areas, gypsum, like other evaporite sulfates, can be used as a solid-phase electron acceptor for sulfate reduction in the camel gastrointestinal tract.
Collapse
Affiliation(s)
- Olga V. Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence:
| | - Inna A. Panova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Vasilii L. Panov
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Olga P. Ikkert
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Igor I. Rusanov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marat R. Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Lubov B. Glukhova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Anastasia P. Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Anatolii V. Rakitin
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| | - Nikolai V. Pimenov
- Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia
| |
Collapse
|
52
|
Zhang Z, Li J, Jiang S, Xu M, Ma T, Sun Z, Zhang J. Lactobacillus fermentum HNU312 alleviated oxidative damage and behavioural abnormalities during brain development in early life induced by chronic lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114543. [PMID: 36640575 DOI: 10.1016/j.ecoenv.2023.114543] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Lead exposure is a global public health safety issue that severely disrupts brain development and causes damage to the nervous system in early life. Probiotics and gut microbes have been highlighted for their critical roles in mitigating lead toxicity. However, the underlying mechanisms by which they work yet to be fully explored. Here, we designed a two-stage experiment using the probiotic Lactobacillus fermentum HNU312 (Lf312) to uncover how probiotics alleviate lead toxicity to the brain during early life. First, we explored the tolerance and adsorption of Lf312 to lead in vitro. Second, the adsorption capacity of the strain was determined and confirmed in vivo. The shotgun metagenome sequencing showed lead exposure-induced imbalance and dysfunction of the gut microbiome. In contrast, Lf312 intake significantly modulated the structure of the microbiome, increased the abundance of beneficial bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and upregulated function-related metabolic pathways such as antioxidants. Notably, Lf312 enhanced the integrity of the blood-brain barrier by increasing the levels of SCFAs in the gut, alleviated inflammation in the brain, and ultimately improved anxiety-like and depression-like behaviours induced by lead exposure in mice. Subsequently, the effective mechanism was confirmed, highlighting that Lf312 worked through integrated strategies, including ionic adsorption and microbiota-gut-brain axis regulation. Collectively, this work elucidated the mechanism by which the gut microbiota mitigates the toxic effects of lead in the brain and provides preventive measures and intervention measures for brain damage due to mass lead poisoning in children.
Collapse
Affiliation(s)
- Zeng Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Jiahe Li
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Meng Xu
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China
| | - Teng Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C., Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs China, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Jiachao Zhang
- College of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, Hainan, China; One Health Institute, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
53
|
Prakash O, Mostafa A, Im S, Song YC, Kang S, Kim DH. Enhanced anaerobic treatment of sulfate-rich wastewater by electrical voltage application. BIORESOURCE TECHNOLOGY 2023; 369:128430. [PMID: 36464001 DOI: 10.1016/j.biortech.2022.128430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Treatment of sulfate-rich wastewater with high methane recovery is a major concern due to sulfide inhibition. Here, an electrical voltage (EV) aims to enhance methanogenesis and sulfidogenesis to treat sulfate-rich wastewater. Two (control and EV-applied) reactors were operated with a gradual decrease in chemical oxygen demand (COD)/SO42- ratios (CSR). EV-applied reactor (EVR) demonstrated an increase of ∼30 % in methane production and ∼40 % in sulfate removal, compared to the control till CSR of 2.0. At CSR 1.0, the control failed, while EVR still exhibited a stable performance of 50 % COD-methane recovery. Microbial community results showed that the relative abundance of sulfate-reducing bacteria in EVR was 1.5 times higher than the control. Furthermore, higher relative abundance of dissimilatory sulfate reductase (>50 %) and Ni/Fe hydrogenase (x15) genes demonstrated an improved tolerance against H2S toxicity. This study highlights the importance of EV application by minimizing the byproduct inhibition in sulfate-rich wastewater.
Collapse
Affiliation(s)
- Om Prakash
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Alsayed Mostafa
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seongwon Im
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Hoon Kim
- Department of Smart-city Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| |
Collapse
|
54
|
Intestinal gas production by the gut microbiota: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
55
|
Desulfovibrio fairfieldensis-Derived Outer Membrane Vesicles Damage Epithelial Barrier and Induce Inflammation and Pyroptosis in Macrophages. Cells 2022; 12:cells12010089. [PMID: 36611884 PMCID: PMC9818291 DOI: 10.3390/cells12010089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Sulfate-reducing bacteria Desulfovibrio fairfieldensis is an opportunistic pathogen that widely exists in the human intestine and can cause severe infectious diseases. However, the mechanisms contributing to its pathogenesis remain of great interest. In this study, we aim to investigate the outer membrane vesicles (OMVs) secreted by D. fairfieldensis and their pathogenic effect. The OMVs separated by ultracentrifugation were spherical and displayed a characteristic bilayer lipid structure observed by transmission electron microscopy, with an average hydrodynamic diameter of 75 nm measurement using the particle size analyzer. We identified 1496 and 916 proteins from D. fairfieldensis and its OMVs using label-free non-target quantitative proteomics, respectively. The 560 co-expressed proteins could participate in bacterial life activities by function prediction. The translocation protein TolB, which participates in OMVs biogenesis and transporting toxins was highly expressed in OMVs. The OMVs inhibited the expression of tight junction proteins OCCLUDIN and ZO-1 in human colonic epithelial cells (Caco-2). The OMVs decreased the cell viability of monocyte macrophages (THP-1-Mφ) and activated various inflammatory factors secretion, including interferon-γ (IFN-γ), tumor necrosis factor (TNF-α), and many interleukins. Further, we found the OMVs induced the expression of cleaved-gasdermin D, caspase-1, and c-IL-1β and caused pyroptosis in THP-1-Mφ cells. Taken together, these data reveal that the D. fairfieldensis OMVs can damage the intestinal epithelial barrier and activate intrinsic inflammation.
Collapse
|
56
|
Aalam SMM, Crasta DN, Roy P, Miller AL, Gamb SI, Johnson S, Till LM, Chen J, Kashyap P, Kannan N. Genesis of fecal floatation is causally linked to gut microbial colonization in mice. Sci Rep 2022; 12:18109. [PMID: 36302811 PMCID: PMC9613883 DOI: 10.1038/s41598-022-22626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
The origin of fecal floatation phenomenon remains poorly understood. Following our serendipitous discovery of differences in buoyancy of feces from germ-free and conventional mice, we characterized microbial and physical properties of feces from germ-free and gut-colonized (conventional and conventionalized) mice. The gut-colonization associated differences were assessed in feces using DNA, bacterial-PCR, scanning electron microscopy, FACS, thermogravimetry and pycnometry. Based on the differences in buoyancy of feces, we developed levô in fimo test (LIFT) to distinguish sinking feces (sinkers) of germ-free mice from floating feces (floaters) of gut-colonized mice. By simultaneous tracking of microbiota densities and gut colonization kinetics in fecal transplanted mice, we provide first direct evidence of causal relationship between gut microbial colonization and fecal floatation. Rare discordance in LIFT and microbiota density indicated that enrichment of gasogenic gut colonizers may be necessary for fecal floatation. Finally, fecal metagenomics analysis of 'floaters' from conventional and syngeneic fecal transplanted mice identified colonization of > 10 gasogenic bacterial species including highly prevalent B. ovatus, an anaerobic commensal bacteria linked with flatulence and intestinal bowel diseases. The findings reported here will improve our understanding of food microbial biotransformation and gut microbial regulators of fecal floatation in human health and disease.
Collapse
Affiliation(s)
- Syed Mohammed Musheer Aalam
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Daphne Norma Crasta
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - Pooja Roy
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA
| | - A. Lee Miller
- grid.66875.3a0000 0004 0459 167XDepartment of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Scott I. Gamb
- grid.66875.3a0000 0004 0459 167XMicroscopy and Cell Analysis Core, Mayo Clinic, Rochester, MN 55905 USA
| | - Stephen Johnson
- grid.66875.3a0000 0004 0459 167XDivision of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Lisa M. Till
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jun Chen
- grid.66875.3a0000 0004 0459 167XDivision of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Purna Kashyap
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology, Mayo Clinic, Rochester, MN 55905 USA
| | - Nagarajan Kannan
- grid.66875.3a0000 0004 0459 167XDivision of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
57
|
Possible Processes and Mechanisms of Hexachlorobenzene Decomposition by the Selected Comamonas testosteroni Bacterial Strains. Processes (Basel) 2022. [DOI: 10.3390/pr10112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The bacterial destructing activity toward pesticides has been the focus of research in the last few decades. Hexachlorobenzene is included in the organochlorine pesticides group that are prohibited for use. However, large hexachlorobenzene amounts are still concentrated in the soil, stressing the relevance of research on hexachlorobenzene-destroying bacteria. Methods: The ability to destroy hexachlorobenzene by Comamonas testosteroni UCM B-400, B-401, B-213 strains was investigated and established. Bacteria were cultivated (7 days at 28 °C) in mineral Luria-Bertrani (LB) medium with three hexachlorobenzene doses: 10, 20, 50 mg/L. The hexachlorobenzene concentrations were recorded by a gas chromatography method. Results: The results showed that C. testosteroni UCM B-400, B-401 have high destructive activity toward hexachlorobenzene. The highest (50 mg/L) initial concentration decreased to 41.5 and 43.8%, respectively, for C. testosteroni UCM B-400, B-401. The unadapted C. testosteroni UCM B-213 was tolerant to hexachlorobenzene (cell titers after cultivating with 10.0, 20.0, 50.0 mg/mL were higher compared to initial titer), but had a low-destructing activity level (two times less than B-400 and B-401). Conclusions: Bacterial strains C. testosteroni UCM B-400, B-401 can be seen as a potential soil bioremediation from hexachlorobenzene pollution.
Collapse
|
58
|
Chen SY, Zhou QYJ, Chen L, Liao X, Li R, Xie T. The Aurantii Fructus Immaturus flavonoid extract alleviates inflammation and modulate gut microbiota in DSS-induced colitis mice. Front Nutr 2022; 9:1013899. [PMID: 36276817 PMCID: PMC9581122 DOI: 10.3389/fnut.2022.1013899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing immune-mediated disease that always leads to a progressive loss of intestinal function. Therefore, it is important to find potential therapeutic drugs. This study was conducted to elucidate the effect of Aurantii Fructus immaturus flavonoid extract (AFI, 8% neohesperidin, 10% naringin) on DSS-induced intestinal inflammation and the gut microbiome. To explore the mechanism of action by which AFI protects against intestinal inflammation, a total of 50 mice were randomly divided into 5 groups [CG (control group), MG (model group), AFI low dose, AFI middle dose, and AFI high dose] and received 2.5% DSS for 7 days. Then, mice in the AFI groups were orally administered different doses of AFI for 16 days. The results showed that, compared with the MG group, the food intake and body weight were increased in the AFI groups, but the water intake was lower. Additionally, AFI significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), and colon pathological damage. The levels of IL-6, IL-1β and TNF-α in serum and colon tissue were significantly decreased. The diversity and abundance of the intestinal microbiota in the AFI group were decreased. The relative abundance of Bacteroidota was increased, and the relative abundance of Firmicutes was decreased. AFI plays an important role in alleviating DSS-induced intestinal inflammation and regulating Oscillospira, Prevotellaceae and Lachnospiraceae in the intestine at low, medium and high doses, respectively. This report is a pioneer in the assessment of AFI. This study not only demonstrated the anti-inflammatory activity of AFI but also identified the microbiota regulated by different concentrations of AFI.
Collapse
Affiliation(s)
- Si-Yuan Chen
- The First Hospital of Hunan University of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Yi-Jun Zhou
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, China,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Lin Chen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xin Liao
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China,Hunan Yueyang Maternal & Child Health-Care Hospital, Yueyang, China,*Correspondence: Ran Li,
| | - Tao Xie
- Changsha Traditional Chinese Medicine Hospital, Changsha, China,Tao Xie,
| |
Collapse
|
59
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
60
|
Yang J, Wang T, Lin G, Li M, Zhang Y, Mai K. The Assessment of Dietary Organic Zinc on Zinc Homeostasis, Antioxidant Capacity, Immune Response, Glycolysis and Intestinal Microbiota in White Shrimp ( Litopenaeus vannamei Boone, 1931). Antioxidants (Basel) 2022; 11:1492. [PMID: 36009211 PMCID: PMC9405169 DOI: 10.3390/antiox11081492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to assess dietary organic zinc on zinc homeostasis, antioxidant capacity, immune response, glycolysis and intestinal microbiota in white shrimp (Litopenaeus vannamei Boone, 1931). Six experimental diets were formulated: Control, zinc free; S120, 120 mg·kg-1 zinc from ZnSO4·7H2O added into control diet; O30, O60, O90 and O120, 30, 60, 90 and 120 mg·kg-1 zinc from Zn-proteinate added into control diet, respectively. The results showed that organic zinc significantly promoted zinc content and gene expression of ZnT1, ZIP11 and MT in the hepatopancreas and enhanced antioxidant capacity and immunity (in terms of increased activities of T-SOD, Cu/Zn SOD, PO, LZM, decreased content of MDA, upregulated expressions of GST, G6PDH, ProPO, LZM and Hemo, and increased resistance to Vibrio parahaemolyticus). Organic zinc significantly upregulated GluT1 expression in the intestine, increased glucose content of plasma and GCK, PFK and PDH activities of hepatopancreas, and decreased pyruvate content of hepatopancreas. Organic zinc improved intestinal microbiota communities, increased the abundance of potentially beneficial bacteria and decreased the abundance of potential pathogens. Inorganic zinc (S120) also had positive effects, but organic zinc (as low as O60) could achieve better effects. Overall, organic zinc had a higher bioavailability and was a more beneficial zinc resource than inorganic zinc in shrimp feeds.
Collapse
Affiliation(s)
- Jinzhu Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Tiantian Wang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Mingzhu Li
- College of Agriculture, Ludong University, Yantai 264025, China;
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (J.Y.); (T.W.); (K.M.)
| |
Collapse
|
61
|
Zhong Q, Chen JJ, Wang Y, Shao WH, Zhou CJ, Xie P. Differential Gut Microbiota Compositions Related With the Severity of Major Depressive Disorder. Front Cell Infect Microbiol 2022; 12:907239. [PMID: 35899051 PMCID: PMC9309346 DOI: 10.3389/fcimb.2022.907239] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Increasing evidence shows a close relationship between gut microbiota and major depressive disorder (MDD), but the specific mechanisms remain unknown. This study was conducted to explore differential gut microbiota compositions related to the severity of MDD. Methods Healthy controls (HC) (n = 131) and MDD patients (n = 130) were included. MDD patients with Hamilton Depression Rating Scale (HDRS) score <25 and ≥25 were assigned into moderate (n = 72) and severe (n = 58) MDD groups, respectively. Univariate and multivariate analyses were used to analyze the gut microbiota compositions at the genus level. Results Thirty-six and 27 differential genera were identified in moderate and severe MDD patients, respectively. The differential genera in moderate and severe MDD patients mainly belonged to three (Firmicutes, Actinobacteriota, and Bacteroidota) and two phyla (Firmicutes and Bacteroidota), respectively. One specific covarying network from phylum Actinobacteriota was identified in moderate MDD patients. In addition, five genera (Collinsella, Eggerthella, Alistipes, Faecalibacterium, and Flavonifractor) from the shared differential genera by two MDD groups had a fair efficacy in diagnosing MDD from HC (AUC = 0.786). Conclusions Our results were helpful for further exploring the role of gut microbiota in the pathogenesis of depression and developing objective diagnostic methods for MDD.
Collapse
Affiliation(s)
- Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-hua Shao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan-juan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Peng Xie,
| |
Collapse
|
62
|
Schipke J, Brandenberger C, Vital M, Mühlfeld C. Starch and Fiber Contents of Purified Control Diets Differentially Affect Hepatic Lipid Homeostasis and Gut Microbiota Composition. Front Nutr 2022; 9:915082. [PMID: 35873446 PMCID: PMC9301012 DOI: 10.3389/fnut.2022.915082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background Interpretation of results from diet-induced-obesity (DIO) studies critically depends on control conditions. Grain-based chows are optimized for rodent nutrition but do not match the defined composition of purified diets used for DIO, severely limiting the comparability. Purified control diets are recommended but often contain high starch and only minor fiber amounts. It is unknown whether this composition leads to metabolic alterations compared with chow and whether the addition of refined fibers at the expense of starch affects these changes. Methods In this experiment, 6-week-old C57BL/6N mice were fed (i) a conventional purified control diet (high-starch, low-fiber; Puri-starch), (ii) an alternative, custom-made purified control diet containing pectin and inulin (medium-starch, higher-fiber; Puri-fiber), or (iii) grain-based chow for 30 weeks (N = 8–10). Results Puri-starch feeding resulted in significantly elevated levels of plasma insulin (p = 0.004), cholesterol (p < 0.001), and transaminases (AST p = 0.002, ALT p = 0.001), hepatic de novo lipogenesis and liver steatosis, and an altered gut microbiota composition compared with chow-fed mice. In contrast, Puri-fiber exerted only minor effects on systemic parameters and liver lipid homeostasis, and promoted a distinct gut microbiota composition. Conclusion Carbohydrate-rich purified diets trigger a metabolic status possibly masking pathological effects of nutrients under study, restricting its use as control condition. The addition of refined fibers is suited to create purified, yet physiological control diets for DIO research.
Collapse
Affiliation(s)
- Julia Schipke
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- *Correspondence: Julia Schipke
| | - Christina Brandenberger
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marius Vital
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Christian Mühlfeld
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
63
|
Zhang L, Jonscher KR, Zhang Z, Xiong Y, Mueller RS, Friedman JE, Pan C. Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes. Nat Commun 2022; 13:3551. [PMID: 35729161 PMCID: PMC9213500 DOI: 10.1038/s41467-022-31227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The immune system of some genetically susceptible children can be triggered by certain environmental factors to produce islet autoantibodies (IA) against pancreatic β cells, which greatly increases their risk for Type-1 diabetes. An environmental factor under active investigation is the gut microbiome due to its important role in immune system education. Here, we study gut metagenomes that are de-novo-assembled in 887 at-risk children in the Environmental Determinants of Diabetes in the Young (TEDDY) project. Our results reveal a small set of core protein families, present in >50% of the subjects, which account for 64% of the sequencing reads. Time-series binning generates 21,536 high-quality metagenome-assembled genomes (MAGs) from 883 species, including 176 species that hitherto have no MAG representation in previous comprehensive human microbiome surveys. IA seroconversion is positively associated with 2373 MAGs and negatively with 1549 MAGs. Comparative genomics analysis identifies lipopolysaccharides biosynthesis in Bacteroides MAGs and sulfate reduction in Anaerostipes MAGs as functional signatures of MAGs with positive IA-association. The functional signatures in the MAGs with negative IA-association include carbohydrate degradation in lactic acid bacteria MAGs and nitrate reduction in Escherichia MAGs. Overall, our results show a distinct set of gut microorganisms associated with IA seroconversion and uncovered the functional genomics signatures of these IA-associated microorganisms.
Collapse
Affiliation(s)
- Li Zhang
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Karen R Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zuyuan Zhang
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| | - Yi Xiong
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chongle Pan
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA. .,School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
64
|
Png CW, Chua YK, Law JH, Zhang Y, Tan KK. Alterations in co-abundant bacteriome in colorectal cancer and its persistence after surgery: a pilot study. Sci Rep 2022; 12:9829. [PMID: 35701595 PMCID: PMC9198081 DOI: 10.1038/s41598-022-14203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in the role of gut microbiome in colorectal cancer (CRC), ranging from screening to disease recurrence. Our study aims to identify microbial markers characteristic of CRC and to examine if changes in bacteriome persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for analysis by bacterial 16S rRNA gene sequencing. Bacterial richness and diversity were reduced, while pro-carcinogenic bacteria such as Bacteroides fragilis and Odoribacter splanchnicus were increased in CRC patients compared to NC group. These differences were no longer observed after surgery. Comparison between pre-op and post-op CRC showed increased abundance of probiotic bacteria after surgery. Concomitantly, bacteria associated with CRC progression were observed to have increased after surgery, implying persistent dysbiosis. In addition, functional pathway predictions based on the bacterial 16S rRNA gene data showed that various pathways were differentially enriched in CRC compared to NC. Microbiome signatures characteristic of CRC comprise altered bacterial composition. Elements of these dysbiotic signatures persists even after surgery, suggesting possible field-change in remnant non-diseased colon. Future studies should involve a larger sample size with microbiome data collected at multiple time points after surgery to examine if these dysbiotic patterns truly persist and also correlate with disease outcomes.
Collapse
Affiliation(s)
- Chin-Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong-Kang Chua
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jia-Hao Law
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
65
|
A Whiff of Sulfur: One Wind a Day Keeps the Doctor Away. Antioxidants (Basel) 2022; 11:antiox11061036. [PMID: 35739933 PMCID: PMC9219989 DOI: 10.3390/antiox11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/30/2022] Open
Abstract
Reactive Sulfur Species (RSS), such as allicin from garlic or sulforaphane from broccoli, are fre-quently associated with biological activities and possible health benefits in animals and humans. Among these Organic Sulfur Compounds (OSCs) found in many plants and fungi, the Volatile Sulfur Compounds (VSCs) feature prominently, not only because of their often-pungent smell, but also because they are able to access places which solids and solutions cannot reach that easily. Indeed, inorganic RSS such as hydrogen sulfide (H2S) and sulfur dioxide (SO2) can be used to lit-erally fumigate entire rooms and areas. Similarly, metabolites of garlic, such as allyl methyl sulfide (AMS), are formed metabolically in humans in lower concentrations and reach the airways from inside the body as part of one’s breath. Curiously, H2S is also formed in the gastrointestinal tract by gut bacteria, and the question of if and for which purpose this gas then crosses the barriers and enters the body is indeed a delicate matter for equally delicate studies. In any case, nature is surprisingly rich in such VSCs, as fruits (for instance, the infamous durian) demonstrate, and therefore these VSCs represent a promising group of compounds for further studies.
Collapse
|
66
|
Xie J, Wang Y, Zhong Q, Bai SJ, Zhou CJ, Tian T, Chen JJ. Associations Between Disordered Microbial Metabolites and Changes of Neurotransmitters in Depressed Mice. Front Cell Infect Microbiol 2022; 12:906303. [PMID: 35669116 PMCID: PMC9163491 DOI: 10.3389/fcimb.2022.906303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Backgrounds Many pieces of evidence demonstrated that there were close relationships between gut microbiota and depression. However, the specific molecular mechanisms were still unknown. Here, using targeted metabolomics, this study was conducted to explore the relationships between microbial metabolites in feces and neurotransmitters in prefrontal cortex of depressed mice. Methods Chronic unpredictable mild stress (CUMS) model of depression was built in this study. Targeted liquid chromatography-mass spectrometry analysis was used to detect the microbial metabolites in feces and neurotransmitters in prefrontal cortex of mice. Both univariate and multivariate statistical analyses were applied to identify the differential microbial metabolites and neurotransmitters and explore relationships between them. Results Ninety-eight differential microbial metabolites (mainly belonged to amino acids, fatty acids, and bile acids) and 11 differential neurotransmitters (belonged to tryptophan pathway, GABAergic pathway, and catecholaminergic pathway) were identified. Five affected amino acid-related metabolic pathways were found in depressed mice. The 19 differential microbial metabolites and 10 differential neurotransmitters were found to be significantly correlated with depressive-like behaviors. The two differential neurotransmitters (tyrosine and glutamate) and differential microbial metabolites belonged to amino acids had greater contributions to the overall correlations between microbial metabolites and neurotransmitters. In addition, the significantly decreased L-tyrosine as microbial metabolites and tyrosine as neurotransmitter had the significantly positive correlation (r = 0.681, p = 0.0009). Conclusions These results indicated that CUMS-induced disturbances of microbial metabolites (especially amino acids) might affect the levels of neurotransmitters in prefrontal cortex and then caused the onset of depression. Our findings could broaden the understanding of how gut microbiota was involved in the onset of depression.
Collapse
Affiliation(s)
- Jing Xie
- Department of Endocrinology, The Fourth People’s Hospital of Chongqing, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shun-jie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan-juan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tian
- Department of Neurology, Guizhou Medical University Affiliated Hospital, Guizhou, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
67
|
Dong J, Ping L, Zhang K, Tang H, Liu J, Liu D, Zhao L, Evivie SE, Li B, Huo G. Immunomodulatory effects of mixed Lactobacillus plantarum on lipopolysaccharide-induced intestinal injury in mice. Food Funct 2022; 13:4914-4929. [PMID: 35395665 DOI: 10.1039/d1fo04204a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intestine is the largest digestive and immune organ in the human body, with an intact intestinal mucosal barrier. Lactobacillus plantarum is an important strain of probiotics in the intestine for boosting intestinal immunity to defend against intestinal injury. In the lipopolysaccharide-induced intestinal injury model, mixed L. plantarum (L. plantarum KLDS 1.0318, L. plantarum KLDS 1.0344, and L. plantarum KLDS 1.0386) was suggested to boost intestinal immunity. In detail, compared with LPS-induced mice, mice in the mixed L. plantarum group showed significantly reduced intestine (jejunum, ileum, and colon) tissue injury, pro-inflammatory cytokine (TNF-α, IL-6 and IL-12) levels, myeloperoxidase activities, and serum D-lactate (P < 0.05) content. Moreover, the mixed L. plantarum significantly increased the number of immunocytes (CD4+ T cells, IgA plasma cells) and the expression of tight junction proteins (Claudin1 and Occludin). The results also showed that the mixed L. plantarum significantly down-regulated (P < 0.05) the intestinal protein expression of TLR4, p-IκB, and NF-κB p65. The mixed L. plantarum group increased the relative abundance of the genera, including Lactobacillus, Lachnoclostridium, and Desulfovibrio, which are related to improving the levels of SCFAs (acetic acid, butyric acid) and total bile acid (P < 0.05). Overall, these results indicated that the mixed L. plantarum had great functionality in reducing LPS-induced intestinal injury.
Collapse
Affiliation(s)
- Jiahuan Dong
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Lijun Ping
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Jie Liu
- Beijing Technology and Business University, Beijing 100048, China
| | - Deyu Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Li Zhao
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria.,Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
68
|
Norepinephrine induces growth of Desulfovibrio vulgaris in an iron dependent manner. Anaerobe 2022; 75:102582. [DOI: 10.1016/j.anaerobe.2022.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
|
69
|
Wolf PG, Cowley ES, Breister A, Matatov S, Lucio L, Polak P, Ridlon JM, Gaskins HR, Anantharaman K. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. MICROBIOME 2022; 10:64. [PMID: 35440042 PMCID: PMC9016944 DOI: 10.1186/s40168-022-01242-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah Matatov
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Luke Lucio
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paige Polak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
70
|
Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM. Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. ADMET AND DMPK 2022; 10:75-87. [PMID: 35360671 PMCID: PMC8963578 DOI: 10.5599/admet.1053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Lactobacilli are the most common probiotics used in food and other industries because of their capability of producing bacteriocins. Bacteriocins are compounds that are used to kill pathogenic microorganisms. As most bacteria have become resistant to synthetic antibacterial tools, the importance of using probiotics as antibacterial agents has increased. This work was done to check the bacteriocin effect on some common pathogens and the influence of mutation on the bacteriocin activity of Lactobacilli was also investigated. Four strains were isolated, identified from meat and pickles samples via culturing methods, staining, biochemical tests, and ribotyping. Preliminary tests, including Gram staining and catalase test, were done for the confirmation of Lactobacillus species. All strains were gram-positive and catalase-negative. Antibacterial activity was checked against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli, and Salmonella enteritis via agar well diffusion method. The mutations were done using ethidium bromide and the influence of wild and mutants were also checked. Interestingly, mutants developed more virulence than wild ones. It was also observed that they all were sensitive to pepsin. Protein estimation was done via Bradford method. Ribotyping of GCU-W-PS1 revealed 99 % homology with Lactobacillus plantarum and GCU-W-MS1 to Lactobacillus curvatus (99 % homology). Curvacin A, sakacin P, and plantaricin A genes were also amplified using specific primers. Gene sequence showed the presence of curvacin A gene in GCU-W-MS1. It was concluded that lactic acid bacteria could be used as antibacterial tools against common pathogens.
Collapse
|
71
|
Bai S, Bai H, Li D, Zhong Q, Xie J, Chen JJ. Gut Microbiota-Related Inflammation Factors as a Potential Biomarker for Diagnosing Major Depressive Disorder. Front Cell Infect Microbiol 2022; 12:831186. [PMID: 35372107 PMCID: PMC8965553 DOI: 10.3389/fcimb.2022.831186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Although many works have been done, the objectively measured diagnostic biomarkers are not available. Thus, we conducted this study to identify potential biomarkers for objectively diagnosing depression and explore the role of gut microbiota in the onset of depression. Methods Major depressive disorder (MDD) patients (n=56) and demographic data-matched healthy controls (HCs) (n=56) were included in this study. The gut microbiota in fecal samples and inflammation-related factors in serum were measured. Both univariate and multivariate statistical analyses were performed to identify the differential gut microbiota and inflammation-related factors. Results Finally, 46 differential operational taxonomic units (OTUs) (60.9% OTUs belonging to Firmicutes) and ten differential inflammation-related factors were identified. Correlation analysis showed that there were significant correlations between 14 differential OTUs (9 OTUs belonging to Firmicutes and 5 OTUs belonging to family Lachnospiraceae under Firmicutes) and seven differential inflammation-related factors. Meanwhile, 14 differential OTUs (9 OTUs belonging to Firmicutes and 5 OTUs belonging to family Lachnospiraceae under Firmicutes) and five differential inflammation-related factors (adiponectin, apolipoprotein A1, alpha 1-antitrypsin, neutrophilicgranulocyte count/white blood cell count and basophil count) were significantly correlated to depression severity. A panel consisting of these five differential inflammation-related factors could effectively diagnose MDD patients from HCs. Conclusions Our results suggested that Firmicutes, especially family Lachnospiraceae, might play a role in the onset of depression via affecting the inflammation levels of host, and these five differential inflammation-related factors could be potential biomarkers for objectively diagnosing MDD.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Detao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jing Xie
- Chongqing Emergency Medical Center, Department of Endocrinology, The Fourth People’s Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
72
|
Lim DRX, Chen Y, Ng LF, Gruber J, Gan Y. Glutathione catabolism by
Enterobacteriaceae
species to hydrogen sulfide adversely affects viability of host systems in the presence of 5’fluorodeoxyuridine. Mol Microbiol 2022; 117:1089-1103. [PMID: 35279884 PMCID: PMC9313583 DOI: 10.1111/mmi.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Reduced glutathione (GSH) plays an essential role in relieving oxidative insult from the generation of free radicals via normal physiological processes. However, GSH can be exploited by bacteria as a signalling molecule for the regulation of virulence. We describe findings arising from a serendipitous observation that when GSH and Escherichia coli were incubated with 5′fluorodeoxyuridine (FUdR)‐synchronised populations of Caenorhabditis elegans, the nematodes underwent rapid death. Death was mediated by the production of hydrogen sulphide mainly through the action of tnaA, a tryptophanase‐encoding gene in E. coli. Other Enterobacteriaceae species possess similar cysteine desulfhydrases that can catabolise l‐cysteine‐containing compounds to hydrogen sulphide and mediate nematode killing when worms had been pre‐treated with FUdR. When colonic epithelial cell lines were infected, hydrogen sulphide produced by these bacteria in the presence of GSH was also able to inhibit ATP synthesis in these cells particularly when cells had been treated with FUdR. Therefore, bacterial production of hydrogen sulphide could act in concert with a commonly used genotoxic cancer drug to exert host cell impairment. Hydrogen sulphide also increases bacterial adhesion to the intestinal cells. These findings could have implications for patients undergoing chemotherapy using FUdR analogues that could result in intestinal damage.
Collapse
Affiliation(s)
- Daniel Rui Xiang Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore
| | - Li Fang Ng
- Science Divisions, Yale NUS College Singapore 138527 Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore
- Science Divisions, Yale NUS College Singapore 138527 Singapore
| | - Yunn‐Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine National University of Singapore Singapore
| |
Collapse
|
73
|
Murros KE. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson's Disease. Cells 2022; 11:978. [PMID: 35326429 PMCID: PMC8946538 DOI: 10.3390/cells11060978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Several bacterial species can generate hydrogen sulfide (H2S). Study evidence favors the view that the microbiome of the colon harbors increased amounts of H2S producing bacteria in Parkinson's disease. Additionally, H2S can easily penetrate cell membranes and enter the cell interior. In the cells, excessive amounts of H2S can potentially release cytochrome c protein from the mitochondria, increase the iron content of the cytosolic iron pool, and increase the amount of reactive oxygen species. These events can lead to the formation of alpha-synuclein oligomers and fibrils in cells containing the alpha-synuclein protein. In addition, bacterially produced H2S can interfere with the body urate metabolism and affect the blood erythrocytes and lymphocytes. Gut bacteria responsible for increased H2S production, especially the mucus-associated species of the bacterial genera belonging to the Desulfovibrionaceae and Enterobacteriaceae families, are likely play a role in the pathogenesis of Parkinson's disease. Special attention should be devoted to changes not only in the colonic but also in the duodenal microbiome composition with regard to the pathogenesis of Parkinson's disease. Influenza infections may increase the risk of Parkinson's disease by causing the overgrowth of H2S-producing bacteria both in the colon and duodenum.
Collapse
Affiliation(s)
- Kari Erik Murros
- Institute of Clinical Medicine, University of Eastern Finland (UEF), 70211 Kuopio, Finland
| |
Collapse
|
74
|
Seewoo BJ, Chua EG, Arena-Foster Y, Hennessy LA, Gorecki AM, Anderton R, Rodger J. Changes in the rodent gut microbiome following chronic restraint stress and low-intensity rTMS. Neurobiol Stress 2022; 17:100430. [PMID: 35146078 PMCID: PMC8819474 DOI: 10.1016/j.ynstr.2022.100430] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Gut microbiome composition is associated with mood-relating behaviours, including those reflecting depression-like phenotypes. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, is an effective treatment for depression, but its effects on the gut microbiome remain largely unknown. This study assessed microbial changes from rat faecal samples longitudinally following chronic restraint stress (CRS) and 10 Hz low-intensity rTMS treatment. CRS increased abundance within the Proteobacteria (Deltaproteobacteria, Desulfovibrionales) and Firmicutes (Anaerostipes, Frinsingococcus), with decreases in Firmicutes family (Acidaminococcaceae) and genera (Roseburia, Phascolarctobacterium and Fusicatenibacter) persisting for up to 4 weeks post CRS. The decrease in Firmicutes was not observed in the handling control and LI-rTMS groups, suggesting that handling alone may have sustained changes in gut microbiome associated with CRS. Nonetheless, LI-rTMS was specifically associated with an increase in Roseburia genus that developed 2 weeks after treatment, and the abundance of both Roseburia and Fusicatenibacter genera was significantly correlated with rTMS behavioural and MRI outcomes. In addition, LI-rTMS treated rats had a reduction in apoptosis pathways and several indicators of reduced inflammatory processes. These findings provide evidence that the brain can influence the gut microbiome in a "top-down" manner, presumably via stimulation of descending pathways, and/or indirectly via behavioural modification.
Collapse
Affiliation(s)
- Bhedita J. Seewoo
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
- Centre for Microscopy, Characterisation & Analysis, Research Infrastructure Centres, The University of Western Australia, 6 Verdun St, Nedlands, WA, 6009, Australia
| | - Eng Guan Chua
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Yasmin Arena-Foster
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Lauren A. Hennessy
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Anastazja M. Gorecki
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Ryan Anderton
- Institute for Health Research and School of Health Sciences, University of Notre Dame Australia, 33 Phillimore Street, Fremantle, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, 8 Verdun St, Nedlands, WA, 6009, Australia
| |
Collapse
|
75
|
Leyva-Jimenez H, Shen S, McCormick K, Martin M, Liu P, Haag D, Galbraith E, Blair M. Applied Research Note: Evaluation of a Bacillus-based direct-fed microbial as a strategy to reduce hydrogen sulfide emissions from poultry excreta using a practical monitoring method. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2021.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
76
|
Dong J, Ping L, Xie Q, Liu D, Zhao L, Evivie SE, Wang Z, Li B, Huo G. Lactobacillus plantarum KLDS1.0386 with antioxidant capacity ameliorates the lipopolysaccharide-induced acute liver injury in mice by NF-κB and Nrf2 pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Stuivenberg GA, Burton JP, Bron PA, Reid G. Why Are Bifidobacteria Important for Infants? Microorganisms 2022; 10:278. [PMID: 35208736 PMCID: PMC8880231 DOI: 10.3390/microorganisms10020278] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of Bifidobacterium species in the maternal vaginal and fecal microbiota is arguably an evolutionary trait that allows these organisms to be primary colonizers of the newborn intestinal tract. Their ability to utilize human milk oligosaccharides fosters their establishment as core health-promoting organisms throughout life. A reduction in their abundance in infants has been shown to increase the prevalence of obesity, diabetes, metabolic disorder, and all-cause mortality later in life. Probiotic strains have been developed as supplements for premature babies and to counter some of these ailments as well as to confer a range of health benefits. The ability to modulate the immune response and produce short-chain fatty acids, particularly acetate and butyrate, that strengthen the gut barrier and regulate the gut microbiome, makes Bifidobacterium a core component of a healthy infant through adulthood.
Collapse
Affiliation(s)
- Gerrit A. Stuivenberg
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | - Jeremy P. Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
| | | | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON N6A4V2, Canada; (G.A.S.); (J.P.B.)
- Departments of Microbiology and Immunology and Surgery, Western University, London, ON N6A 3K7, Canada
- Seed Health Inc., Venice, CA 90291, USA;
| |
Collapse
|
78
|
Dumitrescu M, Iliescu MG, Mazilu L, Micu SI, Suceveanu AP, Voinea F, Voinea C, Stoian AP, Suceveanu AI. Benefits of crenotherapy in digestive tract pathology (Review). Exp Ther Med 2022; 23:122. [PMID: 34970345 DOI: 10.3892/etm.2021.11045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Balneotherapy, a branch of physical and rehabilitation medicine using the natural factors of balneal resorts for therapeutical purposes to modulate the symptoms of numerous diseases, represents a non-pharmaceutical therapeutic alternative, easily accepted by patients and used both preventively and curatively. Crenotherapy, a branch of balneotherapy, is the method in which mineral waters are used as a therapeutic internal cure by ingestion. This procedure is performed in spa resorts (where these natural resources exist), and the ingestion of mineral water takes place at the source (spring), in the quantities recommended by the medical rehabilitation physician, according to specific regimens for the condition to be treated. Depending on their physical and chemical composition, the therapeutic mineral waters fall into several categories, having clear indications for certain pathologies. Hypotonic, isotonic, or slightly hypertonic mineral waters are recommended in diseases of the digestive tract and hepatobiliary conditions. Over time, studies have been conducted to determine the effect of these types of treatments, highlighting the complex influence of crenotherapy on the gastrointestinal tract, with favorable results, therefore the use of mineral water intake in various pathologies being recommended. The current review focuses on the existing literature data and refers to the main progress made in understanding the benefit, indications, and crenotherapy procedures in the management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Magdalena Dumitrescu
- Doctoral School, 'Ovidius' University of Constanta, Faculty of Medicine, 900527 Constanta, Romania.,Department of Physical Medicine and Rehabilitation, Balneal Sanatorium of Mangalia, 905500 Mangalia, Romania
| | - Madalina Gabriela Iliescu
- Department of Physical Medicine and Rehabilitation, Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Laura Mazilu
- Department of Oncology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Sergiu Ioan Micu
- Department of Gastroenterology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adrian Paul Suceveanu
- Department of Gastroenterology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Felix Voinea
- Department of Urology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Claudia Voinea
- Department of Endocrinology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andra-Iulia Suceveanu
- Department of Gastroenterology, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| |
Collapse
|
79
|
Ali MM, Mustafa AM, Zhang X, Zhang X, Danhassaan UA, Lin H, Choe U, Wang K, Sheng K. Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 344:126244. [PMID: 34732374 DOI: 10.1016/j.biortech.2021.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Tofu processing residues (TPR) have received more attention as a source of bioenergy. However, their low solubility has hindered biohythane generation. Consequently, the ultrasonic and H2SO4 pretreatments were combined and compared for the first time to improve the hydrolysis of organic matter and carbohydrate and increase free amino nitrogen generation from TPR. Besides, the impact of pretreatments on biohythane generation was investigated. Under the optimal conditions of 7.54% substrate level, 8% H2SO4 concentration, 80 °C and 50 min, the coincident ultrasonic-H2SO4 pretreatment enriched the contents of soluble chemical oxygen demand, reducing sugar, and free amino nitrogen to 49675 mg/L, 26 g/L, and 1721 mg/L, respectively, greater than individual pretreatments. Also, Biohythane yield increased by 4.24-13.61% over control (389.42 ± 23.7 ml/g-VSfed). Furthermore, hydrogen yield at 42.5 ± 2.08 and 28.1 ± 1.07 ml/g-VSfed and sulfate removal efficiency at 93 and 92% were significantly improved with ultrasonic-H2SO4 and H2SO4 pretreatments, respectively, indicating acidogenic and sulfidogenic activity enhancement.
Collapse
Affiliation(s)
- Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Biological Engineering Department, Agricultural Engineering Research Institute, Giza, Egypt
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Recourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Umar A Danhassaan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ungyong Choe
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Science, University of Science, Yusheng Scientist Road, Unjong 13 District, Pyongyang 00850, Democratic People's Republic of Korea
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
80
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
81
|
McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, Simpson CA, Green J, Marx W, Hair C, Guest G, Mohebbi M, Berk M, Stupart D, Watters D, Jacka FN. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry 2022; 27:1920-1935. [PMID: 35194166 PMCID: PMC9126816 DOI: 10.1038/s41380-022-01456-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emerging understanding of gut microbiota as 'metabolic machinery' influencing many aspects of physiology has gained substantial attention in the field of psychiatry. This is largely due to the many overlapping pathophysiological mechanisms associated with both the potential functionality of the gut microbiota and the biological mechanisms thought to be underpinning mental disorders. In this systematic review, we synthesised the current literature investigating differences in gut microbiota composition in people with the major psychiatric disorders, major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), compared to 'healthy' controls. We also explored gut microbiota composition across disorders in an attempt to elucidate potential commonalities in the microbial signatures associated with these mental disorders. Following the PRISMA guidelines, databases were searched from inception through to December 2021. We identified 44 studies (including a total of 2510 psychiatric cases and 2407 controls) that met inclusion criteria, of which 24 investigated gut microbiota composition in MDD, seven investigated gut microbiota composition in BD, and 15 investigated gut microbiota composition in SZ. Our syntheses provide no strong evidence for a difference in the number or distribution (α-diversity) of bacteria in those with a mental disorder compared to controls. However, studies were relatively consistent in reporting differences in overall community composition (β-diversity) in people with and without mental disorders. Our syntheses also identified specific bacterial taxa commonly associated with mental disorders, including lower levels of bacterial genera that produce short-chain fatty acids (e.g. butyrate), higher levels of lactic acid-producing bacteria, and higher levels of bacteria associated with glutamate and GABA metabolism. We also observed substantial heterogeneity across studies with regards to methodologies and reporting. Further prospective and experimental research using new tools and robust guidelines hold promise for improving our understanding of the role of the gut microbiota in mental and brain health and the development of interventions based on modification of gut microbiota.
Collapse
Affiliation(s)
- A. J. McGuinness
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - J. A. Davis
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - S. L. Dawson
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - A. Loughman
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - F. Collier
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - M. O’Hely
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia
| | - C. A. Simpson
- grid.1008.90000 0001 2179 088XMelbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - J. Green
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1002.30000 0004 1936 7857Monash Alfred Psychiatry Research Centre (MAPcr), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Parkville, VIC Australia ,grid.466993.70000 0004 0436 2893Department of Psychiatry, Peninsula Health, Frankston, VIC Australia
| | - W. Marx
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia
| | - C. Hair
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.414257.10000 0004 0540 0062Department of Gastroenterology, Barwon Health, Geelong, VIC Australia
| | - G. Guest
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - M. Mohebbi
- grid.1021.20000 0001 0526 7079Biostatistics Unit, Faculty of Health, Deakin University, Melbourne, VIC Australia
| | - M. Berk
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.1008.90000 0001 2179 088XOrygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - D. Stupart
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - D. Watters
- grid.1021.20000 0001 0526 7079Deakin University, School of Medicine, Geelong, VIC Australia ,grid.415335.50000 0000 8560 4604Department of Surgery, University Hospital Geelong, Barwon Health, Geelong, VIC Australia
| | - F. N. Jacka
- grid.1021.20000 0001 0526 7079The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food & Mood Centre, School of Medicine and Barwon Health, Deakin University, Geelong, VIC Australia ,grid.1058.c0000 0000 9442 535XCentre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC Australia ,grid.418393.40000 0001 0640 7766Black Dog Institute, Sydney, NSW Australia ,grid.1011.10000 0004 0474 1797College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD Australia
| |
Collapse
|
82
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
83
|
Kushkevych I, Bychkov M, Bychkova S, Gajdács M, Merza R, Vítězová M. ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate. Biomedicines 2021; 9:biomedicines9121805. [PMID: 34944620 PMCID: PMC8698369 DOI: 10.3390/biomedicines9121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the “acid store” of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients’ and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients’ colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer −8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive “acidic store” (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the “acidic store” (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| | - Mykola Bychkov
- Department of Therapy No 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary;
- Faculty of Medicine, Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Romana Merza
- Department of Anesthesiology and Intensive Care, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| |
Collapse
|
84
|
Borisov VB, Forte E. Impact of Hydrogen Sulfide on Mitochondrial and Bacterial Bioenergetics. Int J Mol Sci 2021; 22:12688. [PMID: 34884491 PMCID: PMC8657789 DOI: 10.3390/ijms222312688] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the effects of hydrogen sulfide (H2S) on the unique bioenergetic molecular machines in mitochondria and bacteria-the protein complexes of electron transport chains and associated enzymes. H2S, along with nitric oxide and carbon monoxide, belongs to the class of endogenous gaseous signaling molecules. This compound plays critical roles in physiology and pathophysiology. Enzymes implicated in H2S metabolism and physiological actions are promising targets for novel pharmaceutical agents. The biological effects of H2S are biphasic, changing from cytoprotection to cytotoxicity through increasing the compound concentration. In mammals, H2S enhances the activity of FoF1-ATP (adenosine triphosphate) synthase and lactate dehydrogenase via their S-sulfhydration, thereby stimulating mitochondrial electron transport. H2S serves as an electron donor for the mitochondrial respiratory chain via sulfide quinone oxidoreductase and cytochrome c oxidase at low H2S levels. The latter enzyme is inhibited by high H2S concentrations, resulting in the reversible inhibition of electron transport and ATP production in mitochondria. In the branched respiratory chain of Escherichia coli, H2S inhibits the bo3 terminal oxidase but does not affect the alternative bd-type oxidases. Thus, in E. coli and presumably other bacteria, cytochrome bd permits respiration and cell growth in H2S-rich environments. A complete picture of the impact of H2S on bioenergetics is lacking, but this field is fast-moving, and active ongoing research on this topic will likely shed light on additional, yet unknown biological effects.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
85
|
Hong Y, Sheng L, Zhong J, Tao X, Zhu W, Ma J, Yan J, Zhao A, Zheng X, Wu G, Li B, Han B, Ding K, Zheng N, Jia W, Li H. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 2021; 13:1-20. [PMID: 34125646 PMCID: PMC8205104 DOI: 10.1080/19490976.2021.1930874] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emerging evidence supports the use of prebiotics like herb-derived polysaccharides for treating nonalcoholic fatty liver disease (NAFLD) by modulating gut microbiome. The present study was initiated on the microbiota-dependent anti-NAFLD effect of Astragalus polysaccharides (APS) extracted from Astragalus mongholicus Bunge in high-fat diet (HFD)-fed mice. However, the exact mechanisms underlying the beneficial effects of APS on NAFLD formation remain poorly understood.Co-housing experiment was used to assess the microbiota dependent anti-NAFLD effect of APS. Then, targeted metabolomics and metagenomics were adopted for determining short-chain fatty acids (SCFAs) and bacteria that were specifically enriched by APS. Further in vitro experiment was carried out to test the capacity of SCFAs-producing of identified bacterium. Finally, the anti-NAFLD efficacy of identified bacterium was tested in HFD-fed mice.Our results first demonstrated the anti-NAFLD effect of APS in HFD-fed mice and the contribution of gut microbiota. Moreover, our results indicated that SCFAs, predominantly acetic acid were elevated in APS-supplemented mice and ex vivo experiment. Metagenomics revealed that D. vulgaris from Desulfovibrio genus was not only enriched by APS, but also a potent generator of acetic acid, which showed significant anti-NAFLD effects in HFD-fed mice. In addition, D. vulgaris modulated the hepatic gene expression pattern of lipids metabolism, particularly suppressed hepatic fatty acid synthase (FASN) and CD36 protein expression.Our results demonstrate that APS enriched D. vulgaris is effective on attenuating hepatic steatosis possibly through producing acetic acid, and modulation on hepatic lipids metabolism in mice. Further studies are warranted to explore the long-term impacts of D. vulgaris on host metabolism and the underlying mechanism.
Collapse
Affiliation(s)
- Ying Hong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,CONTACT Ningning Zheng Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Sheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhong
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou, China
| | - Xin Tao
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weize Zhu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juan Yan
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Gaosong Wu
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingbing Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering; Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Liu’an, China
| | - Kan Ding
- Glycochemistry and Glycobiology Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ningning Zheng
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China,Wei Jia School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Houkai Li Functional Metabolomic and Gut Microbiome Laboratory, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| |
Collapse
|
86
|
Qing Y, Xu L, Cui G, Sun L, Hu X, Yang X, Jiang J, Zhang J, Zhang T, Wang T, He L, Wang J, Wan C. Salivary microbiome profiling reveals a dysbiotic schizophrenia-associated microbiota. NPJ SCHIZOPHRENIA 2021; 7:51. [PMID: 34711862 PMCID: PMC8553823 DOI: 10.1038/s41537-021-00180-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a debilitating mental disorder and often has a prodromal period, referred to as clinical high risk (CHR) for psychosis, prior to the first episode. The etiology and pathogenesis of schizophrenia remain unclear. Despite the human gut microbiome being associated with schizophrenia, the role of the oral microbiome, which is a vital player in the mouth-body connection, is not well understood. To address this, we performed 16S rRNA gene sequencing to investigate the salivary microbiome in 85 patients with drug-naïve first-episode schizophrenia (FES), 43 individuals at CHR, and 80 healthy controls (HCs). The salivary microbiome of FES patients was characterized by higher α-diversity and lower β-diversity heterogeneity than those of CHR subjects and HCs. Proteobacteria, the predominant phylum, was depleted, while Firmicutes and the Firmicutes/Proteobacteria ratio was enriched, in a stepwise manner from HC to CHR to FES. H2S-producing bacteria exhibited disease-stage-specific enrichment and could be potential diagnostic biomarkers for FES and CHR. Certain salivary microbiota exhibited disease-specific correlation patterns with symptomatic severities, peripheral pro-inflammatory cytokines, thioredoxin, and S100B in FES. Furthermore, the metabolic functions from inferred metagenomes of the salivary microbiome were disrupted in FES, especially amino acid metabolism, carbohydrate metabolism, and xenobiotic degradation. This study has established a link between salivary microbiome alterations and disease initiation and provided the hypothesis of how the oral microbiota could influence schizophrenia.
Collapse
Affiliation(s)
- Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Xu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai, China
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
87
|
Kittana M, Ahmadani A, Al Marzooq F, Attlee A. Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder. Nutrients 2021; 13:3818. [PMID: 34836074 PMCID: PMC8618510 DOI: 10.3390/nu13113818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Children with autism spectrum disorder (ASD) report a higher frequency and severity of gastrointestinal disorders (GID) than typically developing (TD) children. GID-associated discomfort increases feelings of anxiety and frustration, contributing to the severity of ASD. Emerging evidence supports the biological intersection of neurodevelopment and microbiome, indicating the integral contribution of GM in the development and function of the nervous system, and mental health, and disease balance. Dysbiotic GM could be a contributing factor in the pathogenesis of GID in children with ASD. High-fat diets may modulate GM through accelerated growth of bile-tolerant bacteria, altered bacterial ratios, and reduced bacterial diversity, which may increase the risk of GID. Notably, saturated fatty acids are considered to have a pronounced effect on the increase of bile-tolerant bacteria and reduction in microbial diversity. Additionally, omega-3 exerts a favorable impact on GM and gut health due to its anti-inflammatory properties. Despite inconsistencies in the data elaborated in the review, the dietary fat composition, as part of an overall dietary intervention, plays a role in modulating GID, specifically in ASD, due to the altered microbiome profile. This review emphasizes the need to conduct future experimental studies investigating the effect of diets with varying fatty acid compositions on GID-specific microbiome profiles in children with ASD.
Collapse
Affiliation(s)
- Monia Kittana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Asma Ahmadani
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amita Attlee
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| |
Collapse
|
88
|
Berkhout MD, Plugge CM, Belzer C. How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Glycobiology 2021; 32:182-200. [PMID: 34939101 PMCID: PMC8966484 DOI: 10.1093/glycob/cwab105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
The intestinal epithelium is protected from direct contact with gut microbes by a mucus layer. This mucus layer consists of secreted mucin glycoproteins. The outer mucus layer in the large intestine forms a niche that attracts specific gut microbiota members of which several gut commensals can degrade mucin. Mucin glycan degradation is a complex process that requires a broad range of glycan degrading enzymes, as mucin glycans are intricate and diverse molecules. Consequently, it is hypothesised that microbial mucin breakdown requires concerted action of various enzymes in a network of multiple resident microbes at the gut mucosa. This review investigates the evolutionary relationships of microbial CAZymes that are potentially involved in mucin glycan degradation and focuses on the role that microbial enzymes play in the degradation of gut mucin glycans in microbial cross-feeding and syntrophic interactions.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
89
|
Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes (Basel) 2021. [DOI: 10.3390/pr9101843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are a heterogeneous group of anaerobic microorganisms that play an important role in producing hydrogen sulfide not only in the natural environment, but also in the gastrointestinal tract and oral cavity of animals and humans. The present review was written with the inclusion of 110 references including the time period from 1951 to 2021. The following databases were evaluated: Web of Science, Scopus and Google Scholar. The articles chosen to be included in the review were written mainly in the English and Czech languages. The molecular mechanisms of microbial cryoprotection differ depending on the environment where microorganisms were initially isolated. It was observed that the viability of microorganisms after cryopreservation is dependent on a number of factors, primarily colony age, amount of inoculum, cell size or rate of cooling, and their molecular inventory. Therefore, this paper is devoted to assessing the performance and suitability of various cryopreservation methods of intestinal bacteria, including molecular mechanisms of their protection. In order to successfully complete the cryopreservation process, selecting the correct laboratory equipment and cryopreservation methodology is important. Our analysis revealed that SRB should be stored in glass vials to help mitigate the corrosive nature of hydrogen sulfide, which can affect their physiology on a molecular level. Furthermore, it is recommended that their storage be performed in distilled water or in a suspension with a low salt concentration. From a molecular biological and bioengineering perspective, this contribution emphasizes the need to consider the potential impact associated with SRB in the medical, construction, and environmental sectors.
Collapse
|
90
|
Guo Y, Guo H, Qiu L, Fu Y, Zhu X, Zhang H, Wang J, Chen D. Appetite Suppression and Interleukin 17 Receptor Signaling Activation of Colonic Mycobiota Dysbiosis Induced by High Temperature and High Humidity Conditions. Front Cell Infect Microbiol 2021; 11:657807. [PMID: 34568080 PMCID: PMC8462304 DOI: 10.3389/fcimb.2021.657807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
It is known that the microbiome affects human physiology, emotion, disease, growth, and development. Most humans exhibit reduced appetites under high temperature and high humidity (HTHH) conditions, and HTHH environments favor fungal growth. Therefore, we hypothesized that the colonic mycobiota may affect the host’s appetite under HTHH conditions. Changes in humidity are also associated with autoimmune diseases. In the current study mice were fed in an HTHH environment (32°C ± 2°C, relative humidity 95%) maintained via an artificial climate box for 8 hours per day for 21 days. Food intake, the colonic fungal microbiome, the feces metabolome, and appetite regulators were monitored. Components of the interleukin 17 pathway were also examined. In the experimental groups food intake and body weight were reduced, and the colonic mycobiota and fecal metabolome were substantially altered compared to control groups maintained at 25°C ± 2°C and relative humidity 65%. The appetite-related proteins LEPT and POMC were upregulated in the hypothalamus (p < 0.05), and NYP gene expression was downregulated (p < 0.05). The expression levels of PYY and O-linked β-N-acetylglucosamine were altered in colonic tissues (p < 0.05), and interleukin 17 expression was upregulated in the colon. There was a strong correlation between colonic fungus and sugar metabolism. In fimo some metabolites of cholesterol, tromethamine, and cadaverine were significantly increased. There was significant elevation of the characteristic fungi Solicoccozyma aeria, and associated appetite suppression and interleukin 17 receptor signaling activation in some susceptible hosts, and disturbance of gut bacteria and fungi. The results indicate that the gut mycobiota plays an important role in the hypothalamus endocrine system with respect to appetite regulation via the gut-brain axis, and also plays an indispensable role in the stability of the gut microbiome and immunity. The mechanisms involved in these associations require extensive further studies.
Collapse
Affiliation(s)
- Yinrui Guo
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongya Guo
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyan Qiu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfei Fu
- The Fourth Clinical Medicine School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangxiang Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Academy of Life Sciences, Jinan University, Guangzhou, China
| | - Haiting Zhang
- Department of Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jian Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
91
|
Piscotta FJ, Whitfield ST, Nakashige TG, Estrela AB, Ali T, Brady SF. Multiplexed functional metagenomic analysis of the infant microbiome identifies effectors of NF-κB, autophagy, and cellular redox state. Cell Rep 2021; 36:109746. [PMID: 34551287 PMCID: PMC8480279 DOI: 10.1016/j.celrep.2021.109746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/19/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The human microbiota plays a critical role in host health. Proper development of the infant microbiome is particularly important. Its dysbiosis leads to both short-term health issues and long-term disorders lasting into adulthood. A central way in which the microbiome interacts with the host is through the production of effector molecules, such as proteins and small molecules. Here, a metagenomic library constructed from 14 infant stool microbiomes is analyzed for the production of effectors that modulate three distinct host pathways: immune response (nuclear factor κB [NF-κB] activation), autophagy (LC3-B puncta formation), and redox potential (NADH:NAD ratio). We identify microbiome-encoded bioactive metabolites, including commendamide and hydrogen sulfide and their associated biosynthetic genes, as well as a previously uncharacterized autophagy-inducing operon from Klebsiella spp. This work extends our understanding of microbial effector molecules that are known to influence host pathways. Parallel functional screening of metagenomic libraries can be easily expanded to investigate additional host processes. Construction of a metagenomic library from stool of infants A multiplexed screen for bacterial effectors of host cellular processes Identification of microbiome-encoded effectors hydrogen sulfide and commendamide The products of a Klebsiella pneumoniae operon induce autophagy
Collapse
Affiliation(s)
- Frank J Piscotta
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Shawn T Whitfield
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Toshiki G Nakashige
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Andreia B Estrela
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Thahmina Ali
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
92
|
Donertas Ayaz B, Oliveira AC, Malphurs WL, Redler T, de Araujo AM, Sharma RK, Sirmagul B, Zubcevic J. Central Administration of Hydrogen Sulfide Donor NaHS Reduces Iba1-Positive Cells in the PVN and Attenuates Rodent Angiotensin II Hypertension. Front Neurosci 2021; 15:690919. [PMID: 34602965 PMCID: PMC8479468 DOI: 10.3389/fnins.2021.690919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule with neuromodulatory, anti-inflammatory, and anti-hypertensive effects. Here, we investigate whether chronic intracerebroventricular (ICV) infusion of sodium hydrosulfide (NaHS), an H2S donor, can alleviate angiotensin II (Ang II)-induced hypertension (HTN), improve autonomic function, and impact microglia in the paraventricular nucleus (PVN) of the hypothalamus, a brain region associated with autonomic control of blood pressure (BP) and neuroinflammation in HTN. Chronic delivery of Ang II (200 ng/kg/min, subcutaneous) for 4 weeks produced a typical increase in BP and sympathetic drive and elevated the number of ionized calcium binding adaptor molecule 1-positive (Iba1+) cells in the PVN of male, Sprague-Dawley rats. ICV co-infusion of NaHS (at 30 and/or 60 nmol/h) significantly attenuated these effects of Ang II. Ang II also increased the abundance of cecal Deltaproteobacteria and Desulfovibrionales, among others, which was prevented by ICV NaHS co-infusion at 30 and 60 nmol/h. We observed no differences in circulating H2S between the groups. Our results suggest that central H2S may alleviate rodent HTN independently from circulating H2S via effects on autonomic nervous system and PVN microglia.
Collapse
Affiliation(s)
- Basak Donertas Ayaz
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Pharmacology, College of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Aline C. Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wendi L. Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ty Redler
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Ravindra K. Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Basar Sirmagul
- Department of Pharmacology, College of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine, University of Toledo, Toledo, OH, United States
| |
Collapse
|
93
|
Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12:730-744. [PMID: 34168724 PMCID: PMC8192250 DOI: 10.4239/wjd.v12.i6.730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
| |
Collapse
|
94
|
Mitchell SC. Nutrition and sulfur. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:123-174. [PMID: 34112351 DOI: 10.1016/bs.afnr.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sulfur is unusual in that it is a mineral that may be taken into the body in both inorganic and organic combinations. It has been available within the environment throughout the development of lifeforms and as such has become integrated into virtually every aspect of biochemical function. It is essential for the nature and maintenance of structure, assists in communication within the organism, is vital as a catalytic assistant in intermediary metabolism and the mechanism of energy flow as well as being involved in internal defense against potentially damaging reactive species and invading foreign chemicals. Recent studies have suggested extended roles for sulfur-containing molecules within living systems. As such, questions have been raised as to whether or not humans are receiving sufficient sulfur within their diet. Sulfur appears to have been the "poor relation" with regards to mineral nutrition. This may be because of difficulties encountered over its multifarious functions, the many chemical guises in which it may be ingested and its complex biochemical interconversions once taken into the body. No established daily requirements have been determined, unlike many minerals, although suggestions have been proposed. Owing to its widespread distribution within dietary components its intake has almost been taken for granted. In the majority of individuals partaking of a balanced diet the supply is deemed adequate, but those opting for specialized or restrictive diets may experience occasional and low-level shortages. In these instances, the careful use of sulfur supplements may be of benefit.
Collapse
Affiliation(s)
- Stephen C Mitchell
- Faculty of Medicine, Imperial College London, London, England, United Kingdom.
| |
Collapse
|
95
|
Kushkevych I, Bosáková V, Vítězová M, Rittmann SKMR. Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide. Antioxidants (Basel) 2021; 10:antiox10060829. [PMID: 34067364 PMCID: PMC8224592 DOI: 10.3390/antiox10060829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Hydrogen sulfide is a toxic compound that can affect various groups of water microorganisms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as well as the conditions for isolation and cultivation of these microorganisms will be presented.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (V.B.); (M.V.)
- Correspondence: (I.K.); (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.)
| | - Veronika Bosáková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (V.B.); (M.V.)
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (V.B.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria
- Correspondence: (I.K.); (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.)
| |
Collapse
|
96
|
Kushkevych I, Hýžová B, Vítězová M, Rittmann SKMR. Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats. Int J Mol Sci 2021; 22:4007. [PMID: 33924516 PMCID: PMC8069399 DOI: 10.3390/ijms22084007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/01/2022] Open
Abstract
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Blanka Hýžová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (B.H.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria
| |
Collapse
|
97
|
Park H, Yeo S, Kang S, Huh CS. Longitudinal Microbiome Analysis in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Microorganisms 2021; 9:370. [PMID: 33673349 PMCID: PMC7917662 DOI: 10.3390/microorganisms9020370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of inflammatory bowel disease (IBD) has been in focus for decades. Although metagenomic observations in patients/animal colitis models have been attempted, the microbiome results were still indefinite and broad taxonomic presumptions were made due to the cross-sectional studies. Herein, we conducted a longitudinal microbiome analysis in a dextran sulfate sodium (DSS)-induced colitis mouse model with a two-factor design based on serial DSS dose (0, 1, 2, and 3%) and duration for 12 days, and four mice from each group were sacrificed at two-day intervals. During the colitis development, a transition of the cecal microbial diversity from the normal state to dysbiosis and dynamic changes of the populations were observed. We identified genera that significantly induced or depleted depending on DSS exposure, and confirmed the correlations of the individual taxa to the colitis severity indicated by inflammatory biomarkers (intestinal bleeding and neutrophil-derived indicators). Of note, each taxonomic population showed its own susceptibility to the changing colitis status. Our findings suggest that an understanding of the individual susceptibility to colitis conditions may contribute to identifying the role of the gut microbes in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea;
- Advanced Green Energy and Environment Institute, Handong Global University, Pohang 37554, Korea
| | - Soyoung Yeo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Seokwon Kang
- Department of Life Sciences, Handong Global University, Pohang 37554, Korea;
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| |
Collapse
|
98
|
Kushkevych I, Martínková K, Vítězová M, Rittmann SKMR. Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies. J Clin Med 2021; 10:462. [PMID: 33530381 PMCID: PMC7865400 DOI: 10.3390/jcm10030462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Meta-analysis is a statistical process summarizing comparable data from a number of scientific papers. The use of meta-analysis in microbiology allows decision-making that has an impact on public health policy. It can happen that the primary researches come to different conclusions, although these are targeted with the same research question. It is, therefore, inevitable to have the means to systematically evaluate information and compare research results. Ulcerative colitis together with Crohn's disease are among the two main inflammatory bowel diseases. This chronic disease of the gastrointestinal tract, with an as yet unclear etiology, is presented by an uncontrolled inflammatory immune response in genetically predisposed individuals to as yet undefined environmental factors in interaction with the intestinal microbiota itself. In patients with ulcerative colitis (UC), changes in the composition and relative abundance of microorganisms could be observed. Sulfate-reducing bacteria (SRB), which commonly occur in the large intestine as part of the commensal microbiota of animals and humans involved in the pathogenesis of the disease, have been shown to occur. SRB are anaerobic organisms affecting short-chain fatty acid metabolism. This work outlines the perspectives of the use of meta-analysis for UC and changes in the representation of intestinal organisms in these patients.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology and Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria
| |
Collapse
|
99
|
Citrus limon Peel Powder Reduces Intestinal Barrier Defects and Inflammation in a Colitic Murine Experimental Model. Foods 2021; 10:foods10020240. [PMID: 33503995 PMCID: PMC7912126 DOI: 10.3390/foods10020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH residue), which were rich in polyphenolic compounds and dietary fibers, respectively. Mice were fed diets containing whole LP powder, MetOH extract, and MetOH residue for 16 d. DSS administration for 9 d induced bodyweight loss, reduced colon length, reduced the colonic expression of tight junction proteins including zonula occludens-1 and -2, and claudin-3 and -7, and upregulated colonic mRNA expression of interleukin 6, chemokine (C-X-C motif) ligand 2, and C-C motif chemokine ligand 2. Feeding LP powder restored these abnormalities, and the MetOH residue, but not MetOH extract, also showed similar restorations. Feeding LP powder and MetOH residue increased fecal concentrations of acetate and n-butyrate. Taken together, LP powder reduced intestinal damage through the protection of tight junction barriers and suppressed an inflammatory reaction in colitic mice. These results suggest that acetate and n-butyrate produced from the microbial metabolism of dietary fibers in LP powder contributed to reducing colitis.
Collapse
|
100
|
Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.
Collapse
|