51
|
Dueri S, Mack G. Modeling the implications of policy reforms on pesticide risk for Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172436. [PMID: 38615777 DOI: 10.1016/j.scitotenv.2024.172436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Growing public awareness of the negative effects of pesticides on the environment, ecosystems, and human health has led governments to set targets for reducing pesticide risk. Switzerland introduced in 2023 two new policy measures to reduce pesticide risk by 50 % by 2027: (1) voluntary direct payment programs supporting pesticide-reduced and pesticide-free but non-organic cropping systems for most crops on arable land, and (2) restrictions of harmful pesticides for farmers managing under Swiss cross-compliance standards. This study aims to (1) develop a method to assess pesticide risk on a national scale and (2) carry out an ex-ante impact assessment to predict whether these policies can effectively reduce pesticide risks in Switzerland. Therefore, we introduced crop-specific pesticide quantities and pesticide risk scores into a sample of 1907 bio-economic farm optimization models. The models were used to predict farmers' adoption decisions regarding voluntary direct payment programs from 2019 to 2030. By combining the bio-economic farm optimization models with an agent-based modeling approach, we assessed the evolution of pesticide-related risks at the national level. Simulations for pesticide risk from 2019 to 2022 reflected the observed pesticide risk monitored by the Swiss government. In surface waters and semi-natural habitats, achieving the target depends on reducing pyrethroids, a class of insecticides with high-risk potential. Further, we highlight significant uncertainty in projecting the risk potential for surface waters and semi-natural habitats due to uncertainty about the amounts of pyrethroid used for different crops. The results underline the need for comprehensive datasets on pesticide use in Switzerland.
Collapse
Affiliation(s)
- Sibylle Dueri
- Agroscope, Research Group Economic Modelling and Policy Analysis, Tänikon, 8356 Ettenhausen, Switzerland.
| | - Gabriele Mack
- Agroscope, Research Group Economic Modelling and Policy Analysis, Tänikon, 8356 Ettenhausen, Switzerland
| |
Collapse
|
52
|
Chen Y, Tian JH, Tian HW, Ma R, Wang ZH, Pan YC, Hu XY, Guo DS. Calixarene-Based Supramolecular Sensor Array for Pesticide Discrimination. SENSORS (BASEL, SWITZERLAND) 2024; 24:3743. [PMID: 38931527 PMCID: PMC11207328 DOI: 10.3390/s24123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The identification and detection of pesticides is crucial to protecting both the environment and human health. However, it can be challenging to conveniently and rapidly differentiate between different types of pesticides. We developed a supramolecular fluorescent sensor array, in which calixarenes with broad-spectrum encapsulation capacity served as recognition receptors. The sensor array exhibits distinct fluorescence change patterns for seven tested pesticides, encompassing herbicides, insecticides, and fungicides. With a reaction time of just three minutes, the sensor array proves to be a rapid and efficient tool for the discrimination of pesticides. Furthermore, this supramolecular sensing approach can be easily extended to enable real-time and on-site visual detection of varying concentrations of imazalil using a smartphone with a color scanning application. This work not only provides a simple and effective method for pesticide identification and quantification, but also offers a versatile and advantageous platform for the recognition of other analytes in relevant fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
53
|
Abbas MG, Azeem M, Bashir MU, Ali F, Mozūratis R, Binyameen M. Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species. Molecules 2024; 29:2657. [PMID: 38893531 PMCID: PMC11173646 DOI: 10.3390/molecules29112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 μg/cm2. In time-span bioassays performed at 333 μg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-β-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.
Collapse
Affiliation(s)
- Muhammad Ghazanfar Abbas
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Muhammad Umar Bashir
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| | - Fawad Ali
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.A.); (F.A.)
| | - Raimondas Mozūratis
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
- Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Muhammad Binyameen
- Laboratory of Insect Chemical Ecology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.G.A.); (M.U.B.)
| |
Collapse
|
54
|
Liu S, Yan J, Xu B, Huang X, Qin H, Zhao J, Xia C, Yan S, Liu G. Fates and models for exposure pathways of pyrethroid pesticide residues: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116342. [PMID: 38657457 DOI: 10.1016/j.ecoenv.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Pyrethroids (PYs) are widely applied pesticides whose residues pose potential health risks. This review describes current knowledge on PY chemical properties, usage patterns, environmental and food contamination, and human exposure models. It evaluates life cycle assessment (LCA), chemical alternatives assessment (CAA), and high-throughput screening (HTS) as tools for pesticide policy. Despite efforts to mitigate PY presence, their pervasive residues in the environment and food persist. And the highest concentrations ranged from 54,360 to 80,500 ng/L in water samples from agricultural fields. Food processing techniques variably reduce PY levels, yet no method guarantees complete elimination. This review provides insights into the fates and exposure pathways of PY residues in agriculture and food, and highlights the necessity for improved PY management and alternative practices to safeguard health and environment.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jisha Yan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Haixiong Qin
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, PR China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, Henan 450000, PR China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| |
Collapse
|
55
|
Rat İ, Mamay M. Demographic Parameters of Anthocoris minki Dohrn (Hemiptera: Anthocoridae) Reared on Common Bean (Phaseolus vulgaris L.), Faba Bean (Vicia faba L.) and Pea (Pisum sativum L.) as Egg Laying Media. NEOTROPICAL ENTOMOLOGY 2024; 53:531-540. [PMID: 38329712 DOI: 10.1007/s13744-024-01133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Anthocoris minki Dohrn (Hemiptera: Anthocoridae) is used as a biological control agent of various agricultural pests. This study determined the effect of different egg laying materials, i.e., faba bean, common bean, and pea on population parameters of A. minki using age-stage, two-sex life table. The longest (34.45 d) and the shortest (21.32 d) adult longevity was noted on common bean and pea, respectively. Likewise, the highest (92%) and the lowest (69%) preadult survival rate was recorded on faba bean and pea, respectively. The highest fecundity (93.74 eggs/female) was noted on faba bean followed by common bean (43.95 eggs/female) and pea (48.69 eggs/female). Oviposition period remained unaffected, while higher oviposition days (22 d) were noted on faba bean compared with common bean (10 d) and pea (14 d). The shortest and the longest adult pre-oviposition period and total pre-ovipositional period were calculated for common bean and pea, respectively. The highest intrinsic rate of increase (r) (0.1159 d-1) and finite rate of increase (λ) (1.1229 d-1) were noted on common bean, while the lowest (r = 0.0939 d-1; λ = 1.0985 d-1) were noted on pea. Paired bootstrap analyses indicated that the highest net reproductive rate (R0) (43.12 offspring) was recorded on faba bean. Egg hatching rate significantly differed among plants (P < 0.01) and it was 80.50%, 71.10%, and 38.90% on common bean, faba bean and pea, respectively. It is concluded that faba bean would be the most suitable host for mass rearing of A. minki, while pea proved unsuitable.
Collapse
Affiliation(s)
- İlyas Rat
- GAP Agricultural Research Institute, Şanlıurfa, Turkey
- Dept of Plant Protection, Faculty of Agriculture, Harran Univ, Şanlıurfa, Turkey
| | - Mehmet Mamay
- Dept of Plant Protection, Faculty of Agriculture, Harran Univ, Şanlıurfa, Turkey.
| |
Collapse
|
56
|
Pedrinho A, Karas PA, Kanellopoulos A, Feray E, Korman I, Wittenberg G, Ramot O, Karpouzas DG. The effect of natural products used as pesticides on the soil microbiota: OECD 216 nitrogen transformation test fails to identify effects that were detected via q-PCR microbial abundance measurement. PEST MANAGEMENT SCIENCE 2024; 80:2563-2576. [PMID: 38243771 DOI: 10.1002/ps.7961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Natural products present an environmentally attractive alternative to synthetic pesticides which have been implicated in the off-target effect. Currently, the assessment of pesticide toxicity on soil microorganisms relies on the OECD 216 N transformation assay (OECD stands for the Organisation Economic Co-operation and Development, which is a key international standard-setting organisation). We tested the hypotheses that (i) the OECD 216 assay fails to identify unacceptable effects of pesticides on soil microbiota compared to more advanced molecular and standardized tests, and (ii) the natural products tested (dihydrochalcone, isoflavone, aliphatic phenol, and spinosad) are less toxic to soil microbiota compared to a synthetic pesticide compound (3,5-dichloraniline). We determined the following in three different soils: (i) ammonium (NH4 +) and nitrate (NO3 -) soil concentrations, as dictated by the OECD 216 test, and (ii) the abundance of phylogenetically (bacteria and fungi) and functionally distinct microbial groups [ammonia-oxidizing archaea (AOA) and bacteria (AOB)] using quantitative polymerase chain reaction (q-PCR). RESULTS All pesticides tested exhibited limited persistence, with spinosad demonstrating the highest persistence. None of the pesticides tested showed clear dose-dependent effects on NH4 + and NO3 - levels and the observed effects were <25% of the control, suggesting no unacceptable impacts on soil microorganisms. In contrast, q-PCR measurements revealed (i) distinct negative effects on the abundance of total bacteria and fungi, which were though limited to one of the studied soils, and (ii) a significant reduction in the abundance of both AOA and AOB across soils. This reduction was attributed to both natural products and 3,5-dichloraniline. CONCLUSION Our findings strongly advocate for a revision of the current regulatory framework regarding the toxicity of pesticides to soil microbiota, which should integrate advanced and well-standardized tools. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Pedrinho
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Panagiotis A Karas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Alexandros Kanellopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Emma Feray
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- National Museum of Natural History, Paris, France
| | - Ido Korman
- Metabolic Insights Ltd, Ness Ziona, Israel
| | | | - Ofir Ramot
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
57
|
Andreasen C, Vlassi E, Salehan N. Laser weeding of common weed species. FRONTIERS IN PLANT SCIENCE 2024; 15:1375164. [PMID: 38855471 PMCID: PMC11157096 DOI: 10.3389/fpls.2024.1375164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The massive use of herbicides since the 1950s has resulted in increasing problems with herbicideresistant weeds and pollution of the environment, including food, feed, and water. These side effects have resulted in political pressures to reduce herbicide application. The European Commission aims to reduce the use and risk of chemicals and more hazardous pesticides in the EU. Therefore, new weed control methods are in demand. Laser weeding might be an alternative to replace or supplement herbicides and other weed control methods in an Integrated Weed Management (IPM) strategy. This work aimed to investigate how increasing laser energy affected common weeds when the apical meristem was exposed to irradiation at the early stages of development. A 50 W thulium-doped fibre laser with a diameter of 2 mm and a wavelength of 2 µm was used. The highest efficacy of laser irradiation was achieved when the grass weed (Alopecurus myosuroides) had one leaf and the dicot species were at the cotyledon stage. There was a large difference between the species' susceptibility to irradiation probably caused by differences in morphology and growth habit. At the 4-leaf stage, most of the species regrew after irradiation. Laser weeding may be a solution to replace or supplement other weed control methods in some crops, but in general the weeds must be irradiated when they are at the cotyledon to 2-leaf stage to avoid regrowth.
Collapse
Affiliation(s)
- Christian Andreasen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | | | | |
Collapse
|
58
|
Guo Q, Zhai W, Li P, Xiong Y, Li H, Liu X, Zhou Z, Li B, Wang P, Liu D. Nitrogen fertiliser-domesticated microbes change the persistence and metabolic profile of atrazine in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133974. [PMID: 38518695 DOI: 10.1016/j.jhazmat.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.
Collapse
Affiliation(s)
- Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Huimin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
59
|
Ling L, Feng L, Li Y, Yue R, Wang Y, Zhou Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J Fungi (Basel) 2024; 10:332. [PMID: 38786687 PMCID: PMC11122075 DOI: 10.3390/jof10050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Fruits and vegetables are an important part of the human diet, but during transportation and storage, microbial pathogens attack and spoil fruits and vegetables, causing huge economic losses to agriculture. Traditionally used chemical fungicides leave chemical residues, leading to environmental pollution and health risks. With the emphasis on food safety, biocontrol agents are attracting more and more attention due to their environmental friendliness. Endophytic fungi are present in plant tissues and do not cause host disease. The volatile organic compounds (VOCs) they produce are used to control postharvest diseases due to their significant antifungal activity, as well as their volatility, safety and environmental protection characteristics. This review provides the concept and characterization of endophytic fungal VOCs, concludes the types of endophytic fungi that release antifungal VOCs and their biological control mechanisms, as well as focuses on the practical applications and the challenges of applying VOCs as fumigants. Endophytic fungal VOCs can be used as emerging biocontrol resources to control postharvest diseases that affect fruits and vegetables.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
- New Rural Development Research Institute, Northwest Normal University, Lanzhou 730070, China
| | - Lijun Feng
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yao Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Rui Yue
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yuanyuan Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| | - Yongpeng Zhou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; (L.F.); (Y.L.); (R.Y.); (Y.W.); (Y.Z.)
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
60
|
Venkatesan R, Alagumalai K, Vetcher AA, Al-Asbahi BA, Kim SC. Eco-Friendly Poly (Butylene Adipate- co-Terephthalate) Coated Bi-Layered Films: An Approach to Enhance Mechanical and Barrier Properties. Polymers (Basel) 2024; 16:1283. [PMID: 38732752 PMCID: PMC11085390 DOI: 10.3390/polym16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
In this research work, a coated paper was prepared with poly (butylene adipate-co-terephthalate) (PBAT) film to explore its use in eco-friendly food packaging. The paper was coated with PBAT film for packaging using hot pressing, a production method currently employed in the packaging industry. The coated papers were evaluated for their structural, mechanical, thermal, and barrier properties. The structural morphology and chemical analysis of the coated paper confirmed the consistent formation of PBAT bi-layered on paper surfaces. Surface coating with PBAT film increased the water resistance of the paper samples, as demonstrated by tests of barrier characteristics, including the water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and water contact angle (WCA) of water drops. The transmission rate of the clean paper was 2010.40 cc m-2 per 24 h for OTR and 110.24 g m-2 per 24 h for WVTR. If the PBAT-film was coated, the value decreased to 91.79 g m-2 per 24 h and 992.86 cc m-2 per 24 h. The hydrophobic nature of PBAT, confirmed by WCA measurements, contributed to the enhanced water resistance of PBAT-coated paper. This result presents an improved PBAT-coated paper material, eliminating the need for adhesives and allowing for the fabrication of bi-layered packaging.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Krishnapandi Alagumalai
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| | - Bandar Ali Al-Asbahi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
61
|
Habib SS, Fazio F, Masud S, Ujan JA, Saeed MQ, Ullah M, Khan K, Khayyam K, Mohany M, Milošević M, Al-Rejaie SS, Cravana C. Analyzing the impact of pesticides on the indus river: contamination levels in water, sediment, fish, and associated human health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:191. [PMID: 38696024 DOI: 10.1007/s10653-024-01975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/02/2024] [Indexed: 06/17/2024]
Abstract
Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 μg/l (water), 12.37 and 9.20 μg/g/dw (sediment), and 14.27 and 11.29 μg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci, N. 13, 98168, Messina, Italy.
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Javed Ahmed Ujan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Cristina Cravana
- Department of Veterinary Sciences, University of Messina, Via Palatucci, N. 13, 98168, Messina, Italy
| |
Collapse
|
62
|
Xu Y, Huang C, Ma S, Bo C, Gong B, Ou J. Bifunctional fluorescent molecularly imprinted resin based on carbon dot for selective detection and enrichment of 2,4-dichlorophenoxyacetic acid in lettuce. Food Chem 2024; 439:138167. [PMID: 38071847 DOI: 10.1016/j.foodchem.2023.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
The work provided a method for synthesizing a simple fluorescent molecularly imprinted polymer by surface-initiated atom transfer radical polymerization (SI-ATRP) and its application in real sample. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres were selected as a matrix, 4-vinylpyridine, ethylene glycol dimethacrylate, 2,4-dichlorophenoxyacetic acid (2,4-D) as functional monomer, cross-linker and template molecule, respectively, to fabricate MAR@MIP with core-shell structure. For comparison, carbon dot (CD) as a fluorescence source was synthesized with o-phenylenediamine and tryptophan as precursors via hydrothermal method and integrated into MIP to acquire MAR@CD-MIP. MAR@CD-NIP was also prepared without adding the template molecule. The adsorption capacity of MAR@CD-MIP reached 104 mg g-1 for 2,4-D, which was higher than that of MAR@MIP (60 mg g-1). However, the adsorption capacity of MAR@CD-NIP was only 13.2 mg g-1. The linear range of fluorescence detection for 2,4-D was 18-72 μmol/L, and the limit of detection (LOD) was 0.35 μmol/L. The fluorescent MAR@CD-MIP was successfully applied in enrichment of lettuce samples. The recoveries of the three spiked concentrations of 2,4-D in lettuce were tested by fluorescence spectrophotometry and ranged in 97.3-101.7 %. Meanwhile, the results were also verified by HPLC. As a result, bi-functional molecularly imprinted resin was successfully fabricated to detect and enrich 2,4-D in real samples, and exhibited good selectivity, sensitivity and great application prospect in food detection.
Collapse
Affiliation(s)
- Yunjia Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
63
|
Pengsomjit U, Alabdo F, Karuwan C, Kraiya C, Alahmad W, Ozkan SA. Innovative Graphene-Based Nanocomposites for Improvement of Electrochemical Sensors: Synthesis, Characterization, and Applications. Crit Rev Anal Chem 2024:1-19. [PMID: 38656227 DOI: 10.1080/10408347.2024.2343854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Graphene, renowned for its exceptional physicochemical attributes, has emerged as a favored substrate for integrating a wide array of inorganic and organic materials in scientific endeavors and innovations. Electrochemical graphene-based nanocomposite sensors have been developed by incorporating diverse nanoparticles into graphene, effectively immobilized onto electrodes through various techniques. These graphene-based nanocomposite sensors have effectively detected and quantified various electroactive species in samples. This review delves into using graphene nanocomposites to fabricate electrochemical sensors, leveraging the exceptional electrical, mechanical, and thermal properties inherent to graphene derivatives. These nanocomposites showcase electrocatalytic activity, substantial surface area, superior electrical conductivity, adsorption capabilities, and notable porosity, which are highly advantageous for sensing applications. A myriad of characterization techniques, including Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis, and X-ray diffraction (XRD), have proven effective in exploring the properties of graphene nanocomposites and validating the adjustable formation of these nanomaterials with graphene. The applicability of these sensors across various matrices, encompassing environmental, food, and biological domains, has been evaluated through electrochemical measurements, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). This review provides a comprehensive overview of synthesis methods, characterization techniques, and sensor applications pertinent to graphene-based nanocomposites. Furthermore, it deliberates on the challenges and future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Untika Pengsomjit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Fatima Alabdo
- Department of Chemistry and Physics, Faculty of Science, Idlib University, Idlib, Syria
| | - Chanpen Karuwan
- Graphene Research Team (GRP), National Nanotechnology Center (NANOTEC), National Science and Technology Development (NSTDA), Pathum Thani, Thailand
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkiye
| |
Collapse
|
64
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
65
|
Zhao Q, Dong J, Li S, Lei W, Liu A. Effects of micro/nano-ozone bubble nutrient solutions on growth promotion and rhizosphere microbial community diversity in soilless cultivated lettuces. FRONTIERS IN PLANT SCIENCE 2024; 15:1393905. [PMID: 38665368 PMCID: PMC11043558 DOI: 10.3389/fpls.2024.1393905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Due to its high efficacy as a wide-spectrum disinfectant and its potential for the degradation of pollutants and pesticides, ozone has broad application prospects in agricultural production. In this study, micro/nano bubble technology was applied to achieve a saturation state of bubble nutrient solution, including micro-nano oxygen (O2 group) and micro-nano ozone (O3 group) bubble nutrient solutions. The effects of these solutions on lettuce physiological indices as well as changes in the microbial community within the rhizosphere substrate were studied. The application of micro/nano (O2 and O3) bubble nutrient solutions to substrate-cultured lettuce plants increased the amount of dissolved oxygen in the nutrient solution, increased the lettuce yield, and elevated the net photosynthetic rate, conductance of H2O and intercellular carbon dioxide concentration of lettuce plants. Diversity analysis of the rhizosphere microbial community revealed that both the abundance and diversity of bacterial and fungal communities in the substrate increased after plant cultivation and decreased following treatment with micro/nanobubble nutrient solutions. RDA results showed that the microbial community in the S group was positively associated with EC, that in the CK and O2 groups exhibited a positive correlation with SC, and that in the O3 group displayed a positive correlation with CAT and POD. Overall, the implementation of micro/nanobubble generation technology in soilless substrates can effectively increase the lettuce growth and yield, and O3 had a more pronounced effect on lettuce yield and quality and the microbial community structure in the substrate than O2. Our study would provide a reference and theoretical basis for developing sustainable and green technology for promoting lettuce production and can be a promising alternative to conventional methods for improving crop yields.
Collapse
Affiliation(s)
| | | | | | | | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
66
|
Wen H, Du J, Wang Y, Lv M, Ding H, Liu H, Xu H. Construction and Single-Crystal Structures of N-Isoxazolin-5-ylcarbonylindole Derivatives, and Their Pesticidal Activities and Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6913-6920. [PMID: 38517181 DOI: 10.1021/acs.jafc.3c07015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
To explore natural product-based pesticide candidates, a series of indole derivatives containing the isoxazoline skeleton at the N-1 position were synthesized by 1,3-dipolar [2 + 3] cycloaddition reaction. Their structures were characterized by melting points (mp), infrared (IR) spectra, proton nuclear magnetic resonance spectra (1H NMR), carbon-13 nuclear magnetic resonance spectra (13C NMR), and high resolution mass spectrometry (HRMS). The single-crystal structures of five compounds were presented. Against Tetranychus cinnabarinus Boisduval, compound 3b showed greater than 3.8-fold acaricidal activity of indole and good control effects under glasshouse conditions. Against Aphis citricola Van der Goot, compounds 3b and 3q exhibited 48.3- and 36.8-fold aphicidal activity of indole and 6-methylindole, respectively. Particularly, compound 3b showed good bioactivities against T. cinnabarinus and A. citricola. Against Eriosoma lanigerum Hausmann, compound 3h and 3i showed 2.1 and 1.9 times higher aphicidal activity compared to indole. Furthermore, the construction of the epidermal cuticle layer of 3b-treated carmine spider mites was distinctly damaged, which ultimately led to their death.
Collapse
Affiliation(s)
- Houpeng Wen
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Jiawei Du
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| | - Haixia Ding
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Huqi Liu
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang China
| |
Collapse
|
67
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
68
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
69
|
Du X, Gao Z, He L. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2630-2640. [PMID: 37985216 DOI: 10.1002/jsfa.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Understanding the role of adjuvants in pesticide persistence is crucial to develop effective pesticide formulations and manage pesticide residues in fresh produce. This study investigated the impact of a commercial non-ionic surfactant product containing alkylphenol ethoxylates (APEOs) on the persistence of thiabendazole on apple and spinach surfaces against the 30 kg m-3 baking soda (sodium bicarbonate, NaHCO3 ) soaking, which was used to remove the active ingredient (AI) in the cuticular wax layer of fresh produce through alkaline hydrolysis. Surface-enhanced Raman scattering (SERS) mapping method was used to quantify the residue levels on fresh produce surfaces at different experimental scenarios. Four standard curves were established to quantify surface thiabendazole in the absence and presence of APEOs, on apple and spinach leaf surfaces, respectively. RESULTS Overall, the result showed that APEOs enhanced the persistence of thiabendazole over time. After 3 days of exposure, APEOs increased thiabendazole surface residue against NaHCO3 hydrolysis on apple and spinach surfaces by 5.39% and 10.47%, respectively. CONCLUSION The study suggests that APEOs led to more pesticide residues on fresh produce and greater difficulty in washing them off from the surfaces using baking soda, posing food safety concerns. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
70
|
Zhou J, Zhang Z, Liu H, Guo M, Deng J. Inhibition Effect of Non-Host Plant Volatile Extracts on Reproductive Behaviors in the Diamondback Moth Plutella xylostella (Linnaeus). INSECTS 2024; 15:227. [PMID: 38667357 PMCID: PMC11049908 DOI: 10.3390/insects15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The pest management of Plutella xylostella, the global pest of cruciferous plants, is primarily dependent upon continued applications of insecticides, which has led to severe insecticide resistance and a series of ecological concerns. The essential oils (EOs) of non-host plants are considered to have a high application potential in pest behavioral control. In P. xylostella, the insecticidal properties, antifeeding activities, and oviposition inhibition effects of many EOs have been studied in larvae and female moths. However, less focus has been placed on the inhibitory effect on sex pheromone communication during courtship, which is vital for the reproduction of the offspring. In this study, by combining electrophysiological studies, laboratory behavioral assays, and field traps, we demonstrated that non-host plant EOs significantly inhibited the reproductive behaviors of both sexes. Notably, the calamus (Acorus gramineus) EO inhibited the preference of male moths for synthetic sex pheromone blends and reduced the egg-laying number of female moths on host plants, with the highest inhibition rates of 72% and 100%, respectively, suggesting a great application prospect of calamus and its EO on the behavioral control strategies of P. xylostella.
Collapse
Affiliation(s)
| | | | | | - Mengbo Guo
- Department of Plant Protection, Advanced College of Agricultural Sciences, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China; (J.Z.); (Z.Z.); (H.L.)
| | - Jianyu Deng
- Department of Plant Protection, Advanced College of Agricultural Sciences, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China; (J.Z.); (Z.Z.); (H.L.)
| |
Collapse
|
71
|
Serrano Valera M, Vela N, Piuvezam G, Mateo-Ramírez F, Santiago Fernandes Pimenta ID, Martínez-Alcalá I. Prevalence and concentration of pesticides in European waters: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0282386. [PMID: 38530775 PMCID: PMC10965048 DOI: 10.1371/journal.pone.0282386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/15/2023] [Indexed: 03/28/2024] Open
Abstract
There is currently a growing interest in the so-called emerging pollutants, such as pesticides, pharmaceuticals, personal hygiene care products, drugs, etc., whose presence in natural ecosystems is not necessarily recent, but the development in latest years of new and more sensitive methods of analysis has allowed their detection. They can be present in the natural environment, food, and many products of everyday origin, which suggests that human exposure to them is massive and universal. Therefore, the study of this type of substances is becoming one of the priority lines of research of the main agencies dedicated to the protection of public and environmental health, such as the World Health Organization (WHO), United States Environmental Protection Agency (USEPA) or European Union (EU). In this sense, it is of vital importance to know the nature and quantity of this type of contaminants, to establish preventive mechanisms that minimize its presence in aquatic systems, with special requirements for human consumption. This study aimed to describe a protocol for a systematic review and meta-analysis to assess the status of pesticides in European waters. We will search for original studies in the PubMed/Medline, Scopus, Web of Science, EMBASE, ScienceDirect databases. Prevalence studies of emerging contaminants (pesticides) in water resources (watersheds, aquifers, rivers, marine and springs), wastewaters (influent and effluent), and drinking water should be included. Two reviewers will independently screen and assess the included studies, with any disagreements being resolved by a third reviewer. We will summarize the findings using a narrative approach and, if possible, conduct a quantitative synthesis (meta-analysis). We will conduct the protocol following the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P) guidelines. The review will summarize the current evidence on the presence of pesticides in European waters such as glyphosate, chlorpyrifos, pyrethroid pesticides, neonicotinoid pesticides, and/or fungicides, in samples of different water resources like wastewaters and drinking water. We expect that this systematic review will establish preventive mechanisms that minimize the presence of pesticides in water in the environment.
Collapse
Affiliation(s)
| | - Nuria Vela
- Catholic University of Murcia, Murcia, Spain
| | - Grasiela Piuvezam
- Systematic Review and Meta-Analysis Laboratory (LabSys-CNPQ), Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Public Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Isac Davidson Santiago Fernandes Pimenta
- Systematic Review and Meta-Analysis Laboratory (LabSys-CNPQ), Federal University of Rio Grande do Norte, Natal, Brazil
- Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
72
|
Carrera MA, Sánchez LM, Morales MM, Fernández-Alba AR, Hernando MD. Method optimisation for large scope pesticide multiresidue analysis in bee pollen: A pilot monitoring study. Food Chem 2024; 436:137652. [PMID: 37839127 DOI: 10.1016/j.foodchem.2023.137652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Pesticide contamination in emerging foods and supplements is currently a topic of great interest. This study focused on the evaluation of pesticide residues in commercial bee pollen samples to evaluate the risk associated with their consumption. To this end, an automated clean-up method for the pesticide extracts of bee pollen was developed. An LC-MS/MS and a GC-MS/MS method were validated for the analysis of 353 pesticides in 80 bee pollen samples purchased from different countries. The results showed the presence of 77 different pesticide residues in bee pollen, including plant protection chemicals and veterinary treatments. 85 % of the samples were contaminated with pesticides and no relevant differences were found between conventional and organic samples. Pesticide concentrations exceeding the imposed MRL were found in 40 % of the samples, but the risk assessment showed that consumers are not exposed to an unacceptable risk when consuming the evaluated bee pollen.
Collapse
Affiliation(s)
- Maria Antonietta Carrera
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Lorena Manzano Sánchez
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María Murcia Morales
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - María Dolores Hernando
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| |
Collapse
|
73
|
Cui Y, Zhu Y, Dong G, Li Y, Xu J, Cheng Z, Li L, Gong G, Yu X. Evaluation of the control efficacy of antagonistic bacteria from V-Ti magnetite mine tailings on kiwifruit brown spots in pot and field experiments. Front Microbiol 2024; 15:1280333. [PMID: 38533328 PMCID: PMC10963537 DOI: 10.3389/fmicb.2024.1280333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Seemingly barren heavy-metal-polluted vanadium (V) and titanium (Ti) magnetite mine tailings contain various functional microbes, yet it is unclear whether this includes microbial resources relevant to the biological control of plant diseases. Kiwifruit brown leaf spot disease, caused by Corynespora cassiicola, can seriously reduce kiwifruit yield. To discover effective control measures for kiwifruit leaf spot, 18 bacteria strains among 136 tailing-isolated bacteria from V-Ti magnetite mine tailings were identified as inhibiting C. cassiicola by the confrontation plate method, indicating that antagonistic bacteria surviving in the V-Ti magnetite mine tailings were present at a low level. The 18 antagonistic strains could be divided into two BOX-A1R clusters. The 13 representative strains that were selected for phylogenetic tree construction based on their 16S rRNA sequences belonged to the Bacillus genus. Five predominant strains exhibited different toxin-production times and intensities, with four of them initiating toxin production at 32 h. Among them, Bacillus sp. KT-10 displayed the highest bacteriostatic rate (100%), with a 37.5% growth inhibition rate and an antagonistic band of 3.2 cm against C. cassiicola. Bacillus sp. KT10 also showed a significant inhibitory effect against the expansion speed of kiwifruit brown spots in the pot. The relative control effect was 78.48 and 83.89% at 7 days after the first and last spraying of KT-10 dilution, respectively, confirming a good effect of KT-10 on kiwifruit brown leaf spots in the field. This study demonstrated for the first time that there are some antagonistic bacteria to pathogenic C. cassiicola in V-Ti magnetite mine tailings, and Bacillus sp. KT10 was found to have a good control effect on kiwifruit brown leaf spots in pots and fields, which provided an effective biological control measurement for kiwifruit brown leaf spots.
Collapse
Affiliation(s)
- Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- Wild Plants Sharing and Service Platform of Sichuan Province, Chengdu, China
| | - Yuhang Zhu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Guanyong Dong
- Kiwifruit Industry Development Bureau of Cangxi, Guangyuan, China
| | - Yanmei Li
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zuqiang Cheng
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
- Wild Plants Sharing and Service Platform of Sichuan Province, Chengdu, China
| | - Lijun Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Guoshu Gong
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- College of Resources and College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
74
|
Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, Yunus NM, Liew CS, Lim JW, Ho CD, Tong WY. Potential application of 2D nano-layered MXene in analysing and remediating endocrine disruptor compounds and heavy metals in water. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:111. [PMID: 38466501 DOI: 10.1007/s10653-024-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
Collapse
Affiliation(s)
- Muhammad Nur' Hafiz Rozaini
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | | | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Aliya Fathima Anwar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Normawati M Yunus
- Centre of Research in Ionic Liquids (CORIL), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, 251301, New Taipei, Taiwan
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
75
|
Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170113. [PMID: 38232846 DOI: 10.1016/j.scitotenv.2024.170113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Samriddhi Bali
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Md Altamash Ahmad
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | | |
Collapse
|
76
|
Li Y, Zhang B, Zhang J, Yang N, Yang D, Zou K, Xi Y, Chen G, Zhang X. The inappropriate application of imidacloprid destroys the ability of predatory natural enemies to control pests in the food chain: A case study of the feeding behavior of Orius similis on Frankliniella occidentalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116040. [PMID: 38306817 DOI: 10.1016/j.ecoenv.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Insecticides are an indispensable and important tool for agricultural production. However, the inappropriate application of insecticides can cause damage to the food chain and ecosystem. Orius similis is an important predatory and natural enemy of Frankliniella occidentalis. Imidacloprid is widely used to control pests, but will inevitably exert adverse effects on O. similis. In order to determine the effect of different imidacloprid treatments on the ability of O. similis to prey on the 2nd-instar nymphs of F. occidentalis, we determined the toxicity and predation of imidacloprid on different stages of O. similis under contact and ingestion treatments. In addition, we used the Holling disc equation to evaluate the ability of O. similis to search and exhibit predatory activity following contact and ingestion treatments. Analysis showed that the highest LC10 and LC20 values for imidacloprid contact and ingestion toxicity treatment were 17.06 mg/L and 23.74 mg/L, respectively. Both imidacloprid treatments led toa reduction in the predatory of O. similis on prey. The functional responses of the 3rd to 5th instar nymphs, along with female and male O. similis adults to the 2nd-instar nymphs of F. occidentalis were consistent with the Holling type II response following contact and ingestion with imidacloprid. However, following imidacloprid treatment, the handing time (Th) of O. similis with single F. occidentalis was prolonged and the instantaneous attack rate (a) was reduced after imidacloprid treatment. The predatory capacity (a/Th) of female O. similis adults when treated with the LC10 concentration of imidacloprid by ingestion was 52.85; this was lower than that of the LC10 concentration of imidacloprid in the contact treatment (57.67). The extent of predation of O. similis on the 2nd-instar nymphs of F. occidentalis was positively correlated with prey density, although the search effect was negatively correlated with prey density. The most extensive search effect was exhibited by adult O. similis females. Simulations with the Hessell-Varley interference model showed that an increase in the number of O. similis would reduce search efficiency regardless of whether they were treated with imidacloprid or not. Thus, O. similis, especially female adults, exhibited strong potential for controlling the 2nd-instar nymphs of F. occidentalis. The toxicity of ingestion following treatment with the same concentration of imidacloprid in O. similis was greater than that of contact treatment. When using O. similis to control F. occidentalis in the field, we should increase the number of female adults released, and prolong the interval between imidacloprid treatment and O. similis exposure. This strategy will improve the control ability of O. similis, coordinate both chemical and biological control, reduce the impact of pesticides on the environment, and improve the efficiency of agricultural production.
Collapse
Affiliation(s)
- Yiru Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Jinlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Nian Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Yangyan Xi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Guohua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
77
|
Guedes Pinto T, da Silva GN, Renno ACM, Salvadori DMF, Ribeiro DA. The impact of genetic polymorphisms on genotoxicity in workers occupationally exposed to pesticides: a systematic review. Toxicol Mech Methods 2024; 34:237-244. [PMID: 37982319 DOI: 10.1080/15376516.2023.2280806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
In a world with a rising use of pesticides, these chemicals, although designed to effectively control pests, pose potential threats to the environment and non-target organisms, including humans. Thus, this systematic review aims to investigate a possible association between genetic polymorphisms and susceptibility and genotoxicity in individuals occupationally exposed to pesticides. This review was conducted following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. A total of 14 carefully selected studies were thoroughly analyzed by two reviewers, who assigned scores based on previously set evaluation criteria. This study classified over half of the chosen studies as having moderate or strong quality, observing a correlation between certain genetic polymorphisms involved in xenobiotic metabolism and genotoxicity in workers exposed to pesticides. Results suggest that the genes associated with xenobiotic metabolism play a substantial role in determining individuals' susceptibility to genomic damage due to pesticide exposure, affecting both their peripheral blood and oral mucosa. This implies that individuals with specific genotypes may experience increased or decreased levels of DNA damage when exposed to these chemicals.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, Brazil
| |
Collapse
|
78
|
Cunha JCS, Rivera Vega LJ, Torres JB, Suh CPC, Sword GA. Fungal seed treatments of cotton affect boll weevil development. PEST MANAGEMENT SCIENCE 2024; 80:1566-1576. [PMID: 37966378 DOI: 10.1002/ps.7890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Nonpathogenic fungi associated with plants can enhance plant defenses against stress factors, including herbivory. This study assessed whether cotton plants grown from seeds treated with different fungi affected boll weevil, Anthonomus grandis grandis Boheman, development and reproduction along with plant tolerance. We used whole plants grown from seeds treated with different fungi (Chaetomium globosum TAMU520 and TAMU559, Phialemonium inflatum TAMU490, and Beauveria bassiana) versus non-treated controls to test insect growth, reproduction, and plant tolerance assays in a greenhouse. RESULTS Regarding boll weevil reproduction, fewer larvae hatched and fewer adults emerged from fungal-treated plants. In addition, the developmental time from oviposition to adult emergence was delayed in the plants treated with all fungi. For plant tolerance, B. bassiana-treated plants attacked by boll weevils shed fewer squares than nonfungal-treated plants. CONCLUSION Fungal treatments can affect boll weevil performance and reproduction on cotton plants, with potentially negative effects on population growth. Collectively, these results support the potential for cottonseed treatments with fungi as a novel tool for boll weevil management in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Janaina C S Cunha
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Loren J Rivera Vega
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jorge B Torres
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Charles P C Suh
- Insect Control and Cotton Disease Research Unit, USDA-ARS, College Station, Texas, USA
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
79
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
80
|
Beltrán-Flores E, Sarrà M, Blánquez P. A review on the management of rinse wastewater in the agricultural sector. CHEMOSPHERE 2024; 352:141283. [PMID: 38280647 DOI: 10.1016/j.chemosphere.2024.141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Pesticides have become indispensable compounds to sustain global food production. However, a series of sustainable agricultural practices must be ensured to minimize health and environmental risks, such as eco-friendly cultivation techniques, the transition to biopesticides, appropriate hygiene measures, etc. Hygiene measures should include the management of rinse wastewater (RWW) produced when cleaning agricultural equipment and machinery contaminated with pesticides (among other pollutants), such as sprayers or containers. Although some technical guidelines encourage the reuse of RWW in agricultural fields, in many cases the application of specialized treatments is a more environmentally friendly option. Solar photocatalysis was found to be the most widely studied physical-chemical method, especially in regions with intense solar radiation, generally using catalysts such as TiO2, Na2S2O8, and H2O2, operating for relatively short treatment periods (usually from 10 min to 9 h) and requiring accumulated radiation levels typically ranging from 3000 to 10000 kJ m-2. Biological treatments seem to be particularly suitable for this application. Among them, biobed is a well-established and robust technology for the treatment of pesticide-concentrated water in some countries, with operating periods that typically range from 1 to 24 months, and with temperatures preferably close to 20 °C; but further research is required for its implementation in other regions and/or conditions. Solar photocatalysis and biobeds are the only two systems that have been tested in full-scale treatments. Alternatively, fungal bioremediation using white rot fungi has shown excellent efficiencies in the degradation of pesticides from agricultural wastewater. However, greater efforts should be invested in gathering more information to consolidate these technologies and expand their use in the agricultural sector.
Collapse
Affiliation(s)
- Eduardo Beltrán-Flores
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - Paqui Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
81
|
Kamalesh R, Karishma S, Saravanan A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. CHEMOSPHERE 2024; 352:141421. [PMID: 38360415 DOI: 10.1016/j.chemosphere.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
82
|
Lu Y, Wang S. Theoretical explanation of direct photolysis and indirect photolysis of bendazone with •OH, •SO 4-, and •CO 3- in water: mechanism insights and ecotoxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18982-18992. [PMID: 38353814 DOI: 10.1007/s11356-024-32315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Bendazone (BNTE) is an herbicide and a highly concerned pollutant in aquatic environments. Understanding the photochemical behavior of BNTE in water is crucial for evaluating its photochemical conversion process in aquatic environments. This study analyzed the direct photolysis and indirect photolysis pathways of two dissociated forms of BNTE in water through density functional theory and time-dependent density functional theory method. The results show that the reaction types of indirect photolysis of BNTE with free radicals (•OH, •SO4-, and •CO3-) are OH- addition, SO4- addition, and CO3- addition. In the process of indirect photolysis of BNTE and free radicals, the photolysis of •OH and BNTE was the easiest, followed by •SO4-. In addition, the active site of BNTE reacting with •OH is C8, and the active site of BNTE reacting with •SO4- is C10. However, the photolysis effect of •CO3- on BNTE is very small, indicating that •CO3- in water plays a secondary role in the indirect photolysis of BNTE. In the direct photolysis of BNTE, N1-C6 bond breaking is difficult to occur spontaneously in the environment due to its high endothermic property and energy barrier. The direct photolysis pathway of BNTE involves the break of the N1-S2/S2-N3/N3-C12 bond. In addition, the ecological toxicity evaluation showed that toxicity of most of the degradation products were reduced, but the toxicity level was still maintained at a harmful level. Our findings provide the photochemical fate of BNTE in aquatic environments and will help to more accurately understand their photochemical conversion mechanisms in the environment.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
83
|
Perrin L, Moisan F, Spinosi J, Chaperon L, Jezewski-Serra D, Elbaz A. Combining crop-exposure matrices and land use data to estimate indices of environmental and occupational exposure to pesticides. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:333-344. [PMID: 37316534 DOI: 10.1038/s41370-023-00562-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Exposure assessment represents a major challenge for studies on the relation between pesticides and health. OBJECTIVE We developed a method combining information from crop-exposure matrices (CEMs) and land use data, in order to compute indices of environmental and occupational pesticide exposure. We illustrate our approach using French data (1979-2010). METHODS We used CEMs for five crops (straw cereals, grain corn, corn fodder, potatoes, vineyards) that describe use (annual probability, frequency, intensity) of pesticide subgroups, chemical families, and active substances by region and time since 1960. We combined these data with land use data from agricultural censuses (1979, 1988, 2000, 2010) to compute indices of environmental and occupational pesticide exposure in cantons (small French administrative units). Indices of environmental exposure were calculated based on the area of each crop in the cantons, while indices of occupational exposure depended on combinations of crops in each farm from the cantons. To illustrate our approach, we selected a pesticide group (herbicides), chemical family of herbicides (phenoxyacetic acids), and active substance from the phenoxyacetic acids chemical family (2,4-D). RESULTS The estimated proportion of the area of crops with CEMs and of farms sprayed with herbicides was close to 100% between 1979-2010, but the estimated average annual number of applications increased. There were decreasing time-trends for phenoxyacetic acids and 2,4-D over the same period for all indices of exposure. There was a high use of herbicides throughout France in 2010, except in the South coast. For phenoxyacetic acids and 2,4-D, the spatial distribution was heterogeneous for all indices of exposure, with the highest values in the Centre and North regions. IMPACT STATEMENT Assessment of pesticide exposure is a key issue for epidemiological studies on their association with health outcomes. However, it presents some unique challenges, particularly for retrospective exposure and the investigation of chronic diseases. We present a method to compute indices of exposure by combining information from crop-exposure matrices for five crops and land use data. Specificities of environmental and occupational exposure are addressed using different methods. These methods are applied to pesticides used in agriculture in France for five crops (3 groups, 91 chemical families, 197 active substances) to produce indices at a small geographic scale from 1979 to 2010 for the whole metropolitan France. Besides using these indices in French epidemiological studies, our approach could be relevant for other countries.
Collapse
Affiliation(s)
- Laëtitia Perrin
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Institut Gustave-Roussy, INSERM U1018, Team « Exposome, heredity, cancer and health », CESP, 94807, Villejuif, France.
| | - Frédéric Moisan
- Santé publique France, The French Public Health Agency, Direction santé environnement travail, Saint-Maurice, France
| | - Johan Spinosi
- Santé publique France, The French Public Health Agency, Direction santé environnement travail, Saint-Maurice, France
| | - Laura Chaperon
- Santé publique France, The French Public Health Agency, Direction santé environnement travail, Saint-Maurice, France
| | - Delphine Jezewski-Serra
- Santé publique France, The French Public Health Agency, Direction appui, traitements et analyses de données, Saint-Maurice, France
| | - Alexis Elbaz
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Institut Gustave-Roussy, INSERM U1018, Team « Exposome, heredity, cancer and health », CESP, 94807, Villejuif, France
| |
Collapse
|
84
|
Al Hassan MK, Nasser MS, Hussein IA, Ba-Abbad M, Khan I. Computational study on organochlorine insecticides extraction using ionic liquids. Heliyon 2024; 10:e25931. [PMID: 38404846 PMCID: PMC10884451 DOI: 10.1016/j.heliyon.2024.e25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Insecticides pose hazardous environmental effects and can enter the food chain and contaminate water resources. Ionic liquids (ILs) have recently drawn much interest as environmentally friendly solvents and have been an efficient choice for extracting pesticides because of their outstanding thermophysical characteristics and tunable nature. In this study, ILs were screened using COSMO-RS (Conductor-like Screening Model for Real Solvents) to extract organochlorine insecticides from water at 289 K. A total of 165 ILs, a combination of 33 cations with five anions, were screened by COSMO-RS to predict the selectivity and capacity of the organochlorine insecticides at infinite dilution. The Organochlorine insecticide compounds, such as benzene hexachloride (BHC), Heptachlor, Aldrin, Gamma-Chlordane (γ-Chlordane), Endrin, and Methoxychlor are selected for this study. Charge density profiles show that Endrin and Methoxychlor compounds are strong H-bond acceptors and weak H-bond donors, while the rest of the compounds are H-bond donors with no H-bond acceptor potential. Moreover, it has been shown that ILs composed of halides and heteroatomic anions in conjunction with cations have enhanced selectivity and capacity for insecticides. Moreover, the hydrophobic phosphonium-based ILs have enhanced selectivity and capacity for insecticides. In BHC extraction, the selectivity of 1,3-dimethyl-imidazolium chloride was found to be the highest at 1074.06, whereas 2-hydroxyethyl trimethyl ammonium chloride exhibited the highest capacity being 84.0.1,3-dimethyl-imidazolium chloride exhibits the highest performance index, which is 57064.77. In addition, the ILs that have been chosen are well-recognized as environmentally friendly and very effective solvents to extract insecticides from water. As a result, this study evaluated that ILs could be promising solvents that may be further developed for the extraction of insecticides from contaminated water.
Collapse
Affiliation(s)
- Mohammad K. Al Hassan
- Gas Processing Center, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
- Chemical Engineering Department, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
| | - Ibnelwaleed A. Hussein
- Gas Processing Center, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
- Chemical Engineering Department, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
| | - Muneer Ba-Abbad
- Gas Processing Center, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar
| | - Imran Khan
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
85
|
Ouakhssase A, Jalal M, Addi EA. Pesticide contamination pattern from Morocco, insights into the surveillance situation and health risk assessment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:313. [PMID: 38416294 DOI: 10.1007/s10661-024-12507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
The widespread application of pesticides in Morocco's agriculture renders their monitoring in food and environmental samples very necessary. Recent years have witnessed a growing interest in reporting studies related to the monitoring of pesticide residues in food, water, groundwater, and soil as well as their quantitative health risk assessment. Most published studies have been done by university researchers. However, the lack of research reproducibility remains a problem that considerably limits the possibility of exploiting data from the literature. Our study involves an extensive literature review utilizing search engines with keywords like "pesticide residues," "monitoring," "vegetables and fruits," "water and soil," "risk assessment," and "Morocco" from 2009 to 2023. Analysis of pesticide residues in foodstuffs and environmental samples highlights concerns over compliance with EU regulations, the health risks associated with pesticide exposure, and the necessity for comprehensive monitoring and risk assessment strategies. This paper could help influence policies to develop a strategy and action plan for the sound management of pesticides, including measures to reduce their use, raise awareness, and monitor compliance. Also, this paper could be useful for scientists interested in understanding the current situation and challenges regarding pesticide residues in Morocco, as well as countries with which commercial links exist.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Laboratoire des Sciences de la Vie et de la Santé, Faculté de Médecine et de Pharmacie de Tanger, Université Abdelmalek Essaâdi, Tétouan, Morocco.
| | - Mariam Jalal
- Laboratoire de Biologie Cellulaire et Génétique Moléculaire (LBCGM), Faculté des sciences, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Equipe de recherche Génie des procédés et Ingénierie Chimique (GPIC), Ecole Supérieure de Technologie d'Agadir, B.P: 33/S, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
86
|
Rys M, Miastkowska M, Łętocha A, Wajs-Bonikowska A, Lorenzo P, Synowiec A. The effect of caraway oil-loaded bio-nanoemulsions on the growth and performance of barnyard grass and maize. Sci Rep 2024; 14:4313. [PMID: 38383733 PMCID: PMC10881981 DOI: 10.1038/s41598-024-54721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
A proper formulation is crucial to improve the herbicidal effects of essential oils and their selectivity. In this study, we investigated the physicochemical properties of bio-based nanoemulsions (CNs) containing several concentrations of caraway (Carum carvi) essential oil stabilized with Eco Tween 80, as a surfactant, maintaining 1:1 proportions. Detailed physicochemical characteristics of the CNs revealed that their properties were most desired at 2% of the oil and surfactant, i.e., the smallest droplet size, polydispersity index, and viscosity. The CNs caused biochemical changes in maize and barnyard grass (Echinochloa crus-galli) seedlings, however, to a different extent. Barnyard grass has overall metabolism (measured as a thermal power) decreased by 39-82% when exposed to the CNs. The CNs triggered changes in the content and composition of carbohydrates in the endosperm of both species' seedlings in a dose-response manner. The foliar application of CNs caused significant damage to tissues of young maize and barnyard grass plants. The effective dose of the CN (ED50, causing a 50% damage) was 5% and 17.5% oil in CN for barnyard grass and maize tissues, respectively. Spraying CNs also decreased relative water content in leaves and affected the efficiency of photosynthesis by disturbing the electron transport chain. We found that barnyard grass was significantly more susceptible to the foliar application of CNs than maize, which could be used to selectively control this species in maize crops. However, further studies are needed to verify this hypothesis under field conditions.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | - Małgorzata Miastkowska
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 31-155, Krakow, Poland
| | - Anna Łętocha
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, 31-155, Krakow, Poland
| | - Anna Wajs-Bonikowska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530, Lodz, Poland
| | - Paula Lorenzo
- Department of Life Sciences, Centre for Functional Ecology (CFE)-Science for People & the Planet, Associate Laboratory TERRA, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Agnieszka Synowiec
- Department of Agroecology and Plant Production, The University of Agriculture in Krakow, 31-120, Krakow, Poland.
| |
Collapse
|
87
|
Dong H, Shen J, Yu Z, Lu X, Liu F, Kong W. Low-Cost Plant-Protection Unmanned Ground Vehicle System for Variable Weeding Using Machine Vision. SENSORS (BASEL, SWITZERLAND) 2024; 24:1287. [PMID: 38400446 PMCID: PMC10893413 DOI: 10.3390/s24041287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
This study presents a machine vision-based variable weeding system for plant- protection unmanned ground vehicles (UGVs) to address the issues of pesticide waste and environmental pollution that are readily caused by traditional spraying agricultural machinery. The system utilizes fuzzy rules to achieve adaptive modification of the Kp, Ki, and Kd adjustment parameters of the PID control algorithm and combines them with an interleaved period PWM controller to reduce the impact of nonlinear variations in water pressure on the performance of the system, and to improve the stability and control accuracy of the system. After testing various image threshold segmentation and image graying algorithms, the normalized super green algorithm (2G-R-B) and the fast iterative threshold segmentation method were adopted as the best combination. This combination effectively distinguished between the vegetation and the background, and thus improved the accuracy of the pixel extraction algorithm for vegetation distribution. The results of orthogonal testing by selected four representative spraying duty cycles-25%, 50%, 75%, and 100%-showed that the pressure variation was less than 0.05 MPa, the average spraying error was less than 2%, and the highest error was less than 5% throughout the test. Finally, the performance of the system was comprehensively evaluated through field trials. The evaluation showed that the system was able to adjust the corresponding spraying volume in real time according to the vegetation distribution under the decision-making based on machine vision algorithms, which proved the low cost and effectiveness of the designed variable weed control system.
Collapse
Affiliation(s)
- Huangtao Dong
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China; (H.D.); (Z.Y.)
| | - Jianxun Shen
- Hangzhou Raw Seed Growing Farm, Hangzhou 311115, China;
| | - Zhe Yu
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China; (H.D.); (Z.Y.)
| | - Xiangyu Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.L.); (F.L.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.L.); (F.L.)
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China; (H.D.); (Z.Y.)
| |
Collapse
|
88
|
Zhou H, Shen Y, Zhang N, Liu Z, Bao L, Xia Y. Wood fiber biomass pyrolysis solution as a potential tool for plant disease management: A review. Heliyon 2024; 10:e25509. [PMID: 38333782 PMCID: PMC10850972 DOI: 10.1016/j.heliyon.2024.e25509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Wood vinegar is a high-value acidic byproduct of biomass pyrolysis used for charcoal production. It is widely used in agriculture and forestry. The adverse effects of synthetic fungicides on the environment and human health have prompted the increasing use of biofungicides as alternatives to traditional products in integrated plant disease management programs. In recent years, there has been an increasing interest in the potential of wood vinegar as a disease management tool in agriculture and forestry. In this paper, the composition and preparation process of wood vinegar and its application in agriculture and forestry were introduced, and the effect and mechanism of wood vinegar against fungi, viruses and bacteria were summarized. The potential of wood vinegar as a sustainable and eco-friendly alternative to conventional chemical fungicides is also discussed. Finally, some suggestions on the application and development of wood vinegar were put forward.
Collapse
Affiliation(s)
- Hongyin Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, China
| | - Yan Shen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, China
| | - Zhizong Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, China
| | - Li Bao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, China
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Soil Fertility and Pollution Remediation Engineering Research Center, Kunming, 650201, China
| |
Collapse
|
89
|
Baniya A, Subkrasae C, Ardpairin J, Anesko K, Vitta A, Dillman AR. STEINERNEMA ADAMSI N. SP. (RHABDITIDA: STEINERNEMATIDAE), A NEW ENTOMOPATHOGENIC NEMATODE FROM THAILAND. J Parasitol 2024; 110:22-39. [PMID: 38334188 DOI: 10.1645/23-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
A new species of entomopathogenic nematode, Steinernema adamsi n. sp., was recovered from the soil of a longan tree (Dimocarpus sp.) in Mueang Lamphun District, Thailand, using baiting techniques. Upon analysis of the nematode's morphological traits, we found it to be a new species of Steinernema and a member of the Longicaudatum clade. Molecular analyses of the ITS rDNA and D2D3 of 28S rDNA sequences further confirmed that S. adamsi n. sp. is a new species of the Longicaudatum clade, which is closely related to Steinernema guangdongense and Steinernema longicaudam. Using morphometric analysis, the infective juveniles measure between 774.69 and 956.96 μm, males have a size range of 905.44 to 1,281.98 μm, and females are within the range of 1,628.21 to 2,803.64 μm. We also identified the symbiotic bacteria associated with the nematode based on 16S sequences as Xenorhabdus spp. closely related toXenorhabdus griffiniae. Furthermore, we have successfully assessed a cryopreservation method for the long-term preservation of S. adamsi n. sp. Successful cryopreservation of this new species will allow for the longer preservation of its traits and will be valuable for its future use. The discovery of this new species has significant implications for the development of effective biological control agents in Thailand, and our work contributes to our understanding of the diversity and evolution of entomopathogenic nematodes.
Collapse
Affiliation(s)
- Anil Baniya
- Department of Nematology, University of California, Riverside, California 92521
| | - Chanakan Subkrasae
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Jiranun Ardpairin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Kyle Anesko
- Department of Nematology, University of California, Riverside, California 92521
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, California 92521
| |
Collapse
|
90
|
Sol Dourdin T, Guyomard K, Rabiller M, Houssais N, Cormier A, Le Monier P, Sussarellu R, Rivière G. Ancestors' Gift: Parental Early Exposure to the Environmentally Realistic Pesticide Mixture Drives Offspring Phenotype in a Larger Extent Than Direct Exposure in the Pacific Oyster, Crassostrea gigas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1865-1876. [PMID: 38217500 DOI: 10.1021/acs.est.3c08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Marine organisms are threatened by the presence of pesticides in coastal waters. Among them, the Pacific oyster is one of the most studied invertebrates in marine ecotoxicology where numerous studies highlighted the multiscale impacts of pesticides. In the past few years, a growing body of literature has reported the epigenetic outcomes of xenobiotics. Because DNA methylation is an epigenetic mark implicated in organism development and is meiotically heritable, it raises the question of the multigenerational implications of xenobiotic-induced epigenetic alterations. Therefore, we performed a multigenerational exposure to an environmentally relevant mixture of 18 pesticides (nominal sum concentration: 2.85 μg·L-1) during embryo-larval stages (0-48 hpf) of a second generation (F1) for which parents where already exposed or not in F0. Gene expression, DNA methylation, and physiological end points were assessed throughout the life cycle of individuals. Overall, the multigenerational effect has a greater influence on the phenotype than the exposure itself. Thus, multigenerational phenotypic effects were observed: individuals descending from exposed parents exhibited lower epinephrine-induced metamorphosis and field survival rates. At the molecular level, RNA-seq and Methyl-seq data analyses performed in gastrula embryos and metamorphosis-competent pediveliger (MCP) larvae revealed a clear F0 treatment-dependent discrimination. Some genes implicated into shell secretion and immunity exhibited F1:F0 treatment interaction patterns (e.g., Calm and Myd88). Those results suggest that low chronic environmental pesticide contamination can alter organisms beyond the individual scale level and have long-term adaptive implications.
Collapse
Affiliation(s)
- Thomas Sol Dourdin
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Killian Guyomard
- Ifremer, Plateforme Mollusques Marins Bouin, 85029 Bouin, France
| | | | - Nina Houssais
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Alexandre Cormier
- Ifremer, Service de Bioinformatique de l'Ifremer, 29280 Brest, France
| | - Pauline Le Monier
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins, 44311 Cedex 03 Nantes, France
| | - Rossana Sussarellu
- Ifremer, Physiologie et Toxines des Microalgues Toxiques, 44311 Cedex 03 Nantes, France
| | - Guillaume Rivière
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR7208, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche et Développement (IRD), Sorbonne Université (SU), Université de Caen Normandie (UCN), Université des Antilles (UA), 75231 Paris Cedex, France
- BOREA, UFR des Sciences, Université de Caen-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France
| |
Collapse
|
91
|
Ding X, Guo L, Du Q, Wang T, Zeng Z, Wang Y, Cui H, Gao F, Cui B. Preparation and Comprehensive Evaluation of the Efficacy and Safety of Chlorantraniliprole Nanosuspension. TOXICS 2024; 12:78. [PMID: 38251033 PMCID: PMC10818841 DOI: 10.3390/toxics12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Chlorantraniliprole is a broad-spectrum insecticide that has been widely used to control pests in rice fields. Limited by its low solubility in both water and organic solvents, the development of highly efficient and environmentally friendly chlorantraniliprole formulations remains challenging. In this study, a low-cost and scalable wet media milling technique was successfully employed to prepare a chlorantraniliprole nanosuspension. The average particle size of the extremely stable nanosuspension was 56 nm. Compared to a commercial suspension concentrate (SC), the nanosuspension exhibited superior dispersibility, as well as superior foliar wetting and retention performances, which further enhanced its bioavailability against Cnaphalocrocis medinalis. The nanosuspension dosage could be reduced by about 40% while maintaining a comparable efficacy to that of the SC. In addition, the chlorantraniliprole nanosuspension showed lower residual properties, a lower toxicity to non-target zebrafish, and a smaller effect on rice quality, which is conducive to improving food safety and the ecological safety of pesticide formulations. In this work, a novel pesticide-reduction strategy is proposed, and theoretical and data-based support is provided for the efficient and safe application of nanopesticides.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingyu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
92
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
93
|
Vassilev N, Mendes GDO. Soil Fungi in Sustainable Agriculture. Microorganisms 2024; 12:163. [PMID: 38257989 PMCID: PMC10819681 DOI: 10.3390/microorganisms12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that the continuously growing human population needs rapid solutions to respond to the increased global demand for high agricultural productivity [...].
Collapse
Affiliation(s)
- Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil;
| |
Collapse
|
94
|
Fletcher J, Noghanibehambari H. The Siren Song of Cicadas: Early-Life Pesticide Exposure and Later-Life Male Mortality. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2024; 123:102903. [PMID: 38222798 PMCID: PMC10785703 DOI: 10.1016/j.jeem.2023.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This paper studies the long-term effects of in-utero and early-life exposure to pesticide use on adulthood and old-age longevity. We use the cyclical emergence of cicadas in the eastern half of the United States as a shock that raises the pesticide use among tree crop growing farmlands. We implement a difference-in-difference framework and employ Social Security Administration death records over the years 1975-2005 linked to the complete count 1940 census. We find that males born in top-quartile tree-crop counties and exposed to a cicada event during fetal development and early-life live roughly 2.2 months shorted lives; those with direct farm exposure face a reduction of nearly a year. We provide empirical evidence to examine mortality selection before adulthood, endogenous fertility, and differential data linkage rates. Additional analyses suggests that reductions in education and income during adulthood are potential mechanisms of impact. Our findings add to our understanding of the relevance of early-life insults for old-age health and mortality.
Collapse
Affiliation(s)
- Jason Fletcher
- La Follette School of Public Affairs, University of Wisconsin-Madison, 1225 Observatory Drive, Madison, WI 53706-1211, USA
| | - Hamid Noghanibehambari
- College of Business, Austin Peay State University, Marion St, Clarksville, TN 37040, USA
| |
Collapse
|
95
|
Huang Y, Li Z. Streamlining Pesticide Regulation Across International River Basins for Effective Transboundary Environmental Management. ENVIRONMENTAL MANAGEMENT 2024; 73:67-80. [PMID: 37782327 DOI: 10.1007/s00267-023-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pesticide standard values (PSVs) are critical for environmental management, environmental quality control, and remediation. Some countries or regions share river basins; however, their pesticide regulations are inconsistent, which could create a barrier to transboundary environmental management. To address this issue, we propose PSV scores for neighboring countries in order to promote pesticide regulatory harmonization within international river basins. Representative pesticides were selected to define PSV scores, including chemicals that are currently and historically widely used. Countries or regions from five international river basins were chosen for analysis: the Amazon, Mekong-Lancang, Rhine-Meuse, Danube, and Great Lakes. PSV scores were calculated for each of four environmental compartments: soil, surface freshwater, groundwater, and drinking water. The results revealed that current regulatory agencies lack PSVs of current used pesticides for surface freshwater. With the exception of the member states of the European Union and the Great Lakes states of the United States, the majority of basin countries or regions lack uniform pesticide regulations in environmental compartments to facilitate transboundary environmental management. In addition, PSVs have not been established for a large number of pesticides currently used in agriculture, which could lead to water contamination by pesticides used in upstream environmental compartments (e.g., croplands). Also, current PSVs do not align across environmental compartments, which could cause inter-environmental contamination by pesticides used in upstream compartments. In light of the fact that current river basins lack uniform pesticide regulations, the following recommendations are provided to promote transboundary environmental management: (1) river basin regions should collaborate on pesticide regulation establishment, (2) pesticide regulations should be aligned across environmental compartments, (3) current-use pesticides should receive more attention, and (4) quantitative approaches should be proposed for linking PSVs across environmental compartments. This study provides a regulatory tool to identify possible gaps in transboundary environmental management and improve the pesticide regulatory policies. It is expected to establish cooperation organizations to enhance regulatory communications and collaborations for transboundary environmental pesticide management.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
96
|
Rotimi DE, Ojo OA, Adeyemi OS. Atrazine exposure caused oxidative stress in male rats and inhibited brain-pituitary-testicular functions. J Biochem Mol Toxicol 2024; 38:e23579. [PMID: 37926918 DOI: 10.1002/jbt.23579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Exposure to the herbicide atrazine has been shown to have deleterious effects on human and animal reproduction. To determine whether atrazine influences the brain-pituitary-testicular axis directly or indirectly, the present study examined the toxic effects of atrazine on fertility potential by assessing gonadal hormones, testicular function indices, sperm quality, and oxido-inflammatory markers in rats. Twelve animals were grouped into two groups; control and atrazine. The control group received oral administration of olive oil (2 mL/kg), while the atrazine group received 120 mg/kg of atrazine. Treatments were daily and lasted for 7 days. Upon treatment cessation, rats were necropsied for biochemical and histopathological analyses. The biochemical function indices in the rat brain, testis, and epididymis decreased significantly in the atrazine group. Atrazine exposure led to decreases in gonadal hormonal concentrations, semen quality parameters, and testicular function indices compared with the control. Furthermore, there was a marked increase in oxidative stress and inflammatory markers as well as degeneration of the histo-architecture in atrazine-treated rats. Overall, atrazine exposure impaired sperm quality, led to increased inflammation and oxidative stress, and decreased the activity of the brain-pituitary-testicular axis via endocrine disruption.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi A Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University, Iwo, Nigeria
| | - Oluyomi S Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Laboratory of Medicinal Biochemistry & Biochemical Toxicology, Bowen University, Iwo, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| |
Collapse
|
97
|
Du H, Gao F, Yang S, Zhu H, Cheng C, Peng F, Zhang W, Zheng Z, Wang X, Yang Y, Hou W. Oxidized of chitosan with different molecular weights for potential antifungal and plant growth regulator applications. Int J Biol Macromol 2023; 253:126862. [PMID: 37703971 DOI: 10.1016/j.ijbiomac.2023.126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The application of Chitosan (CS) in drug delivery systems, plant growth promotion, antibacterial potentiality and plant defense is significantly limited by its inability to dissolve in neutral solutions. In this work, CS with different molecular weights (Mw) has been oxidized, yielding five kinds of oxidized chitosan (OCS 1-5) with solubilities in neutral solutions. The results obtained from Fourier Transform Infrared Spectroscopy clearly showed the successful oxidation of the hydroxyl group to form aldehyde and carboxyl groups. And the CS derivatives showed the wrinkled and lamellar structures on the surface of OCS. The results of antifungal activity against Fusarium graminearum showed that the OCS dissolved in 2 % (V/V) acetic acid exhibited better performance of almost complete inhibition of mycelial growth compared with CS at the concentration of 500 μg/mL. Among the five OCS, OCS-4 exhibited the best antifungal effect and had the lowest EC50 value of 581.68 μg/mL in samples. OCS-4 displayed superior promoting effect on seed germination with a germination potential of 62.2 % at a concentration of 3 g/L and a germination rate of 74.5 %. Additionally, the other four OCS also showed excellent antifungal activity with dose-dependent manners. These results indicated that the OCS had excellent antifungal potential in agricultural production.
Collapse
Affiliation(s)
- Haoyang Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fengkun Gao
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Hongxia Zhu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Fei Peng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Wenjing Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Zhe Zheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| | - Wenlong Hou
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China; Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.
| |
Collapse
|
98
|
Nzabanita C, Zhang L, Wang Y, Wang S, Guo L. The Wheat Endophyte Epicoccum layuense J4-3 Inhibits Fusarium graminearum and Enhances Plant Growth. J Fungi (Basel) 2023; 10:10. [PMID: 38248920 PMCID: PMC10817605 DOI: 10.3390/jof10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Fungal endophytes are well-known for their ability to promote plant growth and hinder fungal diseases, including Fusarium head blight (FHB) caused by Fusarium graminearum. This study aimed to characterize the biocontrol efficacy of strain J4-3 isolated from the stem of symptomless wheat collected from Heilongjiang Province, China. It was identified as Epicoccum layuense using morphological characteristics and phylogenetic analysis of the rDNA internal transcribed spacer (ITS) and beta-tubulin (TUB). In a dual culture assay, strain J4-3 significantly inhibited the mycelial growth of F. graminearum strain PH-1 and other fungal pathogens. In addition, wheat coleoptile tests showed that lesion symptoms caused by F. graminearum were significantly reduced in wheat seedlings treated with hyphal fragment suspensions of strain J4-3 compared to the controls. Under field conditions, applying spore suspensions and culture filtrates of strain J4-3 with conidial suspensions of F. graminearum on wheat spikes resulted in the significant biocontrol efficacy of FHB. In addition, wheat seedlings previously treated with spore suspensions of strain J4-3 before sowing successfully resulted in FHB reduction after the application of conidial suspensions of F. graminearum at anthesis. More importantly, wheat seedlings treated with hyphal fragments and spore suspensions of strain J4-3 showed significant increases in wheat growth compared to the controls under greenhouse and field conditions. Overall, these findings suggest that E. layuense J4-3 could be a promising biocontrol agent (BCA) against F. graminearum, causing FHB and a growth-promoting fungus in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.N.); (L.Z.); (Y.W.); (S.W.)
| |
Collapse
|
99
|
Sojithamporn P, Leksakul K, Sawangrat C, Charoenchai N, Boonyawan D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023; 12:4386. [PMID: 38137190 PMCID: PMC10743213 DOI: 10.3390/foods12244386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Water, soil, and food products contain pesticide residues. These residues result from excessive pesticides use, motivated by the fact that agricultural productivity can be increased by the use of these pesticides. The accumulation of these residues in the body can cause health problems, leading to food safety concerns. Cold plasma technology has been successfully employed in various applications, such as seed germination, bacterial inactivation, wound disinfection, surface sterilization, and pesticide degradation. In recent years, researchers have increasingly explored the effectiveness of cold plasma technology in the degradation of pesticide residues. Most studies have shown promising outcomes, encouraging further research and scaling-up for commercialization. This review summarizes the use of cold plasma as an emerging technology for pesticide degradation in terms of the plasma system and configuration. It also outlines the key findings in this area. The most frequently adopted plasma systems for each application are identified, and the mechanisms underlying pesticide degradation using cold plasma technology are discussed. The possible factors influencing pesticide degradation efficiency, challenges in research, and future trends are also discussed. This review demonstrates that despite the nascent nature of the technology, the use of cold plasma shows considerable potential in regards to pesticide residue degradation, particularly in food applications.
Collapse
Affiliation(s)
- Phanumas Sojithamporn
- Graduate Program in Industrial Engineering, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Komgrit Leksakul
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Nivit Charoenchai
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (C.S.); (N.C.)
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Center (PBP), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
100
|
Daraban GM, Hlihor RM, Suteu D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. TOXICS 2023; 11:983. [PMID: 38133384 PMCID: PMC10748064 DOI: 10.3390/toxics11120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The environmental pollution that occurs in direct response to the widespread use of man-made/conventional pesticides results from many chemicals that require a long period of time, often decades, to degrade. The synthetic nature of pesticides also harms animals, beneficial insects, microorganisms, and plants, as well as humans. Fortunately, however, there are many natural pesticides, the so-called biopesticides, that are also effective against pests and more importantly, do not interfere with the well-being of ecosystems. Consequently, most biopesticides are safer for use around people and pets than man-made pesticides because, for example, they can be easily washed away from fruits and vegetables. The natural habitat is a rich resource with a wide selection of plants, many of which are also used to treat diseases in humans, animals, and plants. Out of concern for public health, environmental safety, and the stringent regulation of pesticide residues in agricultural commodities, the use of biopesticides is becoming increasingly important, but questions regarding potential pest resistance to these products may arise, just as is the case with conventional pesticides. Therefore, the performance and potential role of biopesticides in the management of plant pests should be prioritized due to their sustainability and importance to human and environmental welfare. In this review, we propose to highlight a scenario in which we discuss in detail the main constraints posed by the use of pesticides compared to biopesticides, starting with issues regarding their definition and continuing on to issues related to their toxicity and their impact on the environment and human health.
Collapse
Affiliation(s)
- Gabriel Mihăiță Daraban
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Raluca-Maria Hlihor
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 3 Mihail Sadoveanu Street, 700490 Iasi, Romania
| | - Daniela Suteu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof.dr.docent D. Mangeron Blvd., 700050 Iasi, Romania;
| |
Collapse
|