51
|
De Gaetano F, d’Avanzo N, Mancuso A, De Gaetano A, Paladini G, Caridi F, Venuti V, Paolino D, Ventura CA. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals (Basel) 2022; 15:ph15101206. [PMID: 36297318 PMCID: PMC9612377 DOI: 10.3390/ph15101206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Idebenone (IDE) is a powerful antioxidant that is potentially active towards cerebral diseases, but its low water solubility and fast first pass metabolism reduce its accumulation in the brain, making it ineffective. In this work, we developed cyclodextrin-based chitosan nanospheres (CS NPs) as potential carriers for nose-to-brain targeting of IDE. Sulfobutylether-β-cyclodextrin (SBE-β-CD) was used as a polyanion for chitosan (CS) and as a complexing agent for IDE, permitting its encapsulation into nanospheres (NPs) produced in an aqueous solution. Overloading NPs were obtained by adding the soluble IDE/hydroxypropyl-β-CD (IDE/HP-β-CD) inclusion complex into the CS or SBE-β-CD solutions. We obtained homogeneous CS NPs with a hydrodynamic radius of about 140 nm, positive zeta potential (about +28 mV), and good encapsulation efficiency and drug loading, particularly for overloaded NPs. A biphasic release of IDE, finished within 48 h, was observed from overloaded NPs, whilst non-overloaded CS NPs produced a prolonged release, without a burst effect. In vitro biological studies showed the ability of CS NPs to preserve the antioxidant activity of IDE on U373 culture cells. Furthermore, Fourier transform infrared spectroscopy (FT-IR) demonstrated the ability of CS NPs to interact with the excised bovine nasal mucosa, improving the permeation of the drug and potentially favoring its accumulation in the brain.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. D’annunzio” of Chieti-Pescara, Via dei Vestini, 31, I-66100 Chieti, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena, Via Dei Campi, 287, 41125 Modena, Italy
| | - Giuseppe Paladini
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Francesco Caridi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| |
Collapse
|
52
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
53
|
Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. Int J Biol Macromol 2022; 221:435-445. [PMID: 36067850 DOI: 10.1016/j.ijbiomac.2022.08.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 μg ml-1) as compared to drug suspension (90.02 μg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.
Collapse
|
54
|
Diedrich C, Camargo Zittlau I, Schineider Machado C, Taise Fin M, Maissar Khalil N, Badea I, Mara Mainardes R. Mucoadhesive nanoemulsion enhances brain bioavailability of luteolin after intranasal administration and induces apoptosis to sh-sy5y neuroblastoma cells. Int J Pharm 2022; 626:122142. [PMID: 36064075 DOI: 10.1016/j.ijpharm.2022.122142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children and accounts for 7% of all childhood malignancies and 15% cancer mortality in children. Luteolin (LUT) is recognized by its anticancer activity against several types of cancer. The aim of this study was to prepare chitosan-coated nanoemulsion containing luteolin (NECh-LUT), investigate its potential for brain delivery following intranasal administration, and to evaluate its cytotoxicity against neuroblastoma cells. NECh-LUT was developed by cavitation process and characterized for its size, surface charge, encapsulation efficiency, and mucoadhesion. The developed formulation presented size 68±1 nm, zeta potential +13±1 mV, and encapsulation efficiency of 85.5±0.3%. The NECh-LUT presented nearly 6-fold higher permeation through the nasal mucosa ex vivo and prolonged LUT release up to 72 h in vitro, following Baker-Lonsdale kinetic model. The pharmacokinetic evaluation of NECh-LUT revealed a 10-fold increase in drug half-life and a 4.4 times enhancement in LUT biodistribution in brain tissue after intranasal administration of single-dose. In addition, NECh-LUT inhibited the growth of neuroblastoma cells after 24, 48 and 72 h in concentrations starting from 2 µM. The NECh-LUT developed for intranasal administration proved to be a promising alternative for brain delivery of LUT, and a viable option for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Isabella Camargo Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Christiane Schineider Machado
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava, PR, Brazil.
| |
Collapse
|
55
|
Nojoki F, Ebrahimi-Hosseinzadeh B, Hatamian-Zarmi A, Khodagholi F, Khezri K. Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease: In vitro, in vivo, and ex vivo evaluations. Biomed Pharmacother 2022; 153:113450. [DOI: 10.1016/j.biopha.2022.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
56
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
57
|
Delbreil P, Rabanel JM, Banquy X, Brambilla D. Therapeutic nanotechnologies for Alzheimer's disease: a critical analysis of recent trends and findings. Adv Drug Deliv Rev 2022; 187:114397. [PMID: 35738546 DOI: 10.1016/j.addr.2022.114397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease for which no disease modifying therapies are presently available. Besides the identification of pathological targets, AD presents numerous clinical and pharmacological challenges such as efficient active delivery to the central nervous system, cell targeting, and long-term dosing. Nanoparticles have been explored to overcome some of these challenges as drug delivery vehicles or drugs themselves. However, early promises have failed to materialize as no nanotechnology-based product has been able to reach the market and very few have moved past preclinical stages. In this review, we perform a critical analysis of the past decade's research on nanomedicine-based therapies for AD at the preclinical and clinical stages. The main obstacles to nanotechnology products and the most promising approaches were also identified, including renewed promise with gene editing, gene modulation, and vaccines.
Collapse
Affiliation(s)
- Philippe Delbreil
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Michel Rabanel
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Davide Brambilla
- Faculty of pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
58
|
Chung TW, Wu TY, Siah ZY, Liu DZ. Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14061288. [PMID: 35745861 PMCID: PMC9229699 DOI: 10.3390/pharmaceutics14061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Using nasal routes to deliver drugs to the brain using multifunctional nanoparticles (NPs) to bypass the blood–brain barrier (BBB) might enhance the delivery efficacy. Anti-oxidative N-Acetyl-L-cysteine (NAC)-loaded silk fibroin (SF/NAC) NPs are produced, characterized and studied as a potential delivery vehicle for NAC delivered to the brain via nasal for both in vitro and in vivo studies. The NPs are not cytotoxic to RPMI 2650 cells, mucosal model cells, at a concentration of 6000 μg/mL. The anti-oxidative activities of SF/NAC NPs are demonstrated by high H2O2 scavenge capacities of the NPs and shown by mitochondrial superoxide (MitoSOX) immunostaining of human mesenchymal stem cells. Tight junctions in RPMI 2650 cells are opened after 30 min of incubation with SF/NAC NPs, which are demonstrated by measuring the decrease in trans-epithelial electrical resistance (TEER) values and discreteness in ZO-1 stains. The cellular uptake of SF/NAC NPs by RPMI 2650 cells is significantly greater than that for SF NPs and increased with increasing incubation time. In an in vivo imaging study (IVIS) using rats shows that the amount of NAC that is delivered to the brain by SF/NAC NPs increased by 1.40–2.60 times and NAC is retained longer in the nasal cavity than NAC solutions in a 2-h study.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
- Correspondence:
| | - Ting-Ya Wu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Zheng-Yu Siah
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Der-Zen Liu
- Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
59
|
Zha S, Wong K, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022; 11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Indexed: 12/16/2022]
Abstract
Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zha
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 000000 P. R. China
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| | - Angelo H. All
- Department of Chemistry Hong Kong Baptist University 224 Waterloo Road Kowloon Hong Kong SAR 000000 P. R. China
| |
Collapse
|
60
|
Nie Z, Li Y, Li X, Xu Y, Yang G, Ke M, Qu X, Qin Y, Tan J, Fan Y, Zhu C. Layer-by-Layer Assembly of a Polysaccharide "Armor" on the Cell Surface Enabling the Prophylaxis of Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:acsami.2c03442. [PMID: 35639584 PMCID: PMC9173675 DOI: 10.1021/acsami.2c03442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Airborne pathogens, such as the world-spreading severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), cause global epidemics via transmission through the respiratory pathway. It is of great urgency to develop adequate interventions that can protect individuals against future pandemics. This study presents a nasal spray that forms a polysaccharide "armor" on the cell surface through the layer-by-layer self-assembly (LBL) method to minimize the risk of virus infection. The nasal spray has two separate components: chitosan and alginate. Harnessing the electrostatic interaction, inhaling the two polysaccharides alternatively enables the assembly of a barrier that reduces virus uptake into the cells. The results showed that this approach has no obvious cellular injury and endows cells with the ability to resist the infection of adenovirus and SARS-CoV-2 pseudovirus. Such a method can be a potential preventive strategy for protecting the respiratory tract against multiple viruses, especially the upcoming SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Zhiqiang Nie
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yinghao Li
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
- Chongqing Institute of Zhong Zhi Yi
Gu, Shapingba District, Chongqing 400030, China
| | - Xinxin Li
- State Key Laboratory of Primate Biomedical Research,
Institute of Primate Translational Medicine, Kunming University of Science
and Technology, Kunming 650500, China
| | - Youqian Xu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Guanyuan Yang
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Ming Ke
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Xiaohang Qu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yinhua Qin
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Ju Tan
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Yonghong Fan
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
| | - Chuhong Zhu
- Department of Anatomy, National and Regional
Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory
for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing,
Third Military Medical University, Chongqing 400038,
China
- State Key Laboratory of Primate Biomedical Research,
Institute of Primate Translational Medicine, Kunming University of Science
and Technology, Kunming 650500, China
- State Key Laboratory of Trauma, Burn and
Combined Injury, Chongqing 400038, China
| |
Collapse
|
61
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
62
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
63
|
Kala C, Asif M, Gilani SJ, Imam SS, Khan NA, Taleuzzaman M, Zafar A, Ahmed MM, Alshehri S, Ghoneim MM. Formulation of Isopropyl Isothiocyanate Loaded Nano Vesicles Delivery Systems: In Vitro Characterization and In Vivo Assessment. Molecules 2022; 27:molecules27092876. [PMID: 35566224 PMCID: PMC9104827 DOI: 10.3390/molecules27092876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Isopropyl Isothiocyanate (IPI) is a poorly water-soluble drug used in different biological activities. So, the present work was designed to prepare and evaluate IPI loaded vesicles and evaluated for vesicle size, polydispersity index (PDI) and zeta potential, encapsulation efficiency, drug release, and drug permeation. The selected formulation was coated with chitosan and further assessed for the anti-platelet and anti-thrombotic activity. The prepared IPI vesicles (F3) exhibited a vesicle size of 298 nm ± 5.1, the zeta potential of −18.7 mV, encapsulation efficiency of 86.2 ± 5.3% and PDI of 0.33. The chitosan-coated IPI vesicles (F3C) exhibited an increased size of 379 ± 4.5 nm, a positive zeta potential of 23.5 ± 2.8 mV and encapsulation efficiency of 77.3 ± 4.1%. IPI chitosan vesicle (F3C) showed enhanced mucoadhesive property (2.7 folds) and intestinal permeation (~1.8-fold) higher than IPI vesicles (F3). There was a significant (p < 0.05) enhancement in size, muco-adhesion, and permeation flux achieved after coating with chitosan. The IPI chitosan vesicle (F3C) demonstrated an enhanced bleeding time of 525.33 ± 12.43 s, anti-thrombin activity of 59.72 ± 4.21, and inhibition of platelet aggregation 68.64 ± 3.99%, and anti-platelet activity of 99.47%. The results of the study suggest that IPI chitosan vesicles showed promising in vitro results, as well as improved anti-platelet and anti-thrombotic activity compared to pure IPI and IPI vesicles.
Collapse
Affiliation(s)
- Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India
- Correspondence: (C.K.); (S.S.I.)
| | - Mohammad Asif
- Faculty of Pharmacy, Lachoo Memorial College of Science and Technology, Sector-A, Shastri Nagar, Jodhpur 342001, Rajasthan, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Adbulrahman University, Riyadh 11671, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (C.K.); (S.S.I.)
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpur, Amroha 244236, Uttar Pradesh, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Ad Diriyah 13713, Saudi Arabia;
| |
Collapse
|
64
|
Zhang Y, Kong L, Tan L. Effectiveness of nanoscale delivery systems on improving the bioavailability of lutein in rodent models: a systematic review. Crit Rev Food Sci Nutr 2022; 62:2375-2390. [PMID: 33249868 DOI: 10.1080/10408398.2020.1853035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lutein, a potent antioxidant and the main macular pigment that protects the macula from light-initiated oxidative damage, has low bioavailability. Various nanoscale delivery systems have been developed for improving its bioavailability. This systematic review aims to evaluate the effectiveness of nanoscale delivery systems on improving lutein bioavailability in rodent models. Using EBSCOhost and PubMed, a total of eleven peer-reviewed articles published from 2000 to 2020 were identified. Plasma lutein concentration, pharmacokinetic parameters, including maximum concentration (Cmax), area under curve (AUC), and time to reach the maximum concentration (Tmax), and lutein accumulation in organs were extracted to evaluate the bioavailability of lutein using nanoscale delivery methods as compared with unencapsulated or raw lutein. Various nanoscale delivery systems, including polymer nanoparticles, emulsions, and lutein nanoparticles, significantly improved the bioavailability of lutein, as evidenced by increased plasma lutein concentrations, Cmax, or AUC. Additionally, five out of seven studies observed enhanced accumulation of lutein in the liver and the eyes. Polymer nanoparticles and emulsions improve the dispersibility and stability of lutein, thus lutein might be more accessible in the small intestine. Lutein nanoparticles shortened the Tmax. Further studies are warranted to evaluate the effectiveness of nanoscale delivery systems on improving the functionalities of lutein.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition, University of Alabama, Tuscaloosa, Alabama, USA
| | - Lingyan Kong
- Department of Human Nutrition, University of Alabama, Tuscaloosa, Alabama, USA
| | - Libo Tan
- Department of Human Nutrition, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
65
|
Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res 2022; 12:862-880. [PMID: 34731414 PMCID: PMC8888512 DOI: 10.1007/s13346-021-01086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
There is a growing number of biomolecules, including peptides, proteins, monoclonal antibodies and RNA, that could be potentially used for the treatment of central nervous system (CNS) diseases. However, the realization of their potential is being hampered by the extraordinary difficulties these complex biomolecules have to reach the brain in therapeutically meaningful amounts. Nose-to-brain (N-to-B) delivery is now being investigated as a potential option for the direct transport of biomolecules from the nasal cavity to different brain areas. Here, we discuss how different technological approaches enhance this N-to-B transport, with emphasis on those that have shown a potential for clinical translation. We also analyse how the physicochemical properties of nanocarriers and their modification with cell-penetrating peptides (CPPs) and targeting ligands affect their efficacy as N-to-B carriers for biomolecules.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
66
|
Fortuna A, Schindowski K, Sonvico F. Editorial: Intranasal Drug Delivery: Challenges and Opportunities. Front Pharmacol 2022; 13:868986. [PMID: 35308245 PMCID: PMC8924485 DOI: 10.3389/fphar.2022.868986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Katharina Schindowski
- Institute for Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parma, Italy.,University Research Centre for the Innovation of Health Products, Biopharmanet-TEC, University of Parma, Parma, Italy
| |
Collapse
|
67
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
68
|
Yokel RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1767. [PMID: 34957707 DOI: 10.1002/wnan.1767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
This advanced review describes the anatomical and physiological barriers and mechanisms impacting nanomedicine translocation from the nasal cavity directly to the brain. There are significant physiological and anatomical differences in the nasal cavity, olfactory area, and airflow reaching the olfactory epithelium between humans and experimentally studied species that should be considered when extrapolating experimental results to humans. Mucus, transporters, and tight junction proteins present barriers to material translocation across the olfactory epithelium. Uptake of nanoparticles through the olfactory mucosa and translocation to the brain can be intracellular via cranial nerves (intraneuronal) or other cells of the olfactory epithelium, or extracellular along cranial nerve pathways (perineural) and surrounding blood vessels (perivascular, the glymphatic system). Transport rates vary greatly among the nose to brain pathways. Nanomedicine physicochemical properties (size, surface charge, surface coating, and particle stability) can affect uptake efficiency, which is usually less than 5%. Incorporation of therapeutic agents in nanoparticles has been shown to produce pharmacokinetic and pharmacodynamic benefits. Assessment of adverse effects has included olfactory mucosa toxicity, ciliotoxicity, and olfactory bulb and brain neurotoxicity. The results have generally suggested the investigated nanomedicines do not present significant toxicity. Research needs to advance the understanding of nanomedicine translocation and its drug cargo after intranasal administration is presented. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
69
|
Ssekatawa K, Byarugaba DK, Angwe MK, Wampande EM, Ejobi F, Nxumalo E, Maaza M, Sackey J, Kirabira JB. Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front Bioeng Biotechnol 2022; 10:820218. [PMID: 35252130 PMCID: PMC8889028 DOI: 10.3389/fbioe.2022.820218] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The greatest challenge of the current generation and generations to come is antimicrobial resistance, as different pathogenic bacteria have continuously evolved to become resistant to even the most recently synthesized antibiotics such as carbapenems. Resistance to carbapenems limits the therapeutic options of MDR infections as they are the only safe and effective drugs recommended to treat such infections. This scenario has complicated treatment outcomes, even to the commonest bacterial infections. Repeated attempts to develop other approaches have been made. The most promising novel therapeutic option is the use of nanomaterials as antimicrobial agents. Thus, this study examined the efficacy of Camellia sinensis extract (CSE) and Prunus africana bark extract (PAE) green synthesized Copper oxide nanoparticles (CuONPs) against carbapenem-resistant bacteria. Furthermore, the photocatalytic and antioxidant activities of CuONPs were evaluated to determine the potential of using them in a wide range of applications. CuONPs were biosynthesized by CSE and PAE. UV vis spectroscopy, X-ray Diffraction (XRD), Dynamic light scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used to characterize the nanoparticles. CuONPs susceptibility tests were carried out by the agar well diffusion method. The photocatalytic and antioxidant activities of the CuONPs were determined by the methylene blue and DPPH free radical scavenging assays, respectively. UV vis absorbance spectra registered surface plasmon resonance peaks between 272 and 286 nm, confirming the presence of CuONPs. The XRD array had nine strong peaks at 2θ values typical of CuONPs. FTIR spectra exhibited bands associated with organic functional groups confirming capping and functionalization of the CuONPs by the phytochemicals. DLS analysis registered a net zeta potential of +12.5 mV. SEM analysis revealed that the nanoparticles were spherical and clustered with a mean diameter of 6 nm. Phytosynthesized CuONPs exhibited the highest growth suppression zones of 30 mm with MIC ranging from 30 to 125 μg/ml against MDR bacteria. Furthermore, the CuONPs achieved a methylene blue dye photocatalysis degradation efficiency of 85.5% and a free radical scavenging activity of 28.8%. PAE and CSE successfully bio-reduced copper ions to the nanoscale level with potent antimicrobial, photocatalysis, and antioxidant activities.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Martin Kamilo Angwe
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Eddie M. Wampande
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Francis Ejobi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Edward Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Pretoria, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Juliet Sackey
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - John Baptist Kirabira
- Africa Center of Excellence in Materials, Product Development and Nanotechnology, College of Engineering, Design, Art and Technology, Makerere University, Kampala, Uganda
| |
Collapse
|
70
|
Bruinsmann FA, de Cristo Soares Alves A, de Fraga Dias A, Lopes Silva LF, Visioli F, Raffin Pohlmann A, Figueiró F, Sonvico F, Stanisçuaski Guterres S. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. Int J Pharm 2022; 616:121563. [PMID: 35151819 DOI: 10.1016/j.ijpharm.2022.121563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common and lethal malignant brain tumor. Despite simvastatin (SVT) showing potential anticancer properties, its antitumoral effect against glioblastoma appears limited when the conventional oral administration route is selected. As a consequence, nose-to-brain delivery has been proposed as an alternative route to deliver SVT into the brain. This study aimed to prepare chitosan-coated simvastatin-loaded lipid-core nanocapsules (LNCSVT-chit) suitable for nose-to-brain delivery and capable of fostering antitumor effects against glioblastoma both in vitro and in vivo. Results showed that the nanocapsules present adequate particle size (mean diameter below 200 nm), narrow particle size distribution (PDI < 0.2), positive zeta potential and high encapsulation efficiency (nearly 100%). In vitro cytotoxicity of LNCSVT-chit was comparable to non-encapsulated SVT in C6 rat glioma cells, whereas LNCSVT-chit were more cytotoxic than non-encapsulated SVT after 72 h of incubation against U-138 MG human glioblastoma cell line. In studies carried out in rats, LNCSVT-chit significantly enhanced the amount of drug in rat brain tissue after intranasal administration (2.4-fold) when compared with free SVT. Moreover, LNCSVT-chit promoted a significant decrease in tumor growth and malignancy in glioma-bearing rats in comparison to control and free SVT groups. Additionally, LNCSVT-chit did not cause any toxicity in treated rats. Considered overall, the results demonstrated that the nose-to-brain administration of LNCSVT-chit represents a novel potential strategy for glioblastoma treatment.
Collapse
Affiliation(s)
- Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Aline de Cristo Soares Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil
| | - Fernanda Visioli
- Programa de Pós-Graduação em Odontologia, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035 000, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Centre for Innovation in Health Products - Biopharmanet-TEC, University of Parma, Padiglione 33, Campus Universitario, 43124 Parma, PR, Italy.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, Brazil.
| |
Collapse
|
71
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
72
|
A P, Agrawal M, Dethe MR, Ahmed H, Yadav A, Gupta U, Alexander A. Nose-to-brain drug delivery for the treatment of Alzheimer's Disease: Current advancements and challenges. Expert Opin Drug Deliv 2022; 19:87-102. [PMID: 35040728 DOI: 10.1080/17425247.2022.2029845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The irreversible destruction of neurons, progressive loss of memory and cognitive behavior, high cost of therapy, and impact on society desire a better, effective, and affordable treatment of AD. The nose-to-brain drug delivery approach holds a great potential to access the brain without any hindrance of BBB and result in higher bioavailability thus better therapeutic efficacy of anti-AD drugs. AREAS COVERED The present review article highlighted the current facts and worldwide statistics of AD and its detailed etiology. Followed by barriers to brain delivery, nose-to-brain delivery, their limitations, and amalgamation with various novel carrier systems. We have emphasized recent advancements in nose-to-brain delivery using mucoadhesive, stimuli-responsive carriers, polymeric nanoparticles, lipid nanoparticles, protein/peptide delivery for treatment of AD. EXPERT OPINION The available therapies are symptomatic, mitigate the symptoms of AD at the initial stages. In this lieu, nose-to-brain delivery has the ability to overcome these limitations and increase drug bioavailability in the brain. Various novel strategies including stimuli-responsive systems, nanoparticles, etc. enhance the nasal drug permeation, protects the drug, and enhance its therapeutic potency. Although, successful preclinical data does not assure the clinical success of the therapy and hence exhaustive clinical investigations are needed to make the therapy available for patients.
Collapse
Affiliation(s)
- Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, India, 509301
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Awesh Yadav
- National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India, 226002
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India, 305817
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, Guwahati, Assam, India, 781101
| |
Collapse
|
73
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
74
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
75
|
Wang S, Gao Z, Liu L, Li M, Zuo A, Guo J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur J Pharm Sci 2022; 168:106085. [PMID: 34856348 DOI: 10.1016/j.ejps.2021.106085] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
This paper describes the development of a film comprising chitosan (CS), sodium alginate (SA), and ethyl cellulose (EC) for buccal mucosal administration. A film of CS-SA unidirectional release drug-containing water-repellent layer EC was produced by interfacial reaction solvent-drying technique using self-made equipment. The CS-SA-EC film had superior mechanical properties compared to CS-EC and SA-EC films. The existence of the amide bond was confirmed by FT-IR. DSC confirmed that the drug was dispersed in the carrier material in an amorphous form. The drug release studies emerged that the model drugs from CS-SA-EC films presented better release properties. The Ritger-Peppas model best describes all ratios of drugs release mechanisms. The permeability characteristics of the films were evaluated in the TR146 cells model and the rabbit buccal mucosae. The cumulative penetration amounts of the model drugs were significantly increased. The permeability mechanism of the film was studied preliminarily using immunofluorescence and Western Blot. The results showed that the film inhibited the expression of ZO-1 protein, and the expressive trend of ZO-1 protein was consistent with the results of in vitro permeation experiments. The pharmacokinetics of the drugs loaded films were evaluated and compared with oral administration in rats. The relative bioavailability of the model drugs was 246.00% (Zolmitriptan) and 142.12% (Etodolac) relative to oral administration. The results of this study demonstrate the potential of CS-SA-EC vehicle in buccal mucosa drug delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Mingxin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian K&D Biotechnology Co., Ltd. Yanji, 133002, Jilin Province, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Yanbian Medical and Health Industry Pilot Base, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
76
|
Kiran P, Debnath SK, Neekhra S, Pawar V, Khan A, Dias F, Pallod S, Srivastava R. Designing nanoformulation for the nose-to-brain delivery in Parkinson's disease: Advancements and barrier. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1768. [PMID: 34825510 DOI: 10.1002/wnan.1768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujit Kumar Debnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vaishali Pawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shubham Pallod
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
77
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
78
|
Razmara P, Pyle GG. Effect of copper nanoparticles and copper ions on the architecture of rainbow trout olfactory mucosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112876. [PMID: 34634597 DOI: 10.1016/j.ecoenv.2021.112876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Olfactory epithelial cells are in direct contact with myriad environmental contaminants which may consequently disrupt their structure and function. Copper ions (Cu2+) and copper nanoparticles (CuNPs) are two types of olfactory neurotoxicants. However, their effects on the structure of olfactory epithelium are largely uninvestigated. The density of olfactory goblet cells in CuNP- and Cu2+ - exposed rainbow trout was assessed using light microscopy throughout time. In both copper (Cu) treatments, the number of goblet cells increased initially over the 24 h exposure and then recovered to normal throughout the 96 h exposure. These data suggested the 96 h exposure to Cu contaminants interfered with protective barrier provided by goblet cells. Nonetheless, lamellar and epithelial thickness of olfactory rosette did not change in the Cu-exposed fish. The gene transcript profile of olfactory mucosa studied by RNA-seq indicated Cu2+ and CuNPs differentially targeted the molecular composition of cell junctions. In the Cu2+ treatment, reduced mRNA abundances of tight junctions, adherens junction, desmosomes and hemidesmosomes, suggest that Cu2+-exposed olfactory mucosal cells had weak junctional complexes. In the CuNP treatment, on the other hand, the transcript abundances of cell junction compositions, except adherens junction, were upregulated. Transcripts associated with gap junctional channels were increased in both Cu treatments. The elevated transcript levels of gap junctions in both Cu treatments suggested that the demand for intercellular communication was increased in the Cu-exposed olfactory mucosa. Overall, our findings suggested that Cu2+ induced greater adverse effects on the molecular composition of olfactory cell junctions relative to CuNPs. Impairment of junctional complexes may disrupt the structural integrity of olfactory mucosa.
Collapse
Affiliation(s)
- Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
79
|
Rinaldi F, Forte J, Pontecorvi G, Hanieh PN, Carè A, Bellenghi M, Tirelli V, Ammendolia MG, Mattia G, Marianecci C, Puglisi R, Carafa M. pH-responsive oleic acid based nanocarriers: Melanoma treatment strategies. Int J Pharm 2021; 613:121391. [PMID: 34923052 DOI: 10.1016/j.ijpharm.2021.121391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022]
Abstract
Numerous clinical observations indicate that, despite novel therapeutic approaches, a high percentage of melanoma patients is non-responder or suffers of severe drug-related toxicity. To overcome these problems, we considered the option of designing, preparing and characterizing nanoemulsions and niosomes containing oleic acid, a pH-sensitive monounsaturated fatty acid holding per se an antimetastatic and anti-inflammatory role in melanoma. These new nanostructures will allow in vivo administration of oleic acid, otherwise toxic in its free form. For pulmonary route chitosan, a mucoadhesive agent, was enclosed in these nanocarriers to improve residence time at the lung site. A deep physical and chemical characterization was carried out evaluating size, ζ -potential, microviscosity, polarity as well as stability over time and in culture media. Moreover, their pH-sensitivity was evaluated by fluorometric assay. Cytotoxicity and cellular uptake were assessed in cultured normal fibroblasts and human melanoma cell lines. Interestingly, results obtained confirm nanocarrier stability and pH-sensitivity, associated to absence of cell toxicity, efficient cellular uptake and retention. Therefore, these new pH-sensitive oleic acid-based nanostructures could represent, by combining drug delivery in a pH-dependent manner with the antimetastatic potential of this fatty acid, a powerful strategy for more specific medicine against metastatic melanoma.
Collapse
Affiliation(s)
- Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | - Maria Grazia Ammendolia
- National Center of Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
80
|
Vimal A, Kumar A. l-asparaginase: Need for an Expedition from an Enzymatic Molecule to Antimicrobial Drug. Int J Pept Res Ther 2021; 28:9. [PMID: 34867131 PMCID: PMC8634742 DOI: 10.1007/s10989-021-10312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Enzymes play a vital role in the biological system as a catalyst for biochemical reactions. They have a wide range of commercial applications in many areas like the pharmaceutical industry, food industry, etc. l-asparaginase is one of the commercial enzymes with prime importance in anticancer therapy. It is mainly used in chemotherapy; however, it has the potential to cure autoimmune disorders and infectious diseases also. Previous studies reported the antimicrobial potential of l-asparaginase. Therefore, we have discussed the possibility and challenges of the antimicrobial application of l-asparaginase in the treatment of infectious diseases. This is followed by a discussion on the effective delivery of this enzyme using biopolymeric nanocarriers that ensure safe and on target action. The present article gives a perspective on the l-asparaginase molecule that could be developed/established as an approved antimicrobial drug in the future.
Collapse
Affiliation(s)
- Archana Vimal
- Department of Bioengineering, Integral University, Lucknow, UP India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
81
|
Xi J, Lei LR, Zouzas W, April Si X. Nasally inhaled therapeutics and vaccination for COVID-19: Developments and challenges. MedComm (Beijing) 2021; 2:569-586. [PMID: 34977869 PMCID: PMC8706742 DOI: 10.1002/mco2.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022] Open
Abstract
The nose is the initial site of viral infection, replication, and transmission in the human body. Nasally inhaled vaccines may act as a promising alternative for COVID-19 management in addition to intramuscular vaccination. In this review, the latest developments of nasal sprays either as repurposed or antiviral formulations were presented. Nasal vaccines based on traditional medicines, such as grapefruit seed extract, algae-isolated carrageenan, and Yogurt-fermenting Lactobacillus, are promising and under active investigations. Inherent challenges that hinder effective intranasal delivery were discussed in detail, which included nasal device issues and human nose physiological complexities. We examined factors related to nasal spray administration, including the nasal angiotensin I converting enzyme 2 (ACE2) locations as the delivery target, nasal devices, medication translocation after application, delivery methods, safety issues, and other nasal delivery options. The effects of human factors on nasal spray efficacy, such as nasal physiology, disease-induced physiological modifications, intersubject variability, and mucociliary clearance, were also examined. Finally, the potential impact of nasal vaccines on COVID-19 management in the developing world was discussed. It is concluded that effective delivery of nasal sprays to ACE2-rich regions is urgently needed, especially in the context that new variants may become unresponsive to current vaccines and more refractory to existing therapies.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Lameng Ray Lei
- Amphastar Pharmaceuticals, IncRancho CucamongaCaliforniaUSA
| | - William Zouzas
- Department of Biomedical EngineeringUniversity of MassachusettsLowellMassachusettsUSA
| | - Xiuhua April Si
- Department of AerospaceIndustrial and Mechanical EngineeringCalifornia Baptist UniversityRiversideCaliforniaUSA
| |
Collapse
|
82
|
Alshehri S, Imam SS. Formulation and evaluation of butenafine loaded PLGA-nanoparticulate laden chitosan nano gel. Drug Deliv 2021; 28:2348-2360. [PMID: 34747275 PMCID: PMC8583856 DOI: 10.1080/10717544.2021.1995078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/27/2023] Open
Abstract
The present research work is designed to prepare and optimize butenafine (BT) loaded poly lactic co glycolic acid (PLGA) nanoparticles (BT-NPs). BT-NPs were prepared by emulsification probe sonication method using PLGA (A), PVA (B) as polymer and stabilizer, respectively. The optimum composition of BT-NPs was selected based on the point prediction method given by the Box Behnken design software. The optimized composition of BT-NPop showed a particle size of 267.21 ± 3.54 nm with an entrapment efficiency of 72.43 ± 3.11%. The optimum composition of BT-NPop was further converted into gel formulation using chitosan as a natural polymer. The prepared topical gel formulation (BT-NPopG) was further evaluated for gel characterization, drug release, permeation study, irritation, and antifungal studies. The prepared BT-NPopG formulation showed optimum pH, viscosity, spreadability, and drug content. The release and permeation study results revealed slow BT release (42.76 ± 2.87%) with significantly enhanced permeation across the egg membrane. The irritation study data showed negligible irritation with a cumulative score of 0.33. The antifungal study results conclude higher activity than marketed as well as pure BT. The overall conclusion of the results revealed BT-NPopG as an ideal delivery system to treat topical fungal infection.
Collapse
Affiliation(s)
- Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
83
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
84
|
Yousfan A, Rubio N, Al-Ali M, Nattouf AH, Kafa H. Intranasal delivery of phenytoin-loaded nanoparticles to the brain suppresses pentylenetetrazol-induced generalized tonic clonic seizures in an epilepsy mouse model. Biomater Sci 2021; 9:7547-7564. [PMID: 34652351 DOI: 10.1039/d1bm01251g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we describe the preparation and characterization of lecithin-chitosan nanoparticles (L10Ci+), and investigate their ability to deliver the anti-epileptic drug phenytoin (PHT) to mouse brain following intranasal (IN) administration. L10Ci+ were retained in the nasal cavity compared to PHT in PEG200 solution (PHT/PEG), which suffered immediate nasal drainage. PHT was detected in the brain after 5 min of IN administration reaching a maximum of 11.84 ± 2.31 %ID g-1 after 48 hours. L10Ci+ were associated with a higher brain/plasma ratio (Cb/p) compared to the experimental control comprising free PHT injected via the intraperitoneal route (PHT-IP) across all tested time points. Additionally, L10Ci+ led to lower PHT accumulation in the liver and spleen compared to PHT-IP, which is vital for lowering the systemic side effects of PHT. The relatively high drug targeting efficiency (DTE%) of 315.46% and the drug targeting percentage (DTP%) of 68.29%, combined with the increasing anterior-to-posterior gradient of PHT in the brain confirmed the direct nose-to-brain transport of PHT from L10Ci+. Electroencephalogram (EEG) analysis was used to monitor seizure progression. L10Ci+ resulted in a complete seizure suppression after 4 hours of administration, and this inhibition persisted even with an 8-fold reduction of the encapsulated dose compared to the required PHT-IP dose to achieve a similar inhibitory effect due to systemic loss. The presented findings confirm the possibility of using L10Ci+ as a non-invasive delivery system of PHT for the management of epilepsy using reduced doses of PHT.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Noelia Rubio
- Department of Chemistry and Materials, Imperial College London, SW7 2AZ, UK
| | - Mohammad Al-Ali
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| | - Abdul Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Houmam Kafa
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria.
| |
Collapse
|
85
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
86
|
Gerber W, Svitina H, Steyn D, Peterson B, Kotzé A, Weldon C, Hamman JH. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J Pharmacol Toxicol Methods 2021; 113:107131. [PMID: 34699972 DOI: 10.1016/j.vascn.2021.107131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Nasal drug administration has been identified as a potential alternative to oral drug administration, especially for systemic delivery of large molecular weight compounds. Major advantages of nasal drug delivery include high vascularity and permeability of the epithelial membranes as well as circumvention of first-pass metabolism. RPMI 2650 cell layers (in vitro cell model) and excised sheep nasal mucosal tissues (ex vivo sheep model) were evaluated with regard to epithelial thickness, selected tight junction protein expression (i.e. claudin-1, F-actin chains, zonula occludin-1), extent of p-glycoprotein (P-gp) related efflux of a model compound (Rhodamine-123, R123) and paracellular permeation of a large molecular weight model compound (FITC-dextran 4400, FD4). The cell model grown under liquid cover conditions (LCC) was thinner (24 ± 4 μm) than the epithelial layer of the sheep model (53 ± 4 μm), whereas the thickness of cell model grown under air liquid interface (ALI) conditions (53 ± 8 μm) compared well with that of the sheep model. Although the location and distribution of tight junction proteins and F-actin differed to some extent between the cell model grown under ALI conditions and the sheep model, the extent of paracellular permeation of FD4 was similar (Papp = 0.48 × 10-6 cm.s-1 and 0.46 × 10-6 cm.s-1, respectively). Furthermore, the bi-directional permeation of R123 yielded the same efflux ratio (ER = 2.33) in both models. The permeation results from this exploratory study indicated similarity in terms of compound permeation between the RPMI 2650 nasal epithelial cell line and the excised sheep nasal epithelial tissue model.
Collapse
Affiliation(s)
- Werner Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Awie Kotzé
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Ché Weldon
- School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| |
Collapse
|
87
|
Reshad RAI, Jishan TA, Chowdhury NN. Chitosan and its Broad Applications: A Brief Review. JOURNAL OF CLINICAL AND EXPERIMENTAL INVESTIGATIONS 2021. [DOI: 10.29333/jcei/11268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
88
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
89
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
90
|
Li Y, Liu C, Liu W, Cheng X, Zhang A, Zhang S, Liu C, Li N, Jian X. Apatite Formation Induced by Chitosan/Gelatin Hydrogel Coating Anchored on Poly(aryl ether nitrile ketone) Substrates to Promote Osteoblastic Differentiation. Macromol Biosci 2021; 21:e2100262. [PMID: 34449122 DOI: 10.1002/mabi.202100262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Indexed: 12/31/2022]
Abstract
Bone-like apatite is a promising coating of poly(ether ether ketone) (PEEK) for bone implantation. Poly(aryl ether nitrile ketone) containing phthalazinone moiety (PPENK) is a novel alternative for its easy synthesis. Here, chitosan/gelatin hybrid hydrogel coating is applied to induce the formation of apatite on the surface of PPENK substrate through biomineralization to improve its biocompatibility and osteogenic property. PPENK possessing allyl groups (PPENK-d) are synthesized and spin-coated on PPENK substrate to impart reactive groups. The hydrogel coating is prepared by the ultraviolet crosslinking of gelatin methacrylate (GelMA) and chitosan methacrylate (CSMA) on PPENK substrate. PPENK-d, GelMA, and CSMA are characterized by 1 H-NMR to confirm the designed structures. The presence of chitosan increases the chelation of calcium ions and thus induces the nucleation of apatite. The microstructural and compositional results reveal that the chitosan-containing hydrogel coating induced apatite coating yields a higher apatite quantity compared to the gelatin hydrogel coating. The apatite coatings on PPENK substrate promote the cytocompatibility and osteogenesis of MC3T3-E1 preosteoblasts in vitro.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Ali Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Nan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
- Liaoning High Performance Resin Engineering Research Center, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
91
|
Fan Q, Miao C, Huang Y, Yue H, Wu A, Wu J, Wu J, Ma G. Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: Structure-activity relationship. Carbohydr Polym 2021; 266:118139. [PMID: 34044953 DOI: 10.1016/j.carbpol.2021.118139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Chitosan/administration & dosage
- Chitosan/analogs & derivatives
- Chitosan/chemistry
- Chitosan/pharmacology
- Female
- Hydrogels/administration & dosage
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Immunity/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Male
- Mice, Inbred BALB C
- Nasal Mucosa/virology
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Rats, Sprague-Dawley
- Sex Factors
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
92
|
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
93
|
Rassu G, Sorrenti M, Catenacci L, Pavan B, Ferraro L, Gavini E, Bonferoni MC, Giunchedi P, Dalpiaz A. Versatile Nasal Application of Cyclodextrins: Excipients and/or Actives? Pharmaceutics 2021; 13:pharmaceutics13081180. [PMID: 34452141 PMCID: PMC8401481 DOI: 10.3390/pharmaceutics13081180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.
Collapse
Affiliation(s)
- Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation—Section of Physiology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy;
| | - Elisabetta Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, I-27100 Pavia, Italy; (M.S.); (L.C.); (M.C.B.)
| | - Paolo Giunchedi
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23a, I-07100 Sassari, Italy; (G.R.); (E.G.)
- Correspondence: ; Tel.: +39-079228754
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy;
| |
Collapse
|
94
|
Targeting Systems to the Brain Obtained by Merging Prodrugs, Nanoparticles, and Nasal Administration. Pharmaceutics 2021; 13:pharmaceutics13081144. [PMID: 34452105 PMCID: PMC8399330 DOI: 10.3390/pharmaceutics13081144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
About 40 years ago the lipidization of hydrophilic drugs was proposed to induce their brain targeting by transforming them into lipophilic prodrugs. Unfortunately, lipidization often transforms a hydrophilic neuroactive agent into an active efflux transporter (AET) substrate, with consequent rejection from the brain after permeation across the blood brain barrier (BBB). Currently, the prodrug approach has greatly evolved in comparison to lipidization. This review describes the evolution of the prodrug approach for brain targeting considering the design of prodrugs as active influx substrates or molecules able to inhibit or elude AETs. Moreover, the prodrug approach appears strategic in optimization of the encapsulation of neuroactive drugs in nanoparticulate systems that can be designed to induce their receptor-mediated transport (RMT) across the BBB by appropriate decorations on their surface. Nasal administration is described as a valuable alternative to obtain the brain targeting of drugs, evidencing that the prodrug approach can allow the optimization of micro or nanoparticulate nasal formulations of neuroactive agents in order to obtain this goal. Furthermore, nasal administration is also proposed for prodrugs characterized by peripheral instability but potentially able to induce their targeting inside cells of the brain.
Collapse
|
95
|
Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021; 18:3132-3146. [PMID: 34259534 PMCID: PMC8335725 DOI: 10.1021/acs.molpharmaceut.1c00366] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- National Council for Scientific and Technological Development-CNPq, Brazilian Government, Brasília DF, 70311-000, Brazil.,Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Giulia Pellegrini
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy.,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| |
Collapse
|
96
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
97
|
Lv Y, Zhang J, Wang C. Self-assembled chitosan nanoparticles for intranasal delivery of recombinant protein interleukin-17 receptor C (IL-17RC): preparation and evaluation in asthma mice. Bioengineered 2021; 12:3029-3039. [PMID: 34180764 PMCID: PMC8806589 DOI: 10.1080/21655979.2021.1940622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma is mentioned as a chronic airway inflammatory disease, whose pathogenesis is complicated. The promotion of inflammation in asthma by IL-17A and IL-17F has been confirmed. In addition to covalent homodimers, both cytokines are also able to form heterodimers, further inducing downstream pathways via binding to the IL-17RA and IL-17RC receptor complex. In recent years, IL-17RA and its signal transduction pathway have been extensively researched. IL-17RC, however, remains relatively unexplored. In the present study, we self-assembled chitosan (CS) nanoparticles for intranasal delivery of recombinant protein IL-17RC (rIL-17RC) and preliminarily investigated its effect on a murine model of allergic asthma induced by ovalbumin (OVA). rIL-17RC was produced by the prokaryotic expression system and encapsulated into the CS nanoparticles via ionic cross-linking technique. The results showed that CS-RC nanoparticles via intranasal intervention significantly caused inhibition of mucus secretion and airway inflammatory cell infiltration, and reduced IL-4, IL-17, IL-17F levels in BALF. Hence, delivering receptor proteins such as IL-17RC, through CS nanoparticles as a carrier, could be an attractive therapeutic intervention for asthma.
Collapse
Affiliation(s)
- Yongli Lv
- Department of Paediatrics, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jianhua Zhang
- Department of Paediatrics, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Chaoying Wang
- Department of Paediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
98
|
Cirri M, Maestrelli F, Nerli G, Mennini N, D’Ambrosio M, Luceri C, Mura PA. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021; 13:pharmaceutics13070969. [PMID: 34206967 PMCID: PMC8309035 DOI: 10.3390/pharmaceutics13070969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated β-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
- Correspondence: ; Tel.: +39-(0)5-5457-3711
| | - Giulia Nerli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Mario D’Ambrosio
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Paola Angela Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| |
Collapse
|
99
|
Serim TM, Kožák J, Rautenberg A, Özdemir AN, Pellequer Y, Lamprecht A. Spray Freeze Dried Lyospheres ® for Nasal Administration of Insulin. Pharmaceutics 2021; 13:pharmaceutics13060852. [PMID: 34201254 PMCID: PMC8229095 DOI: 10.3390/pharmaceutics13060852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pharmacologically active macromolecules, such as peptides, are still a major challenge in terms of designing a delivery system for their transport across absorption barriers and at the same time provide sufficiently high long-term stability. Spray freeze dried (SFD) lyospheres® are proposed here as an alternative for the preparation of fast dissolving porous particles for nasal administration of insulin. Insulin solutions containing mannitol and polyvinylpyrrolidone complemented with permeation enhancing excipients (sodium taurocholate or cyclodextrins) were sprayed into a cooled spray tower, followed by vacuum freeze drying. Final porous particles were highly spherical and mean diameters ranged from 190 to 250 µm, depending on the excipient composition. Based on the low density, lyospheres resulted in a nasal deposition rates of 90% or higher. When tested in vivo for their glycemic potential in rats, an insulin-taurocholate combination revealed a nasal bioavailability of insulin of 7.0 ± 2.8%. A complementary study with fluorescently labeled-dextrans of various molecular weights confirmed these observations, leading to nasal absorption ranging from 0.7 ± 0.3% (70 kDa) to 10.0 ± 3.1% (4 kDa). The low density facilitated nasal administration in general, while the high porosity ensured immediate dissolution of the particles. Additionally, due to their stability, lyospheres provide an extremely promising platform for nasal peptide delivery.
Collapse
Affiliation(s)
- Tuğrul Mert Serim
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (T.M.S.); (J.K.); (A.R.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
| | - Jan Kožák
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (T.M.S.); (J.K.); (A.R.)
| | - Annika Rautenberg
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (T.M.S.); (J.K.); (A.R.)
| | - Ayşe Nurten Özdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
| | - Yann Pellequer
- PEPITE (EA4267), University of Burgundy/Franche-Comté, 25030 Besançon, France;
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (T.M.S.); (J.K.); (A.R.)
- PEPITE (EA4267), University of Burgundy/Franche-Comté, 25030 Besançon, France;
- Correspondence: ; Tel.: +49-228-735243; Fax: +49-228-735268
| |
Collapse
|
100
|
Imam SS, Alshehri S, Altamimi MA, Hussain A, Qamar W, Gilani SJ, Zafar A, Alruwaili NK, Alanazi S, Almutairy BK. Formulation of Piperine-Chitosan-Coated Liposomes: Characterization and In Vitro Cytotoxic Evaluation. Molecules 2021; 26:molecules26113281. [PMID: 34072306 PMCID: PMC8198173 DOI: 10.3390/molecules26113281] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023] Open
Abstract
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
- Correspondence:
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Wajhul Qamar
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourahbint Adbulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf Region, Sakaka 72341, Saudi Arabia; (A.Z.); (N.K.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf Region, Sakaka 72341, Saudi Arabia; (A.Z.); (N.K.A.)
| | - Saleh Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|