51
|
Zhao G, Wang Y, Xing S, Jiang Y, Ding J, Cai Y, Ma P, Miao H, Fang Y, Jiang N, Cui D, Yu Y, Tang Q, Wang S, Li N. Exosome-based anticancer vaccines: From Bench to bedside. Cancer Lett 2024; 595:216989. [PMID: 38825162 DOI: 10.1016/j.canlet.2024.216989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuning Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiatong Ding
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanting Cai
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dandan Cui
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Yu
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
52
|
Zhou Z, Bu Z, Wang S, Yu J, Liu W, Huang J, Hu J, Xu S, Wu P. Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures. J Nanobiotechnology 2024; 22:438. [PMID: 39061089 PMCID: PMC11282598 DOI: 10.1186/s12951-024-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Decellularized extracellular matrix hydrogel (ECM hydrogel), a natural material derived from normal tissue with unique biocompatibility properties, is widely used for tissue repair. However, there are still problems such as poor biological activity and insufficient antimicrobial property. To overcome these drawbacks, fibroblast growth factor 2 (FGF 2) containing exosome (exoFGF 2) was prepared to increase the biological activity. Furthermore, the antimicrobial capacity of ECM hydrogel was optimised by using copper ions as a ligand-bonded cross-linking agent. The decellularized extracellular matrix hydrogel, intricately cross-linked with copper ions through ligand bonds and loaded with FGF 2 containing exosome (exoFGF 2@ECM/Cu2+ hydrogel), has demonstrated exceptional biocompatibility and antimicrobial properties. In vitro, exoFGF 2@ECM/Cu2+ hydrogel effectively promoted cell proliferation, migration, antioxidant and inhibited bacterial growth. In vivo, the wound area of rat treated with exoFGF 2@ECM/Cu2+ hydrogels were significantly smaller than that of other groups at Day 5 (45.24% ± 3.15%), Day 10 (92.20% ± 2.31%) and Day 15 (95.22% ± 1.28%). Histological examination showed that exoFGF 2@ECM/Cu2+ hydrogels promoted angiogenesis and collagen deposition. Overall, this hydrogel has the potential to inhibit bacterial growth and effectively promote wound healing in a variety of clinical applications.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Shiqiang Wang
- Department of Joint and Sports Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Sudan Xu
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
53
|
Bao H, Chen Y, Zhang Y, Lan H, Jin K. Exosomes-based immunotherapy for cancer: Effective components in the naïve and engineered forms. Int Immunopharmacol 2024; 139:112656. [PMID: 39043104 DOI: 10.1016/j.intimp.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
Today, cancer treatment is one of the main challenges for researchers. The main cause of tumor cell formation is mutations that lead to uncontrolled proliferation and inhibition of apoptosis in malignant cells. Tumor cells also create a microenvironment that can suppress the immune system cells' responses through various methods, including producing soluble factors and cell-to-cell communication. After being produced from tumor cells, exosomes can also affect the functions of other cells in this microenvironment. Various studies have shown that exosomes from different sources, including tumor cells and immune cells, can be used to treat cancers due to their characteristics. Since tumor cells are rich sources of various types of tumor peptides, they can induce anti-tumor responses. Immune cells also produce exosomes that mimic the functions of their cells of origin, such that exosomes derived from NK cells and CTLs can directly lead to their apoptosis after merging with tumor cells. However, many researchers have pointed out that naïve exosomes have a limited therapeutic function, and their therapeutic potential can be increased by manipulating and engineering them. There are various methods to modify exosomes and improve their therapeutic potential. In general, these methods are divided into two parts, which include changing the cell of origin of the exosome and encapsulating the exosome to carry different drugs. In this review, we will discuss the studies on the therapeutic use of naive and engineered exosomes and provide an update on new studies in this field.
Collapse
Affiliation(s)
- Huan Bao
- Department of Neurosurgery, Jiashan First People's Hospital, Jiashan First People's Hospital Luoxing Branch, Jiashan, Zhejiang 314100, China
| | - Yun Chen
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China
| | - Youni Zhang
- Department of Laboratory Medicine, Tiantai People's Hospital, Taizhou, Zhejiang 317200, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China.
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
54
|
Guo L, Xiao D, Xing H, Yang G, Yang X. Engineered exosomes as a prospective therapy for diabetic foot ulcers. BURNS & TRAUMA 2024; 12:tkae023. [PMID: 39026930 PMCID: PMC11255484 DOI: 10.1093/burnst/tkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Indexed: 07/20/2024]
Abstract
Diabetic foot ulcer (DFU), characterized by high recurrence rate, amputations and mortality, poses a significant challenge in diabetes management. The complex pathology involves dysregulated glucose homeostasis leading to systemic and local microenvironmental complications, including peripheral neuropathy, micro- and macro-angiopathy, recurrent infection, persistent inflammation and dysregulated re-epithelialization. Novel approaches to accelerate DFU healing are actively pursued, with a focus on utilizing exosomes. Exosomes are natural nanovesicles mediating cellular communication and containing diverse functional molecular cargos, including DNA, mRNA, microRNA (miRNA), lncRNA, proteins, lipids and metabolites. While some exosomes show promise in modulating cellular function and promoting ulcer healing, their efficacy is limited by low yield, impurities, low loading content and inadequate targeting. Engineering exosomes to enhance their curative activity represents a potentially more efficient approach for DFUs. This could facilitate focused repair and regeneration of nerves, blood vessels and soft tissue after ulcer development. This review provides an overview of DFU pathogenesis, strategies for exosome engineering and the targeted therapeutic application of engineered exosomes in addressing critical pathological changes associated with DFUs.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Tiantanxili Street #4, Dongcheng District, Beijing 100050, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an 710032, China
| |
Collapse
|
55
|
Li Q, Zhang F, Fu X, Han N. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes as Nanomedicine for Peripheral Nerve Injury. Int J Mol Sci 2024; 25:7882. [PMID: 39063125 PMCID: PMC11277195 DOI: 10.3390/ijms25147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Peripheral nerve injury (PNI) is a complex and protracted process, and existing therapeutic approaches struggle to achieve effective nerve regeneration. Recent studies have shown that mesenchymal stem cells (MSCs) may be a pivotal choice for treating peripheral nerve injury. MSCs possess robust paracrine capabilities, and exosomes, as the primary secretome of MSCs, are considered crucial regulatory mediators involved in peripheral nerve regeneration. Exosomes, as nanocarriers, can transport various endogenous or exogenous bioactive substances to recipient cells, thereby promoting vascular and axonal regeneration while suppressing inflammation and pain. In this review, we summarize the mechanistic roles of exosomes derived from MSCs in peripheral nerve regeneration, discuss the engineering strategies for MSC-derived exosomes to improve therapeutic potential, and explore the combined effects of MSC-derived exosomes with biomaterials (nerve conduits, hydrogels) in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qicheng Li
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Fengshi Zhang
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Xiaoyang Fu
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Na Han
- Department of Trauma and Orthopedics, Peking University People’s Hospital, Beijing 100044, China; (Q.L.); (F.Z.); (X.F.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
56
|
Wang Z, Wei H, Li Y, Chen W, Lin Z, Lai Y, Ding L, Zhang L, Zeng H. Bone marrow mesenchymal stem cell-derived exosomes effectively ameliorate the outcomes of rats with acute graft-versus-host disease. FASEB J 2024; 38:e23751. [PMID: 38923701 DOI: 10.1096/fj.202302590rrrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Mesenchymal stem cells (MSCs) reveal multifaceted immunoregulatory properties, which can be applied for diverse refractory and recurrent disease treatment including acute graft-versus-host disease (aGVHD). Distinguishing from MSCs with considerable challenges before clinical application, MSCs-derived exosomes (MSC-Exos) are cell-free microvesicles with therapeutic ingredients and serve as advantageous alternatives for ameliorating the outcomes of aGVHD. MSC-Exos were enriched and identified by western blotting analysis, NanoSight, and transmission electron microscopy (TEM). Bone marrow-derived MSCs (denoted as MSCs) and exosomes (denoted as MSC-Exos) were infused into the aGVHD SD-Wister rat model via tail vein, and variations in general growth and survival of rats were observed. The level of inflammatory factors in serum was quantized by enzyme-linked immunosorbent assay (ELISA). The pathological conditions of the liver and intestine of rats were observed by frozen sectioning. The ratios of CD4+/CD8+ and Treg cell proportions in peripheral blood, together with the autophagy in the spleen and thymus, were analyzed by flow cytometry. After treatment with MSC-Exos, the survival time of aGVHD rats was prolonged, the clinical manifestations of aGVHD in rats were improved, whereas the pathological damage of aGVHD in the liver and intestine was reduced. According to ELISA, we found that MSC-Exos revealed ameliorative effect upon aGVHD inflammation (e.g., TNF-α, IL-2, INF-γ, IL-4, and TGF-β) compared to the MSC group. After MSC-Exo treatment, the ratio of Treg cells in peripheral blood was increased, whereas the ratio of CD4+/CD8+ in peripheral blood and the autophagy in the spleen and thymus was decreased. MSC-Exos effectively suppressed the activation of immune cells and the manifestation of the inflammatory response in the aGVHD rat model. Our data would supply new references for MSC-Exo-based "cell-free" biotherapy for aGVHD in future.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Department of Cadres Health, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yunfei Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Weimin Chen
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhifeng Lin
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiting Lai
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lingling Ding
- Department of Hematology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Leisheng Zhang
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Huake Zeng
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
57
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
58
|
Cheng M, Ma C, Chen HD, Wu Y, Xu XG. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin Cosmet Investig Dermatol 2024; 17:1603-1612. [PMID: 38984321 PMCID: PMC11232880 DOI: 10.2147/ccid.s465963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024]
Abstract
Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
- Department of Dermatology and Sexually Transmitted Diseases, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, People’s Republic of China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Xue-Gang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
59
|
Yang W, Yang J, Zhou N, Wang Y. A proximity ligation hybridization triggered structure-switching based signal amplification strategy for sensitive and accurate exosome detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4262-4267. [PMID: 38884118 DOI: 10.1039/d4ay00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Exosomes have significant functions in intercellular communication, as well as in tumor migration and invasion. Nevertheless, the precise identification of exosomes poses a significant obstacle due to their low abundance in biofluids and potential disruption caused by free protein molecules, such as CD63 protein. In this study, we have developed a signal amplification method for precise detection of exosomes using a proximity ligation hybridization triggered structure-switching approach. The method involves the dual-recognition of exosomes by two probes: an aptamer probe that recognizes the exosomal surface protein CD63 (L1 probe), and a cholesterol probe that targets the biolipid layer of the exosomes (L2 probe). Based on the dual-recognition of exosomes, we have successfully developed an accurate and sensitive approach that integrates the proximity ligation hybridization technique with a structure-switching based signal cycle. This approach allows for the simultaneous analysis of two biomarkers, enabling both quantification and tracing of exosomes without the need for enzymes. Eventually, the proposed method exhibits a wide detection range of 5 orders of magnitude and a low limit of detection of 36 particles per μL, making it suitable for a wide range of applications in the fields of biological science, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Wendi Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Jing Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Na Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yali Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
60
|
Erkoc-Biradli FZ, Erenay B, Ozgun A, Öztatlı H, Işık F, Ateş U, Rasier R, Garipcan B. Mesenchymal stem cells derived-exosomes enhanced amniotic membrane extract promotes corneal keratocyte proliferation. Biotechnol Prog 2024; 40:e3465. [PMID: 38602120 DOI: 10.1002/btpr.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 105 Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 105 Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** p < 0.0001). This mixture treatment (3 × 105 Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 105 Exo/mL) (*p < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 105 Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.
Collapse
Affiliation(s)
- Fatma Zehra Erkoc-Biradli
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Alp Ozgun
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Hayriye Öztatlı
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Ferda Işık
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Utku Ateş
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Rıfat Rasier
- Department of Ophthalmology, İstinye University, Istanbul, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
61
|
Fu GQ, Wang YY, Xu YM, Bian MM, Zhang L, Yan HZ, Gao JX, Li JL, Chen YQ, Zhang N, Ding SQ, Wang R, Li JY, Hu JG, Lü HZ. Exosomes derived from vMIP-II-Lamp2b gene-modified M2 cells provide neuroprotection by targeting the injured spinal cord, inhibiting chemokine signals and modulating microglia/macrophage polarization in mice. Exp Neurol 2024; 377:114784. [PMID: 38642665 DOI: 10.1016/j.expneurol.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1β, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, PR China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Hua-Zheng Yan
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Xiong Gao
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China
| | - Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jiang-Yan Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu Medical University, Bengbu, Anhui 233030, PR China; Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
62
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
63
|
Zhu F, Wang T, Wang G, Yan C, He B, Qiao B. The Exosome-Mediated Bone Regeneration: An Advanced Horizon Toward the Isolation, Engineering, Carrying Modalities, and Mechanisms. Adv Healthc Mater 2024; 13:e2400293. [PMID: 38426417 DOI: 10.1002/adhm.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Exosomes, nanoparticles secreted by various cells, composed of a bilayer lipid membrane, and containing bioactive substances such as proteins, nucleic acids, metabolites, etc., have been intensively investigated in tissue engineering owing to their high biocompatibility and versatile biofunction. However, there is still a lack of a high-quality review on bone defect regeneration potentiated by exosomes. In this review, the biogenesis and isolation methods of exosomes are first introduced. More importantly, the engineered exosomes of the current state of knowledge are discussed intensively in this review. Afterward, the biomaterial carriers of exosomes and the mechanisms of bone repair elucidated by compelling evidence are presented. Thus, future perspectives and concerns are revealed to help devise advanced modalities based on exosomes to overcome the challenges of bone regeneration. It is totally believed this review will attract special attention from clinicians and provide promising ideas for their future works.
Collapse
Affiliation(s)
- Fukang Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Taiyou Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Guangjian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Department of Orthopaedics, The People's Hospital of Rongchang District, Chongqing, 402460, P. R. China
| | - Caiping Yan
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Bin He
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Qiao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400010, P. R. China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
64
|
Fernández-Rhodes M, Lorca C, Lisa J, Batalla I, Ramos-Miguel A, Gallart-Palau X, Serra A. New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery. Int J Mol Sci 2024; 25:7151. [PMID: 39000260 PMCID: PMC11241179 DOI: 10.3390/ijms25137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Cristina Lorca
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Julia Lisa
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Iolanda Batalla
- Psychiatry Unit, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 48940 Leioa, Spain
| | - Xavier Gallart-Palau
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| |
Collapse
|
65
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
66
|
Wang Y, Shi X. The potential mechanisms and treatment effects of stem cell-derived exosomes in cardiac reengineering. NANOTECHNOLOGY 2024; 35:362005. [PMID: 38834043 DOI: 10.1088/1361-6528/ad53d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Exosomes are extracellular vesicles of diverse compositions that are secreted by numerous cell types. Exosomes contain significant bioactive components, including lipids, proteins, mRNA, and miRNA. Exosomes play an important role in regulating cellular signaling and trafficking under both normal physiological and pathological circumstances. A multitude of factors, including thermal stress, ribosomal stress, endoplasmic reticulum stress, and oxidative stress influence the concentrations of exosomal mRNA, miRNA, proteins, and lipids. It has been stated that exosomes derived from stem cells (SCs) modulate a range of stresses by preventing or fostering cell balance. Exosomes derived from SCs facilitate recovery by facilitating cross-cellular communication via the transmission of information in the form of proteins, lipids, and other components. For this reason, exosomes are used as biomarkers to diagnose a wide variety of diseases. The focus of this review is the bioengineering of artificial exosomal cargoes. This process encompasses the control and transportation of particular exosomal cargoes, including but not limited to small molecules, recombinant proteins, immune modulators, and therapeutic medications. Therapeutic approaches of this nature have the potential to deliver therapeutic medications precisely to the intended site for the cure of a variety of disorders. Notably, our attention has been directed towards the therapeutic implementations of exosomes derived from SCs in the cure of cardiovascular ailments, including but not limited to ischemic heart disease, myocardial infarction, sepsis, heart failure, cardiomyopathy, and cardiac fibrosis. In general, researchers employ two methodologies when it comes to exosomal bioengineering. This review aims to explain the function of exosomes derived from SCs in the regulation of stress and present a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Cardiology, Hangzhou Ninth People's Hospital, Hangzhou 311225, People's Republic of China
| | - Xiulian Shi
- Emergency Department, Chun'an First People's Hospital, Hangzhou 311700, People's Republic of China
| |
Collapse
|
67
|
Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology 2024; 22:340. [PMID: 38890722 PMCID: PMC11184820 DOI: 10.1186/s12951-024-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024] Open
Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma immunotherapy.
Collapse
Affiliation(s)
- Xinqing Hao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Shiming Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China
| | - Jiaqi Li
- Reproductive Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Ying Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Road, Dalian, Liaoning, 116011, China.
- Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57 Xinda Road, Dalian, Liaoning, 116085, China.
| |
Collapse
|
68
|
Ye X, Liu Y, Chen C, Sun Y, Li F, Fu Y, Luo J, Su L, Chi W. A novel function and mechanism of ischemia-induced retinal astrocyte-derived exosomes for RGC apoptosis of ischemic retinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102209. [PMID: 38831900 PMCID: PMC11145345 DOI: 10.1016/j.omtn.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Retinal ischemia is a common clinical event leading to retinal ganglion cell (RGC) death, resulting in irreversible vision loss. In the retina, glia-neuron communication is crucial for multiple functions and homeostasis. Extracellular vesicles, notably exosomes, play a critical role. The functions and mechanisms of retinal astrocyte-secreted exosomes remain unclear. Here, we isolated astrocyte-derived exosomes under hypoxia or normoxia and explored their role in an in vivo retinal ischemia-reperfusion (RIR) model. We found that hypoxia triggered astrocytes to produce a significantly increased number of exosomes, which could be internalized by RGCs in vivo or in vitro. Also, in the RIR model, the hypoxia-induced exosomes ameliorated the RIR injury and suppressed the RGC apoptosis. Furthermore, microRNA sequencing of retinal astrocyte-secreted exosomes revealed different patterns of exosomal miRNAs under hypoxia, particularly enriched with miR-329-5p. We verified that miR-329-5p was specifically bound to mitogen-activated protein kinase 8 mRNA, and subsequent JNK-pathway molecules were downregulated. We anticipated that the miR-329-5p/JNK pathway is a key to suppressing RGC apoptosis and preventing RIR injury. Such findings provided insights into the therapeutic potential of hypoxia-induced astrocyte-secreted exosomes and the miR-329-5p for treating retina ischemic diseases.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunfei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Congying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fan Li
- Eye Center, Zhongshan City People’s Hospital, Zhongshan City, Guangdong Province 528403, China
| | - Yunzhao Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiawen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Shenzhen Eye Hospital, Guangdong Province 518000, China
| |
Collapse
|
69
|
Jang E, Yu H, Kim E, Hwang J, Yoo J, Choi J, Jeong HS, Jang S. The Therapeutic Effects of Blueberry-Treated Stem Cell-Derived Extracellular Vesicles in Ischemic Stroke. Int J Mol Sci 2024; 25:6362. [PMID: 38928069 PMCID: PMC11203670 DOI: 10.3390/ijms25126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.
Collapse
Affiliation(s)
- Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Hee Yu
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Eungpil Kim
- Infrastructure Project Organization for Global Industrialization of Vaccine, Sejong-si 30121, Republic of Korea;
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| |
Collapse
|
70
|
Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, Xiang S, Zhang Q, Xu L. CD151-enriched migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells and promoting angiogenesis. J Exp Clin Cancer Res 2024; 43:160. [PMID: 38840183 PMCID: PMC11155183 DOI: 10.1186/s13046-024-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The tetraspanin family plays a pivotal role in the genesis of migrasomes, and Tetraspanin CD151 is also implicated in neovascularization within tumorous contexts. Nevertheless, research pertaining to the involvement of CD151 in hepatocellular carcinoma (HCC) neovascularization and its association with migrasomes remains inadequate. METHODS To investigate the correlation between CD151 and migrasome marker TSPAN4 in liver cancer, we conducted database analysis using clinical data from HCC patients. Expression levels of CD151 were assessed in HCC tissues and correlated with patient survival outcomes. In vitro experiments were performed using HCC cell lines to evaluate the impact of CD151 expression on migrasome formation and cellular invasiveness. Cell lines with altered CD151 expression levels were utilized to study migrasome generation and in vitro invasion capabilities. Additionally, migrasome function was explored through cellular aggregation assays and phagocytosis studies. Subsequent VEGF level analysis and tissue chip experiments further confirmed the role of CD151 in mediating migrasome involvement in angiogenesis and cellular signal transduction. RESULTS Our study revealed a significant correlation between CD151 expression and migrasome marker TSPAN4 in liver cancer, based on database analysis of clinical samples. High expression levels of CD151 were closely associated with poor survival outcomes in HCC patients. Experimentally, decreased CD151 expression led to reduced migrasome generation and diminished in vitro invasion capabilities, resulting in attenuated in vivo metastatic potential. Migrasomes were demonstrated to facilitate cellular aggregation and phagocytosis, thereby promoting cellular invasiveness. Furthermore, VEGF-enriched migrasomes were implicated in signaling and angiogenesis, accelerating HCC progression. CONCLUSIONS In summary, our findings support the notion that elevated CD151 expression promotes migrasome formation, and migrasomes play a pivotal role in the invasiveness and angiogenesis of liver cancer cells, thereby facilitating HCC progression. This finding implies that migrasomes generated by elevated CD151 expression may constitute a promising high-priority target for anti-angiogenic therapy in HCC, offering crucial insights for the in-depth exploration of migrasome function and a renewed comprehension of the mechanism underlying liver cancer metastasis.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Zhenhua Zhu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200001, China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - N A Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shihao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Qinghui Zhang
- Department of Clinical laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
71
|
Baruah H, Sarma A, Basak D, Das M. Exosome: From biology to drug delivery. Drug Deliv Transl Res 2024; 14:1480-1516. [PMID: 38252268 DOI: 10.1007/s13346-024-01515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
In recent years, different advancements have been observed in nanosized drug delivery systems. Factors such as stability, safety and targeting efficiency cause hindrances in the clinical translation of these synthetic nanocarriers. Therefore, researchers employed endogenous nanocarriers like exosomes as drug delivery vehicles that have an inherent ability to target more efficiently after appropriate functionalization and show higher biocompatibility and less immunogenicity and facilitate penetration through the biological barriers more quickly than the other available carriers. Exosomes are biologically derived lipid bilayer-enclosed nanosized extracellular vesicles (size ranges from 30 to 150 nm) secreted from both prokaryotic and eukaryotic cells and appears significantly in the extracellular space. These EVs (extracellular vesicles) can exist in different sources, including mammals, plants and microorganisms. Different advanced techniques have been introduced for the isolation of exosomes to overcome the existing barriers present with conventional methods. Extensive research on the application of exosomes in therapeutic delivery for treating various diseases related to central nervous system, bone, cancer, skin, etc. has been employed. Several studies are on different stages of clinical trials, and many exosomes patents have been registered.
Collapse
Affiliation(s)
- Himakshi Baruah
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Anupam Sarma
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India.
| | - Debojeet Basak
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| | - Mridusmita Das
- Advanced Drug Delivery Laboratory, Department of Pharmaceutics, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Guwahati, 781017, Assam, India
| |
Collapse
|
72
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
73
|
Tao H, Gao B. Exosomes for neurodegenerative diseases: diagnosis and targeted therapy. J Neurol 2024; 271:3050-3062. [PMID: 38605227 DOI: 10.1007/s00415-024-12329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Neurodegenerative diseases are still challenging clinical issues, with no curative interventions available and early, accurate diagnosis remaining difficult. Finding solutions to them is of great importance. In this review, we discuss possible exosomal diagnostic biomarkers and explore current explorations in exosome-targeted therapy for some common neurodegenerative diseases, offering insights into the clinical transformation of exosomes in this field. RECENT FINDINGS The burgeoning research on exosomes has shed light on their potential applications in disease diagnosis and treatment. As a type of extracellular vesicles, exosomes are capable of crossing the blood - brain barrier and exist in various body fluids, whose components can reflect pathophysiological changes in the brain. In addition, they can deliver specific drugs to brain tissue, and even possess certain therapeutic effects themselves. And the recent advancements in engineering modification technology have further enabled exosomes to selectively target specific sites, facilitating the possibility of targeted therapy for neurodegenerative diseases. The unique properties of exosomes give them great potential in the diagnosis and treatment of neurodegenerative diseases, and provide novel ideas for dealing with such diseases.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
74
|
Gul R, Bashir H, Sarfraz M, Shaikh AJ, Bin Jardan YA, Hussain Z, Bin Asad MHH, Gulzar F, Guan B, Nazir I, Amirzada MI. Human plasma derived exosomes: Impact of active and passive drug loading approaches on drug delivery. Saudi Pharm J 2024; 32:102096. [PMID: 38757071 PMCID: PMC11097067 DOI: 10.1016/j.jsps.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.
Collapse
Affiliation(s)
- Rabia Gul
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Hamid Bashir
- Centre for Applied Molecular Biology, University of the Punjab, 54000 Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, 64141 Al-Ain, United Arab Emirates
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | | | - Faisal Gulzar
- Department of Pharmacy, The University of Chenab, 50700 Gujrat, Pakistan
| | - Bo Guan
- School of Food Science and Technology, Shihezi University, 832000 Shihezi, Xinjiang, China
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000 Lahore, Pakistan
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| |
Collapse
|
75
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
76
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
77
|
Yan W, Li Y, Xie S, Tao WA, Hu J, Liu H, Zhang G, Liu F, Nie Y, Chen X, Zhang X, Liu Y, Wei D, Ma C, Zhang H, Xu H, Wang S. Chondrocyte-Targeted Delivery System of Sortase A-Engineered Extracellular Vesicles Silencing MMP13 for Osteoarthritis Therapy. Adv Healthc Mater 2024; 13:e2303510. [PMID: 38545904 DOI: 10.1002/adhm.202303510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Targeted drug delivery and the reduction of off-target effects are crucial for the promising clinical application of nucleic acid drugs. To address this challenge, a new approach for treating osteoarthritis (OA) that accurately delivers antisense oligonucleotides (ASO) targeting matrix metalloproteinase-13 (ASO-MMP13) to chondrocytes, is developed. Small extracellular vesicles (exos) are ligated with chondrocyte affinity peptide (CAP) using Sortase A and subsequently incubated with cholesterol-modified ASO-MMP13 to construct a chondrocyte-targeted drug delivery exo (CAP-exoASO). Compared with exos without CAP (ExoASO), CAP-exoASOs attenuate IL-1β-induced chondrocyte damage and prolong the retention time of ASO-MMP13 in the joint without distribution in major organs following intra-articular injection. Notably, CAP-exoASOs decrease MMP13 expression (P < 0.001) and upregulate COL2A1 expression (P = 0.006), resulting in reorganization of the cartilage matrix and alleviation of progression in the OA model. Furthermore, the Osteoarthritis Research Society International (OARSI) score of articular cartilage tissues treated with CAP-exoASO is comparable with that of healthy rats (P = 0.148). A mechanistic study demonstrates that CAP-exoASO may reduce inflammation by suppressing the IL-17 and TNF signaling pathways. Based on the targeted delivery effect, CAP-exoASOs successfully accomplish cartilage repair and have considerable potential for development as a promising therapeutic modality for satisfactory OA therapy.
Collapse
Affiliation(s)
- Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Ying Li
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Epidemiology, School of Public Health of Suzhou University, Suzhou, Jiangsu, 215127, China
| | - Shuqian Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - W Andy Tao
- Departments of Chemistry and Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hao Zhang
- EVLiXiR Biotech Inc., Nanjing, Jiangsu, 210032, China
| | - Hongtao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210003, China
| |
Collapse
|
78
|
Peng X, Zhang T, Liu R, Jin X. Potential in exosome-based targeted nano-drugs and delivery vehicles for posterior ocular disease treatment: from barriers to therapeutic application. Mol Cell Biochem 2024; 479:1319-1333. [PMID: 37402019 DOI: 10.1007/s11010-023-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Posterior ocular disease, a disease that accounts for 55% of all ocular diseases, can contribute to permanent vision loss if left without treatment. Due to the special structure of the eye, various obstacles make it difficult for drugs to reach lesions in the posterior ocular segment. Therefore, the development of highly permeable targeted drugs and delivery systems is particularly important. Exosomes are a class of extracellular vesicles at 30-150 nm, which are secreted by various cells, tissues, and body fluids. They carry various signaling molecules, thus endowing them with certain physiological functions. In this review, we describe the ocular barriers and the biogenesis, isolation, and engineering of exosomes, as exosomes not only have pharmacological effects but also are good nanocarriers with targeted properties. Moreover, their biocompatibility and immunogenicity are better than synthetic nanocarriers. Most importantly, they may have the ability to pass through the blood-eye barrier. Thus, they may be developed as both targeted nano-drugs and nano-delivery vehicles for the treatment of posterior ocular diseases. We focus on the current status and potential application of exosomes as targeted nano-drugs and nano-delivery vehicles in posterior ocular diseases.
Collapse
Affiliation(s)
- Xingru Peng
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Zhang
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xin Jin
- Department of Health Services, Logistics University of People's Armed Police Force, Tianjin, Chenlin Road, Hedong District, Tianjin, 300162, China.
| |
Collapse
|
79
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
80
|
Guo N, Wang Y, Wen Z, Fan X. Promising nanotherapeutics of stem cell extracellular vesicles in liver regeneration. Regen Ther 2024; 26:1037-1047. [PMID: 39569342 PMCID: PMC11576938 DOI: 10.1016/j.reth.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) have gainedsignificant attention due totheir crucialroles invarious biological systems. This review aims to explore the functions of EVs in both in physiological and pathological states of the liver, with a specific focus on the potential mechanisms and concrete evidence of EVs in liver regeneration processes. The review begins by emphasizing the importance of EVs in maintaining liver health and their involvement in different pathological conditions, starting from the liver's own EVs. Reviewing the role of EVs in liver diseases to reveal the impact of EVs in pathological processes (e.g., hepatitis, liver fibrosis, and cirrhosis) and elucidate their signaling functions at the molecular level. Subsequently, the work concentrates on the functions of EVs in liver regeneration, revealing their key role in repair and regeneration following liver injury by carrying growth factors, nucleic acids, and other bioactive molecules. This part not only theoretically clarifies the mechanisms of EVs in liver regeneration but also experimentally demonstrates their role in promoting liver cell proliferation, inhibiting apoptosis, regulating immune responses, and fostering angiogenesis, laying the groundwork for future clinical applications. Moreover, this work provides a comprehensive analysis of the challenges faced by existing EV-based therapies in liver regeneration and offers prospects for future research directions. It highlights that despite the tremendous potential of EVs in treating liver diseases, there are still technical challenges (e.g., EV isolation and purification, dosage control, and targeted delivery). To overcome these challenges, the review suggests improvements to current technologies and the development of new methods to realize the clinical application of EVs in treating liver diseases.
Collapse
Affiliation(s)
- Na Guo
- Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Hexi Yuelu District, Changsha, Hunan, 410000, China
| | - Yan Wang
- Department of Basic Medicine, Cangzhou Medical College, No.39, West Jiuhe Road, Cangzhou, 061001, China
| | - Zhaofeng Wen
- Heze Medical College, No.1950, Daxue Road, Heze Shandong, 274000, China
| | - Xiaofei Fan
- Shandong Medical College, No.5460, Second Ring South Road, Jinan, Shandong, 250002, China
| |
Collapse
|
81
|
Liu X, Wang B. Adipose stem cell-derived exosomes promote wound healing by regulating the let-7i-5p/GAS7 axis. J Cosmet Dermatol 2024; 23:2279-2287. [PMID: 38429909 DOI: 10.1111/jocd.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Injury to skin tissue is devastating for human health, making it imperative to devise strategies for hastening wound healing. Normal wound healing is a complex process comprising overlapping steps, including hemostasis, inflammatory response, proliferation, and matrix remodeling. This study investigated the effects of adipose stem cell-derived exosomes (ADSC-exos) on wound healing and the underlying mechanisms. METHODS In vitro hydrogen peroxide (H2O2)-treated human keratinocyte (HaCaT) cell lines and in vivo animal wound models were established for this purpose. The cell migration was assessed using transwell and wound healing assays, while exosome biomarker expressions were studied using western blot. Moreover, adipose stem cells were identified using flow cytometry, alizarin red S and oil red O staining, and transmission electron microscopy. RESULTS Results indicated that H2O2 treatment inhibited the cell viability and migration of HaCaT cells while being promoted by ADSC-exos. Mechanistic investigations revealed that microRNA-let-7i-5p (let-7i-5p) in ADSC-exos was carried into the HaCaT cells, inhibiting the expression of growth arrest-specific-7 (GAS7). Rescue experiments further verified these results, which indicated that GAS7 overexpression reversed the effect of let-7i-5p on the viability and migration of HaCaT cells, suggesting ADSC-exos promoted wound healing via the let-7i-5p/GAS7 axis. CONCLUSION Adipose stem cell-derived-exos enhanced the viability and migration of HaCaT via carrying let-7i-5p and targeting GAS7, ultimately promoting wound healing in rats.
Collapse
Affiliation(s)
- Xiaosong Liu
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
82
|
Lin Z, Xu G, Lu X, Liu S, Zou F, Ma X, Jiang J, Wang H, Song J. Chondrocyte-targeted exosome-mediated delivery of Nrf2 alleviates cartilaginous endplate degeneration by modulating mitochondrial fission. J Nanobiotechnology 2024; 22:281. [PMID: 38790015 PMCID: PMC11127380 DOI: 10.1186/s12951-024-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cartilaginous endplate (CEP) degeneration, which is an important contributor to intervertebral disc degeneration (IVDD), is characterized by chondrocyte death. Accumulating evidence has revealed that dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and dysfunction lead to apoptosis during CEP degeneration and IVDD. Exosomes are promising agents for the treatment of many diseases, including osteoporosis, osteosarcoma, osteoarthritis and IVDD. Despite their major success in drug delivery, the full potential of exosomes remains untapped. MATERIALS AND METHODS In vitro and in vivo models of CEP degeneration were established by using lipopolysaccharide (LPS). We designed genetically engineered exosomes (CAP-Nrf2-Exos) expressing chondrocyte-affinity peptide (CAP) on the surface and carrying the antioxidant transcription factor nuclear factor E2-related factor 2 (Nrf2). The affinity between CAP-Nrf2-Exos and CEP was evaluated by in vitro internalization assays and in vivo imaging assays. qRT‒PCR, Western blotting and immunofluorescence assays were performed to examine the expression level of Nrf2 and the subcellular localization of Nrf2 and Drp1. Mitochondrial function was measured by the JC-1 probe and MitoSOX Red. Mitochondrial morphology was visualized by MitoTracker staining and transmission electron microscopy (TEM). After subendplate injection of the engineered exosomes, the degree of CEP degeneration and IVDD was validated radiologically and histologically. RESULTS We found that the cargo delivery efficiency of exosomes after cargo packaging was increased by surface modification. CAP-Nrf2-Exos facilitated chondrocyte-targeted delivery of Nrf2 and activated the endogenous antioxidant defence system in CEP cells. The engineered exosomes inhibited Drp1 S616 phosphorylation and mitochondrial translocation, thereby preventing mitochondrial fragmentation and dysfunction. LPS-induced CEP cell apoptosis was alleviated by CAP-Nrf2-Exo treatment. In a rat model of CEP degeneration, the engineered exosomes successfully attenuated CEP degeneration and IVDD and exhibited better repair capacity than natural exosomes. CONCLUSION Collectively, our findings showed that exosome-mediated chondrocyte-targeted delivery of Nrf2 was an effective strategy for treating CEP degeneration.
Collapse
Affiliation(s)
- Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
83
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
84
|
Kim G, Zhu R, Zhang Y, Jeon H, Shirinichi F, Wang Y. Fluorescent Chiral Quantum Dots to Unveil Origin-Dependent Exosome Uptake and Cargo Release. ACS APPLIED BIO MATERIALS 2024; 7:3358-3374. [PMID: 38717870 PMCID: PMC11393810 DOI: 10.1021/acsabm.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes as well as their excellent optical properties for tracking analysis. We observed that the preferential cellular uptake of exosomes derived from the same cell-of-origin (intraspecies exosomes) is higher than that of exosomes derived from different cell-of-origin (cross-species exosomes). This uptake enhancement was attributed to receptor-ligand interaction-mediated endocytosis, as we identified the expression of specific ligands on exosomes that favorably interact with their parental cells and confirmed the higher lysosomal entrapment of intraspecies exosomes (intraspecies endocytic uptake). On the other hand, we found that the uptake of cross-species exosomes primarily occurred through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. Overall, this study envisions valuable insights into further advancements in effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Youwen Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry, Rutgers University─Camden, Camden, New Jersey 08102, United States
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Farbod Shirinichi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
85
|
Huang LF, Ye QR, Chen XC, Huang XR, Zhang QF, Wu CY, Liu HF, Yang C. Research Progress of Drug Delivery Systems Targeting the Kidneys. Pharmaceuticals (Basel) 2024; 17:625. [PMID: 38794195 PMCID: PMC11124227 DOI: 10.3390/ph17050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (L.-F.H.); (Q.-R.Y.); (X.-C.C.); (X.-R.H.); (Q.-F.Z.); (C.-Y.W.)
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (L.-F.H.); (Q.-R.Y.); (X.-C.C.); (X.-R.H.); (Q.-F.Z.); (C.-Y.W.)
| |
Collapse
|
86
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
87
|
Xu T, Huangfu B, He X, Huang K. Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review. Cell Biol Toxicol 2024; 40:27. [PMID: 38693223 PMCID: PMC11062979 DOI: 10.1007/s10565-024-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Small membranes known as exosomes surround them and are released by several cell types both in vitro and in vivo. These membranes are packed with a variety of biomolecules, including proteins, lipids, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and non-coding RNA (ncRNA). As a source of biological nanomaterials, exosomes play a role in information and substance transmission between cells and have been identified as a general method of facilitating communication during interactions between the body, target organs, and toxins.. In order to understand the changes and mechanism of the composition and level of exosomes after biotoxin infection, this review focuses on current findings on the exosomes and highlights their novel uses in the toxicity mechanism. Exosomes are mainly used as a delivery carrier or mediated by receptors, and play an immune role after the toxin enters the body. This review expounds on the importance of exosomes in the toxicological mechanism of biotoxins and provides new insights for further diagnosis of toxic biomarkers, detoxification, and treatment development.
Collapse
Affiliation(s)
- Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering; China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100083, China.
| |
Collapse
|
88
|
Xu Y, Huang L, Zhuang Y, Huang H. Modulation of adipose tissue metabolism by exosomes in obesity. Am J Physiol Endocrinol Metab 2024; 326:E709-E722. [PMID: 38416071 DOI: 10.1152/ajpendo.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Yajing Xu
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Linghong Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Yong Zhuang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, People's Republic of China
| |
Collapse
|
89
|
Cheng LF, You CQ, Peng C, Ren JJ, Guo K, Liu TL. Mesenchymal stem cell-derived exosomes as a new drug carrier for the treatment of spinal cord injury: A review. Chin J Traumatol 2024; 27:134-146. [PMID: 38570272 PMCID: PMC11138942 DOI: 10.1016/j.cjtee.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
Collapse
Affiliation(s)
- Lin-Fei Cheng
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China
| | - Chao-Qun You
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Cheng Peng
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jia-Ji Ren
- Department of Orthopaedic Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Kai Guo
- Department of Orthopaedics, The Central Hospital of Shanghai Putuo District, Shanghai, 200333, China
| | - Tie-Long Liu
- Medical College, Anhui University of Science and Technology, Huainan, 232000, Anhui province, China.
| |
Collapse
|
90
|
Xu C, Xu P, Zhang J, He S, Hua T, Huang A. Exosomal noncoding RNAs in gynecological cancers: implications for therapy resistance and biomarkers. Front Oncol 2024; 14:1349474. [PMID: 38737906 PMCID: PMC11082286 DOI: 10.3389/fonc.2024.1349474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Gynecologic cancers, including ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), pose a serious threat to women's health and quality of life due to their high incidence and lethality. Therapeutic resistance in tumors refers to reduced sensitivity of tumor cells to therapeutic drugs or radiation, which compromises the efficacy of treatment or renders it ineffective. Therapeutic resistance significantly contributes to treatment failure in gynecologic tumors, although the specific molecular mechanisms remain unclear. Exosomes are nanoscale vesicles released and received by distinct kinds of cells. Exosomes contain proteins, lipids, and RNAs closely linked to their origins and functions. Recent studies have demonstrated that exosomal ncRNAs may be involved in intercellular communication and can modulate the progression of tumorigenesis, aggravation and metastasis, tumor microenvironment (TME), and drug resistance. Besides, exosomal ncRNAs also have the potential to become significant diagnostic and prognostic biomarkers in various of diseases. In this paper, we reviewed the biological roles and mechanisms of exosomal ncRNAs in the drug resistance of gynecologic tumors, as well as explored the potential of exosomal ncRNAs acting as the liquid biopsy molecular markers in gynecologic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiwu Huang
- Department of Gynecology and Obstetrics , Hangzhou Lin'an Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
91
|
Xu J, Zhao Y, Chen Z, Wei L. Clinical Application of Different Liquid Biopsy Components in Hepatocellular Carcinoma. J Pers Med 2024; 14:420. [PMID: 38673047 PMCID: PMC11051574 DOI: 10.3390/jpm14040420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, usually occurring in the background of chronic liver disease. HCC lethality rate is in the third highest place in the world. Patients with HCC have concealed early symptoms and possess a high-level of heterogeneity. Once diagnosed, most of the tumors are in advanced stages and have a poor prognosis. The sensitivity and specificity of existing detection modalities and protocols are suboptimal. HCC calls for more sophisticated and individualized therapeutic regimens. Liquid biopsy is non-invasive, repeatable, unaffected by location, and can be monitored dynamically. It has emerged as a useable aid in achieving precision malignant tumor treatment. Circulating tumor cells (CTCs), circulating nucleic acids, exosomes and tumor-educated platelets are the commonest components of a liquid biopsy. It possesses the theoretical ability to conquer the high heterogeneity and the difficulty of early detection for HCC patients. In this review, we summarize the common enrichment techniques and the clinical applications in HCC for different liquid biopsy components. Tumor recurrence after HCC-related liver transplantation is more insidious and difficult to treat. The clinical use of liquid biopsy in HCC-related liver transplantation is also summarized in this review.
Collapse
Affiliation(s)
| | | | | | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; (J.X.); (Y.Z.); (Z.C.)
| |
Collapse
|
92
|
Saleh RO, Hjazi A, Bansal P, Ahmad I, Kaur H, Ali SHJ, Deorari M, Abosaoda MK, Hamzah HF, Mohammed BA. Mysterious interactions between macrophage-derived exosomes and tumors; what do we know? Pathol Res Pract 2024; 256:155261. [PMID: 38518733 DOI: 10.1016/j.prp.2024.155261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India.
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Munther Kadhim Abosaoda
- College of pharmacy, the Islamic University, Najaf, Iraq; College of pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | | |
Collapse
|
93
|
Elnaggar MG, He Y, Yeo Y. Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine. Eur J Pharm Biopharm 2024; 197:114203. [PMID: 38302049 PMCID: PMC10947810 DOI: 10.1016/j.ejpb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.
Collapse
Affiliation(s)
- Marwa G Elnaggar
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
94
|
Cao J, Lv G, Wei F. Engineering exosomes to reshape the immune microenvironment in breast cancer: Molecular insights and therapeutic opportunities. Clin Transl Med 2024; 14:e1645. [PMID: 38572668 PMCID: PMC10993163 DOI: 10.1002/ctm2.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Breast cancer remains a global health challenge, necessitating innovative therapeutic approaches. Immunomodulation and immunotherapy have emerged as promising strategies for breast cancer treatment. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. Through suitable modifications, engineered exosomes exhibit the capability to overcome the limitations associated with traditional therapeutic approaches. This ability opens up novel avenues for the development of more effective, personalized, and minimally invasive interventions. MAIN BODY In this comprehensive review, we explore the molecular insights and therapeutic potential of engineered exosomes in breast cancer. We discuss the strategies employed for exosome engineering and delve into their molecular mechanisms in reshaping the immune microenvironment of breast cancer. CONCLUSIONS By elucidating the contribution of engineered exosomes to breast cancer immunomodulation, this review underscores the transformative potential of this emerging field for improving breast cancer therapy. HIGHLIGHTS Surface modification of exosomes can improve the targeting specificity. The engineered exosome-loaded immunomodulatory cargo regulates the tumour immune microenvironment. Engineered exosomes are involved in the immune regulation of breast cancer.
Collapse
Affiliation(s)
- Jilong Cao
- Party Affairs and Administration Officethe Fourth Affiliated Hospital of China Medical UniversityShenyangP. R. China
| | - Gang Lv
- Department of Thyroid and Breast SurgeryChaohu Hospital of Anhui Medical UniversityChaohuP. R. China
| | - Fang Wei
- Department of General Surgerythe Fourth Affiliated Hospital of China Medical UniversityShenyangP. R. China
| |
Collapse
|
95
|
Li S, Li W, Wu X, Zhang B, Liu L, Yin L. Immune cell-derived extracellular vesicles for precision therapy of inflammatory-related diseases. J Control Release 2024; 368:533-547. [PMID: 38462043 DOI: 10.1016/j.jconrel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Inflammation-related diseases impose a significant global health burden, necessitating urgent exploration of novel treatment modalities for improved clinical outcomes. We begin by discussing the limitations of conventional approaches and underscore the pivotal involvement of immune cells in the inflammatory process. Amidst the rapid growth of immunology, the therapeutic potential of immune cell-derived extracellular vesicles (EVs) has garnered substantial attention due to their capacity to modulate inflammatory response. We provide an in-depth examination of immune cell-derived EVs, delineating their promising roles across diverse disease conditions in both preclinical and clinical settings. Additionally, to direct the development of the next-generation drug delivery systems, we comprehensively investigate the engineered EVs on their advanced isolation methods, cargo loading techniques, and innovative engineering strategies. This review ends with a focus on the prevailing challenges and considerations regarding the clinical translation of EVs in future, emphasizing the need of standardized characterization and scalable production processes. Ultimately, immune cell-derived EVs represent a cutting-edge therapeutic approach and delivery platform, holding immense promise in precision medicine.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Wenqing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xianggui Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Beiyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
96
|
De Smedt PSC, Oh YK, Yeo Y. Strengthening the editorial team's expertise on extracellular vesicles and inorganic drug carriers: JCR welcomes Prof. Pieter Vader and Prof. Yu Seok Youn as associate editors. J Control Release 2024; 368:iii-iv. [PMID: 38508530 DOI: 10.1016/j.jconrel.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
97
|
Tsai IT, Sun CK. Stem Cell Therapy against Ischemic Heart Disease. Int J Mol Sci 2024; 25:3778. [PMID: 38612587 PMCID: PMC11011361 DOI: 10.3390/ijms25073778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ischemic heart disease, which is one of the top killers worldwide, encompasses a series of heart problems stemming from a compromised coronary blood supply to the myocardium. The severity of the disease ranges from an unstable manifestation of ischemic symptoms, such as unstable angina, to myocardial death, that is, the immediate life-threatening condition of myocardial infarction. Even though patients may survive myocardial infarction, the resulting ischemia-reperfusion injury triggers a cascade of inflammatory reactions and oxidative stress that poses a significant threat to myocardial function following successful revascularization. Moreover, despite evidence suggesting the presence of cardiac stem cells, the fact that cardiomyocytes are terminally differentiated and cannot significantly regenerate after injury accounts for the subsequent progression to ischemic cardiomyopathy and ischemic heart failure, despite the current advancements in cardiac medicine. In the last two decades, researchers have realized the possibility of utilizing stem cell plasticity for therapeutic purposes. Indeed, stem cells of different origin, such as bone-marrow- and adipose-derived mesenchymal stem cells, circulation-derived progenitor cells, and induced pluripotent stem cells, have all been shown to play therapeutic roles in ischemic heart disease. In addition, the discovery of stem-cell-associated paracrine effects has triggered intense investigations into the actions of exosomes. Notwithstanding the seemingly promising outcomes from both experimental and clinical studies regarding the therapeutic use of stem cells against ischemic heart disease, positive results from fraud or false data interpretation need to be taken into consideration. The current review is aimed at overviewing the therapeutic application of stem cells in different categories of ischemic heart disease, including relevant experimental and clinical outcomes, as well as the proposed mechanisms underpinning such observations.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Cheuk-Kwan Sun
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City 80794, Taiwan
| |
Collapse
|
98
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
99
|
Hu D, Yang R, Wang G, Li H, Fan X, Liang G. Emerging Strategies to Overcome Current CAR-T Therapy Dilemmas - Exosomes Derived from CAR-T Cells. Int J Nanomedicine 2024; 19:2773-2791. [PMID: 38525009 PMCID: PMC10959326 DOI: 10.2147/ijn.s445101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Adoptive T cells immunotherapy, specifically chimeric antigen receptor T cells (CAR-T), has shown promising therapeutic efficacy in the treatment of hematologic malignancies. As extensive research on CAR-T therapies has been conducted, various challenges have emerged that significantly hampered their clinical application, including tumor recurrence, CAR-T cell exhaustion, and cytokine release syndrome (CRS). To overcome the hurdles of CAR-T therapy in clinical treatment, cell-free emerging therapies based on exosomes derived from CAR-T cells have been developed as an effective and promising alternative approach. In this review, we present CAR-T cell-based therapies for the treatment of tumors, including the features and benefits of CAR-T therapies, the limitations that exist in this field, and the measures taken to overcome them. Furthermore, we discuss the notable benefits of utilizing exosomes released from CAR-T cells in tumor treatment and anticipate potential issues in clinical trials. Lastly, drawing from previous research on exosomes from CAR-T cells and the characteristics of exosomes, we propose strategies to overcome these restrictions. Additionally, the review discusses the plight in large-scale preparation of exosome and provides potential solutions for future clinical applications.
Collapse
Affiliation(s)
- Dong Hu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Guidan Wang
- School of Medical Technology and Engineering, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Hao Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Xulong Fan
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| |
Collapse
|
100
|
Pourhajibagher M, Bahador A. Periodontal ligament stem cell-derived exosome-loaded Emodin mediated antimicrobial photodynamic therapy against cariogenic bacteria. BMC Oral Health 2024; 24:311. [PMID: 38454402 PMCID: PMC10919019 DOI: 10.1186/s12903-024-04062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study was conducted to investigate the efficiency of periodontal ligament (PDL) stem cell-derived exosome-loaded Emodin (Emo@PDL-Exo) in antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans and Lactobacillus acidophilus as the cariogenic bacteria. MATERIALS AND METHODS After isolating and characterizing PDL-Exo, the study proceeded to prepare and verify the presence of Emo@PDL-Exo. The antimicrobial effect, anti-biofilm activity, and anti-metabolic potency of Emo, PDL-Exo, and Emo@PDL-Exo were then evaluated with and without irradiation of blue laser at a wavelength of 405 ± 10 nm with an output intensity of 150 mW/cm2 for a duration of 60 s. In addition, the study assessed the binding affinity of Emodin with GtfB and SlpA proteins using in silico molecular docking. Eventually, the study examined the generation of endogenous reactive oxygen species (ROS) and changes in the gene expression levels of gelE and sprE. RESULTS The study found that using Emo@PDL-Exo-mediated aPDT resulted in a significant decrease in L. acidophilus and S. mutans by 4.90 ± 0.36 and 5.07 log10 CFU/mL, respectively (P < 0.05). The study found that using Emo@PDL-Exo for aPDT significantly reduced L. acidophilus and S. mutans biofilms by 44.7% and 50.4%, respectively, compared to untreated biofilms in the control group (P < 0.05). Additionally, the metabolic activity of L. acidophilus and S. mutans decreased by 58.3% and 71.2%, respectively (P < 0.05). The molecular docking analysis showed strong binding affinities of Emodin with SlpA and GtfB proteins, with docking scores of -7.4 and -8.2 kcal/mol, respectively. The study also found that the aPDT using Emo@PDL-Exo group resulted in the most significant reduction in gene expression of slpA and gtfB, with a decrease of 4.2- and 5.6-folds, respectively, compared to the control group (P < 0.05), likely due to the increased generation of endogenous ROS. DISCUSSION The study showed that aPDT using Emo@PDL-Exo can effectively reduce the cell viability, biofilm activity, and metabolic potency of S. mutans and L. acidophilus. aPDT also significantly reduced the expression levels of gtfB and slpA mRNA due to the increased endogenous ROS generation. The findings suggest that Emo@PDL-Exo-mediated aPDT could be a promising antimicrobial approach against cariogenic microorganisms.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|