51
|
Białczyk A, Wełniak A, Kamińska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther 2023; 27:723-739. [PMID: 37737953 PMCID: PMC10590312 DOI: 10.1007/s40291-023-00672-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Vitiligo is a chronic skin disorder characterised by the loss of melanocytes and subsequent skin depigmentation. Although many theories have been proposed in the literature, none alone explains the pathogenesis of vitiligo. Oxidative stress has been identified as a potential factor in the pathogenesis of vitiligo. A growing body of evidence suggests that antioxidant therapies may offer a promising approach to managing this condition. This review summarises the potential mechanisms of oxidative stress and the types of melanocyte death in vitiligo. We also provide a brief overview of the most commonly studied antioxidants. Melanocytes in vitiligo are thought to be damaged by an accumulation of reactive oxygen species to destroy the structural and functional integrity of their DNA, lipids, and proteins. Various causes, including exogenous and endogenous stress factors, an imbalance between prooxidants and antioxidants, disruption of antioxidant pathways, and gene polymorphisms, lead to the overproduction of reactive oxygen species. Although necroptosis, pyroptosis, ferroptosis, and oxeiptosis are newer types of cell death that may contribute to the pathophysiology of vitiligo, apoptosis remains the most studied cell death mechanism in vitiligo. According to studies, vitamin E helps to treat lipid peroxidation of the skin caused by psoralen ultra-violet A treatment. In addition, Polypodium leucotomos increased the efficacy of psoralen ultra-violet A or narrow-band ultraviolet B therapy. Our review provides valuable insights into the potential role of oxidative stress in pathogenesis and antioxidant-based supporting therapies in treating vitiligo, offering a promising avenue for further research and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Białczyk
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland.
| | - Adam Wełniak
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Kamińska
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
52
|
Li M, Plecitá-Hlavatá L, Dobrinskikh E, McKeon BA, Gandjeva A, Riddle S, Laux A, Prasad RR, Kumar S, Tuder RM, Zhang H, Hu CJ, Stenmark KR. SIRT3 Is a Critical Regulator of Mitochondrial Function of Fibroblasts in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:570-583. [PMID: 37343939 PMCID: PMC10633840 DOI: 10.1165/rcmb.2022-0360oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/21/2023] [Indexed: 06/23/2023] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | - B. Alexandre McKeon
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aneta Gandjeva
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Aya Laux
- Department of Craniofacial Biology, and
| | - Ram Raj Prasad
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | - Rubin M. Tuder
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine
| |
Collapse
|
53
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
54
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
55
|
Wang H, Jin J, Zhang C, Gong F, Hu B, Wu X, Guan M, Xia D. Multifunctional Drugs-Loaded Carbomol Hydrogel Promotes Diabetic Wound Healing via Antimicrobial and Immunoregulation. Gels 2023; 9:761. [PMID: 37754442 PMCID: PMC10530860 DOI: 10.3390/gels9090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetic wound healing poses a significant clinical dilemma. Bacterial infection and immune dysregulation are the predominant reasons. However, conventional wound dressings with a single treatment approach often limit therapeutic efficacy and continue working with difficulty. These limitations cause high treatment failure for diabetic wounds. In this study, we developed a multiple drug-loaded carbomer hydrogel containing Que/Van/Rif (QVR-CBMG) for the simultaneous treatment of infection and immune dysregulation. Honeycomb-like QVR-CBMG hydrogel exhibits excellent abilities to eliminate bacterial infection and biofilms in vitro. Moreover, QVR-CBMG hydrogel possesses an immunomodulatory capacity via affecting the Sirt3/SOD2 signaling pathway to promote M2 macrophages. Furthermore, QVR-CBMG hydrogel effectively promotes wound healing in diabetic rats through several mechanisms. The multidrug-loaded wound dressing not only eliminates bacterial infection and facilitated angiogenesis but also promotes collagen deposition and remodulates the local immune microenvironment in the areas of wounds. In summary, this synthetic strategy to eliminate infection and regulate immune disorders has potential translational value for the prevention and management of diabetic wounds.
Collapse
Affiliation(s)
- Hehui Wang
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China;
| | - Jiale Jin
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China;
| | - Chi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
| | - Fangyi Gong
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
| | - Baiwen Hu
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
| | - Xiaochuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
| | - Ming Guan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China;
| | - Dongdong Xia
- Department of Orthopedics, The First Affiliated Hospital of Ningbo University, Ningbo 315000, China; (H.W.); (C.Z.); (F.G.); (B.H.); (X.W.)
| |
Collapse
|
56
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
57
|
Shen X, Shi H, Chen X, Han J, Liu H, Yang J, Shi Y, Ma J. Esculetin Alleviates Inflammation, Oxidative Stress and Apoptosis in Intestinal Ischemia/Reperfusion Injury via Targeting SIRT3/AMPK/mTOR Signaling and Regulating Autophagy. J Inflamm Res 2023; 16:3655-3667. [PMID: 37641705 PMCID: PMC10460583 DOI: 10.2147/jir.s413941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Aim Intestinal ischemia/reperfusion (I/R) injury is a challenging pathological phenomenon accountable for significant mortality in clinical scenarios. Substantial evidence has supported the protective role of esculetin in myocardial I/R injury. This study is designed to reveal the specific impacts of esculetin on intestinal I/R injury and disclose the underlying mechanism. Methods First, intestinal I/R injury model and intestinal epithelial cell line hypoxia/reoxygenation (H/R) model were established. Pathologic damages to intestinal tissues were observed through H&E staining. Serum diamine oxidase (DAO) levels were examined. RT-qPCR and Western blot examined the expression of inflammatory mediators. Commercial kits were used for detecting the levels of oxidative stress markers. TUNEL assay and caspase 3 activity assay measured cell apoptosis. Immunofluorescence (IF) staining measured autophagy levels. Western blot analyzed the expression of apoptosis-, Sirtuin 3 (SIRT3)/AMP activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling- and autophagy-related proteins. Molecular docking verified the interaction of esculetin with SIRT3. Cell viability was explored via CCK-8 assay. Results The experimental results revealed that esculetin treatment mitigated pathological damage of intestinal tissues, reduced serum DAO level, ameliorated inflammation, oxidative stress and apoptosis and promoted autophagy in intestinal I/R rats. Moreover, esculetin bond to SIRT3 and activated SIRT3/AMPK/mTOR signaling both in vitro and in vivo. Furthermore, esculetin treatment enhanced cell viability and SIRT3 silencing reversed the impacts of esculetin on autophagy, inflammation, oxidative stress and apoptosis in H/R cell model. Conclusion In a word, esculetin activated SIRT3/AMPK/mTOR signaling and autophagy to protect against inflammation, oxidative stress and apoptosis in intestinal I/R injury.
Collapse
Affiliation(s)
- Xin Shen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Hai Shi
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Xinli Chen
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Junwei Han
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Haiwang Liu
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Jie Yang
- Department of Gastrointestinal Surgery, Xi’an Daxing Hospital, Xi’an, 710016, People’s Republic of China
| | - Yuan Shi
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Jiajia Ma
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
58
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
59
|
Wiciński M, Erdmann J, Nowacka A, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023; 15:3578. [PMID: 37630770 PMCID: PMC10459499 DOI: 10.3390/nu15163578] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuins are a family of proteins with enzymatic activity. There are seven mammalian sirtuins (SIRT1-SIRT7) that are found in different cellular compartments. They are a part of crucial cellular pathways and are regulated by many factors, such as chemicals, environmental stress, and phytochemicals. Several in vitro and in vivo studies have presented their involvement in anti-inflammatory, antioxidant, and antiapoptotic processes. Recent findings imply that phytochemicals such as resveratrol, curcumin, quercetin, fisetin, berberine, and kaempferol may regulate the activity of sirtuins. Resveratrol mainly activates SIRT1 and indirectly activates AMPK. Curcumin influences mainly SIRT1 and SIRT3, but its activity is broad, and many pathways in different cells are affected. Quercetin mainly modulates SIRT1, which triggers antioxidant and antiapoptotic responses. Fisetin, through SIRT1 regulation, modifies lipid metabolism and anti-inflammatory processes. Berberine has a wide spectrum of effects and a significant impact on SIRT1 signaling pathways. Finally, kaempferol triggers anti-inflammatory and antioxidant effects through SIRT1 induction. This review aims to summarize recent findings on the properties of phytochemicals in the modulation of sirtuin activity, with a particular focus on biochemical aspects.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Agnieszka Nowacka
- Department of Neurosurgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Klaudia Michalak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Kacper Janowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Adrian Biernaciak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
60
|
Lu G, Jin S, Lin S, Gong Y, Zhang L, Yang J, Mou W, Du J. Update on histone deacetylase inhibitors in peripheral T-cell lymphoma (PTCL). Clin Epigenetics 2023; 15:124. [PMID: 37533111 PMCID: PMC10398948 DOI: 10.1186/s13148-023-01531-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of highly aggressive malignancies with generally poor prognoses, and the first-line chemotherapy of PTCL has limited efficacy. Currently, several novel targeted agents, including histone deacetylase inhibitors (HDACis), have been investigated to improve the therapeutic outcome of PTCLs. Several HDACis, such as romidepsin, belinostat, and chidamide, have demonstrated favorable clinical efficacy and safety in PTCLs. More novel HDACis and new combination therapies are undergoing preclinical or clinical trials. Mutation analysis based on next-generation sequencing may advance our understanding of the correlation between epigenetic mutation profiles and relevant targeted therapies. Multitargeted HDACis and HDACi-based prodrugs hold promising futures and offer further directions for drug design.
Collapse
Affiliation(s)
- Guang Lu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, People's Republic of China
| | - Shikai Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Suwen Lin
- Clinical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, People's Republic of China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Liwen Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jingwen Yang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Weiwei Mou
- Department of Pediatrics, Shengli Oilfield Central Hospital, Dongying, 257034, Shandong, People's Republic of China.
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
61
|
Dong Y, Zhuang XX, Wang YT, Tan J, Feng D, Li M, Zhong Q, Song Z, Shen HM, Fang EF, Lu JH. Chemical mitophagy modulators: Drug development strategies and novel regulatory mechanisms. Pharmacol Res 2023; 194:106835. [PMID: 37348691 DOI: 10.1016/j.phrs.2023.106835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xu-Xu Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Yi-Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Jieqiong Tan
- Center for medical genetics, Central South University, Changsha 410031, Hunan, China
| | - Du Feng
- Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, Hubei, China
| | - Han-Ming Shen
- Department of Biomedical Sciences, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau.
| |
Collapse
|
62
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
63
|
Wang C, Yang K, Liu X, Wang S, Song M, Belmonte JCI, Qu J, Liu GH, Zhang W. MAVS Antagonizes Human Stem Cell Senescence as a Mitochondrial Stabilizer. RESEARCH (WASHINGTON, D.C.) 2023; 6:0192. [PMID: 37521327 PMCID: PMC10374246 DOI: 10.34133/research.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Mitochondrial dysfunction is a hallmark feature of cellular senescence and organ aging. Here, we asked whether the mitochondrial antiviral signaling protein (MAVS), which is essential for driving antiviral response, also regulates human stem cell senescence. To answer this question, we used CRISPR/Cas9-mediated gene editing and directed differentiation techniques to generate various MAVS-knockout human stem cell models. We found that human mesenchymal stem cells (hMSCs) were sensitive to MAVS deficiency, as manifested by accelerated senescence phenotypes. We uncovered that the role of MAVS in maintaining mitochondrial structural integrity and functional homeostasis depends on its interaction with the guanosine triphosphatase optic atrophy type 1 (OPA1). Depletion of MAVS or OPA1 led to the dysfunction of mitochondria and cellular senescence, whereas replenishment of MAVS or OPA1 in MAVS-knockout hMSCs alleviated mitochondrial defects and premature senescence phenotypes. Taken together, our data underscore an uncanonical role of MAVS in safeguarding mitochondrial homeostasis and antagonizing human stem cell senescence.
Collapse
Affiliation(s)
- Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College,
University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders,
Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders,
Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College,
University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
64
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
65
|
Deng J, Liu ZM, Zhu KR, Cui GL, Liu LX, Yan YH, Ning XL, Yu ZJ, Li GB, Qi QR. New ε-N-thioglutaryl-lysine derivatives as SIRT5 inhibitors: Chemical synthesis, kinetic and crystallographic studies. Bioorg Chem 2023; 135:106487. [PMID: 36996510 DOI: 10.1016/j.bioorg.2023.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
SIRT5 has been implicated in various physiological processes and human diseases, including cancer. Development of new highly potent, selective SIRT5 inhibitors is still needed to investigate disease-related mechanisms and therapeutic potentials. We here report new ε-N-thioglutaryllysine derivatives, which were designed according to SIRT5-catalysed deacylation reactions. These ε-N-thioglutaryllysine derivatives displayed potent SIRT5 inhibition, of which the potential photo-crosslinking derivative 8 manifested most potent inhibition with an IC50 value of 120 nM to SIRT5, and low inhibition to SIRT1-3 and SIRT6. The enzyme kinetic assays revealed that the ε-N-thioglutaryllysine derivatives inhibit SIRT5 by lysine-substrate competitive manner. Co-crystallographic analyses demonstrated that 8 binds to occupy the lysine-substate binding site by making hydrogen-bonding and electrostatic interactions with SIRT5-specific residues, and is likely positioned to react with NAD+ and form stable thio-intermediates. Compound 8 was observed to have low photo-crosslinking probability to SIRT5, possibly due to inappropriate position of the diazirine group as observed in SIRT5:8 crystal structure. This study provides useful information for developing drug-like inhibitors and cross-linking chemical probes for SIRT5-related studies.
Collapse
|
66
|
Cai Y, Jiang S, Huang C, Shen A, Zhang X, Yang W, Xiao Y, Gao S, Du R, Zheng G, Yan T, Craig Wan C. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154747. [PMID: 36931095 DOI: 10.1016/j.phymed.2023.154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain β (β-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichuan Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Rong Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
67
|
Guo L, Xu CE. Integrated bioinformatics and machine learning algorithms reveal the critical cellular senescence-associated genes and immune infiltration in heart failure due to ischemic cardiomyopathy. Front Immunol 2023; 14:1150304. [PMID: 37234159 PMCID: PMC10206252 DOI: 10.3389/fimmu.2023.1150304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Heart failure (HF) is the final stage of many cardiovascular illnesses and the leading cause of death worldwide. At the same time, ischemic cardiomyopathy has replaced valvular heart disease and hypertension as the primary causes of heart failure. Cellular senescence in heart failure is currently receiving more attention. In this paper, we investigated the correlation between the immunological properties of myocardial tissue and the pathological mechanisms of cellular senescence during ischemic cardiomyopathy leading to heart failure (ICM-HF) using bioinformatics and machine learning methodologies. Our goals were to clarify the pathogenic causes of heart failure and find new treatment options. First, after obtaining GSE5406 from the Gene Expression Omnibus (GEO) database and doing limma analysis, differential genes (DEGs) among the ICM-HF and control groups were identified. We intersected these differential genes with cellular senescence-associated genes (CSAG) via the CellAge database to obtain 39 cellular senescence-associated DEGs (CSA-DEGs). Then, a functional enrichment analysis was performed to elucidate the precise biological processes by which the hub genes control cellular senescence and immunological pathways. Then, the respective key genes were identified by Random Forest (RF) method, LASSO (Least Absolute Shrinkage and Selection Operator) algorithms, and Cytoscape's MCODE plug-in. Three sets of key genes were taken to intersect to obtain three CSA-signature genes (including MYC, MAP2K1, and STAT3), and these three CSA-signature genes were validated in the test gene set (GSE57345), and Nomogram analysis was done. In addition, we assessed the relationship between these three CSA- signature genes and the immunological landscape of heart failure encompassing immunological infiltration expression profiles. This work implies that cellular senescence may have a crucial role in the pathogenesis of ICM-HF, which may be closely tied to its effect on the immune microenvironment. Exploring the molecular underpinnings of cellular senescence during ICM-HF is anticipated to yield significant advances in the disease's diagnosis and therapy.
Collapse
Affiliation(s)
- Ling Guo
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chong-En Xu
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
68
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
69
|
He L, Liu Q, Cheng J, Cao M, Zhang S, Wan X, Li J, Tu H. SIRT4 in ageing. Biogerontology 2023; 24:347-362. [PMID: 37067687 DOI: 10.1007/s10522-023-10022-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023]
Abstract
Ageing is a phenomenon in which cells, tissues and organs undergo systemic pathological changes as individuals age, leading to the occurrence of ageing-related diseases and the end of life. It is associated with many phenotypes known as ageing characteristics, such as genomic instability, nutritional imbalance, mitochondrial dysfunction, cell senescence, stem cell depletion, and an altered microenvironment. The sirtuin family (SIRT), known as longevity proteins, is thought to delay ageing and prolong life, and mammals, including humans, have seven family members (SIRT1-7). SIRT4 has been studied less among the sirtuin family thus far, but it has been reported that it has important physiological functions in organisms, such as promoting DNA damage repair, participating in the energy metabolism of three substances, inhibiting inflammatory reactions and apoptosis, and regulating mitochondrial function. Recently, some studies have demonstrated the involvement of SIRT4 in age-related processes, but knowledge in this field is still scarce. Therefore, this review aims to analyse the relationship between SIRT4 and ageing characteristics as well as some age-related diseases (e.g., cardiovascular diseases, metabolic diseases, neurodegenerative diseases and cancer).
Collapse
Affiliation(s)
- Ling He
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Qingcheng Liu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jielong Cheng
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Mei Cao
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuaimei Zhang
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaolin Wan
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huaijun Tu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
70
|
Wang T, Lin B, Qiu W, Yu B, Li J, An S, Weng L, Li Y, Shi M, Chen Z, Zeng Z, Lin X, Gao Y, Ouyang J. ADENOSINE MONOPHOSPHATE-ACTIVATED PROTEIN KINASE PHOSPHORYLATION MEDIATED BY SIRTUIN 5 ALLEVIATES SEPTIC ACUTE KIDNEY INJURY. Shock 2023; 59:477-485. [PMID: 36533528 DOI: 10.1097/shk.0000000000002073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Background : Our previous studies have shown that ameliorating mitochondrial damage in renal tubular epithelial cells (RTECs) can alleviate septic acute kidney injury (SAKI). It is reported that AMPK phosphorylation (p-AMPK) could ameliorate mitochondrial damage in renal tissue and Sirtuin 5 (SIRT5) overexpression significantly enhanced the level of p-AMPK in bovine preadipocytes. However, the role of SIRT5-mediated phosphorylation of AMPK in SAKI needs to be clarified. Methods : WT/SIRT5 gene knockout mouse model of cecal ligation and puncture-induced SAKI and a human kidney 2 cell model of LPS-induced SAKI were constructed. An AMPK chemical activator and SIRT5 overexpression plasmid were used. Indexes of mitochondrial structure and function, level of p-AMPK, and expression of SIRT5 protein in renal tissue and RTECs were measured. Results : After sepsis stimulation, the p-AMPK level was decreased, mitochondrial structure was disrupted, and ATP content was decreased. Notably, an AMPK activator alleviated SAKI. Sirtuin 5 gene knockout significantly aggravated SAKI, while SIRT5 overexpression alleviated mitochondrial dysfunction after LPS stimulation, as manifested by the increase of p-AMPK level, the alleviation of mitochondrial structure damage, the restoration of ATP content, the decrease of proapoptotic protein expression, as well as the reduction of reactive oxygen species generation. Conclusions : Upregulation of SIRT5 expression can attenuate mitochondrial dysfunction in RTECs and alleviate SAKI by enhancing the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Tingjie Wang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Bo Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Weihuang Qiu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Binmei Yu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lijun Weng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yuying Li
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Menglu Shi
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianzhong Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Youguang Gao
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jie Ouyang
- Department of Urology, Huaihua First People's Hospital, Huaihua 418099, Hunan, China
| |
Collapse
|
71
|
IDH2 Deficiency Promotes Endothelial Senescence by Eliciting miR-34b/c-Mediated Suppression of Mitophagy and Increased ROS Production. Antioxidants (Basel) 2023; 12:antiox12030585. [PMID: 36978833 PMCID: PMC10045915 DOI: 10.3390/antiox12030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Endothelial senescence impairs vascular function and thus is a primary event of age-related vasculature diseases. Isocitrate dehydrogenase 2 (IDH2) plays an important role in inducing alpha-ketoglutarate (α-KG) production and preserving mitochondrial function. However, the mechanism and regulation of IDH2 in endothelial senescence have not been elucidated. We demonstrated that downregulation of IDH2 induced accumulation of miR-34b/c, which impaired mitophagy and elevated mitochondrial reactive oxygen species (ROS) levels by inhibiting mitophagy-related markers (PTEN-induced putative kinase 1 (PINK1), Parkin, LC-II/LC3-I, and p62) and attenuating Sirtuin deacetylation 3 (Sirt3) expression. The mitochondrial dysfunction induced by IDH2 deficiency disrupted cell homeostasis and the cell cycle and led to endothelial senescence. However, miR-34b/c inhibition or α-KG supplementation restored Sirt3, PINK1, Parkin, LC-II/LC3-I, p62, and mitochondrial ROS levels, subsequently alleviating endothelial senescence. We showed that IDH2 played a crucial role in regulating endothelial senescence via induction of miR-34b/c in endothelial cells.
Collapse
|
72
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
73
|
He P, Chen Z, Men Y, Wang M, Wang W, Liu W. Activity Assay of Amylase and Xylanase Is Available for Quantitative Assessment of Strain Aging in Cultivated Culinary-Medicinal Morchella Mushrooms (Ascomycotina). Int J Med Mushrooms 2023; 25:57-64. [PMID: 36734919 DOI: 10.1615/intjmedmushrooms.2022046420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Strain aging has been mainly contributing to the "uncertainty" of Morchella farming. The situation calls for urgent quantitative assessment of strain aging in cultivated Morchella mushrooms. In this paper, systemic senescence of the productive strains of M. eximia, M. importuna, and M. sextelata was achieved through successive subculturing to provide subcultures with different degree of aging for further studies. Then the quantitative assessment of morel strain aging was conducted by activity assay of amylase and xylanase using dinitrosalicylic acid (DNS) method. The results suggested that both activity of amylase and xylanase decreased along with the rise of subculture times. Meanwhile, the correlation between xylanase activity and time of subculturing in the tested morel strains was higher than that of amylase assay. Consequently, assay of amylase and xylanase activity by DNS method can be used in the quantitative assessment of morel strain aging, and assay of xylanase activity is the better alternative. The work will improve the settlement of "uncertainty" in the morel industry and thus be beneficial for stable development of morel farming.
Collapse
Affiliation(s)
- Peixin He
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China; Collaborative Innovation Center of Food Production and Safety, Henan Province, Zhengzhou, China
| | - Zhuo Chen
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Ying Men
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Miaomiao Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P.R. China
| | - Wensheng Wang
- Henan Junsheng Agricultural Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Wei Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
74
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
75
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
76
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
77
|
Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, Sun H, Zhang H, Shi Y, He X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD +/Sirt3 Pathway in Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314739. [PMID: 36499074 PMCID: PMC9738479 DOI: 10.3390/ijms232314739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In vitro expansion-mediated replicative senescence has severely limited the clinical applications of mesenchymal stem cells (MSCs). Accumulating studies manifested that nicotinamide adenine dinucleotide (NAD+) depletion is closely related to stem cell senescence and mitochondrial metabolism disorder. Promoting NAD+ level is considered as an effective way to delay aging. Previously, we have confirmed that nicotinamide mononucleotide (NMN), a precursor of NAD+, can alleviate NAD+ deficiency-induced MSC senescence. However, whether NMN can attenuate MSC senescence and its underlying mechanisms are still incompletely clear. The present study herein showed that late passage (LP) MSCs displayed lower NAD+ content, reduced Sirt3 expression and mitochondrial dysfunction. NMN supplementation leads to significant increase in intracellular NAD+ level, NAD+/ NADH ratio, Sirt3 expression, as well as ameliorated mitochondrial function and rescued senescent MSCs. Additionally, Sirt3 over-expression relieved mitochondrial dysfunction, and retrieved senescence-associated phenotypic features in LP MSCs. Conversely, inhibition of Sirt3 activity via a selective Sirt3 inhibitor 3-TYP in early passage (EP) MSCs resulted in aggravated cellular senescence and abnormal mitochondrial function. Furthermore, NMN administration also improves 3-TYP-induced disordered mitochondrial function and cellular senescence in EP MSCs. Collectively, NMN replenishment alleviates mitochondrial dysfunction and rescues MSC senescence through mediating NAD+/Sirt3 pathway, possibly providing a novel mechanism for MSC senescence and a promising strategy for anti-aging pharmaceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xu He
- Correspondence: ; Tel.: +86-135-0430-7430
| |
Collapse
|
78
|
Elaiophylin Inhibits Tumorigenesis of Human Lung Adenocarcinoma by Inhibiting Mitophagy via Suppression of SIRT1/Nrf2 Signaling. Cancers (Basel) 2022; 14:cancers14235812. [PMID: 36497294 PMCID: PMC9737501 DOI: 10.3390/cancers14235812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Lung adenocarcinoma (LADC), the most common type of lung cancer, is still one of the most aggressive and rapidly fatal tumor types, even though achievements in new therapeutic approaches have been developed. Elaiophylin as a C2 symmetrically glycosylated 16 macrolides has been reported to be a late-stage autophagy inhibitor with a potent anti-tumor effect on various cancers. This study investigated the anti-tumor effect of elaiophylin on human LADC for the first time in in vitro and in vivo models. The in vitro study in LADC A549 cells showed that elaiophylin significantly inhibited cell viability and induced cell apoptosis through the suppression of mitophagy and induction of cellular and mitochondrial oxidative stress. Proteomic analysis and molecular docking assay implicated that SIRT1 was likely the direct target of elaiophylin in A549 cells. Further mechanistic study verified that elaiophylin reduced Nrf2 deacetylation, expression, and transcriptional activity as well as cytoplasm translocation by downregulating SIRT1 expression and deacetylase activity. Additionally, SIRT1/Nrf2 activation could attenuate elaiophylin-induced mitophagy inhibition and oxidative stress. The in vivo study in the A549-xenograft mice model showed that the anti-tumor effect of elaiophylin was accompanied by the decreased expressions of SIRT1, Nrf2, Parkin, and PINK1. Thus, the present study reports that elaiophylin has potent anti-tumor properties in LADC, which effect is likely mediated through suppressing the SIRT1/Nrf2 signaling. In conclusion, elaiophylin may be a novel drug candidate for LADC and SIRT1 may be a new therapeutic target for such devastating malignancy.
Collapse
|
79
|
Sosa-Díaz E, Hernández-Cruz EY, Pedraza-Chaverri J. The role of vitamin D on redox regulation and cellular senescence. Free Radic Biol Med 2022; 193:253-273. [PMID: 36270517 DOI: 10.1016/j.freeradbiomed.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Vitamin D is considered an essential micronutrient for human health that is metabolized into a multifunctional secosteroid hormone. We can synthesize it in the skin through ultraviolet B (UVB) rays or acquire it from the diet. Its deficiency is a major global health problem that affects all ages and ethnic groups. Furthermore, dysregulation of vitamin D homeostasis has been associated with premature aging, driven by various cellular processes, including oxidative stress and cellular senescence. Various studies have shown that vitamin D can attenuate oxidative stress and delay cellular senescence, mainly by inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Klotho and improving mitochondrial homeostasis, proposing this vitamin as an excellent candidate for delaying aging. However, the mechanisms around these processes are not yet fully explored. Therefore, in this review, the effects of vitamin D on redox regulation and cellular senescence are discussed to propose new lines of research and clinical applications of vitamin D in the context of age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Faculty of Medicine, National Autonomous University of Mexico, 04360, Mexico City, Mexico; Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Estefani Yaquelin Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| |
Collapse
|
80
|
Della-Morte D, Pacifici F. Nature can still be the strongest help against aging and neurodegeneration: the sirtuins way. Neural Regen Res 2022; 18:1271-1272. [PMID: 36453409 PMCID: PMC9838169 DOI: 10.4103/1673-5374.360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, IRCCS San Raffaele Roma, Rome, Italy,Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, USA,Correspondence to: David Della-Morte, .
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
81
|
Yao Y, Ren Z, Yang R, Mei Y, Dai Y, Cheng Q, Xu C, Xu X, Wang S, Kim KM, Noh JH, Zhu J, Zhao N, Liu YU, Mao G, Sima J. Salidroside reduces neuropathology in Alzheimer’s disease models by targeting NRF2/SIRT3 pathway. Cell Biosci 2022; 12:180. [PMCID: PMC9636768 DOI: 10.1186/s13578-022-00918-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neurite dystrophy is a pathologic hallmark of Alzheimer’s disease (AD). However, drug discovery targeting neurite protection in AD remains largely unexplored. Methods Aβ-induced neurite and mitochondrial damage assays were used to evaluate Aβ toxicity and the neuroprotective efficacy of a natural compound salidroside (SAL). The 5×FAD transgenic mouse model of AD was used to study the neuroprotective function of SAL. To verify the direct target of SAL, we used surface plasmon resonance and cellular thermal shift assays to analyze the drug-protein interaction. Results SAL ameliorates Aβ-mediated neurite damage in cell culture. We further reveal that SAL represses mitochondrial damage in neurites by promoting mitophagy and maintaining mitochondrial homeostasis, dependent on an NAD-dependent deacetylase SIRT3. In AD mice, SAL protects neurite morphology, mitigates Aβ pathology, and improves cognitive function, which are all SIRT3-dependent. Notably, SAL directly binds to transcription factor NRF2, inhibits its degradation by blocking its interaction with KEAP1 ubiquitin ligase, and then advances NRF2-mediated SIRT3 transcription. Conclusions Overall, we demonstrate that SAL, a potential anti-aging drug candidate, attenuates AD pathology by targeting NRF2/SIRT3 pathway for mitochondrial and neurite protection. Drug discovery strategies focusing on SAL may thus provide promising therapeutics for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00918-z.
Collapse
Affiliation(s)
- Yuyuan Yao
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhichu Ren
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Ruihan Yang
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yilan Mei
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yuying Dai
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Cheng
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Chong Xu
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiaogang Xu
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Sanying Wang
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Kyoung Mi Kim
- grid.254230.20000 0001 0722 6377Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Korea
| | - Ji Heon Noh
- grid.254230.20000 0001 0722 6377Department of Biochemistry, Chungnam National University, Daejeon, 34134 Korea
| | - Jian Zhu
- grid.255392.a0000 0004 1936 7777Department of Psychology, Eastern Illinois University, Charleston, IL 61920 USA
| | - Ningwei Zhao
- China Exposomics Institute, 781 Cai Lun Road, Shanghai, 200120 China
| | - Yong U. Liu
- grid.79703.3a0000 0004 1764 3838Laboratory for Neuroscience in Health and Disease, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180 China
| | - Genxiang Mao
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Jian Sima
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
82
|
Kinin B1 receptor modulates mitochondrial activity responsivity in fasting and voluntary exercise. Life Sci 2022; 309:121034. [DOI: 10.1016/j.lfs.2022.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
|
83
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
84
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
85
|
Cao L, Zhou S, Qiu X, Qiu S. Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. FASEB J 2022; 36:e22491. [PMID: 35947089 DOI: 10.1096/fj.202200608rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 12/08/2022]
Abstract
Accumulation of lipid substances decreased the activity of osteoblasts. Trehalose is a typical stress metabolite to form a protective membrane on cell surface which has been demonstrated to regulate lipid metabolism. This activity of Trehalose indicates the potential effect of osteoporosis treatment. Our study aimed to determine the therapeutic effect of Trehalose in high fat-induced osteoporosis. We used palmitic acid (PA) to mimic the state of high fat and observed the apoptosis ratio of osteoblasts increased. After adding Trehalose, the apoptosis ratio decreased obviously. Autophagy is a regulatory means involved in the process of apoptosis. We detected the autophagy protein and found that the expression of Beclin-1, Atg5, and LC3 II increased, and p62 decreased after Trehalose treatment. When adding an autophagy inhibitor (3-MA), the expression of Beclin-1, Atg5, and LC3 II decreased, and p62 increased. These results indicated autophagy was an important factor involved in the preventive effect of Trehalose in PA-induced apoptosis. SIRT3 is a mitochondrial gene that can inhibit apoptosis, which has been reported to promote autophagy. We used SIRT3-siRNA to silence the expression of SIRT3 and found the effect of Trehalose was counteracted. The apoptosis ratio increased and the expression of Beclin-1, Atg5, and LC3 II decreased, p62 increased. Additionally, we also fed the mice with a high-fat diet (HFD) and intragastrical Trehalose. The results showed that Trehalose could inhibit the bone mass loss with HFD. Our study revealed the effect and mechanism of Trehalose in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
86
|
Zhu C, Dong X, Wang X, Zheng Y, Qiu J, Peng Y, Xu J, Chai Z, Liu C. Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction. Genet Res (Camb) 2022; 2022:9282484. [PMID: 36101744 PMCID: PMC9444453 DOI: 10.1155/2022/9282484] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuin 2 (SIRT2), as a member of the sirtuin family, has representative features of evolutionarily highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. In addition, SIRT2, as the only sirtuin protein colocalized with tubulin in the cytoplasm, has its own functions and characteristics. In recent years, studies have increasingly shown that SIRT2 can participate in the regulation of gene expression and regulate signal transduction in the metabolic pathway mainly through its post-translational modification of target genes; thus, SIRT2 has become a key centre in the metabolic pathway and participates in the pathological process of metabolic disorder-related diseases. In this paper, it is discussed that SIRT2 can regulate all aspects of gene expression, including epigenetic modification, replication, transcription and translation, and post-translational modification, which enables SIRT2 to participate in energy metabolism in life activities, and it is clarified that SIRT2 is involved in metabolic process-specific signal transduction mechanisms. Therefore, SIRT2 can be involved in metabolic disorder-related inflammation and oxidative stress, thereby triggering the occurrence of metabolic disorder-related diseases, such as neurodegenerative diseases, tumours, diabetes, and cardiovascular diseases. Currently, although the role of SIRT2 in some diseases is still controversial, given the multiple roles of SIRT2 in regulating physiological and pathological signal transduction, SIRT2 has become a key target for disease treatment. It is believed that with increasing research, the clinical application of SIRT2 will be promoted.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xue Dong
- Department of Education, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yingying Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Juanjuan Qiu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Yanling Peng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jiajun Xu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan 250102, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| |
Collapse
|
87
|
Zhou L, Pinho R, Gu Y, Radak Z. The Role of SIRT3 in Exercise and Aging. Cells 2022; 11:cells11162596. [PMID: 36010672 PMCID: PMC9406297 DOI: 10.3390/cells11162596] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The health benefits of regular exercise are well established. Nonetheless, the molecular mechanism(s) responsible for exercise-induced health benefits remain a topic of debate. One of the key cell-signaling candidates proposed to provide exercise-induced benefits is sirtuin 3 (SIRT3). SIRT3, an NAD+ dependent mitochondrial deacetylase, positively modulates many cellular processes, including energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. Although the exercise-induced change in SIRT3 signaling is a potential mechanism contributing to the health advantages of exercise on aging, studies investigating the impact of exercise on SIRT3 abundance in cells provide conflicting results. To resolve this conundrum, this narrative review provides a detailed analysis of the role that exercise-induced changes in SIRT3 play in providing the health and aging benefits associated with regular physical activity. We begin with an overview of SIRT3 function in cells followed by a comprehensive review of the impact of exercise on SIRT3 expression in humans and other mammalians. We then discuss the impact of SIRT3 on aging, followed by a thorough analysis of the cell-signaling links between SIRT3 and exercise-induced adaptation. Notably, to stimulate future research, we conclude with a discussion of key unanswered questions related to exercise, aging, and SIRT3 expression.
Collapse
Affiliation(s)
- Lei Zhou
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-304918224
| |
Collapse
|
88
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
89
|
Chiang CH, Cheng CY, Lien YT, Huang KC, Lin WW. P2X7 Activation Enhances Lipid Accumulation During Adipocytes Differentiation Through Suppressing the Expression of Sirtuin-3, Sirtuin-5, and Browning Genes. Front Pharmacol 2022; 13:852858. [PMID: 35462937 PMCID: PMC9019299 DOI: 10.3389/fphar.2022.852858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
P2X7 signaling has been explored in adipose tissue because of its potential to promote ATP-activated inflammatory cascades during obesogenic environments. However, limited literature has investigated the role of the P2X7 receptor in lipid metabolism during adipocyte differentiation. This study sought to explore the regulatory roles of P2X7 in adipocytes. This study utilized the in vitro 3T3-L1 differentiation model. Lipid accumulation, intracellular triglyceride, and extracellular glycerol were determined. The selective P2X7 agonist BzATP and antagonist A438079 were administered to investigate the functions of P2X7. We found that the expression of P2X7 and the lipid accumulation increased during adipocyte differentiation from D0 to D4. When administered at D0/D2, A438079 attenuated, while BzATP enhanced the degree of lipid accumulation during adipocyte differentiation. Neither did BzATP and A438079 administration affect the expression of PPARγ and C/EBPα genes that increased at D4. In addition, both intracellular triglyceride and extracellular glycerol levels at D4 were reduced by A438079 treatment and enhanced by BzATP administration. When administered at stage 2 of adipocyte differentiation, BzATP consistently enhanced lipid accumulation and intracellular triglyceride and extracellular glycerol levels without affecting mRNA and protein levels of PPARγ and C/EBPα that increased at D4. However, treating A438079 or BzATP at D4 did not affect intracellular triglyceride formation and extracellular glycerol release in differentiated adipocytes at D7. Notably, BzATP administration at stage 2 exerted a concentration-dependent inhibition on the enhanced expression of PRDM16, PGC-1α, and UCP-1 at D4. Furthermore, BzATP administration at D0/D2 inhibited the protein and mRNA levels of sirtuin-3/5 at D4. BzATP treatment at stage 2 also suppressed the mRNA levels of sirtuin-3/5 genes upregulated by insulin. In conclusion, this study demonstrated P2X7 enhances lipid accumulation during adipogenesis by suppressing the expression of sirtuin-3/5 and the browning genes.
Collapse
Affiliation(s)
- Chien-Hsieh Chiang
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Ching-Yuan Cheng
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Lien
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
90
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|
91
|
Mitochondrial Sirtuins in Parkinson’s Disease. Neurochem Res 2022; 47:1491-1502. [DOI: 10.1007/s11064-022-03560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
92
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|