51
|
Dai M, Di J, Zhang T, Li T, Dong Y, Bao S, Fu S. Reparation of nano-FeS by ultrasonic precipitation for treatment of acidic chromium-containing wastewater. Sci Rep 2024; 14:211. [PMID: 38168529 PMCID: PMC10761992 DOI: 10.1038/s41598-023-50070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Nano-FeS is prone to agglomeration in the treatment of chromium-containing wastewater, and ultrasonic precipitation was used to synthesize nano-FeS to increase its dispersion. The optimization of the preparation method was carried out by single factor method (reaction temperature, Fe/S molar ratio and FeSO4 dropping flow rate) and response surface methodology. Dynamic experiments were constructed to investigate the long-term remediation effect and water column changes of nano-FeS and its solid particles. The changes of the remediation materials before and after the reaction were observed by SEM, and the mechanism of the remediation of chromium-containing wastewater by nano-FeS prepared by ultrasonication was revealed by XRD. The results showed that the reaction temperature of 12 °C, Fe/S molar ratio of 3.5 and FeSO4 dropping flow rate of 0.5 mL/s were the best parameters for the preparation of nano-FeS. The nano-FeS has efficient dispersion and well-defined mesoporous structure in the form of needles and whiskers of 40-80 nm. The dynamic experiments showed that the average removal of Cr(VI) and total chromium by nano-FeS and its immobilized particles were 94.97% and 63.51%, 94.93% and 45.76%, respectively. Fe2+ and S2- ionized by the FeS nanoparticles rapidly reduced Cr(VI) to Cr(III). Part of S2- may reduce Fe3+ to Fe2+, forming a small iron cycle that gradually decreases with the ion concentration. Cr(III) and Fe2+ form Cr(OH)3 and FeOOH, respectively, with the change of aqueous environment. Another part of S2- reacts with Cr(III) to form Cr2S3 precipitate or is oxidized to singlet sulfur. The FeS nanoparticles change from short rod-shaped to spherical shape. Compared with the conventional chemical precipitation method, the method used in this study is simple, low cost, small particle size and high removal rate per unit.
Collapse
Affiliation(s)
- Mengjia Dai
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Junzhen Di
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
| | - Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Tuoda Li
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Sihang Bao
- College of Mining, Liaoning Technical University, Fuxin, 123000, China
| | - Saiou Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| |
Collapse
|
52
|
Zhou C, Han C, Liu N. Critical layer in liquid-solid system influencing the remediation of chromium using zeolite-supported sulfide nano zero-valent iron. J Environ Sci (China) 2024; 135:232-241. [PMID: 37778798 DOI: 10.1016/j.jes.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 10/03/2023]
Abstract
Sulfidated nano zero-valent iron particles were immobilized on ZSM-5 zeolite (Z/S-nZVI) and used for hexavalent chromium (Cr(VI)) remediation. The performance of Z/S-nZVI improved with the increase in Cr(VI) concentration (< 60 mg/L), while the performance significantly decreased for a Cr(VI) concentration of more than 60 mg/L. The adsorption behavior for Cr(VI) was different from that reported in previous studies. The improved performance can be tailored for increasing efficiency of nano zero-valent iron (nZVI) corrosion, while the degree of corrosion of nZVI was affected by the concentration of the pollutant as discussed by kinetics, X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) analyses. The experiments for the dissolution of ferrous ions and the dosage of adsorbent demonstrated that the critical layer in the liquid-solid system changed with the increase in the concentration of Cr(VI) (Cr(VI): Z/S-nZVI > 0.6). Moreover, the removal mechanisms of Cr(VI) were elucidated through XRD, transmission electron microscopy (TEM) and XPS techniques. This results demonstrate that the species of chromium in the critical layer changed from Cr(III) to Cr(VI) as the concentration of chromium increased from low to high. Furthermore, the critical layer was composed of Cr(VI), Fe(II), O and H elements. Additionally, the experiments of coexisting ions and aging time confirmed that Z/S-nZVI possessed high selectivity and stability to ensure efficiency and cost-effectiveness in practical applications.
Collapse
Affiliation(s)
- Chundi Zhou
- Faculty of Material and Environment, Guangxi University for Nationalities, Nanning 530008, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Caiyun Han
- Faculty of Material and Environment, Guangxi University for Nationalities, Nanning 530008, China.
| | - Nengsheng Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
53
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
54
|
Hosny R, Zahran A, Abotaleb A, Ramzi M, Mubarak MF, Zayed MA, Shahawy AE, Hussein MF. Nanotechnology Impact on Chemical-Enhanced Oil Recovery: A Review and Bibliometric Analysis of Recent Developments. ACS OMEGA 2023; 8:46325-46345. [PMID: 38107971 PMCID: PMC10720301 DOI: 10.1021/acsomega.3c06206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Oil and gas are only two industries that could change because of nanotechnology, a rapidly growing field. The chemical-enhanced oil recovery (CEOR) method uses chemicals to accelerate oil flow from reservoirs. New and enhanced CEOR compounds that are more efficient and eco-friendly can be created using nanotechnology. One of the main research areas is creating novel nanomaterials that can transfer EOR chemicals to the reservoir more effectively. It was creating nanoparticles that can be used to change the viscosity and surface tension of reservoir fluids and constructing nanoparticles that can be utilized to improve the efficiency of the EOR compounds that are already in use. The assessment also identifies some difficulties that must be overcome before nanotechnology-based EOR can become widely used in industry. These difficulties include the requirement for creating mass-producible, cost-effective nanomaterials. There is a need to create strategies for supplying nanomaterials to the reservoir without endangering the formation of the reservoir. The requirement is to evaluate the environmental effects of CEOR compounds based on nanotechnology. The advantages of nanotechnology-based EOR are substantial despite the difficulties. Nanotechnology could make oil production more effective, profitable, and less environmentally harmful. An extensive overview of the most current advancements in nanotechnology-based EOR is provided in this paper. It is a useful resource for researchers and business people interested in this area. This review's analysis of current advancements in nanotechnology-based EOR shows that this area is attracting more and more attention. There have been a lot more publications on this subject in recent years, and a lot of research is being done on many facets of nanotechnology-based EOR. The scientometric investigation discovered serious inadequacies in earlier studies on adopting EOR and its potential benefits for a sustainable future. Research partnerships, joint ventures, and cutting-edge technology that consider assessing current changes and advances in oil output can all benefit from the results of our scientometric analysis.
Collapse
Affiliation(s)
- Rasha Hosny
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Ahmed Zahran
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Ahmed Abotaleb
- Department
of Civil Engineering, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud Ramzi
- Department
of Production, Egyptian Petroleum Research
Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Mahmoud F. Mubarak
- Department
of Petroleum Application, Egyptian Petroleum
Research Institute (EPRI), Ahmed El-Zomer, Cairo 11727, Egypt
| | - Mohamed A. Zayed
- Chemistry
Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer El Shahawy
- Department
of Civil Engineering, Faculty of Engineering, Suez Canal University, Ismailia 41522, Egypt
| | - Modather F. Hussein
- Chemistry
Department, College of Science, Al-Jouf
University, Sakakah 74331, Saudi Arabia
| |
Collapse
|
55
|
Kumara KKPS, Dayanthi WKCN. Waste materials composited into an adsorbent for landfill leachate treatment. JOURNAL OF WATER AND HEALTH 2023; 21:1871-1897. [PMID: 38153718 PMCID: wh_2023_310 DOI: 10.2166/wh.2023.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The ability of a composite adsorbent composed primarily of various waste materials to adsorb heavy metals, NH3-N, and chemical oxygen demand (COD) from landfill leachate was investigated through batch sorption experiments. The study determined the optimal contact time and adsorbent dosage for the removal of Pb, Zn, Cu, Fe, NH3-N, and COD to be 15, 90, 30, 180, 30, and 30 min, respectively. The corresponding optimum adsorbent dosages were determined to be 5, 30, 5, 15, 5, and 30 g, respectively. The composite adsorbent exhibited high removal efficiencies, achieving the following maximum values: 96.4% for Pb, 92.7% for Zn, 60.3% for Cu, 87.1% for Fe, 75.0% for NH3-N, and 67.5% for COD. Pb and Fe showed the best fit with a Langmuir isotherm model, with corresponding adsorption capacities of 0.0165 and 1.14 mg/g, respectively. For Zn, Cu, NH3-N, and COD, the equilibrium data demonstrated the best fit with an Elovich isotherm model, with adsorption capacities of 0.004, 0.005, 0.016, and 4.29 mg/g, respectively. The kinetic data followed the pseudo-second-order kinetic model. It presented a potential solution for the disposal of the waste from which it was derived.
Collapse
Affiliation(s)
- K K P S Kumara
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, Sri Lanka E-mail: ;
| | - W K C Neetha Dayanthi
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, Sri Lanka
| |
Collapse
|
56
|
Wang J, Xu B. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107267. [PMID: 37598575 DOI: 10.1016/j.jenvrad.2023.107267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Technetium isotope 99Tc is a main radioactive waste produced in the process of nuclear reaction, which has the characteristics of long half-life and strong environmental mobility, and can be bio-accumulated in organisms, resulting in serious threat to human health and ecosystem. Adsorption method is widely used in the field of removing radionuclides from water due to the advantages of high treatment rate, simple and mature industrial application. In this review paper, the recent advances in research and application of various adsorption materials for 99Tc pollution treatment were summarized and analyzed for the first time, including inorganic adsorbents, such as activated carbon, zero-valent iron, metallic minerals, clay minerals, layered double hydroxides (LDHs), tin-based materials, and sulfur-based materials; organic adsorbents, such as porous organic polymers (POPs), covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and ion exchange resin; and biological adsorbents, such as biopolymers (chitosan, cellulose, alginate), and microbial cells. The performance characteristics and the adsorption kinetics and isotherms of various adsorption materials were discussed. This review could deepen the understanding of the adsorptive removal of 99Tc from aqueous solution, and provide a reference for the future research in this field.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Bowen Xu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
57
|
Chen D, Hu X, Chen C, Lin D, Xu J. Tailoring Fe 0 Nanoparticles via Lattice Engineering for Environmental Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17178-17188. [PMID: 37903754 DOI: 10.1021/acs.est.3c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure-property-activity relationships. The materials' reactivity-selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements' amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
58
|
Brumovský M, Tunega D. Intrinsic Effects of Sulfidation on the Reactivity of Zero-Valent Iron With Trichloroethene: A DFT Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21063-21074. [PMID: 37937157 PMCID: PMC10626624 DOI: 10.1021/acs.jpcc.3c04459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Sulfidation represents a promising approach to enhance the selectivity and longevity of zero-valent iron (ZVI) in water treatment, particularly for nanoscale ZVI (nZVI). While previous mechanistic studies have primarily concentrated on the impact of sulfidation on the (n)ZVI hydrophobicity, the fundamental effects of sulfidation on the (n)ZVI reactivity with target contaminants remain poorly understood. Herein, we employed density functional theory to elucidate reaction mechanisms of trichloroethene (TCE) dechlorination at various (n)ZVI surface models, ranging from pristine Fe0 to regularly sulfidated Fe surfaces. Our findings indicate that sulfidation intrinsically hinders the TCE dechlorination by (n)ZVI, which aligns with prior observations of sulfur poisoning in transition metal catalysts. We further demonstrate that the positive effects of sulfidation emerge when the surface of (n)ZVI undergoes corrosion. Notably, S sites exhibit higher reactivity compared to the sites typically present on the surface of (n)ZVI oxidized in water. Additionally, S sites protect nearby Fe sites against oxidation and make them more selective for direct electron transfer. Overall, our results reveal that the reactivity of sulfidated (n)ZVI is governed by an interplay of intrinsic inhibitory effects and corrosion protection. A deeper understanding of these phenomena may provide new insights into the selectivity of sulfidated (n)ZVI for specific contaminants.
Collapse
Affiliation(s)
- Miroslav Brumovský
- University
of Natural Resources and Life Sciences, Vienna, Department of Forest- and Soil Sciences, Institute
of Soil Research, Peter-Jordan-Straße
82, 1190 Vienna, Austria
| | - Daniel Tunega
- University
of Natural Resources and Life Sciences, Vienna, Department of Forest- and Soil Sciences, Institute
of Soil Research, Peter-Jordan-Straße
82, 1190 Vienna, Austria
| |
Collapse
|
59
|
Ganie ZA, Khandelwal N, Choudhary A, Darbha GK. Clean water production from plastic and heavy metal contaminated waters using redox-sensitive iron nanoparticle-loaded biochar. ENVIRONMENTAL RESEARCH 2023; 235:116605. [PMID: 37437871 DOI: 10.1016/j.envres.2023.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The unceasing release of tiny plastics (microplastics and nanoplastics) and their additives, like metal ions, into the aquatic systems from industries and other sources is a globally escalating problem. Their combined toxic effects and human health hazard are already proven; hence, their remediation is requisite. This study utilised the nano-zerovalent iron-loaded sugarcane bagasse-derived biochar (nZVI-SBC) for simultaneous removal of Nanoplastics (NPs) of different functionality and size along with metal ions (Ni2+, Cd2+, AsO43-, and CrO42-). Batch and column experiments were conducted, and the results showed an efficient removal of contaminants with maximum sorption of carboxylate-modified NPs of size 500 nm (qmax = 90.3 mg/g) among all three NPs types. Significant removal was observed in Cd2+ in case of cations and CrO42- in case of anions with qmax = 44.0 and 87.8 mg/g, respectively. Kinetics and the isotherm modelling better fitted the pseudo-second-order kinetic model and Sips isotherm model, respectively for both NPs and metal ions. The designed material worked well in pH range of 4-8, ionic strength 1-20 mM and in complex aqueous matrices, with >90% removal. FTIR, zeta potential and the imaging analysis of the reaction precipitates confirmed the electrostatic attraction, pore retention and complexation as the potential mechanisms for removing NPs, whereas, XPS studies confirmed the reduction co-precipitation and surface complexation as the possible mechanism for removing metal ions. High values of attachment efficiency factor calculated from colloidal filtration theory (CFT) validated the experimental results and justified the high sorption of carboxylate modified 500 nm NPs particles. The synthesized material successfully removed both NPs of varying size and functionality and metal ions simultaneously with significant efficacy in complex environmental samples proving the broad applicability of material in realistic environmental conditions and different types of water treatment processes.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
60
|
Song Y, Zhang Z, Fang Y, Liu Y, Li D, Feng Y. Evaluating the stability and performance of a novel core-shell ZVI@C-montmorillonite particle for anaerobic treatment of chloramphenicol wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132389. [PMID: 37666169 DOI: 10.1016/j.jhazmat.2023.132389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Dongyi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
61
|
Cai H, Du X, Lin Z, Tao X, Zou M, Liu J, Zhang L, Dang Z, Lu G. Enhanced arsenic(III) sequestration via sulfidated zero-valent iron in aerobic conditions: Adsorption and oxidation coupling processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132190. [PMID: 37536156 DOI: 10.1016/j.jhazmat.2023.132190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Sulfidated zero-valent iron (S-ZVI) has shown significant potential for the removal of arsenic(III). However, little attention has been paid to the mechanism of As(III) sequestration enhancement and how the phase transformation for S-ZVI strengthens this process in aerobic conditions. In this work, sulfidated ZVI was created by ball-milling (S-ZVIbm) and liquid-mixing (S-ZVIlm) of ZVI with elemental sulfur(S0) to investigate the performance and mechanisms of As(III) sequestration in air-saturated water. Sulfidation was found to significantly enhance the As(III) removal rate constant, which was 2.8 ∼ 6.7 times (S-ZVIbm) and 3.1 ∼ 17.1 times (S-ZVIlm) higher than that without sulfidation. FeS was identified as the predominant sulfur species in the S-ZVI samples using S K-edge XANES spectra. The enhanced electron transfer and ZVI corrosion after sulfidation were verified via electrochemical tests. XANES and Mössbauer spectra suggested that lepidocrocite(γ-FeOOH) was the predominant corrosion product generated on the ZVI surface with the presence of oxygen, and DFT calculations further confirmed the improved performance of γ-FeOOH for As(III) sequestration. Besides, As(III) oxidation occurred dominantly on the heterogeneous surface rather than in solution, and the As(III) sequestration pathway of adsorption followed by oxidation was proposed. This study provides new insight into the enhanced As(III) sequestration by S-ZVI in aerobic conditions.
Collapse
Affiliation(s)
- Haiming Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziting Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
62
|
Huang R, Feng T, Wu S, Zhang X, Fan Z, Yu Q, Chen Y, Chen T. In-situ synthesis of magnetic iron-chitosan-derived biochar as an efficient persulfate activator for phenol degradation. ENVIRONMENTAL RESEARCH 2023; 234:116604. [PMID: 37433379 DOI: 10.1016/j.envres.2023.116604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
Persulfate activation is a forceful method for eliminating organic pollutants from coal chemical wastewater. In this study, an in-situ synthesis method was used to fabricate an iron-chitosan-derived biochar (Fe-CS@BC) nanocomposite catalyst using chitosan as a template. Fe was successfully imprinted into the newly synthesized catalyst. The Fe-CS@BC can activate persulfate to effectively degrade phenol. This point was confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The impact of various parameters on the removal rate was investigated in a single factor experiment. In Fe-CS@BC/PDS system, 95.96% of phenol (significantly higher than the original biochar of 34.33%) was removed within 45 min and 54.39% TOC within 2 h. The system showed superior efficiency over a broad pH value band from 3 to 9 and has a high degradation rate at ambient temperature. Free radical quenching experiment, EPR experiment and LSV experiment confirmed that multiple free radicals (including 1O2, SO4•-, O2•- and •OH) and electron transfer pathway combined to enhance phenol decomposition. Finally, the activation mechanism of persulfate by Fe-CS@BC was proposed to provide logical guidance on the treatment of organic pollutants in coal chemical wastewater.
Collapse
Affiliation(s)
- Ranran Huang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources. Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Xinyue Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhixuan Fan
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Qinghong Yu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yinyu Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Tingpeng Chen
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
63
|
Metzgen AD, Dahmke A, Ebert M. Significance of temperature as a key driver in ZVI PRB applications for PCE degradation. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 258:104236. [PMID: 37660464 DOI: 10.1016/j.jconhyd.2023.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
We report on the potential of elevated groundwater temperatures and zero-valent iron permeable reactive barriers (ZVI PRBs), for example, through a combination with underground thermal energy storage (UTES), to achieve enhanced remediation of chlorinated hydrocarbon (CHC) contaminated groundwater. Building on earlier findings concerning deionized solutions, we created a database for mineralized groundwater based on temperature dependence of tetrachloroethylene (PCE) degradation using two popular ZVIs (i.e., Gotthart-Maier cast iron [GM] and ISPAT sponge iron [IS]) in column experiments at 25 °C-70 °C to establish a temperature-dependent ZVI PRB dimensioning approach. Scenario analysis revealed that a heated ZVI PRB system in a moderate temperature range up to 40 °C showed the greatest efficiency, with potential material savings of ~55% to 75%, compared to 10 °C, considering manageability and longevity. With a 25 °C-70 °C temperature increase, rate coefficients of PCE degradation increased from 0.4 ± 0.0 h-1 to 2.9 ± 2.2 h-1 (GM) and 0.1 ± 0.1 h-1 to 1.8 ± 0.0 h-1 (IS), while TCE rate coefficients increased from 0.6 ± 0.1 h-1 to 5.1 ± 3.9 h-1 at GM. Activation energies for PCE degradation yielded 32 kJ mol-1 (GM) and 56 kJ mol-1 (IS). Temperature-dependent anaerobic iron corrosion was key in regulating mineral precipitation and passivation of the iron surface as well as porosity reduction due to gas production.
Collapse
Affiliation(s)
- Adrian D Metzgen
- Department of Applied Geology, Aquatic Geochemistry and Hydrogeology, Institute of Geoscience, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany.
| | - Andreas Dahmke
- Department of Applied Geology, Aquatic Geochemistry and Hydrogeology, Institute of Geoscience, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
| | - Markus Ebert
- Department of Applied Geology, Aquatic Geochemistry and Hydrogeology, Institute of Geoscience, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
| |
Collapse
|
64
|
Li G, Liu Y, Huang W, Chen L, Héroux P, Liu Y. Simultaneous remediation of arsenic and organic chemicals contaminated soil and groundwater using chemical oxidation and precipitation/stabilization: a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86478-86483. [PMID: 37432574 DOI: 10.1007/s11356-023-28604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
After the departure of industrial facilities, reuse of the land in developed cities in China is problematic, due to the land contamination issues. The rapid remediation of sites with complex contamination is crucial and urgently needed. Herein, the case of on-site remediation of arsenic (As) in soil, as well as benzo(a)pyrene, total petroleum hydrocarbons, and As in groundwater was reported. For contaminated soil, the oxidant and deactivator (consisting of 20% sodium persulfate, 40% ferrous sulfate (FeSO4), and 40% portland cement) were applied to oxidize and immobilize As. As a result, the total amount and lixivium concentration of As were constrained under 20 mg/kg and 0.01 mg/L, respectively. Meanwhile, for contaminated groundwater, As and organic contaminants were treated by FeSO4/ozone and FeSO4/hydrogen peroxide with mass ratios of 1:5 and 1:8, respectively. The continuous monitoring of contaminants in 22 monitoring wells shown that all contaminants in groundwater were treated to meet the standards. In addition, the risk of secondary pollution and operation cost was effectively reduced by proper disposal and resourceful utilization. The findings indicated that the method of oxidation and precipitation/stabilization is technically, environmentally, and economically feasible for the remediation of contaminated sites with similar complex pollutants.
Collapse
Affiliation(s)
- Guoqing Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China
| | - Wei Huang
- Shanghai Energy Conservation of Environment Co., Ltd., Taolin Road No. 18, Shanghai, 200135, China
| | - Luhai Chen
- Shanghai Jinxiang Environmental Technology Co., Ltd., Zhongjiang Road No. 388, Shanghai, 200062, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, H3A 1A3, Canada
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Shanghai institute of pollution control and ecological security, Shanghai, 200092, China.
| |
Collapse
|
65
|
Liu Y, Gao J, Zhu Q, Zhou X, Chu W, Huang J, Liu C, Yang B, Yang M. Zerovalent Iron/Cu Combined Degradation of Halogenated Disinfection Byproducts and Quantitative Structure-Activity Relationship Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11241-11250. [PMID: 37461144 DOI: 10.1021/acs.est.3c01960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Previous studies have reported that zerovalent iron (ZVI) can reduce several aliphatic groups of disinfection byproducts (DBPs) (e.g., haloacetic acids and haloacetamides) effectively, and the removal efficiency can be significantly improved by metallic copper. Information regarding ZVI/Cu combined degradation of different types of halogenated DBPs can help understand the fate of overall DBPs in drinking water distribution and storage systems consisting of unlined cast iron/copper pipes and related potential control strategies. In this study, we found that, besides aliphatic DBPs, many groups of new emerging aromatic DBPs formed in chlorinated and chloraminated drinking water can be effectively degraded by ZVI/Cu; meanwhile, total organic halogen and total ion intensity were reduced significantly after treatment. Moreover, a robust quantitative structure-activity relationship model was developed and validated based on the ZVI/Cu combined degradation rate constants of 14 typical aromatic DBPs; it can predict the degradation rate constants of other aromatic DBPs for screening and comparative purposes, and the optimized descriptors indicate that DBPs possessing a lower value of the lowest unoccupied molecular orbital energy and a higher value of dipole moment tend to present higher degradation rate constants. In addition, toxicity data of 47 DBPs (belonging to 18 groups) were predicted by two previously established toxicity models, demonstrating that, although most DBPs exhibit higher toxicity than their dehalogenated products, some DBPs show lower toxicity than their lowly halogenated analogs.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qingyao Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jingxiong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
66
|
Yue T, Yang Y, Chen S, Yao J, Liang H, Jia L, Fu K, Wang Z. In situ prepared Chlorella vulgaris-supported nanoscale zero-valent iron to remove arsenic (III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89676-89689. [PMID: 37454381 DOI: 10.1007/s11356-023-28168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has a high removal affinity toward arsenic (As). However, the agglomeration of nZVI reduces the removal efficiency of As and, thus, limit its application. In this study, we report an environmentally friendly novel composite of Chlorella vulgaris-supported nanoscale zero-valent iron (abbreviated as CV-nZVI) that exhibits a fast and efficient removal of As(III) from As-contaminated water. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize and analyze the CV-nZVI. These results indicated that the stabilization effect of C. vulgaris reduced the nZVI agglomeration and enhanced the reactivity of nZVI. The experiments showed a removal efficiency of 99.11% for As(III) at an optimum pH of 7.0. The adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the superior maximum adsorption capacities of 34.11 mg/g for As(III). The FTIR showed that the As(III) was adsorbed on the CV-nZVI surface by complexation reaction, and XPS indicated that oxidation reaction was also involved. After five reuse cycles, the removal efficiency of As(III) by CV-nZVI was 32.93%, suggesting that the CV-nZVI had some reusability and regeneration. Overall, this work provides a practical and highly efficient approach for As remediation in As-contaminated water, and simultaneously resolves the agglomeration problems of nZVI nanoparticles.
Collapse
Affiliation(s)
- Tingting Yue
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuankun Yang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shu Chen
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jun Yao
- The School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Huili Liang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liang Jia
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kaibin Fu
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 621010, China
| | - Zhe Wang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
67
|
Li Y, Zhu Y, Yan X, Zhang G, Yan G, Li H. Strategy and mechanisms of sulfamethoxazole removal from aqueous systems by single and combined Shewanella oneidensis MR-1 and nanoscale zero-valent iron-enriched biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163676. [PMID: 37100153 DOI: 10.1016/j.scitotenv.2023.163676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
Sulfamethoxazole (SMX, a sulfonamide antibiotic) is ubiquitously present in various aqueous systems, which can accelerate the spread of antibiotic resistance genes, induce genetic mutations, and even disrupt the ecological equilibrium. Considering the potential eco-environmental risk of SMX, this study explored an effective technology using Shewanella oneidensis MR-1 (MR-1) and nanoscale zero-valent iron-enriched biochar (nZVI-HBC) to remove SMX from aqueous systems with different pollution levels (1-30 mg·L-1). SMX removal by nZVI-HBC and nZVI-HBC + MR-1 (55-100 %) under optimal conditions (iron/HBC ratio of 1:5, 4 g·L-1 nZVI-HBC, and 10 % v/v MR-1) was more effective than its removal by MR-1 and biochar (HBC) (8-35 %). This was due to the catalytic degradation of SMX in the nZVI-HBC and nZVI-HBC + MR-1 reaction systems because of accelerated electron transfer during oxidation of nZVI and reduction of Fe(III) to Fe(II). When SMX concentration was lower than 10 mg·L-1, nZVI-HBC + MR-1 effectively removed SMX (removal rate of approximately 100 %) when compared to nZVI-HBC (removal rate of 56-79 %). In addition to oxidation degradation of SMX by nZVI in the nZVI-HBC + MR-1 reaction system, MR-1-driven dissimilatory iron reduction accelerated electron transfer to SMX, thereby enhancing reductive degradation of SMX. However, a considerable decline in SMX removal from the nZVI-HBC + MR-1 system (42 %) was observed when SMX concentrations ranged 15-30 mg·L-1, which was due to the toxicity of accumulated degradation products of SMX. A high interaction probability between SMX and nZVI-HBC promoted the catalytic degradation of SMX in the nZVI-HBC reaction system. The results of this study provide promising strategies and insights for enhancing antibiotic removal from aqueous systems with different pollution levels.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Guanyu Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
68
|
Mlangeni AT, Chinthenga E, Kapito NJ, Namaumbo S, Feldmann J, Raab A. Safety of African grown rice: Comparative review of As, Cd, and Pb contamination in African rice and paddy fields. Heliyon 2023; 9:e18314. [PMID: 37519744 PMCID: PMC10375803 DOI: 10.1016/j.heliyon.2023.e18314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
This review aimed to investigate the reported concentrations of arsenic (As), cadmium (Cd), and lead (Pb) in rice cultivated in Africa and African rice paddies compared to other regions. It also aimed to explore the factors influencing these concentrations and evaluate the associated health risks of elevated As, Cd, and Pb exposure. Relevant data were obtained from electronic databases such as PubMed, Scopus, and Google Scholar using specific keywords related to arsenic, cadmium, lead, rice, Africa, paddy, and grain. While the number of studies reporting the concentrations of As, Cd, and Pb in rice and rice paddies in Africa is relatively low compared to other regions, this review revealed that most of the African rice and paddy soils have low concentrations of these metals. However, some studies have reported elevated concentrations of As, Cd, and Pb in paddy fields, which is concerning due to the increased use of agrochemicals containing heavy metals in rice production. Nonetheless, agronomical interventions such as implementing alternate wetting and drying water management, cultivating cultivars with low accumulation of As, Cd, and Pb, amending rice fields with sorbents, and screening irrigation water can limit the bioaccumulation of these carcinogens in paddy fields using phytoremediation techniques. Therefore, we strongly urge African governments and organizations operating in Africa to enhance the capacity of rice farmers and extension officers in adopting approaches and practices that reduce the accumulation of these carcinogenic metals in rice. This is essential to achieve the sustainable development goal of providing safe food for all.
Collapse
Affiliation(s)
- Angstone Thembachako Mlangeni
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Evans Chinthenga
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Noel Jabesi Kapito
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Sydney Namaumbo
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Joerg Feldmann
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| | - Andrea Raab
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| |
Collapse
|
69
|
Li N, He X, Ye J, Dai H, Peng W, Cheng Z, Yan B, Chen G, Wang S. H 2O 2 activation and contaminants removal in heterogeneous Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131926. [PMID: 37379591 DOI: 10.1016/j.jhazmat.2023.131926] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Xu He
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Lab of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
70
|
Ren S, Luo Z, Pan Y, Ling C, Yu L, Yin K. Distinctive adsorption and desorption behaviors of temporal and post-treatment heavy metals by iron nanoparticles in the presence of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163141. [PMID: 36990234 DOI: 10.1016/j.scitotenv.2023.163141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
There are increasing concerns about microplastic (MP) pollution in the natural environment. Consequently, numerous physicochemical and toxicological studies have been conducted on the effects of MPs. However, few studies have concerned the potential impact of MPs on contaminated site remediation. We herein investigated the influence of MPs on the temporary and post heavy metal removal by iron nanoparticles, including pristine and sulfurized nano zero-valent irons (nZVI and S-nZVI). MPs inhibited adsorption of most heavy metals during the treatment of iron nanoparticles, and facilitated their desorption, such as Pb (II) from nZVI and Zn (II) from S-nZVI. However, such effects presented by MPs was usually less than those by dissolved oxygen (DO). Most desorption cases are irrelevant to the reduced formats of heavy metals involving redox reactions, such as Cu (I) or Cr (III), suggesting that the influence of MPs on metals are limited to those binding with iron nanoparticles through surface complexation or electrostatic interaction. As another common factor, natural organic matter (NOM) had almost no influence on the heavy metal desorption. These insights shed lights for enhanced remediation of heavy metals by nZVI/S-NZVI in the presence of MPs.
Collapse
Affiliation(s)
- Shuhan Ren
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zhenyi Luo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuwei Pan
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chen Ling
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
71
|
Li H, Shi Y, Jia W, Gong Y, Song N, Du Z, Shao X, Gu W, Xing W, Ju Y. Bifunctional catalytic degradation of diclofenac over Cu-Pd co-modified sponge iron-based trimetal: Parameter optimization. ENVIRONMENTAL RESEARCH 2023; 227:115640. [PMID: 36933636 DOI: 10.1016/j.envres.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/08/2023]
Abstract
Currently, the pharmaceutical and personal care products (PPCPs) have posed great challenge to advanced oxidation techniques (AOTs). In this study, we decorated sponge iron (s-Fe0) with Cu and Pd (s-Fe0-Cu-Pd) and further optimized the synthesis parameters with a response surface method (RSM) to rapidly degrade diclofenac sodium (DCF). Under the RSM-optimized conditions of Fe: Cu: Pd = 100: 4.23: 0.10, initial solution pH of 5.13, and input dosage of 38.8 g/L, 99% removal of DCF could be obtained after 60 min of reaction. Moreover, the morphological structure of trimetal was characterized with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS). Electron spin resonance (ESR) signals have also been applied to capture reactive hydrogen atoms (H*), superoxygen anions, hydroxyl radicals, and single state oxygen (1O2). Furthermore, the variations of DCF and its selective degradation products over a series of s-Fe0-based bi(tri)metals have been compared. Additionally, the degradation mechanism of DCF has also been explored. To our best knowledge, this is the first report revealing the selective dechlorination of DCF with low toxicity over Pd-Cu co-doped s-Fe0 trimetal.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yongquan Shi
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China; Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Wenchao Jia
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, PR China
| | - Yu Gong
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Ninghui Song
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Ziyan Du
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Xiang Shao
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Wen Gu
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Weilong Xing
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China.
| | - Yongming Ju
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China; Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, PR China.
| |
Collapse
|
72
|
Hajra A, Chattopadhyay A. Dimension-Dependent Magnetic Behavior of Manganese-Cysteine Inorganic Complex Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37307283 DOI: 10.1021/acs.langmuir.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A cysteine-based complex of Mn2+ led to the formation of nanoparticles in aqueous medium under ambient conditions. The formation and evolution of the nanoparticles in the medium were followed by ultraviolet-visible light (UV-vis) spectroscopy, circular dichroism, and electron spin resonance spectroscopy that also revealed a first-order process. The magnetic properties of the nanoparticles isolated as solid powders exhibited strong crystallite and particle size dependence. At low crystallite size, as well as particle size, the complex nanoparticles showed superparamagnetic behavior similar to other magnetic inorganic nanoparticles. The magnetic nanoparticles were found to undergo a superparamagnetic to ferromagnetic transition, and then to paramagnetic transition with a gradual increase in either their crystallite size or particle size. The discovery of dimension-dependent magnetic property of inorganic complex nanoparticles may usher in a superior option for tuning the magnetic behavior of nanocrystals, depending on the component ligands and metal ions.
Collapse
Affiliation(s)
- Archismita Hajra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
73
|
Perera GRY, Dayanthi WKCN. Low-cost treatment method for organic matter and nutrients in landfill leachate. JOURNAL OF WATER AND HEALTH 2023; 21:789-814. [PMID: 37387343 PMCID: wh_2023_014 DOI: 10.2166/wh.2023.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In this study, the ability of low-cost composite adsorbents to treat organic compounds in terms of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was investigated. The composite adsorbents were composed of washed sea sand (WSS), dewatered alum sludge (DAS), zero-valent iron (ZVI), and granular activated carbon (GAC). The removal efficiency of COD in landfill leachate by a composite adsorbent (composed of WSS (40%), DAS (40%), ZVI (10%), and GAC (10%) in weight) was 79.93 ± 1.95%. The corresponding adsorption capacity was 8.5 mg/g. During batch sorption experiments, the maximum COD removal efficiencies given by DAS, WSS, ZVI, and GAC were 16, 51.3, 42, and 100.0%, respectively. The maximum removal efficiencies of the above composite adsorbent for TN and TP were 84.9 and 97.4%, respectively, and the adsorption capacities were 1.85 and 0.55 mg/g, respectively. The Elovich isotherm model gave the best fit for COD, TN, and TP adsorption. This composite adsorbent can treat more than one contaminant simultaneously. The application of DAS and ZVI to make an efficient adsorbent for wastewater treatment would be a good re-use application for them, which would otherwise be landfilled directly after their generation.
Collapse
Affiliation(s)
- G R Y Perera
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, Sri Lanka E-mail:
| | - W K C Neetha Dayanthi
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, Sri Lanka
| |
Collapse
|
74
|
Zhou Y, Yao B, Yuan Y, Hu W, Liu J, Zou H, Zhou Y. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@FeS core-shell nanowires. ENVIRONMENTAL TECHNOLOGY 2023; 44:2451-2461. [PMID: 35084294 DOI: 10.1080/09593330.2022.2033329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/15/2022] [Indexed: 06/08/2023]
Abstract
The disadvantages of narrow working pH range (2.5-4.0), accumulation of iron sludge and incomplete degradation have hindered the practical application of the traditional homogeneous Fenton technique. In this research, Fe@FeS core-shell nanowires were synthesised and the innovative Fe@FeS/Fe2+/H2O2 system was adopted for norfloxacin (NOR) degradation at an initial circumneutral pH. More than 95% NOR has been removed in the Fe@FeS/Fe2+/H2O2 system within 30 min at pH 7. After investigating the concentration change of total iron, Fe2+ and H2O2 during the degradation process, NOR degradation in the Fe@FeS/Fe2+/H2O2 system might be attributed to the combined effect of homogeneous Fenton reaction and heterogeneous Fenton process. Besides that, the added Fe@FeS has accelerated Fe3+/Fe2+ redox cycle with extremely high degree. The generated reactive ●OH has been identified by electron paramagnetic resonance spectrometer results, possible degradation intermediates have also been proposed according to Gas chromatography-mass spectrometry analysis results. Moreover, Fe@FeS core-shell nanowires showed excellent reusability, it is a promising heterogeneous Fenton catalyst that is applicable for practical application.
Collapse
Affiliation(s)
- Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yawen Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Wenyong Hu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Jingyi Liu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Huanwei Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
75
|
Krajewski M, Pietrzyk P, Osial M, Liou SC, Kubacki J. Iron-Iron Oxide Core-Shell Nanochains as High-Performance Adsorbents of Crystal Violet and Congo Red Dyes from Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37256922 DOI: 10.1021/acs.langmuir.3c00967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main aim of this work was to use the iron-iron oxide nanochains (Fe NCs) as adsorbents of the carcinogenic cationic crystal violet (CV) and anionic Congo red (CR) dyes from water. The investigated adsorbent was prepared by a magnetic-field-induced reduction reaction, and it revealed a typical core-shell structure. It was composed of an iron core covered by a thin Fe3O4 shell (<4 nm). The adsorption measurements conducted with UV-vis spectroscopy revealed that 15 mg of Fe NCs constituted an efficient dose to be used in the CV and CR treatment. The highest effectiveness of CV and CR removal was found for a contact time of 90 min at pH 7 and 150 min at pH 8, respectively. Kinetic studies indicated that the adsorption followed the pseudo-first-order kinetic model. The adsorption process followed the Temkin model for both dyes taking into account the highest value of the R2 coefficient, whereas in the case of CR, the Redlich-Peterson model could be also considered. The maximal adsorption capacity estimated from the Langmuir isotherms for the CV and CR was 778.47 and 348.46 mg g-1, respectively. Based on the Freundlich model, both dyes adsorbed on the Fe NCs through chemisorption, but Coulombic interactions between the dye and adsorbent cannot be excluded in the case of the CV dye. The obtained results proved that the investigated Fe NCs had an excellent adsorption ability for both dye molecules within five cycles of adsorption/desorption, and therefore, they can be considered as a promising material for water purification and environmental applications.
Collapse
Affiliation(s)
- Marcin Krajewski
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Paulina Pietrzyk
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Magdalena Osial
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sz-Chian Liou
- Advanced Imaging and Microscopy Laboratory, Maryland Nano Center, University of Maryland, College Park, Maryland 20742-2831, United States
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
76
|
Wojcieszek J, Chay S, Jiménez-Lamana J, Curie C, Mari S. Study of the Stability, Uptake and Transformations of Zero Valent Iron Nanoparticles in a Model Plant by Means of an Optimised Single Particle ICP-MS/MS Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111736. [PMID: 37299639 DOI: 10.3390/nano13111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the context of the widespread distribution of zero valent iron nanoparticles (nZVI) in the environment and its possible exposure to many aquatic and terrestrial organisms, this study investigates the effects, uptake, bioaccumulation, localisation and possible transformations of nZVI in two different forms (aqueous dispersion-Nanofer 25S and air-stable powder-Nanofer STAR) in a model plant-Arabidopsis thaliana. Seedlings exposed to Nanofer STAR displayed symptoms of toxicity, including chlorosis and reduced growth. At the tissue and cellular level, the exposure to Nanofer STAR induced a strong accumulation of Fe in the root intercellular spaces and in Fe-rich granules in pollen grains. Nanofer STAR did not undergo any transformations during 7 days of incubation, while in Nanofer 25S, three different behaviours were observed: (i) stability, (ii) partial dissolution and (iii) the agglomeration process. The size distributions obtained by SP-ICP-MS/MS demonstrated that regardless of the type of nZVI used, iron was taken up and accumulated in the plant, mainly in the form of intact nanoparticles. The agglomerates created in the growth medium in the case of Nanofer 25S were not taken up by the plant. Taken together, the results indicate that Arabidopsis plants do take up, transport and accumulate nZVI in all parts of the plants, including the seeds, which will provide a better understanding of the behaviour and transformations of nZVI once released into the environment, a critical issue from the point of view of food safety.
Collapse
Affiliation(s)
- Justyna Wojcieszek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sandrine Chay
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2SUPPA, CNRS UMR 5254, IPREM, 64053 Pau, France
| | - Catherine Curie
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Stephane Mari
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| |
Collapse
|
77
|
Kong Y, Xu B, Lu F, Han Z, Ma J, Chen Z, Shen J. Enhancement of 15% calcium oxide doped nano zero-valent iron on arsenic removal from high-arsenic acid wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27604-y. [PMID: 37217816 DOI: 10.1007/s11356-023-27604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Nano zero-valent iron (nZVI) has a great potential for arsenic removal, but it would form aggregates easily and consume largely by H+ in the strongly acidic solution. In this work, 15%CaO doped with nZVI (15%CaO-nZVI) was successfully synthesized from a simplified ball milling mixture combined with a hydrogen reduction method, which had a high adsorption capacity for As(V) removal from high-arsenic acid wastewater. More than 97% As(V) was removed by 15%CaO-nZVI under the optimum reaction conditions of pH 1.34, initial As(V) concentration 16.21 g/L, and molar ratio of Fe/As (nFe/nAs) 2.5:1. The effluent pH solution was weakly acidic 6.72, and the secondary arsenic removal treatment reduced the solid waste and improved arsenic grade in slag from the mass fraction of 20.02% to 29.07%. Multiple mechanisms including Ca2+ enhanced effect, adsorption, reduction, and co-precipitation coexisted for As(V) removal from high-arsenic acid wastewater. Doping of CaO might lead to improving cracking channels which was benefit for electronic transmission and the confusion of atomic distribution. The in situ weak alkaline environment generated on the surface of 15%CaO-nZVI would increase the content of γ-Fe2O3/Fe3O4, which was in favor for As(V) adsorption. In addition, H+ in the strongly acidic solution could accelerate corrosion of 15%CaO-nZVI and abundant fresh and reactive iron oxides continuously generated, which would provide plenty specific reactive site and fast charge transfer and ionic mobility for arsenic removal.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Bingjie Xu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Fan Lu
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Zhao Han
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China.
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, 243002, Anhui, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, 243002, Anhui, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
78
|
Wang Y, Jiang W, Tang Y, Liu Z, Qin Q, Xu Y. Biochar-supported sulfurized nanoscale zero-valent iron facilitates extensive dechlorination and rapid removal of 2,4,6-Trichlorophenol in aqueous solution. CHEMOSPHERE 2023; 332:138835. [PMID: 37142104 DOI: 10.1016/j.chemosphere.2023.138835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Nanoscale zero-valent iron (NZVI) has been widely used in rapid remediation of contaminants. However, several obstacles such as aggregation and surface passivation hampered NZVI from further application. In this study, sulfurized nanoscale-zero valent iron supported by biochar (BC-SNZVI) was successfully synthesized and utilized for highly efficient 2,4,6-Trichlorophenol (2,4,6-TCP) dechlorination in aqueous solution. SEM-EDS analysis revealed the even distribution of SNZVI on the surface of BC. FTIR, XRD, XPS and N2 Brunauer-Emmett-Teller (BET) adsorption analyses were carried out to characterize the materials. Results showed that BC-SNZVI with S/Fe molar ratio of 0.088, Na2S2O3 as sulfurization agent, and pre-sulfurization as the sulfurization strategy exhibited the superior performance for 2,4,6-TCP removal. The overall removal of 2,4,6-TCP was well described with the pseudo-first-order kinetics (R2 > 0.9), and the observed kinetics constant Kobs was 0.083 min-1 with BC-SNZVI, which was one order of magnitude higher than that of BC-NZVI (0.0092 min-1) and SNZVI (0.0042 min-1), and two orders of magnitude higher than that of NZVI (0.00092 min-1). Moreover, the removal efficiency of 2,4,6-TCP reached 99.5% by BC-SNZVI with dosage of 0.5 g·L-1, initial 2,4,6-TCP concentration of 30 mg·L-1 and initial solution pH of 3 within 180 min. The removal of 2,4,6-TCP by BC-SNZVI was acid-promoted and the removal efficiencies of 2,4,6-TCP decreased with the increase of initial 2,4,6-TCP concentrations. Furthermore, more extensive dechlorination of 2,4,6-TCP was achieved with BC-SNZVI and complete dechlorination product phenol became predominant. The facilitation of sulfur for Fe0 utilization and electron distribution in the presence of biochar remarkably enhanced the dechlorination performance of BC-SNZVI for 2,4,6-TCP. These findings provide insights into BC-SNZVI as an alternative engineering carbon based NZVI material for treating chlorinated phenols.
Collapse
Affiliation(s)
- Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Wei Jiang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
79
|
Lei M, Tang Y, Zhu L, Tang H. Chemical reductive technologies for the debromination of polybrominated diphenyl ethers: A review. J Environ Sci (China) 2023; 127:42-59. [PMID: 36522073 DOI: 10.1016/j.jes.2022.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants, which had attracted amounts of attention due to their harmful characteristics of high toxicity, environmental persistence and potential bioaccumulation. Many chemical reductive debromination technologies have been developed for the debromination of PBDEs, including photolysis, photocatalysis, electrocatalysis, zero-valent metal reduction, chemically catalytic reduction and mechanochemical method. This review aims to provide information about the degradation thermodynamics and kinetics of PBDEs and summarize the degradation mechanisms in various systems. According to the comparative analysis, the rapid debromination to generate bromine-free products in an electron-transfer process, of which photocatalysis is a representative one, is found to be relatively difficult, because the degradation rate of PBDEs depended on the Br-rich phenyl ring with the lowest unoccupied molecular orbital (LUMO) localization. On the contrary, the complete debromination occurs easily in other systems with active hydrogen atoms as the main reactive species, such as chemically catalytic reduction systems. The review provides the knowledge on the chemical reductive technique of PBDEs, which would greatly help not only clarify the degradation mechanism but also design the more efficient system for the rapid and deep debromination of PBDEs in the future.
Collapse
Affiliation(s)
- Ming Lei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Yao Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China
| | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Heqing Tang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
80
|
Li L, Jin H, Luo N, Niu H, Cai Y, Cao D, Zhang S. Sulfurized nano zero-valent iron prepared via different methods: Effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114864. [PMID: 37011511 DOI: 10.1016/j.ecoenv.2023.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Sulfurization improves the stability and activity of nano zero-valent iron (nZVI). The sulfurized nZVI (S-nZVI) were prepared with ball milling, vacuum chemical vapor deposition (CVD) and liquid-phase reduction techniques and the corresponding products were the mixture of FeS2 and nZVI (nZVI/FeS2), well-defined core-shell structure (FeSx@Fe) or seriously oxidized (S-nZVI(aq)), respectively. All these materials were applied to eliminate 2,4,6-trichlorophenol (TCP) from water. The removal of TCP was irrelevant with the structure of S-nZVI. Both nZVI/FeS2 and FeSx@Fe showed remarkable performance for the degradation of TCP. S-nZVI(aq) possessed poor mineralization efficiency to TCP due to its bad crystallinity degree and severe leaching of Fe ions, which retarded the affinity of TCP. Desorption and quenching experiments suggested that TCP removal by nZVI and S-nZVI was based on surface adsorption and subsequent direct reduction by Fe0, oxidation by in-situ produced ROS and polymerization on the surface of these materials. In the reaction process, the corrosion products of these materials transformed into crystalline Fe3O4 and α/β-FeOOH, which enhanced the stability of nZVI and S-nZVI materials and was conductive to the electron transferring from Fe0 to TCP and strong affinity of TCP onto Fe or FeSx phases. All these were contributed to high performance of nZVI and sulfurized nZVI in removal and minerazilation of TCP in continuous recycle test.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiwen Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Science, North China University of Science and Technology, Tangshan, Hebei Province 063210, China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China.
| |
Collapse
|
81
|
Yang J, Tian H, Guo J, He J. 3D porous carbon-embedded nZVI@Fe 2O 3 nanoarchitectures enable prominent performance and recyclability in antibiotic removal. CHEMOSPHERE 2023; 331:138716. [PMID: 37076086 DOI: 10.1016/j.chemosphere.2023.138716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Overcoming the instability and poor recyclability during the practical applications of contaminant scavengers is a challenging topic. Herein, a three-dimensional (3D) interconnected carbon aerogel (nZVI@Fe2O3/PC) embedding a core-shell nanostructure of nZVI@Fe2O3 was elaborately designed and fabricated via an in-situ self-assembly process. The porous carbon with 3D network architecture exhibits strong adsorption towards various antibiotic contaminants in water, where the stably embedded nZVI@Fe2O3 nanoparticles not only serve as magnetic seeds for recycling, but also avoid the shedding and oxidation of nZVI in the adsorption process. As a result, nZVI@Fe2O3/PC efficiently captures sulfamethoxazole (SMX), sulfamethazine (SMZ), ciprofloxacin (CIP), tetracycline (TC) and other antibiotics in water. In particular, an excellent adsorptive removal capacity of 329 mg g-1 and a rapid capture kinetics (99% of removal efficiency in 10 min) under a wide pH adaptability (2-8) are achieved using nZVI@Fe2O3/PC as an SMX scavenger. nZVI@Fe2O3/PC displays exceptional long-term stability given that it shows excellent magnetic property after it is stored in water solution for 60 d, making it an ideal stable scavenger for contaminants in an etching-resistant and efficient manner. This work would also provide a general strategy to develop other stable iron-based functional architectures for efficient catalytic degradation, energy conversion and biomedicine.
Collapse
Affiliation(s)
- Jianzheng Yang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Tian
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
82
|
Budania R, Dangayach S. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117343. [PMID: 36758361 DOI: 10.1016/j.jenvman.2023.117343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality is deteriorating due to contamination from both natural and anthropogenic sources. Traditional "Pump and Treat" techniques of treating the groundwater suffer from the disadvantages of a small-scale and energy-intensive approach. Permeable reactive barriers (PRBs), owing to their passive operation, offer a more sustainable strategy for remediation. This promising technique focuses on eliminating heavy metal pollutants and hazardous aromatic compounds by physisorption, chemisorption, precipitation, denitrification, and/or biodegradation. Researchers have utilized ZVI, activated carbon, natural and manufactured zeolites, and other by-products as reactive media barriers. Environmental parameters, i.e., pH, initial pollutant concentration, organic substance, dissolved oxygen, and reactive media by-products, all influence a PRB's performance. Although their long-term impact and performance are uncertain, PRBs are still evolving as viable alternatives to pump-and-treat techniques. The use of PRBs to remove anionic contaminants (e.g., Fluoride, Nitrate, etc.) has received less attention since precipitates can clog the reactive barrier and hinder groundwater flow. In this paper, we present an insight into this approach and the tremendous implications for future scientific study that integrates this strategy using sustainability and explores the viability of PRBs for anionic pollutants.
Collapse
Affiliation(s)
- Ravindra Budania
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Sanyam Dangayach
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
83
|
Chi HY, Zhou XX, Wu MR, Shan WY, Liu JF, Wan JQ, Yan B, Liu R. Regulating the reaction pathway of nZVI to improve the decontamination performance through magnetic spatial confinement effect. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130799. [PMID: 36680900 DOI: 10.1016/j.jhazmat.2023.130799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Nanoscale zero-valent iron (nZVI) shows high effectiveness in the catalyzed removal of contaminants in wastewater treatment. However, the uncontrolled interfacial electron transfer behavior and formation of surface iron oxide (FeOx) layer led to severe electron wasting and occasionally form highly toxic intermediates. Here, we constructed magnetic mesoporous SiO2 shell on surface of nZVI to stimulate a magnetic spatial confinement effect and regulate the electron transfer pattern. Therein, Fe atom facilely spread out from the nZVI core, orderly release electron to surface adsorbed H2O molecule, which is efficiently transformed into active hydrogen (H*). Meanwhile, in-situ Raman revealed that Fe atoms were involved in the formation of penetrable γ-FeOOH rather than FeOx layer, enabling the continuous inward diffusion of H2O and outward diffusion of H* . Employing the catalyzed removal of halogenated phenols as demo reaction, the presence of magnetic mesoporous SiO2 shell utilized the reaction between electrons and H2O to switch the reaction pathway from the reduction/oxidation hybrid process to hydrodehalogantion, and increased the conversion of halogenated phenols-to-phenols by 5.53 times. This study shows the forehand of improving the decontamination performance of nZVI through sophisticated designed surface coating, as well as fine regulating the environmental behavior of magnetic material via micro-magnetic field.
Collapse
Affiliation(s)
- Hai-Yuan Chi
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Min-Rong Wu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wan-Yu Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jin-Quan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
84
|
Yuan S, Xue Y, Ma R, Ma Q, Chen Y, Fan J. Advances in iron-based electrocatalysts for nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161444. [PMID: 36621470 DOI: 10.1016/j.scitotenv.2023.161444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.
Collapse
Affiliation(s)
- Shiyin Yuan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinghao Xue
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Raner Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanyan Chen
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianwei Fan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
85
|
Lin Z, Liu F, Zheng C, Zhu A, Ma X, Peng Y, He C. Fabricating Amorphous Zero-Valent Iron for Cr(VI) Efficient Reduction: Unveiling the Effect of Ethylenediamine on Physicochemical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4026-4036. [PMID: 36877598 DOI: 10.1021/acs.langmuir.2c03378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amorphous zero-valent iron (AZVI) has attracted wide attention due to its high-efficiency reduction ability. However, the effect of different EDA/Fe(II) molar ratios on the physicochemical properties of the synthesized AZVI requires further investigation. Herein, series of AZVI samples were prepared by changing the molar ratio of EDA/Fe(II) to 1/1 (AZVI@1), 2/1 (AZVI@2), 3/1 (AZVI@3), and 4/1 (AZVI@4). When the EDA/Fe(II) ratio increased from 0/1 to 3/1, the Fe0 proportion on the AZVI surface increased from 26.0 to 35.2% and the reducing ability was enhanced. As for AZVI@4, the surface was severely oxidized to form a large amount of Fe3O4, and the Fe0 content was only 74.0%. Moreover, the removal ability of Cr(VI) was in the order AZVI@3 > AZVI@2 > AZVI@1 > AZVI@4. The isothermal titration calorimetry results revealed that the increase of the molar ratio of EDA/Fe(II) would lead to the stronger complexation of EDA with Fe(II), which resulted in the gradual decrease of the yield of AZVI@1 to AZVI@4 and the gradual deterioration of water pollution after the synthesis. Therefore, based on the evaluation of all indicators, AZVI@2 was the optimal material, not only because its yield was as high as 88.7% and the secondary water pollution level was low, but most importantly, the removal efficiency of Cr(VI) by AZVI@2 was excellent. Furthermore, the actual Cr(VI) wastewater with the concentration of 14.80 mg/L was treated with AZVI@2, and the removal rate of 97.0% was achieved after only a 30 min reaction. This work clarified the effect of different ratios of EDA/Fe(II) on the physicochemical properties of AZVI, which provided insights for guiding the reasonable synthesis of AZVI and is also conducive to investigating the reaction mechanism of AZVI in Cr(VI) remediation.
Collapse
Affiliation(s)
- Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiaowei Ma
- Shaanxi Mining Industry and Trade Co., Ltd., Xi'an 710000, P.R. China
| | - Yuanzhe Peng
- Shaanxi Mining Industry and Trade Co., Ltd., Xi'an 710000, P.R. China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
86
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
87
|
Wu S, Cai S, Qin F, He F, Liu T, Yan X, Wang Z. Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130730. [PMID: 36630876 DOI: 10.1016/j.jhazmat.2023.130730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.
Collapse
Affiliation(s)
- Shuyan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Xiuping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
88
|
Cheng F, Tong Y, Liu Y, Yuan Y, Chen Z, Liang J, Zhang Y, Zhou P, Duan X, Lai B. Vanadium as co-catalyst for exceptionally boosted Fenton and Fenton-like oxidation: Vanadium species mediated direct and indirect routes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130719. [PMID: 36623343 DOI: 10.1016/j.jhazmat.2023.130719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, vanadium powder (V) was employed as a cocatalyst to enhance the Fenton-like system. The V-Fe(III)/H2O2 system can rapidly produce hydroxyl radicals and completely oxidize chloramphenicol with exceptionally high stability for long-term operation. The low-valent vanadium sites on the surface during the stepwise oxidation of vanadium from V0 to V(IV) can donate electrons for direct H2O2 activation and indirect Fenton reaction by reducing Fe(III) to produce hydroxyl radicals. Meanwhile, density functional theory (DFT) calculation unveils that low-valent vanadium sites of vanadium can lengthen Fe-O bonds of FeOH2+ to elevate the oxidation potential of Fe(III) and promote Fe(III) reduction induced by H2O2. The self-cleaning effect of vanadium under acidic conditions can maintain reactive sites for sustainable electron donation and long-lasting enhanced Fenton oxidation. This study provides a novel enhanced Fenton oxidation for water remediation and the first mechanistic insights into the origins of V-based advanced oxidation technologies, it may also be beneficial to treat vanadium-contained wastewater.
Collapse
Affiliation(s)
- Feng Cheng
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Yongfei Tong
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yue Yuan
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610065, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Liang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Bo Lai
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
89
|
Bai X, Yang G. Treatment of refractory organics in biologically treated landfill leachate by a zero valent iron enhanced Peroxone process: Degradation efficiency and mechanism study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:594-607. [PMID: 36169147 DOI: 10.1177/0734242x221126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A zero valent iron (ZVI) enhanced Peroxone process (ZVI/Peroxone) was used to treat biologically treated landfill leachate (BTL). The treatment efficiency of the ZVI/Peroxone process was compared to single (ZVI, O3 and H2O2) and dual (ZVI/H2O2, Fe0/O3 and Peroxone) processes. The results showed that ZVI can greatly enhance the treatment capability of the Peroxone process, and the color number (CN), absorbance at 254 nm (UV254), and total organic carbon (TOC) removal efficiencies were 98.82, 84.30 and 66.38%, respectively. In the ZVI/Peroxone process, higher O3 and ZVI dosages improved organics removal, and H2O2 could promote organics removal within a certain dosage range. However, too much H2O2 decreased treatment efficiency. The best treatment performance by the ZVI/Peroxone process was obtained under acidic conditions. The three-dimensional excitation and emission matrix analysis showed that BTL mainly contained two fluorescent substances, which were fulvic-like substances in the ultraviolet region (Ex/Em = 235-255 nm/410-450 nm) and fulvic-like substances in the visible light region (Ex/Em = 310-360 nm/370-450 nm). Fluorescent substances could be substantially degraded by the ZVI/Peroxone process during the early stages of the reaction. An analysis of ZVI morphology and element valency changes showed that the micro Fe0 particles used in this study remained highly reactive during the process. The ZVI enhanced the homogenous Fenton, heterogeneous Fenton, and coagulation-flocculation effects during the Peroxone process.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu, China
| | - Guangxu Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
90
|
Gao F, Zhang M, Zhang W, Ahmad S, Wang L, Tang J. Synthesis of carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron (CMC-S-nZVI) for enhanced reduction of nitrobenzene. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
91
|
Zhao L, Huang L, Zheng Z, Wei J, Qiu Z, Zeng D. Enhanced degradation performance of Fe 75B 12.5Si 12.5 amorphous alloys on azo dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34428-34439. [PMID: 36512280 DOI: 10.1007/s11356-022-24512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Fe75B12.5Si12.5 and Fe75B12.5C12.5 amorphous alloy ribbons were prepared by the melt spinning method. The decolorization performances of these ribbons were investigated in details. It is found that the Fe75B12.5C12.5 amorphous ribbons and Fe75B12.5Si12.5 annealed ribbons only adsorbed the azo dye molecules, with no chemical degradation process. However, the Fe75B12.5Si12.5 amorphous ribbons can reduce -N = N- to -NH2 because of their high reactivity and the local galvanic effect that occurred during the reaction to accelerate electron transfer. The reaction rate constant kobs is 0.0872 min-1, 0.0474 min-1, and 0.0064 min-1 for Fe75B12.5Si12.5 amorphous ribbons, Fe75B12.5C12.5 amorphous ribbons, and Fe75B12.5Si12.5 annealed ribbons in the same condition, respectively. Fe75B12.5Si12.5 amorphous ribbons can effectively degrade Acid Orange II (AO II) azo dyes and achieve decolorization by breaking azo bonds in the dye in a short time, indicating the prominent capacity of Fe75B12.5Si12.5 ribbons on the degradation of AO II. Furthermore, the influence of chemical factors such as ribbons thickness, reaction temperature, initial pH, and AO II concentration of the solution on the reaction rate constant kobs of Fe75B12.5Si12.5 amorphous ribbons had also been studied. The kobs can reach 0.177 min-1 under optimal conditions. In addition, all the degradation processes in this work were fitted well with the pseudo-first-order kinetic model. The results are guidance for the practical applications, and they have important implications in developing Fe-based amorphous alloys for functional application materials in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lin Zhao
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Lei Huang
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhigang Zheng
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
- Yangjiang Branch, Guangdong Laboratory Materials Science and Technology Yangjing Advanced Alloys Laboratory, Yangjiang, 529599, People's Republic of China.
| | - Jing Wei
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Zhaoguo Qiu
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Yangjiang Branch, Guangdong Laboratory Materials Science and Technology Yangjing Advanced Alloys Laboratory, Yangjiang, 529599, People's Republic of China
| | - Dechang Zeng
- School of Materials Science & Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
- Yangjiang Branch, Guangdong Laboratory Materials Science and Technology Yangjing Advanced Alloys Laboratory, Yangjiang, 529599, People's Republic of China
| |
Collapse
|
92
|
Algonin A, Zhao B, Cui Y, Xie F, Yue X. Enhancement of iron-based nitrogen removal with an electric-magnetic field in an upflow microaerobic sludge reactor (UMSR). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35054-35063. [PMID: 36525195 DOI: 10.1007/s11356-022-23836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Traditional denitrification often produces high operating costs and excessive sludge disposal expenses due to conventional carbon sources. A novel electric-magnetic field (MF) 48 mT with Fe0 and C-Fe0 powder in an upflow microaerobic sludge reactor (UMSR) improved nitrogen removal from wastewater without organic carbon resources and gave richness to the heterotrophic bacterial community. In the current study, the reactor was operated for 78 ± 2 days, divided into five stages (without Fe0, with Fe0, coupling with MF, without coupling with MF, and coupling with MF again), at a hydraulic retention time (HRT) of 2.5 h, with an influent loading of ammonium (NH4+-N) 50 ± 2 mg/L, at 25-27 °C, and less than 1.0 mg/L dissolved oxygen (DO). The results demonstrated nitrogen removal efficiency enhanced after coupling with MF on the levels of NO3--N by 76% with an effluent concentration of 8.7 mg/L, NH4+-N by 72% with an effluent concentration of 13.6 mg/L, and total nitrogen removal (TN) by 76%, respectively. After coupling the MF with the reactor, the microbial community data analysis showed the dominant abundance of ammonia-oxidizing bacteria, heterotrophic nitrifying bacteria, and denitrifying bacteria on the level of Anaerolineaceae_uncultured 2%, which is capable of denitrification that uses Fe2+ as an electron source, Gemmatimonadaceae_uncultured 4%, Hydrogenophaga 4% which is capable of catalyzing hydrogenotrophic denitrification and correlating to nitrate removal, denitrification and desulfurization bacteria SBR1031_norank 18%, anammox-bacteria Saccharimonadales_norank 2%, and (AOM) Limnobacter 3% in the sludge.
Collapse
Affiliation(s)
- Abdulatti Algonin
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China.
| |
Collapse
|
93
|
Hu X, Meng Z, Cao X, Liu Z, Wu Z, Sun H, Sun X, Li W. Effect of double carbon chains on enhanced removal of phenol from wastewater by amphoteric-gemini complex-modified bentonite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121088. [PMID: 36649882 DOI: 10.1016/j.envpol.2023.121088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novle amphoteric-gemini complex-modified bentonite was prepared with a gemini surfactant ethylene bis (tetradecyl dimethyl ammonium chloride) (EB) on the basis of the bentonite modified by amphoteric modifier dodecyldimethyl betaine (BS). The surface and structural characteristics of modified bentonite were characterized by X-ray diffraction (XRD), specific surface area (SBET), scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), total carbon (TC) and total nitrogen (TN). In addition to studying the enhanced effect of gemini surfactants on phenol adsorption by kinetics and equilibrium adsorption, the influences of modification ratio, pH, temperature and ionic strength were investigated. Results showed that BS + EB complex modification increased the interlayer spacing (IS), TC and TN of bentonite (BT), and SBET decreased with the increase in its total modification ratio. The adsorption of phenol on modified bentonite reached equilibrium in 20 min, and the adsorption capacities were in the order of BS+50 EB (BS+50% CEC EB)>BS+100 EB > BS+150 EB > BS+25 EB > BS > BT. The adsorption capacities of phenol on BS + EB complex modified bentonite (CMB) increased by 9.98-15.96 and 1.19-3.35 times compared with those on BT and BS single modified bentonite (SMB), respectively. The phenol adsorption capacities decreased with the increases in temperature and pH, while it increased with the augment in ionic strength. This study revealed that double carbon chains increased the organic carbon content more effectively than single carbon chains at low complex modification ratios, thus promoting the adsorption of phenol by hydrophobic partitioning on the bentonite surface.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zhaofu Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Xuewen Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhibin Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Haibo Sun
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiuxian Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenbin Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Environmental Science and Engineering, China West Normal University, Nanchong, 637000, China
| |
Collapse
|
94
|
Lawrinenko M, Kurwadkar S, Wilkin RT. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach. GEOSCIENCE FRONTIERS 2023; 14:1-13. [PMID: 36760680 PMCID: PMC9903902 DOI: 10.1016/j.gsf.2022.101494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
Collapse
Affiliation(s)
- Michael Lawrinenko
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Richard T. Wilkin
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
95
|
Bai Y, Wang S, Zhussupbekova A, Shvets IV, Lee PH, Zhan X. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. WATER RESEARCH 2023; 231:119619. [PMID: 36689879 DOI: 10.1016/j.watres.2023.119619] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Iron sulfides-based autotrophic denitrification (IAD) is a promising technology for nitrate and phosphate removal from low C:N ratio wastewater due to its cost-effectiveness and low sludge production. However, the slow kinetics of IAD, compared to other sulfur-based autotrophic denitrification (SAD) processes, limits its engineering application. This study constructed a co-electron-donor (FeS and S0 with a volume ratio of 2:1) iron sulfur autotrophic denitrification (ISAD) biofilter and operated at as short as 1 hr hydraulic retention time (HRT). Long-term operation results showed that the superior total nitrogen and phosphate removals of the ISAD biofilter were 90-100% at 1-12 h HRT, with the highest denitrification rate up to 960 mg/L/d. Considering low sulfate production, HRT of 3 h could be the optimal condition. Such superior performance in the ISAD biofilter was achieved due to the interactions between FeS and S0, which accelerated the denitrification process and maintained the acidity-alkalinity balance. Metagenomic analysis found that the enriched nitrate-dependent iron-oxidizing (NDFO) bacteria (Acinetobacter and Acidovorax), sulfur-oxidizing bacteria (SOB), and dissimilatory nitrate reduction to ammonia (DNRA) bacteria likely supported stable nitrate reduction. The metabolic pathway analysis showed that completely denitrification and DNRA, coupled with sulfur oxidation, disproportionation, iron oxidation and phosphate precipitation with FeS and S0 as co-electron donors, were responsible for the high-rate nitrate and phosphate removal. This study provides the potential of ISAD as a highly efficient post-denitrification technology and sheds light on the balanced microbial S-N-Fe transformation.
Collapse
Affiliation(s)
- Yang Bai
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Shun Wang
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | | | - Igor V Shvets
- CRANN, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Po-Heng Lee
- Imperial College London, London SW7 2AZ, United Kingdom
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
96
|
Cai X, Xia RZ, Ye JJ, Huang CC, Yang YF, Zhang LK, Liang B, Yang M, Lin CH, Li PH, Huang XJ. Practical Strategy for Arsenic(III) Electroanalysis without Modifier in Natural Water: Triggered by Iron Group Ions in Solution. Anal Chem 2023; 95:4104-4112. [PMID: 36688529 DOI: 10.1021/acs.analchem.2c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 μA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 μA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Rui-Ze Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei230601, China
| | - Jia-Jia Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Cong-Cong Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Long-Ke Zhang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Bo Liang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Chu-Hong Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore637459, Singapore
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
97
|
Gong L, Zhang L. Oxyanion-modified zero valent iron with excellent pollutant removal performance. Chem Commun (Camb) 2023; 59:2081-2089. [PMID: 36723230 DOI: 10.1039/d2cc06814a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxyanion-modified zero valent iron (OM-ZVI), including oxyanion-modified microscale ZVI (OM-mZVI) and nanoscale zero valent iron (OM-nZVI), has attracted growing interest in recent years for their excellent pollutant removal performance. This feature article summarizes the recent progress of OM-ZVI materials, including their synthesis, characterization, enhanced pollutant removal performance, and structure-property relationships. Generally, OM-ZVI could be synthesized with wet chemical and mechanochemical (ball-milling) methods and then characterized with state-of-the-art characterization techniques (e.g., X-ray-based spectroscopy, electron microscopy) to reveal their structure and physicochemical properties. We found that phosphate modification could form iron-phosphate on the nZVI surface, facilitating Cr(VI) removal, while the phosphorylation process could induce tensile hoop stress to produce numerous radial nanocracks in the structurally-dense spherical nZVI for enhanced Ni(II) removal via a boosted Kirkendall effect. Oxalate modification could trigger electron delocalization to increase electron cloud density and surface-bound Fe(II) of mZVI for enhanced Cr(VI) removal, while oxalated mZVI exhibited more efficient Cr(VI) removal performance via an in situ formed FeC2O4·2H2O shell of high proton conductivity, favoring Cr(VI) reduction. Differently, the mechanochemical treatment of mZVI with B2O3 could exert tensile strain on it through interstitial boron doping, thereby promoting the release and transfer of electrons from its Fe(0) core to its iron oxide shell for dramatic Cr(VI) reduction. This article aims to demonstrate the potential of OM-ZVI for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Li Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. .,Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
98
|
Efficient degradation of trichloroethene with the existence of surfactants by peroxymonosulfate activated by nano-zero-valent iron: performance and mechanism investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48351-48362. [PMID: 36757597 DOI: 10.1007/s11356-023-25725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
In this study, the degradation of trichloroethylene (TCE) with the existence of tween-80 (TW-80) or sodium dodecyl sulfate (SDS) using peroxymonosulfate (PMS) activated by nano-zero-valent iron (nZVI) was investigated. Over 87.6% TCE (with 1.3 g L-1 TW-80 presence) was degraded by 0.9 mM PMS and 0.12 g L-1 nZVI, while 89.7% TCE (with 2.3 g L-1 SDS presence) was degraded by 1.2 mM PMS and 0.20 g L-1 nZVI, in which more than 71.9% TCE with TW-80 existence and 87.5% TCE with SDS existence were dechlorinated. Besides, the effects of some factors (i.e., PMS and nZVI dosages, initial solution pH, and inorganic anions) on TCE removal were evaluated. The degradation of TCE was restrained continuously with increasing surfactant concentration, and TW-80 was more easily decomposed than SDS in PMS/nZVI system. Furthermore, sulfate radical (SO4-•) and hydroxyl radical (HO•) were demonstrated the main reactive oxygen species (ROS) contributing to TCE degradation and SO4-• played a dominant role through EPR tests and ROS scavenging experiments. Finally, the results of TCE degradation in actual groundwater confirmed that PMS/nZVI process has great advantages and potential in remediation of actual TCE-contaminated groundwater with TW-80 or SDS existence.
Collapse
|
99
|
Fan B, Li X, Zhu F, Wang J, Gong Z, Shao S, Wang X, Zhu C, Zhou D, Gao S. Anti-passivation ability of sulfidated microscale zero valent iron and its application for 1,1,2,2-tetrachloroethane degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130194. [PMID: 36270192 DOI: 10.1016/j.jhazmat.2022.130194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The performance of sulfidated zero valent iron (ZVI) for the degradation of chlorinated hydrocarbons under aerobic conditions remains unclear. In this study, sulfidated microscale ZVI (S-mZVI) was prepared for 1,1,2,2-tetrachloroethane (TeCA) degradation under aerobic conditions. Compared with mZVI, S-mZVI showed excellent passivation resistance during the degradation of TeCA and its hydrolysis/reduction products. This was probably because the existence of FeSx shell (FeS/FeS2/FeSn) protected the internal ZVI core from passivation. Though the outer layer of FeSx shell could be oxidized to FeSn and Fe2(SO4)3 as the reaction proceeded, the inner layer remained stable, which maintained the fast electron transfer capability of S-mZVI. The high temperature could enhance the degradation of TeCA, without compromising the anti-passivation and reusability of S-mZVI. Even after the fifth cycle, S-mZVI could still efficiently degrade 90% of TeCA within 24 h. Furthermore, it was found that the degradation of TeCA and its reduction products (e.g., dichloroethylene (DCE)) by S-mZVI relied on direct electron transfer and hydrogen radical (H•), respectively, which might explain the lower levels of toxic DCE in the S-mZVI system. This study provides valuable information for the practical application of S-mZVI in the treatment of wastewater containing halogenated hydrocarbons under ambient conditions.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoshuai Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
100
|
Song H, Liang W, Luo K, Wang G, Li Q, Ji X, Wan J, Shao X, Gong K, Zhang W, Peng C. Simultaneous stabilization of Pb, Cd, and As in soil by rhamnolipid coated sulfidated nano zero-valent iron: Effects and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130259. [PMID: 36335901 DOI: 10.1016/j.jhazmat.2022.130259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation effectively improves the electron transfer efficiency of nanoscale zero-valent iron (nZVI), but decreases the specific surface area of nZVI. In this study, sulfidated nZVI (S-nZVI) coated with rhamnolipid (RL-S-nZVI) was synthesized and used to stabilize Pb, Cd, and As in combined polluted soil. The stabilization efficiency of 0.3% (wt) RL-S-nZVI to water soluble Pb, Cd, and As in soil reached 88.76%, 72%, and 63%, respectively. Rhamnolipid coating inhibited the reduction of specific surface area and successfully encapsulated nZVI, thus reducing the oxidation of Fe0. The types of iron oxides in RL-S-nZVI were reduced compared to S-nZVI, but the content and strength of Fe0 iron were obviously enhanced. Furthermore, rhamnolipid functional groups (-COOH and -COO-) were also involved in the stabilization process. In addition, the stabilization efficiency of RL-S-nZVI to the bioavailable Pb, Cd, and As in soil increased by 41%, 41%, and 50%, respectively, compared with nZVI. The presence of organic acids, especially citric acid, improved the stabilization efficiency of RL-S-nZVI to the three metals. The result of BCR sequential extraction indicated that RL-S-nZVI increased the residual state of Pb, Cd, and As and reduced the acid-soluble and reducible state after 28 days of soil incubation. XRD and XPS analyses showed that the stabilization mechanisms of RL-S-nZVI on heavy metals involved in ion exchange, surface complexation, adsorption, co-precipitation, chemisorption, and redox.
Collapse
Affiliation(s)
- Huihui Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|