51
|
Sotão Neto BMT, Combi T, Taniguchi S, Albergaria-Barbosa ACR, Ramos RB, Figueira RCL, Montone RC. Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). MARINE POLLUTION BULLETIN 2020; 161:111818. [PMID: 33160119 DOI: 10.1016/j.marpolbul.2020.111818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and spatial distribution of persistent organic pollutants (POPs) and personal care products (PCPs) were investigated in surface sediments of Todos os Santos Bay. Samples were Soxhlet-extracted and analyzed by gas chromatography coupled with tandem mass spectrometry. Quantification limits (QL) ranged from 0.0025 ng g-1 for POPs to 0.25 ng g-1 for PCPs. Of the POPs studied, only PCBs and DDTs were detectable, with concentrations ranging from <QL to 4.66 ng g-1, with increased concentrations near urban and industrial areas. PCPs ranged from <QL to 27.5 ng g-1 and presented a homogeneous spatial distribution, probably related to the continuous inputs of these compounds from diffuse sources. Mean contaminant inventories ranged from 0.33 ± 0.23 ng cm-2 for DDTs to 8.3 ± 8.4 ng cm-2 for fragrances. To the best of our knowledge, this is the first study on the occurrence of UV filters in sediments from Brazilian coastal environments.
Collapse
Affiliation(s)
- Basílio M T Sotão Neto
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Tatiane Combi
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Ana C R Albergaria-Barbosa
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil
| | - Raissa B Ramos
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rosalinda C Montone
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| |
Collapse
|
52
|
Emnet P, Mahaliyana AS, Northcott G, Gaw S. Organic Micropollutants in Wastewater Effluents and the Receiving Coastal Waters, Sediments, and Biota of Lyttelton Harbour (Te Whakaraupō), New Zealand. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:461-477. [PMID: 33128586 DOI: 10.1007/s00244-020-00760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Coastal ecosystems are receiving environments for micropollutants due to high levels of associated anthropogenic activities. Effluent discharges from wastewater treatment plants are a significant source of micropollutants to coastal environments. Wastewater effluents, seawater, sediments, and green-lipped mussels (Perna canaliculus) in Lyttelton Harbour (Te Whakaraupō), Christchurch, New Zealand, were analysed for a suite of personal care products and steroid hormones during a 1-year period. In wastewater effluents, the concentration of methyl paraben (mParaben), ethyl paraben (eParaben), propyl paraben (pParaben), butyl paraben (bParaben), 4-t-octylphenol (OP), 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), benzophenone-1 (BP-1), triclosan, methyl triclosan (mTric), Bisphenol A (BPA), Estrone (E1), 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and Estriol (E3) ranged from < 0.6 to 429 ng L-1 and was dominated by OP, 4-MBC, BP-3, triclosan, BP-1, and BPA. In seawater, 4-MBC, BP-3, BPA, and E1 were the most frequently detected contaminants (< 0.2-9.4 ng L-1). Coastal sediment samples contained mParaben, OP, 4-MBC, BP-3, BP-1, BPA, OMC, and E1 (< 0.2-11 ng g-1 d.w.), and mParaben, OP, and BP-3 were found to bioaccumulate (3.8-21.3 ng g-1 d.w.) in green lipped mussels.
Collapse
Affiliation(s)
- Philipp Emnet
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- ibacon GmbH, Arheilger Weg 17, 64380, Rossdorf, Germany
| | - Anjula Sachintha Mahaliyana
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Uva Wellassa University of Sri Lanka, Passara Rd, Badulla, 90000, Sri Lanka
| | - Grant Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton, 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
53
|
Pegoraro CN, Harner T, Su K, Ahrens L. Occurrence and Gas-Particle Partitioning of Organic UV-Filters in Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12881-12889. [PMID: 32924452 DOI: 10.1021/acs.est.0c02665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A retrospective analysis of a comprehensive series of high-volume air samples (n = 70) collected during 2010-2011 in Toronto (Canada) was performed. Seven UV compounds were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS) with sum of concentrations (gas + particle phase) ranging from 80 to 2030 pg/m3. Homosalate (HMS) was the most prevalent organic UV-filter in air (47% of the total concentration), followed by 2-ethylhexyl salicylate (EHS, ∼29%), E- and Z-2-ethylhexyl 4-methoxycinnamate (EHMC, ∼17%). Ambient air (gas + particle phase) concentrations of organic UV-filters showed a strong seasonality, with peak levels during the summer. An analysis of Clausius-Clapeyron slopes indicated that much of the ambient burden of organic UV-filters are explained by volatilization from terrestrial and aquatic surfaces and supplemented with human activities and use of lotions and sunscreens, containing organic UV-filters, in addition to its use in plastics, textiles, paints, and pesticides. The results showed that organic UV-filters exist mainly in the gas phase with some exceptions, for instance, octocrylene (OCR), which was associated with both gas and particle phases, and avobenzone (AVB), which was predominantly in the particle phase. Lastly, this study revealed the need for basic physical chemical property data for organic UV-filters, including information on transformation rates and products, for better evaluating their environmental fate and effects.
Collapse
Affiliation(s)
- César N Pegoraro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Funes 3350, B7602AYL Mar del Plata, Argentina
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Ky Su
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-75007 Uppsala, Sweden
| |
Collapse
|
54
|
Wu Y, Venier M, Hites RA. Broad Exposure of the North American Environment to Phenolic and Amino Antioxidants and to Ultraviolet Filters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9345-9355. [PMID: 32672444 DOI: 10.1021/acs.est.0c04114] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present study provides a comprehensive investigation of three suites of commonly used synthetic additives: phenolic and amino antioxidants and ultraviolet filters. The concentrations of 47 such compounds and their transformation products were measured in 20 atmospheric particle samples collected in Chicago, in 21 Canadian e-waste dust samples, in 32 Canadian and United States' residential dust samples, and in 10 sediment samples collected from the Chicago Sanitary and Ship Canal. Despite their large production volumes in the United States, environmental data on antioxidants and UV filters in North America is limited. These compounds were detected in all the samples, indicating their ubiquitous distribution in the North American environment. The most prevalent compounds were 2,6-di-t-butyl-p-benzoquinone, diphenylamine, 4,4'-di-t-octyl diphenylamine, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-methoxybenzophenone. The e-waste dust contained significantly greater total concentrations of these compounds than the Canadian residential dust, while intermediate levels were detected in the United States residential dust. The sediment samples showed relatively high levels of N,N'-diphenylbenzidine, the source of which is unclear, and some benzotriazole UV filters. Daily intake rates by dust ingestion for these compounds ranged from 1-10 ng/(kg·day) for adults to 10-100 ng/(kg·day) for toddlers. Due to the wide distribution of these compounds in both the ambient and built environments, future research on their potential toxic effects on people and ecosystems is important.
Collapse
Affiliation(s)
- Yan Wu
- O'Neill School of Public and Environmental Affairs Indiana University Bloomington, Indiana 47405 United States
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs Indiana University Bloomington, Indiana 47405 United States
| | - Ronald A Hites
- O'Neill School of Public and Environmental Affairs Indiana University Bloomington, Indiana 47405 United States
| |
Collapse
|
55
|
Azaroff A, Miossec C, Lanceleur L, Guyoneaud R, Monperrus M. Priority and emerging micropollutants distribution from coastal to continental slope sediments: A case study of Capbreton Submarine Canyon (North Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135057. [PMID: 31733492 DOI: 10.1016/j.scitotenv.2019.135057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Incising continental margins, submarine canyons are key issue for understanding shelf/deep sea exchange of particulate pollutant, impact on marine ecosystem and global geochemical cycling. The occurrence and distribution of 100 priority and emerging micropollutants were investigated in sediments within the first 25 km of the Capbreton submarine area. The most predominant compounds were polycyclic aromatic hydrocarbons (PAHs), trace metals and metalloid (TMs) (e.g. mercury, lead and arsenic), synthetical musks (e.g. musk ketone, galaxolide), UV filters (e.g. octocrylene and 2-ethylhexyl 4-methoxycinnamate, EHMC) as well as some pharmaceuticals (e.g. azithromycin, acetaminophen). Highest concentrations were measured in submarine canyon sediments, distant from the coast and were correlated with both organic carbon and fine fraction contents, where PAHs, EHMC and musk ketone concentrations up to 7116, 32 and 7 ng g-1 dry weight, respectively. Those results likely demonstrate, that atmospheric inputs of pyrogenic PAHs, and both trapping and transporting of polluted particles along the continuum shore/deep sea by the Capbreton Canyon, might lead to an accumulation of anthropogenic micropollutants. The ecological risk assessment indicates that priority pollutants raise a potentially high risk for benthic organisms (e.g. PAHs, TMs). This might raised a specific concern about how the human can impact this ecosystem.
Collapse
Affiliation(s)
- Alyssa Azaroff
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Carole Miossec
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Laurent Lanceleur
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France
| | - Rémy Guyoneaud
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64000 Pau, France
| | - Mathilde Monperrus
- CNRS/ UNIV PAU & PAYS ADOUR/ E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux - MIRA, UMR 5254, 64600 Anglet, France.
| |
Collapse
|
56
|
Peng X, Zhu Z, Xiong S, Fan Y, Chen G, Tang C. Tissue Distribution, Growth Dilution, and Species-Specific Bioaccumulation of Organic Ultraviolet Absorbents in Wildlife Freshwater Fish in the Pearl River Catchment, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:343-351. [PMID: 31610611 DOI: 10.1002/etc.4616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 05/14/2023]
Abstract
Tissue distributions and body-size dependent and species-specific bioaccumulation of 12 organic ultraviolet absorbents (UVAs) were investigated in 9 species of wildlife freshwater fish from the Pearl River catchment, South China. The concentrations of the 12 UVAs were from 109 to 2320 ng/g lipid weight in the fish tissue samples. The UVAs 2-hydroxy-4-methoxybenzophenone (BP-3), octocrylene (OCR), UV531, and 5 benzotriazole UV stabilizers (UVP, UV329, UV234, UV328, and UV327) were detected in more than half of the fish tissue samples. The UVA UV531 showed an obvious potential for bioaccumulation in the wild freshwater fish, with an estimated bioaccumulation factor (log BAF) and a biota-sediment accumulation factor (BSAF) of 4.54 ± 0.55 and 4.88 ± 6.78, respectively. Generally, liver (989 ± 464 ng/g lipid wt) contained the highest level of UVAs, followed in decreasing order by belly fat (599 ± 318 ng/g lipid wt), swimming bladder (494 ± 282 ng/g lipid wt), dorsal muscle (470 ± 240 ng/g lipid wt), and egg (442 ± 238 ng/g lipid wt). The bioaccumulation of UVAs in the freshwater wild fish was species specific and compound dependent. Bottom-dwelling detritus-ingesting omnivorous fish contained obviously higher UVA concentrations, suggesting that detritus/sediment ingestion is a significant pathway for exposure of the wild freshwater fish to the UVAs. The UVAs UV531 and BP-3 demonstrated a potential for growth dilution. Metabolism might play a significant role in elimination of the UVAs in the fish tissues, with the highest rate of metabolism in the liver. The UVAs did not demonstrate obvious trophic magnification in the freshwater ecosystem of the Pearl River catchment. More research is warranted to elucidate maternal transfer of the UVAs. Environ Toxicol Chem 2020;39:343-351. © 2019 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songsong Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
57
|
Popiół J, Piska K, Słoczyńska K, Bień A, Żelaszczyk D, Gunia-Krzyżak A, Koczurkiewicz P, Wójcik-Pszczoła K, Marona H, Pękala E. Microbial biotransformation of some novel hydantoin derivatives: Perspectives for bioremediation of potential sunscreen agents. CHEMOSPHERE 2019; 234:108-115. [PMID: 31207416 DOI: 10.1016/j.chemosphere.2019.05.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Having identified novel hydantoin derivatives (compounds 1-5) demonstrating promising photoprotective capacity against UV radiation, and understainding the problem of the biotic and abiotic degradation of UV filters, the aim of the study was to evaluate their metabolic fate with the environmental fungus Cunninghamella echinulata. In parallel, compound 1 in vitro microsomal metabolic pattern was evaluated. Finally, in silico toxicity of test compounds and their biotransformation products was estimated, and parent compounds photostability was assessed. The study demonstrated the capacity for C. echinulata to metabolize 1-5, which were biotransformed to a greater extent than the standard UV filter. O-dealkylation of the side chains attached to the phenyl or hydantoin rings, and hydroxylation of the phenyl ring occurred during microbial transformation. O-dealkylation product was a unique metabolite observed in microsomal biotransformation of 1, being its intrinsic clearance in the medium category range. In silico study demonstrated that compounds 1-5 have low toxicity risk. Among the resulting metabolites, four can increase the risk of reproductive effects as shown by OSIRIS prediction. Noteworthy, all indicated metabolites belong to minor metabolites, except for compound 3 major metabolite. Moreover, the results of the photostability study showed that 1-5 were considered to be photostable. To sum up, the obtained in vitro biotransformation, photostability, and in silico toxicity results encourage further studies on hydantoin derivatives as potential UV photoprotective agents. The presented biotransformation profile of compounds 1-5 by C. echinulata suggests that these compounds may follow a similar biodegradation fate when released into the environment.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland; Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Anna Bień
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| |
Collapse
|
58
|
The Occurrence and Risks of Selected Emerging Pollutants in Drinking Water Source Areas in Henan, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214109. [PMID: 31731401 PMCID: PMC6862118 DOI: 10.3390/ijerph16214109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
The occurrence of organic micropollutants (OMPs) in aqueous environments has potential effects on ecological safety and human health. Three kinds of OMPs (namely, pharmaceuticals, ultraviolet (UV) filters and organophosphate esters (OPEs)) in four drinking water source areas in Henan Province of China were analyzed, and their potential risks were evaluated. Among 48 target chemicals, 37 pollutants with total concentrations ranging from 403.0 to 1751.6 ng/L were detected in water, and 13 contaminants with total concentrations from 326.0 to 1465.4 ng/g (dry weight) were observed in sediment. The aqueous pollution levels in Jiangang Reservoir and Shahe Water Source Area were higher than that in Nanwan Reservoir and Baiguishan Reservoir, while the highest total amount of pollutants in sediment was found in Baiguishan Reservoir. Compared with pharmaceuticals and UV filters, OPEs presented higher concentrations in all investigated drinking water source areas. The highest observed concentration was triphenylphosphine oxide (TPPO, 865.2 ng/L) in water and tripentyl phosphate (TPeP, 1289.8 ng/g) in sediment. Moreover, the risk quotient (RQ) analysis implies that the determined aqueous contaminants exhibited high risks to algae and invertebrates, whereas moderate risk to fish was exhibited. The health risk assessment of aqueous OMPs by means of the hazard index (HI) indicates that the risks to adults and children were negligible. These observations are expected to provide useful information for the assessment of water quality in drinking water sources in Henan, China.
Collapse
|
59
|
Tsui MMP, Chen L, He T, Wang Q, Hu C, Lam JCW, Lam PKS. Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:26-33. [PMID: 31154117 DOI: 10.1016/j.ecoenv.2019.05.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Organic ultraviolet (UV) filters are common ingredients of personal care products and occur ubiquitously in the aquatic environment; however, little is known about their distribution in and potential effects to the marine environment. This study reports the occurrence, toxicological effects and risk assessment of eleven commonly consumed UV filters in marine surface water collected from the South China Sea (SCS) coastal region. The concentrations of UV filters ranged from <MDL to 145 ng/L in the SCS, in which benzophenone-3, octocrylene and butyl methoxydibenzoylmethane were the most dominant compounds with their detection frequencies over 97%. Relatively higher levels of total UV filters were found near the highly industrialized and urbanized Pearl River Estuary (PRE) and the concentrations gradually decreased towards the SCS. In general, the environmental levels of UV filters were higher at the western marine waters in Hong Kong than the eastern marine waters. Significant negative correlations were observed between benzophenone-4 and water temperature, as well as ethylhexyl methoxycinnamate and salinity (P < 0.001; r < -0.5). Immobilization test of barnacle nauplius larvae (Balanus amphitrite) was conducted to assess the acute toxicity of organic UV filters to marine organisms. Benzophenone-8 and 4-methylbenzylidene camphor showed relatively higher toxicity with the 50% effect concentrations (EC50) of 2.2 and 3.9 mg/L, respectively. A preliminary risk assessment was conducted by the results obtained from our field and laboratory studies. Results showed that the risk to cause immobilization in barnacle nauplius larvae in associated with exposure to current levels of organic UV filters in the SCS was minimal.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tangtian He
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
60
|
Huang Y, Law JCF, Zhao Y, Shi H, Zhang Y, Leung KSY. Fate of UV filter Ethylhexyl methoxycinnamate in rat model and human urine: Metabolism, exposure and demographic associations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:729-736. [PMID: 31195281 DOI: 10.1016/j.scitotenv.2019.05.440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Ethylhexyl methoxycinnamate (EHMC) is one of the most frequently used UV filters in sunscreens and other cosmetic products. Its ubiquitous presence in various environmental matrices and its endocrine disrupting properties have been widely reported. However, we know little about the effect of EHMC exposure on humans, mainly due to its fast metabolism. In this study, urine and plasma of EHMC-dosed rats were analysed to identify its major metabolites. Five metabolites were found, with four firstly reported. Two metabolites were putatively identified as 4-methoxycinnamic acid (4-MCA) and 4'-methoxyacetophenone (4'-MAP). Quantitative results revealed that their excretion concentrations were much higher than the parent compound. Because of these high concentrations, for the human biomonitoring study, EHMC and these two metabolites were detected simultaneously in urine samples from Chinese children and adolescents. The results indicated wide exposure to EHMC, 4-MCA and 4'-MAP. The correlation between urinary concentration of EHMC and 4-MCA as well as 4-MCA and 4'-MAP provided important clues as to the sources and metabolic pathways among these three compounds. Several demographic factors were also assessed with the exposure level. As the first human exposure study of EHMC in a Chinese population, this report would help to establish an exposure database facilitating health risk assessment of EHMC.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
61
|
Xiong L, Zhao M, Fan Y, Wang S, Yang Y, Li X, Zhao D, Zhang F. Manganese Oxide Nanoclusters for Skin Photoprotection. ACS APPLIED BIO MATERIALS 2019; 2:3974-3982. [PMID: 35021330 DOI: 10.1021/acsabm.9b00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An ultraviolet (UV) filter is the core component of sunscreen and protects skin from various photo damages. Current UV filters are hampered by skin penetration, poor photostability, photocatalytic generation of harmful reactive oxygen species (ROS), and potential environmental risks. In this work, manganese dioxide nanoclusters were developed as an eco-friendly UV filter by a facile two-step synthesis, using colloid silica as support under ambient conditions. These nanoclusters show a better UV-shielding profile than commercial titanium dioxide nanoparticles and capability to scavenge various ROS. They can be easily incorporated by a sunscreen formula and demonstrate an excellent skin photoprotection performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanling Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
62
|
Zhou R, Lu G, Yan Z, Bao X, Zhang P, Jiang R. Bioaccumulation and biochemical effects of ethylhexyl methoxy cinnamate and its main transformation products in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105241. [PMID: 31301543 DOI: 10.1016/j.aquatox.2019.105241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the bioaccumulation and biochemical responses exposed to one of the main organic ultraviolet (UV) pollutants in the environment, ethylhexyl methoxy cinnamate (EHMC), and its main transformation product, either alone or in combination in zebrafish (Danio rerio). Four-month-old zebrafish were exposed to EHMC (34.4, 344 nmol/L) solution for 14 days, the species and contents of EHMC transformation products in zebrafish were determined and 3,5-dichloro-2-hydroxyacetophenone (3,5DCl2HAcP) was the one with the highest concentration in transformation products. Then, zebrafish were exposed to EHMC, 3,5DCl2HAcP alone and mixed solution for 21 days. At 7, 14 and 21 d, the related indexes of antioxidant defense system were determined. Results showed that both EHMC and 3,5DCl2HAcP can lead to the increase of malondialdehyde (MDA) and glutathione (GSH) contents, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities in visceral mass compared with the corresponding control group, thus produced oxidative stress effect in organism and 3,5DCl2HAcP even showed stronger oxidative stress than EHMC. The effects of the two lower concentration co-exposure groups were similar and more significant to that of single exposure groups, while excessive oxidative stress occurred at the highest co-exposure group indicated by the decrease of GSH content, SOD, CAT, GR activities and the continued increase of MDA content. At 21 d, estradiol (E2), vitellogenin (Vtg) and testosterone (T) contents, estrogen receptor (Esr), progesterone receptor (Pgr), androgen receptor (Ar), Vtg1, P450 aromatase (Cyp19a1) and 17β-hydroxysteroid dehydrogenase (Hsd17b3) expression were all significantly increased when exposed to 3,5DCl2HAcP alone, showing complex estrogen and androgen effects. When exposed to EHMC alone, E2 and Vtg contents, Esr, Pgr, Vtg1, Cyp19a1 and Hsd17b1 gene expression levels decreased significantly, and T content and Ar and Hsd17b3 expression increased significantly, indicated that EHMC can produce anti-estrogen and androgen effect. Last, the decrease of estrogen effect and increase of androgen effect in co-exposure group suggested that 3,5DCl2HAcP might weaken the estrogen effect and promote the androgen effect of EHMC.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
63
|
Celeiro M, Facorro R, Dagnac T, Vilar VJ, Llompart M. Photodegradation behaviour of multiclass ultraviolet filters in the aquatic environment: Removal strategies and photoproduct identification by liquid chromatography–high resolution mass spectrometry. J Chromatogr A 2019; 1596:8-19. [DOI: 10.1016/j.chroma.2019.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
|
64
|
Feng J, Zhao J, Xi N, Guo W, Sun J. Parabens and their metabolite in surface water and sediment from the Yellow River and the Huai River in Henan Province: Spatial distribution, seasonal variation and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:480-487. [PMID: 30738230 DOI: 10.1016/j.ecoenv.2019.01.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In this study, six alkyl esters of p-hydroxybenzoic acids (parabens) and their metabolite, 4-hydroxybenzoic acid (p-HB) were simultaneously determined in surface water and sediment from the Yellow River and the Huai River in Henan Province, China. Concentrations of ∑parabens in surface water were 3.31-55.2 ng/L in the Yellow River and 15.0-164 ng/L in the Huai River, while in the sediment, concentrations of ∑parabens were 13.3-37.2 ng/g and 16.1-31.6 ng/g, respectively. Compared with other studies, levels of parabens in the studied area were relatively high in the sediments but middle in the surface water. MeP and PrP were the most abundant parabens, and were detected in all sampling sites. Contributions of EtP, BzP, BuP, and HeP to ∑parabens were each no more than 10%. 4-Hydroxybenzoic acid was found in all samples albeit at low concentrations. Significant positive correlations among parabens suggest similar sources of parabens in the Yellow River and the HuaiRiver. Dissolved organic carbon (DOC) had an important effect on parabens in the surface water of the Yellow and Huai Rivers. Due to low dilution of discharges, high concentrations of parabens were found during moderate precipitation season as well as minimal precipitation season in surface water. However, no apparent seasonal variation of parabens in surface sediment was observed. Hazard quotients showed that the ecological risks of parabens was low in the studied area.
Collapse
Affiliation(s)
- Jinglan Feng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Jiahui Zhao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Wei Guo
- Department of Chemistry, Xinxiang Medical University, Henan 453003, PR China
| | - Jianhui Sun
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
65
|
Capela D, Vila M, Llompart M, Dagnac T, García-Jares C, Alves A, Homem V. Footprints in the sand - Assessing the seasonal trends of volatile methylsiloxanes and UV-filters. MARINE POLLUTION BULLETIN 2019; 140:9-16. [PMID: 30803688 DOI: 10.1016/j.marpolbul.2019.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
This study focused on the determination of seven volatile methylsiloxanes (VMSs) and eleven UV-filters (UVFs) in beach sand from the Oporto's region (Portugal). A QuEChERS methodology ("Quick, Easy, Cheap, Effective, Rugged, and Safe") was used to extract VMSs from the sand, which has never been employed before. To extract the UVFs, a solid-phase microextraction (SPME) was used. The analyses were performed by gas chromatography-mass spectrometry (GC-MS). Twenty-three beach sand samples were analysed, from two campaigns - summer/winter. VMSs were found in all the samples with concentrations ranging from 0.007 ± 0.001 to 17.8 ± 0.9 ng g-1dw, while UVFs in summer samples from 0.030 ± 0.001 to 373 ± 17 ng g-1dw. Cyclic VMSs and octocrylene (OC) were detected in higher concentrations. In general, higher levels were detected in summer than winter. Hazard quotients were determined and 3-(4'-methylbenzylidene) camphor (4-MBC), 2-ethylhexyl 4-methoxycinnamate (EMC) and benzophenone-3 (BP3) presented values >1, which may indicate that they may pose an ecotoxicological risk.
Collapse
Affiliation(s)
- Daniela Capela
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marlene Vila
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Llompart
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Thierry Dagnac
- Agronomic and Agrarian Research Centre (INGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, 15080, A Coruña, Spain
| | - Carmen García-Jares
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Campus Vida, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
66
|
Gu J, Yuan T, Ni N, Ma Y, Shen Z, Yu X, Shi R, Tian Y, Zhou W, Zhang J. Urinary concentration of personal care products and polycystic ovary syndrome: A case-control study. ENVIRONMENTAL RESEARCH 2019; 168:48-53. [PMID: 30265948 DOI: 10.1016/j.envres.2018.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorder among females of reproductive age. Many emerging contaminants in personal care products have been confirmed with endocrine disruptive effects. We performed a case-control study to explore the association between the concentrations of certain emerging contaminants (organic UV filters, bisphenol A, and triclosan) and the risk of PCOS. Urine samples were collected from 40 women with PCOS (case group) and 83 healthy women (control group). No significant differences were found in detection rate or total concentrations of analytes in women with PCOS and controls (p > 0.05). In addition, no association was found between certain emerging contaminants and PCOS either in an unadjusted binary logistic regression model or in a model adjusted for potential confounders. However, with stratification according to body mass index, one organic UV filter - octocrylene(OC) was significantly associated with PCOS in women with BMI ≥ 24 (adjusted OR = 1.512, 95% CI: 1.043, 2.191). It's the first time to investigate the association between exposure of organic UV filters and PCOS risk. We conclude that there is positive association between OC and PCOS risk in obese and overweight women.
Collapse
Affiliation(s)
- Jiayuan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ni Ni
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center,Shanghai Jiao Tong University, Shanghai 200127,China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
67
|
Zhou R, Lu G, Yan Z, Jiang R, Shen J, Bao X. Parental transfer of ethylhexyl methoxy cinnamate and induced biochemical responses in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:24-32. [PMID: 30419393 DOI: 10.1016/j.aquatox.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Ethylhexyl methoxy cinnamate (EHMC) is one of the major organic ultraviolet (UV) filter pollutants in the environment. The purpose of this study was to investigate the parental transfer of EHMC and induced biochemical responses in zebrafish (Danio rerio). Zebrafish embryos were exposed to EHMC solution (1, 10, and 100 μg/L) for 4 months until sexual maturation. Then male and female parents were paired to lay eggs. F1 generations were divided into 2 categories: with and without continued EHMC exposure. EHMC was detected in both F0 parents and F1 eggs, indicating that EHMC can accumulate in zebrafish and transfer to offspring through reproduction. The hatching rate decreased and malformation rate increased significantly among parents and progeny embryos in the high concentration exposure group. For 40 dpf (days post-fertilisation) F0 generations, estradiol hormone and vitellogenin (Vtg) contents, the expression levels of Vtg1, P450 aromatase (Cyp19a and Cyp19b), 17β-hydroxysteroid dehydrogenase (Hsd17b1, Hsd17b3), estrogen receptor-alpha and progesterone receptor in all concentration groups decreased significantly, while androgen receptor increased significantly in 10 and 100 μg/L exposure groups compared with the corresponding control group, showing anti-estrogen and androgen effects. For 120 dpf F0 generations, acetylcholinesterase activity was significantly decreased and glutathione and malondialdehyde levels, superoxide dismutase, catalase and glutathione reductase activities were significantly increased in all treatment groups compared with the corresponding control group. In addition, F1 offspring with or without continued exposure to EHMC suffered similar or stronger oxidative stress compared with their parents. DNA breakage and apoptosis also occurred in 120 dpf parental liver cells in all treatment groups as a result of oxidative damage. Results suggested that EHMC have transfer effects between parents and offspring, which may cause negative effects on growth and development of zebrafish and induce biochemical responses in both parents and offspring.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jie Shen
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
68
|
Apel C, Joerss H, Ebinghaus R. Environmental occurrence and hazard of organic UV stabilizers and UV filters in the sediment of European North and Baltic Seas. CHEMOSPHERE 2018; 212:254-261. [PMID: 30145417 DOI: 10.1016/j.chemosphere.2018.08.105] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 05/26/2023]
Abstract
UV absorbing compounds are of emerging concern due to their large production volumes, their persistence or pseudo-persistence, and their potential adverse effects. This is the first study investigating the environmental occurrence and potential hazard of organic UV stabilizers and UV filters in the North and Baltic Sea surface sediments, including the connecting Skagerrak and Kattegat straits. In total, nineteen substances were identified over the entire study area, including the rarely studied compounds ethylhexyl triazone (EHT) and bisoctrizole (UV-360). Octocrylene (OC) was the predominant compound in this study with regard to detection frequency (79%) and concentrations (up to 9.7 ng/g dw). OC accounted for more than 65% of UV stabilizer contamination in the German Bight. The triazine derivative EHT was quantified in the Rhine-Meuse-Delta and the German Bight in concentrations up to 2.0 ng/g dw. In the Baltic Sea, benzotriazole UV stabilizers accounted for 60% of the contamination, with UV-360 as the main substance. The estimated environmental hazard quotients indicated a negligible impact on benthic and sediment-dwelling organisms in the North and Baltic Seas. Region-specific contamination pattern and riverine influences were revealed. The results suggest that both direct and indirect sources contribute to the UV stabilizer and UV filter contamination in the study area.
Collapse
Affiliation(s)
- Christina Apel
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany; Universität Hamburg, Institute of Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | - Hanna Joerss
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany; Universität Hamburg, Institute of Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| |
Collapse
|
69
|
Tang Z, Han X, Li G, Tian S, Yang Y, Zhong F, Han Y, Yang J. Occurrence, distribution and ecological risk of ultraviolet absorbents in water and sediment from Lake Chaohu and its inflowing rivers, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:540-547. [PMID: 30149352 DOI: 10.1016/j.ecoenv.2018.08.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The available information is insufficient to enable a reliable understanding of the global distribution and effect of organic ultraviolet absorbents (UVAs) on ecosystems. Little is known about the pollution of China's lakes by these chemicals. We conducted a survey of UVAs in water and sediment from Lake Chaohu and its inflowing rivers. The UVAs were widely present in this area and the concentrations of total 12 UVAs (Σ12 UVAs) ranged between 162 and 587 ng/L in water and 9.70-178 ng/g in sediment. Benzophenone and benzophenone-3 were dominant in water, and benzophenone and octocrylene dominated in sediment. Higher concentrations of benzophenone were detected in the investigated water samples, although the contamination levels of UVAs in this study were comparable to those investigated in other areas. In addition to the inputs from the UVAs used as filters in cosmetics, the discharge from industries using UVAs as stabilizers also contributed much to the pollution in the study waters. Generally, the risk to aquatic organisms from exposure to UVAs in this area was low, but further research is needed to elucidate the fate of UVAs and to understand bioaccumulation and associated risks.
Collapse
Affiliation(s)
- Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xue Han
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Guanghui Li
- China Merchants Ecological Environmental Protection Technology Co. Ltd., Chongqing 400067, China.
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fuyong Zhong
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yu Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
70
|
Bioaccumulation and Biomagnification of 2-Ethylhexyl-4-dimethylaminobenzoate in Aquatic Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112395. [PMID: 30380631 PMCID: PMC6266656 DOI: 10.3390/ijerph15112395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 11/17/2022]
Abstract
2-Ethylhexyl-4-dimethylaminobenzoate (EHDAB) is a commonly used organic ultraviolet filter. The bioaccumulation and biomagnification of EHDAB were investigated in two aquatic animals, the larvae of midge (Chironomus riparius) and crucian carp (Carassius carassius), and the metabolic enzyme responses in fish liver were determined. EHDAB in the larvae of midge reached a steady state within 10 days of sediment exposure. The biota-sediment accumulation factors ranged from 0.10 to 0.54, and were inversely proportional to the exposure concentrations. The EHDAB-contaminated larvae were used to feed the crucian carp. Within 28 days of feeding exposure, the EHDAB levels in fish tissues gradually increased with the increase of the exposure concentration, exhibiting an apparent concentration-dependence and time-dependence. The liver and kidneys were the main organs of accumulation, and the biomagnification factors of EHDAB ranged from 8.97 to 11.0 and 6.44 to 10.8, respectively. In addition, EHDAB significantly increased the activities of cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase in the fish liver. Our results indicate that EHDAB may pose a risk of biomagnification in an aquatic environment and influence the biological processes of exposed organisms.
Collapse
|
71
|
Development and optimization of a solid-phase microextraction gas chromatography–tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand. J Chromatogr A 2018; 1564:59-68. [DOI: 10.1016/j.chroma.2018.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
|
72
|
Yan Z, Yang H, Dong H, Ma B, Sun H, Pan T, Jiang R, Zhou R, Shen J, Liu J, Lu G. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:223-232. [PMID: 29656246 DOI: 10.1016/j.envpol.2018.04.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Water diversion has been increasingly applied to improve water quality in many water bodies. However, little is known regarding pollution by organic micropollutants (OMPs) in water diversion projects, especially at the supplier, and this pollution may threaten the quality of transferred water. In the present study, a total of 110 OMPs belonging to seven classes were investigated in water and sediment collected from a supplier of the Yangtze River within four water diversion projects. A total of 69 and 58 target OMPs were detected in water and sediment, respectively, at total concentrations reaching 1041.78 ng/L and 5942.24 ng/g dry weight (dw). Polycyclic aromatic hydrocarbons (PAHs) and pharmaceuticals were the predominant pollutants identified. When preliminarily compared with the pollution in the receiving water, the Yangtze River generally exhibited mild OMPs pollution and good water quality parameters, implying a clean water source in the water diversion project. However, in Zongyang and Fenghuangjing, PAHs pollution was more abundant than that in the corresponding receiving water in Chaohu Lake. Ammonia nitrogen pollution in the Wangyu River was comparable to that in Taihu Lake. These findings imply that water diversion may threaten receiving waters in some cases. In addition, the risks of all detected pollutants in both water and sediment were assessed. PAHs in water, especially phenanthrene and high-molecular-weight PAHs, posed high risks to invertebrates, followed by the risks to fish and algae. Pharmaceuticals, such as antibiotics and antidepressants, may also pose risks to algae and fish at a number of locations. To the best of our knowledge, this report is the first to describe OMPs pollution in water diversion projects, and the results provide a new perspective regarding the security of water diversion projects.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Binni Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongwei Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ting Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jie Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, 860000, China.
| |
Collapse
|
73
|
Apel C, Tang J, Ebinghaus R. Environmental occurrence and distribution of organic UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:85-94. [PMID: 29275272 DOI: 10.1016/j.envpol.2017.12.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 05/14/2023]
Abstract
Organic UV stabilizers and UV filters are applied to industrial materials and cosmetics worldwide. In plastics they prevent photo-induced degradation, while in cosmetics they protect human skin against harmful effects of UV radiation. This study reports on the occurrence and distribution of organic UV stabilizers and UV filters in the surface sediment of the Chinese Bohai and Yellow Seas for the first time. In total, 16 out of 21 analyzed substances were positively detected. Concentrations ranged from sub-ng/g dw to low ng/g dw. The highest concentration of 25 ng/g dw was found for octocrylene (OC) in the Laizhou Bay. In the study area, characteristic composition profiles could be identified. In Korea Bay, the dominating substances were OC and ethylhexyl salicylate (EHS). All other analytes were below their method quantification limit (MQL). Around the Shandong Peninsula, highest concentrations of benzotriazole derivatives were observed in this study with octrizole (UV-329) as the predominant compound, reaching concentrations of 6.09 ng/g dw. The distribution pattern of UV-329 and bumetrizole (UV-326) were related (Pearson correlation coefficient r > 0.98, p « 0.01 around the Shandong Peninsula), indicating an identical input pathway and similar environmental behavior.
Collapse
Affiliation(s)
- Christina Apel
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany; University of Hamburg, Institute of Inorganic and Applied Chemistry, 20146 Hamburg, Germany.
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
| |
Collapse
|
74
|
Lorigo M, Mariana M, Cairrao E. Photoprotection of ultraviolet-B filters: Updated review of endocrine disrupting properties. Steroids 2018; 131:46-58. [PMID: 29360537 DOI: 10.1016/j.steroids.2018.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022]
Abstract
The Ultraviolet (UV) radiation is emitted by the sun and is part of the electromagnetic spectrum. There are three types of UV rays (UV-A, UV-B and UV-C), however only UV-A and UV-B have biologic effects in humans, with UV-B radiation being primarily responsible for these effects. Among the measures of photoprotection advised by the health authorities, the topical application of sunscreens (containing UV-B filters) is the preferred worldwide. Currently, octylmethoxycinnamate (OMC) is the most commonly used UV-B filter in sunscreens. Their application has proven to be effective in preventing burns, but its efficiency against melanoma continues under intense controversy. Studies have shown that OMC behaves like an endocrine disruptor, altering the normal functioning of organisms. However, few studies have evaluated their multiple hormonal activities. Some studies suggest that the OMC exerts an estrogenic, anti-androgenic, anti-progestenic and anti-thyroid activity. But, through what mechanisms? In humans, few studies were performed, and some questions remain unclear. Thus, the purpose of this review is to present the multiple hormonal activities established for the OMC, making a critical analysis and relationship between the effects in cells, animals and humans.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
75
|
Ma B, Lu G, Yang H, Liu J, Yan Z, Nkoom M. The effects of dissolved organic matter and feeding on bioconcentration and oxidative stress of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) to crucian carp (Carassius auratus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6558-6569. [PMID: 29255981 DOI: 10.1007/s11356-017-1002-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Bioconcentration of UV filters in organisms is an important indicator for the assessment of environmental hazards. However, bioconcentration testing rarely accounts for the influence of natural aquatic environmental factors. In order to better assess the ecological risk of organic UV filters (OUV-Fs) in an actual water environment, this study determined the influences of dissolved organic matter (DOM) (0, 1, 10, and 20 mg/L) and feeding (0, 0.5, 1, and 2% body weight/d) on bioconcentration of ethylhexyl dimethyl p-aminobenzoate (OD-PABA) in various tissues of crucian carp (Carassius auratus). Moreover, oxidative stress in the fish liver caused by the OD-PABA was also investigated by measuring activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), and levels of glutathione (GSH) and malondialdehyde (MDA). The bioconcentration of OD-PABA in the fish tissues was significantly decreased with the presence of DOM indicating a reduction of OD-PABA bioavailability caused by DOM. The bioconcentration factors (BCFs) decreased by 28.00~50.93% in the muscle, 72.67~96.74% in the gill, 37.84~87.72% in the liver, and 10.32~79.38% in the kidney at different DOM concentrations compared to those of the non-DOM treatments. Significant changes in SOD, CAT, GST, GSH, and MDA levels were found in the DOM- and OD-PABA-alone treatments. However, there were no significant differences in the SOD, CAT, GST, and MDA levels found when co-exposure to OD-PABA and DOM. Feeding led to lower OD-PABA concentrations in the fish tissues, and the concentrations were decreased with increasing feeding ratios. BCFs in various tissues reduced by 39.75~72.52% in the muscle, 56.86~79.73% in the gill, 66.41~87.50% in the liver, and 75.88~89.10% in the kidney, respectively. In the unfed treatments, the levels of SOD and MDA were significantly higher than those of the fed ones while GST and GSH levels were remarkably inhibited indicating the enhanced effect of starvation to oxidative stress. There was no markedly alternation of the biomarker levels observed between different fed treatments. In conclusion, our study indicated that both DOM and feeding reduced bioconcentration of OD-PABA and alleviated oxidative stress to some extent in the crucian carp.
Collapse
Affiliation(s)
- Binni Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, 860000, China.
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
76
|
Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0787-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
77
|
Bury D, Belov VN, Qi Y, Hayen H, Volmer DA, Brüning T, Koch HM. Determination of Urinary Metabolites of the Emerging UV Filter Octocrylene by Online-SPE-LC-MS/MS. Anal Chem 2017; 90:944-951. [DOI: 10.1021/acs.analchem.7b03996] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Bury
- Institute
for Prevention and Occupational Medicine of the German Social Accident
Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz
1, 44789 Bochum, Germany
| | - Vladimir N. Belov
- Max Planck Institute for Biophysical Chemistry (MPI BPC), Facility for Synthetic Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Yulin Qi
- Institute
of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Heiko Hayen
- Institute
of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße
30, 48149 Münster, Germany
| | - Dietrich A. Volmer
- Institute
of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Thomas Brüning
- Institute
for Prevention and Occupational Medicine of the German Social Accident
Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz
1, 44789 Bochum, Germany
| | - Holger M. Koch
- Institute
for Prevention and Occupational Medicine of the German Social Accident
Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz
1, 44789 Bochum, Germany
| |
Collapse
|
78
|
Pintado-Herrera MG, Combi T, Corada-Fernández C, González-Mazo E, Lara-Martín PA. Occurrence and spatial distribution of legacy and emerging organic pollutants in marine sediments from the Atlantic coast (Andalusia, SW Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:980-994. [PMID: 28693111 DOI: 10.1016/j.scitotenv.2017.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/10/2017] [Accepted: 06/07/2017] [Indexed: 05/12/2023]
Abstract
Contamination of aquatic systems by no longer used but very persistent compounds (e.g., organochlorine pesticides) and newly detected chemicals, such as personal care products (PCPs), represents a raising concern. In this study, we carried out one of the first comparisons of both types of contaminants, legacy and emerging, in two coastal systems (Cadiz Bay and Huelva Estuary). A wide range of analytes were selected to this end, including hydrocarbons, UV filters, fragrances, and antimicrobials. Analysis of surface sediments revealed the occurrence of 46 out of 97 target analytes, most of them predominantly accumulated in depositional areas with high organic carbon content. Polycyclic aromatic hydrocarbons (PAHs), fragrances (e.g., octahydrotetramethyl acetophenone or "OTNE"), UV filters (e.g., octocrylene), and nonylphenol had the highest concentrations (up to 1098, 133.5, 72 and 575ngg-1, respectively). Several inputs were detected, from atmospheric deposition after combustion to wastewater discharges and recreational activities. However, an environmental risk assessment performed for those chemicals for which ecotoxicological data were available, indicated that legacy compounds still pose the highest potential risk towards benthonic organisms (individual hazard quotients up to 580 for dichlorophenyldichloroethylene or "DDE") compared to PCPs.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus de Excelencia Internacional del Mar (CEI-MAR), Cadiz 11510, Spain.
| | - Tatiane Combi
- Interdepartmental Centre for Environmental Science Research, University of Bologna, Via San Alberto 163, 48123 Ravenna, Italy; Oceanographic Institute, University of São Paulo, Praça do Oceanografico, 191, 05508-120 São Paulo, Brazil
| | - Carmen Corada-Fernández
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus de Excelencia Internacional del Mar (CEI-MAR), Cadiz 11510, Spain
| | - Eduardo González-Mazo
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus de Excelencia Internacional del Mar (CEI-MAR), Cadiz 11510, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus de Excelencia Internacional del Mar (CEI-MAR), Cadiz 11510, Spain
| |
Collapse
|
79
|
Li AJ, Sang Z, Chow CH, Law JCF, Guo Y, Leung KSY. Environmental behavior of 12 UV filters and photocatalytic profile of ethyl-4-aminobenzoate. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:115-125. [PMID: 28511043 DOI: 10.1016/j.jhazmat.2017.04.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Ethyl-4-aminobenzoate (Et-PABA) is currently used as a substitute for 4-aminobenzoate (PABA) in sunscreens and anesthetic ointments. Despite its widespread use and hydrophilicity, Et-PABA has never been found in environmental waters. This study, probed the occurrence of Et-PABA in both seawater and drinking water sources in Hong Kong, and evaluated its transformation products (TPs) and environmental fate via cumulative potency and photocatalytic profile analyses. Another 11 UV filters used in skin-care products were also studied. Et-PABA was not detected in any water sample. Four other UV filters were dominant at ng/L level in both seawater and drinking water sources. UHPLC-QTOF-MS was used to elucidate the structure of TPs. With high resolution accurate mass data and fragment rationalization, 11 Et-PABA TPs were characterized, including seven intermediates firstly proposed as TPs; two compounds were reported for the first time. It is proposed that photocatalysis induces transformation pathways of (de)hydroxylation, demethylation and molecular rearrangement. Luminescent bacteria tests showed decreasing toxicity with increasing irradiation of Et-PABA, suggesting that irradiation TPs are less toxic than the parent compound. Transformation of Et-PABA appears to explain why Et-PABA has not been detected in the natural environment.
Collapse
Affiliation(s)
- Adela Jing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Key Laboratory of Tropical Agro-environment, Ministry of Agriculture of China, South China Agricultural University, Guangzhou 510642, China
| | - Ziye Sang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Chi-Hang Chow
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Ying Guo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - K S-Y Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
80
|
Sharma A, Bányiová K, Babica P, El Yamani N, Collins AR, Čupr P. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:18-26. [PMID: 28340478 DOI: 10.1016/j.scitotenv.2017.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/25/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25μgmL-1. trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25μgmL-1. The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25μgmL-1. The No observed adverse effect level (NOAEL, mg kg-1bwday-1) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAELtrans-EHMC=3.07, NOAELcis-EHMC=0.30 for TK-6 and NOAELtrans-EHMC=26.46, NOAELcis-EHMC=20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg-1bwday-1) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HIcis-EHMC was 7 times higher than HItrans-EHMC. In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfDtrans-EHMC=0.20 and RfDcis-EHMC=0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs.
Collapse
Affiliation(s)
- Anežka Sharma
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Bányiová
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Naouale El Yamani
- Department of Nutrition, University of Oslo, PO Box 1046, Blindern, N-0316 Oslo, Norway; Department of Environmental Chemistry, Health Effect Laboratory, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | | | - Pavel Čupr
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
81
|
Zhang Q, Ma X, Dzakpasu M, Wang XC. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:338-347. [PMID: 28437725 DOI: 10.1016/j.ecoenv.2017.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC50, increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH3 and -SO3H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays.
Collapse
Affiliation(s)
- Qiuya Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Xiaoyan Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China.
| |
Collapse
|
82
|
Ma B, Lu G, Liu J, Yan Z, Yang H, Pan T. Bioconcentration and multi-biomarkers of organic UV filters (BM-DBM and OD-PABA) in crucian carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:178-187. [PMID: 28343007 DOI: 10.1016/j.ecoenv.2017.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Organic UV filters (OUV-Fs) are increasingly used in sunscreens and personal care products. In the present work, the bioconcentration and multi-biomarker effects of butyl methoxydibenzoylmethane (BM-DBM) and ethylhexyl dimethyl p-aminobenzoate (OD-PABA) were investigated in crucian carp (Carassius auratus). The fish were exposed to various concentrations of BM-DBM (3.88, 35.61, 181.85 and 337.15μg/L), OD-PABA (4.66, 53.83, 264.22 and 459.32μg/L) and their mixture (2.31+2.79, 23.69+26.18, 97.37+134.81 and 193.93+246.08μg/L) for 28 days. The maximal concentrations of two OUV-Fs were detected in the fish liver, followed by the brain, kidney, gill and muscle in most cases. The maximal BCF values of OD-PABA calculated in various exposure concentrations were 0.37 - 101.21 in single exposure groups and 0.11 - 31.09 in mixed exposure groups. Acetylcholinesterase (AChE) activity was significantly inhibited by BM-DBM as well as the mixtures at all of the exposure concentrations and by OD-PABA at higher concentrations (≥264.22μg/L) during 28 days of exposure. The maximal inhibition rates of AChE activity reached 64.04% for BM-DBM, 41.05% for OD-PABA and 61.50% for the mixtures at the highest concentration, which indicated that these two OUV-Fs might damage the central nervous system. Concerning oxidative stress status, BM-DBM and the mixtures significantly increased superoxide dismutase (SOD) and glutathione reductase (GR) activities and inhibited catalase (CAT) activity, while OD-PABA caused a significant increase of GR and CAT activities. AChE and GR activities seemed to be more sensitive biomarkers for BM-DBM and OD-PABA.
Collapse
Affiliation(s)
- Binni Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ting Pan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
83
|
Peng X, Fan Y, Jin J, Xiong S, Liu J, Tang C. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:55-65. [PMID: 28347904 DOI: 10.1016/j.envpol.2017.03.035] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 05/14/2023]
Abstract
Bioaccumulation and trophic transfer in ecosystems is an important criterion for assessing environmental risks of contaminants. This study investigated bioaccumulation and biomagnification of 13 organic ultraviolet absorbents (UVAs) in marine wildlife organisms in the Pearl River Estuary, South China Sea. The UVAs could accumulate in the organisms with biota - sediment accumulation factors (BSAF) of 0.003-2.152. UV531 was the most abundant and showed the highest tendency to accumulate in the organisms with a median BSAF of 1.105. The UVAs demonstrated species - and compound-specific accumulation in the marine organism. Fishes showed significantly higher capability than the cephalopods and crustaceans in accumulation of the UVAs. Habitat did not demonstrate obvious impact on accumulation of the UVA. On the other hand, benzophenone-3, UV328, and UV234 showed significantly higher concentration in the detritus feeding fishes than carnivorous and planktivorous fishes, suggesting governing effect of dietary habits of the organisms on bioaccumulation of these UVAs. Direct uptake from growth media was a significant exposure pathway of the organisms to the UVAs. The estimated trophic magnification factors and biomagnification factors revealed that UV329, UV531, and octocrylene could potentially biomagnify in the marine food web.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou 510640, China.
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabin Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songsong Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Zeng L, Lam JCW, Horii Y, Li X, Chen W, Qiu JW, Leung KMY, Yamazaki E, Yamashita N, Lam PKS. Spatial and temporal trends of short- and medium-chain chlorinated paraffins in sediments off the urbanized coastal zones in China and Japan: A comparison study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:357-367. [PMID: 28209434 DOI: 10.1016/j.envpol.2017.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/15/2017] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
To examine the impacts of urbanization and industrialization on the coastal environment, and assess the effectiveness of control measures on the contamination by chlorinated paraffins (CPs) in East Asia, surface and core sediments were sampled from the urbanized coastal zones in China and Japan (i.e., Pearl River Delta (PRD), Hong Kong waters and Tokyo Bay) and analyzed for short-chain (SCCPs) and medium-chain CPs (MCCPs). Much higher concentrations of CPs were found in the industrialized PRD than in adjacent Hong Kong waters. Significant correlation between CP concentration and population density in the coastal district of Hong Kong was observed (r2 = 0.72 for SCCPs and 0.55 for MCCPs, p < 0.05), highlighting the effect of urbanization. By contrast, a relatively lower pollution level of CPs was detected in Tokyo Bay. More long-chain groups within SCCPs in the PRD than in Hong Kong waters and Tokyo Bay implied the effect of industrialization. Comparison of temporal trends between Hong Kong outer harbor with Tokyo Bay shows the striking difference in historical deposition of CPs under different regulatory situations in China and Japan. For the first time, the declining CP concentrations in Tokyo Bay, Japan, attest to the effectiveness of emissions controls.
Collapse
Affiliation(s)
- Lixi Zeng
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China.
| | - Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Weifang Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
85
|
Tsui MMP, Lam JCW, Ng TY, Ang PO, Murphy MB, Lam PKS. Occurrence, Distribution, and Fate of Organic UV Filters in Coral Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4182-4190. [PMID: 28351139 DOI: 10.1021/acs.est.6b05211] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic ultraviolet (UV) filters are widely used in personal care products and occur ubiquitously in the aquatic environment. In this study, concentrations of seven commonly used organic UV filters were determined in seawater, sediment and five coral species collected from the eastern Pearl River Estuary of South China Sea. Five compounds, benzophenone-1, -3, and -8 (BP-1, -3, and -8), octocrylene (OC) and octyl dimethyl-p-aminobenzoic acid (ODPABA), were detected in the coral tissues with the highest detection frequencies (>65%) and concentrations (31.8 ± 8.6 and 24.7 ± 10.6 ng/g ww, respectively) found for BP-3 and BP-8. Significantly higher concentrations of BP-3 were observed in coral tissues in the wet season, indicating that higher inputs of sunscreen agents could be attributed to the increased coastal recreational activities. Accumulation of UV filters was only observed in soft coral tissues with bioaccumulation factors (log10-values) ranging from 2.21 to 3.01. The results of a preliminary risk assessment indicated that over 20% of coral samples from the study sites contained BP-3 concentrations exceeding the threshold values for causing larval deformities and mortality in the worst-case scenario. Higher probabilities of negative impacts of BP-3 on coral communities are predicted to occur in wet season.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Science and Environmental Studies, The Education University of Hong of Kong , Hong Kong SAR, China
| | - T Y Ng
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - P O Ang
- Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong , Hong Kong SAR, China
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
86
|
Cosmetic Ingredients as Emerging Pollutants of Environmental and Health Concern. A Mini-Review. COSMETICS 2017. [DOI: 10.3390/cosmetics4020011] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
87
|
Park CB, Jang J, Kim S, Kim YJ. Single- and mixture toxicity of three organic UV-filters, ethylhexyl methoxycinnamate, octocrylene, and avobenzone on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:57-63. [PMID: 27915143 DOI: 10.1016/j.ecoenv.2016.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/19/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
In freshwater environments, aquatic organisms are generally exposed to mixtures of various chemical substances. In this study, we tested the toxicity of three organic UV-filters (ethylhexyl methoxycinnamate, octocrylene, and avobenzone) to Daphnia magna in order to evaluate the combined toxicity of these substances when in they occur in a mixture. The values of effective concentrations (ECx) for each UV-filter were calculated by concentration-response curves; concentration-combinations of three different UV-filters in a mixture were determined by the fraction of components based on EC25 values predicted by concentration addition (CA) model. The interaction between the UV-filters were also assessed by model deviation ratio (MDR) using observed and predicted toxicity values obtained from mixture-exposure tests and CA model. The results from this study indicated that observed ECxmix (e.g., EC10mix, EC25mix, or EC50mix) values obtained from mixture-exposure tests were higher than predicted ECxmix (e.g., EC10mix, EC25mix, or EC50mix) values calculated by CA model. MDR values were also less than a factor of 1.0 in a mixtures of three different UV-filters. Based on these results, we suggest for the first time a reduction of toxic effects in the mixtures of three UV-filters, caused by antagonistic action of the components. Our findings from this study will provide important information for hazard or risk assessment of organic UV-filters, when they existed together in the aquatic environment. To better understand the mixture toxicity and the interaction of components in a mixture, further studies for various combinations of mixture components are also required.
Collapse
Affiliation(s)
- Chang-Beom Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
| | - Jiyi Jang
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
| | - Sanghun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany.
| |
Collapse
|
88
|
Chai Q, Zhang S, Wang X, Yang H, Xie YF. Effect of bromide on the transformation and genotoxicity of octyl-dimethyl-p-aminobenzoic acid during chlorination. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:626-633. [PMID: 27887814 DOI: 10.1016/j.jhazmat.2016.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Octyl-dimethyl-p-aminobenzoic acid (ODPABA), one of the most commonly used organic UV filters, can undergo considerable transformation in water when entering into the disinfection process. The impacts of bromide on degradation kinetics, formation and speciation of transformation products, regulated disinfection by-products (DBPs) as well as genotoxicity changes during ODPABA chlorination were investigated in this study. Results indicated that the reaction of ODPABA with chlorine followed pseudo-first-order and second-order kinetics. Adding bromide noticeably enhanced the degradation rate of ODPABA, but reduced the impact of chlorine dose. Four halogenated transformation products (Cl-ODPABA, Br-ODPABA, Cl-Br-ODPABA and Br2-ODPABA) were detected by LC-MS/MS. Mono-halogenated products were stable during 24-h chlorination, while di-halogenated products constantly increased. The total yields of trihalomethanes (THMs) and haloacetic acids (HAAs) were both low, but predominated by bromine substitution at high levels of bromide. In addition, SOS/umu tests showed that genotoxicity was generated after ODPABA chlorination, which was increased at least 1.5 times in the presence of bromine. Whereas, no significant genotoxicity variation was observed following bromide concentration change.
Collapse
Affiliation(s)
- Qiwan Chai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shujuan Zhang
- International Publishing Center, China National Knowledge Infrastructure, Beijing 100192, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
89
|
Pintado-Herrera MG, Wang C, Lu J, Chang YP, Chen W, Li X, Lara-Martín PA. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:128-138. [PMID: 26948510 DOI: 10.1016/j.jhazmat.2016.02.046] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
This study focused on comparing the occurrences and environmental toxic risks for diverse priority and emerging contaminants (>100 chemicals) in the sediments from the Pearl River Estuary (PRE, China). The most predominant compounds were cationic surfactants, organophosphate flame retardants (e.g., triisobutylphosphate), and polycyclic aromatic hydrocarbons (PAHs), accounting for >75% of the total mass inventory (∼330 metric tons). Wastewater discharges seem to be one of the main sources of pollution in the area, as the highest concentrations (>1000ngg-1 for some chemicals) were reported in the upper part of the PRE (near Guangzhou city) and Macau. Highest levels of ultraviolet (UV) filters, however, were observed in recreational areas, revealing the importance of direct sources (e.g., outdoor activities). An environmental risk assessment showed that PAHs and dichlorodiphenyl dichloroethylene had the highest hazard quotient (HQ) values (up to 233). Nonylphenol, a metabolite from nonionic surfactant, and two UV filters (2-ethyl-hexyl-4-trimethoxycinnamate and 4-methylbenzylidene camphor) also posed a significant threat to benthic species (HQ>1). Further research through the realization of monitoring campaigns and toxicity tests is encouraged, as the exposure of the resident aquatic organisms and human population to these and other emerging chemicals is expected to increase over the years.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| | - Cuicui Wang
- State Key Laboratory of Marine Environmental Science, College of Oceanography & Earth Science, Xiamen University, 361005, China
| | - Jungtai Lu
- Department of Oceanography, National Sun Yan-Sen University, Kaohsiung, 80424, Taiwan
| | - Yuan-Pin Chang
- Department of Oceanography, National Sun Yan-Sen University, Kaohsiung, 80424, Taiwan
| | - Weifang Chen
- State Key Laboratory of Marine Environmental Science, College of Oceanography & Earth Science, Xiamen University, 361005, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, College of Oceanography & Earth Science, Xiamen University, 361005, China.
| | - Pablo A Lara-Martín
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, CEI-MAR, University of Cadiz, 11510, Puerto Real, Spain
| |
Collapse
|
90
|
Peng X, Xiong S, Ou W, Wang Z, Tan J, Jin J, Tang C, Liu J, Fan Y. Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:139-146. [PMID: 27209124 DOI: 10.1016/j.jhazmat.2016.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 05/06/2016] [Indexed: 05/25/2023]
Abstract
A variety of personal care products have been classified as emerging contaminants (ECs). Occurrence, fate, spatial and vertical profiles of 13 ultraviolet absorbents, triclocarban (TCC) and its dechlorinated products, triclosan (TCS), 2-phenylphenol and parabens were investigated in riverine and estuarine sediment of the Pearl River catchment, China. Bisphenol A (BPA), a widely applied plasticizer, was also investigated. The ECs were widely present in the bed sediment. TCC was the most abundant with a maximum concentration of 332ngg-1 dry weight. The other prominent ECs included BPA, TCS, octocrylene, and benzotriazole UV stabilizers UV326 and UV328. Treated wastewater effluent was the major source of the ECs in the riverine sediment. TCC, BPA, TCS, methyparaben, UV531, UV326, and UV328 were also detected throughout the estuarine sediment cores, indicating their persistence in the sediment. Temporal trends of the ECs in the sediment cores reflected a combined effect of industrial development, population growth, human life quality improvement, and waste treatment capacity in the Pearl River Delta over the last decades. TCC dechlorination products were frequently detected in the bed sediment with higher levels near treated effluent outlets but only occasionally observed in the sediment cores, suggesting insignificant in-situ TCC dechlorination in the sediment.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou, 510640, China.
| | - Songsong Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou, 510640, China
| | - Weihui Ou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Tan
- Guangzhou Institute of Quality Monitoring and Inspection, Guangzhou, 510110, China
| | - Jiabin Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou, 510640, China
| | - Caiming Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou, 510640, China
| | - Yujuan Fan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Provincial Key Laboratory of Environmental Utilization and Protection of Guangdong, Guangzhou, 510640, China
| |
Collapse
|
91
|
Volpe A, Pagano M, Mascolo G, Grenni P, Rossetti S. Biodegradation of UV-filters in marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:448-457. [PMID: 27750141 DOI: 10.1016/j.scitotenv.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
The degradation of two of the most frequently used UV-filters was investigated through microcosm studies. Marine sediments sampled from two sites in Italy (La Spezia harbour and Sarno river estuary, S1 and S2 respectively) were used to set up aerobic and anaerobic sets of reactors. The sediments were spiked with a methanol solution of 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl 4-(dimethylamino)benzoate (EH-DPAB), at concentrations of either 25 or 50mgkg-1 each. Methanol (6.3g/L) also served as an organic amendment and growth substrate for improving microbial activity. Monitoring of the biotic and abiotic degradation of the selected contaminants over 16months revealed that 4-MBC biodegradation was very slow and incomplete, whereas over 90% of EH-DPAB was degraded both in the aerobic and the anaerobic reactors by the natural microbial communities of both sediments. Repeated spikes of EH-DPAB were followed by complete decay, characterised by first-order kinetics. The calculated kinetic rate constants under aerobic and anaerobic conditions were similar. In reactors inoculated with the S1 sediment the degradation rate constants progressively increased after each spike, up to the value of 0.039d-1. For the S2 sediment the rate constant was around 0.020d-1 throughout the duration of the experiment. Mass spectrometry analysis of sediment extracts allowed detection of potential transformation products of EH-DPAB and 4-MBC. Moreover, the natural microbial community of the sediments was studied using the CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) both in the initial sediments and after degradation under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Angela Volpe
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy.
| | - Michele Pagano
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy
| | - Giuseppe Mascolo
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA) Viale F. De Blasio, 5 - 70132 Bari, Italy
| | - Paola Grenni
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA), Via Salaria Km. 29, 300 - 00015 Monterotondo, RM, Italy
| | - Simona Rossetti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca Sulle Acque (CNR-IRSA), Via Salaria Km. 29, 300 - 00015 Monterotondo, RM, Italy
| |
Collapse
|
92
|
Huang W, Xie Z, Yan W, Mi W, Xu W. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River estuary of China. MARINE POLLUTION BULLETIN 2016; 111:153-159. [PMID: 27431750 DOI: 10.1016/j.marpolbul.2016.07.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
This study reports the occurrence and distribution of synthetic musks (SMs) and organic UV filters (UVFs) in sediment samples collected in 8 riverine runoffs from the Pearl River and Pearl River estuary (PRE). Here, 6 of the 8 target compounds were detected in all sediments with concentrations ranging from 0.35ngg(-1) to 456ngg(-1). Higher concentrations of SMs and UVFs were evident in the eastern outlets compared to the western suggesting greater input of these contaminants from the Pearl River Delta (PRD) region. All the compounds showed a decreasing trend toward the seaward side which confirming that riverine runoff was the most important source of SMs and UVFs to the coastal environment. Notably, high levels of SMs and UVFs were detected in two fishing harbors in the PRE area. In comparison to UVFs, the SM compounds exhibited a significant correlation with TOC content in the sediments.
Collapse
Affiliation(s)
- Weixia Huang
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhiyong Xie
- Department for Environmental Chemistry, Institute of Coastal Research, Helmholtz Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht 21502, Germany
| | - Wen Yan
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wenying Mi
- Department for Environmental Chemistry, Institute of Coastal Research, Helmholtz Zentrum Geesthacht, Centre for Materials and Coastal Research, Geesthacht 21502, Germany
| | - Weihai Xu
- CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
93
|
Sang Z, Leung KSY. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:489-498. [PMID: 27235899 DOI: 10.1016/j.scitotenv.2016.05.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Organic UV filters, now considered to be emerging contaminants in aquatic ecosystems, are being intensively tracked in environmental waters worldwide. However, their environmental fate and impact of these contaminants on marine organisms remains largely unknown, especially in Asia. This work elucidates the occurrence and the ecological risks of seven UV filters detected in farmed fish, wild mussels and some other wild organisms collected from local mariculture farms in Hong Kong. For all of the organisms, ethylhexyl methoxycinnamate (EHMC) and octyl dimethyl p-aminobenzoic acid (OD-PABA) were the predominant contaminants with the highest concentrations up to 51.3 and 24.1ng/g (dw), respectively; lower levels were found for benzophenone-8 (BP-8), octocrylene (OC) and benzophenone-3 (BP-3) from <LOQ to <14.4ng/g (dw); 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC) were rarely detected. Additionally, the detection frequencies and measured concentrations of all targets were clearly higher in mussels than in fish. Spatial distribution of studied UV filters indicated a positive correlation between their measured concentrations and the anthropogenic activities responsible for their direct emission. The ecological risk assessment specific to the marine aquatic environment was carried out. The risk quotient (RQ) values of EHMC and BP-3 were calculated as 3.29 and 2.60, respectively, indicating these two UV filters may pose significant risks to the marine aquatic environment.
Collapse
Affiliation(s)
- Ziye Sang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, PR China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
94
|
Zhang QY, Ma XY, Wang XC, Ngo HH. Assessment of multiple hormone activities of a UV-filter (octocrylene) in zebrafish (Danio rerio). CHEMOSPHERE 2016; 159:433-441. [PMID: 27337435 DOI: 10.1016/j.chemosphere.2016.06.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
In this study, zebrafish (Danio rerio) were exposed to a UV-filter-octocrylene (OCT) with elevated concentrations for 28 d. The total body accumulation of OCT in zebrafish was found to reach 2321.01 ("L" level), 31,234.80 ("M" level), and 70,593.38 ng g(-1) ("H" level) when the average OCT exposure concentration was controlled at 28.61, 505.62, and 1248.70 μg L(-1), respectively. Gross and histological observations as well as RT-qPCR analysis were conducted to determine the effects of OCT accumulation on zebrafish. After exposure, the gonad-somatic index and percentage of vitellogenic oocytes were found to increase significantly in the ovaries of female zebrafish at the H accumulation level. Significant up-regulation of esr1 and cyp19b were observed in the gonads, as well as vtg1 in the livers for both female and male zebrafish. At M and H accumulation levels, apparent down-regulation of ar was observed in the ovaries and testis of the female and male zebrafish, respectively. Although the extent of the effects on zebrafish differed at different accumulation levels, the induction of vtg1 and histological changes in the ovaries are indications of estrogenic activity and the inhibition of esr1 and ar showed antiestrogenic and antiandrogenic activity, respectively. Thus, as OCT could easily accumulate in aquatic life such as zebrafish, one of its most of concern hazards would be the disturbance of the histological development and its multiple hormonal activities.
Collapse
Affiliation(s)
- Qiuya Y Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
95
|
Ozáez I, Morcillo G, Martínez-Guitarte JL. The effects of binary UV filter mixtures on the midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 556:154-162. [PMID: 26971216 DOI: 10.1016/j.scitotenv.2016.02.210] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints.
Collapse
Affiliation(s)
- Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
96
|
Silva AA. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil. HEALTH PHYSICS 2016; 110:623-626. [PMID: 27115230 DOI: 10.1097/hp.0000000000000489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The total ozone column of 265 ± 11 Dobson Units in the tropical-equatorial zones and 283 ± 16 Dobson Units in the subtropics of Brazil are among the lowest on Earth, and as a result, the prevalence of skin cancer due to solar ultraviolet radiation is among the highest. Daily erythemal doses in Brazil can be over 7,500 J m. Erythemal dose rates on cloudless days of winter and summer are typically about 0.147 W m and 0.332 W m, respectively. However, radiation enhancement events yielded by clouds have been reported with erythemal dose rates of 0.486 W m. Daily doses of the diffuse component of erythemal radiation have been determined with values of 5,053 J m and diffuse erythemal dose rates of 0.312 W m. Unfortunately, Brazilians still behave in ways that lead to overexposure to the sun. The annual personal ultraviolet radiation ambient dose among Brazilian youths can be about 5.3%. Skin cancer in Brazil is prevalent, with annual rates of 31.6% (non-melanoma) and 1.0% (melanoma). Governmental and non-governmental initiatives have been taken to increase public awareness of photoprotection behaviors. Resolution #56 by the Agência Nacional de Vigilância Sanitária has banned tanning devices in Brazil. In addition, Projects of Law (PL), like PL 3730/2004, propose that the Sistema Único de Saúde should distribute sunscreen to members of the public, while PL 4027/2012 proposes that employers should provide outdoor workers with sunscreen during professional outdoor activities. Similar laws have already been passed in some municipalities. These are presented and discussed in this study.
Collapse
Affiliation(s)
- Abel A Silva
- *Instituto de Estudos Avançados (IEAv), Trevo Cel Av José Alberto Albano do Amarante 1, Putim, São José dos Campos, CEP 12.228-001, SP, Brazil
| |
Collapse
|
97
|
Bargar TA, Alvarez DA, Garrison VH. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands national park, St. John, U.S. Virgin Islands. MARINE POLLUTION BULLETIN 2015; 101:193-199. [PMID: 26581812 DOI: 10.1016/j.marpolbul.2015.10.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r(2)=0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.
Collapse
Affiliation(s)
- Timothy A Bargar
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - David A Alvarez
- Columbia Environmental Research Center, U.S. Geological Survey, 4200 New Haven Road, Columbia, MO 65201, USA
| | - Virginia H Garrison
- Coastal and Marine Science Center, U.S. Geological Survey, 600 4th Street South, St. Petersburg, FL 33701, USA
| |
Collapse
|
98
|
Sánchez-Quiles D, Tovar-Sánchez A. Are sunscreens a new environmental risk associated with coastal tourism? ENVIRONMENT INTERNATIONAL 2015; 83:158-70. [PMID: 26142925 DOI: 10.1016/j.envint.2015.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 05/26/2023]
Abstract
The world coastal-zone population and coastal tourism are expected to grow during this century. Associated with that, there will be an increase in the use of sunscreens and cosmetics with UV-filters in their formulation, which will make coastal regions worldwide susceptible to the impact of these cosmetics. Recent investigations indicate that organic and inorganic UV-filters, as well as many other components that are constituents of the sunscreens, reach the marine environment--directly as a consequence of water recreational activities and/or indirectly from wastewater treatment plants (WWTP) effluents. Toxicity of organic and inorganic UV filters has been demonstrated in aquatic organism. UV-filters inhibit growth in marine phytoplankton and tend to bioaccumulate in the food webs. These findings together with coastal tourism data records highlight the potential risk that the increasing use of these cosmetics would have in coastal marine areas. Nevertheless, future investigations into distribution, residence time, aging, partitioning and speciation of their main components and by-products in the water column, persistence, accumulation and toxicity in the trophic chain, are needed to understand the magnitude and real impact of these emerging pollutants in the marine system.
Collapse
Affiliation(s)
- David Sánchez-Quiles
- Department of Global Change Research, Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Miguel Marqués 21, 07190 Esporles, Balearic Island, Spain.
| | - Antonio Tovar-Sánchez
- Department of Global Change Research, Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Miguel Marqués 21, 07190 Esporles, Balearic Island, Spain; Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|