51
|
Borges WG, Cararo ER, de Brito R, Pazini AN, Lima-Rezende CA, Rezende RDS. Microplastics alter the leaf litter breakdown rates and the decomposer community in subtropical lentic microhabitats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123930. [PMID: 38615838 DOI: 10.1016/j.envpol.2024.123930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Microplastics, pervasive pollutants in aquatic environments, have been primarily studied for their impact on marine ecosystems. However, their effects on freshwater systems, particularly in forested phytotelmata habitats, remain understudied in Subtropical systems. This research examines the influence of varying microplastic concentrations (0.0, 200, 2,000, 20,000, and 200,000 ppm) on leaf litter breakdown of Inga vera (in bags of 10 and 0.05 mm mesh) and the naturally associated invertebrate community occurring in forested phytotelmata. The study employs an experimental design with microplastic concentration treatments in artificial microcosms (buckets with 800 mL of rainwater) arranged in an area of Atlantic Rain Forest native vegetation of Subtropical systems. The results indicate that elevated concentrations of microplastics may enhance leaf litter breakdown (6-8%), irrespective of the bag mesh, attributed to heightened decomposer activity and biofilm formation. Consequently, this contributes to increased invertebrate richness (33-37%) and greater shredder abundance (21-37%). Indicator analysis revealed that Culicidae, Stratiomyidae, Chironomidae, Empididae, Planorbidae, and Ceratopogonidae were indicative of some microplastic concentrations. These findings underscore the significance of accounting for microplastics when evaluating the taxonomic and trophic characteristics of invertebrate communities, as well as the leaf breakdown process in Subtropical systems.
Collapse
Affiliation(s)
- William Gabriel Borges
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil.
| | - Emanuel Rampanelli Cararo
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil
| | - Raquel de Brito
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil
| | - Amanda Ninov Pazini
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil
| | - Cássia Alves Lima-Rezende
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil
| | - Renan de Souza Rezende
- Postgraduate Program in Environmental Sciences, Communitarian University of Chapecó Region - Unochapecó, CEP, 89809-000, Chapecó, Santa Catarina, Brazil
| |
Collapse
|
52
|
Song X, Ding J, Zhang Y, Zhu M, Peng Y, Wang Z, Pan G, Zou H. New insights into changes in phosphorus profile at sediment-water interface by microplastics: Role of benthic bioturbation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134047. [PMID: 38492392 DOI: 10.1016/j.jhazmat.2024.134047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Microplastics (MPs) have attracted increasing attention due to their ubiquitous occurrence in freshwater sediments and the detrimental effects on benthic invertebrates. However, a clear understanding of their downstream impacts on ecosystem services is still lacking. This study examines the effects of bio-based polylactic acid (PLA), fuel-based polyethylene terephthalate (PET), and biofilm-covered PET (BPET) MPs on the bioturbator chironomid larvae (Tanypus chinensis), and the influence on phosphorus (P) profiles in microcosms. The changes in biochemical responses and metabolic pathways indicated that MPs disrupted energy synthesis by causing intestinal blockage and oxidative stress in T. chinensis, leading to energy depletion and impaired bioturbation activity. The impairment further resulted in enhanced sedimentary P immobilization. For larval treatments, the internal-P loadings were respectively 11.4%, 8.6%, and 9.0% higher in the PLA, PET, and BPET groups compared to the non-MP control. Furthermore, the influence of bioturbation on P profiles was MP-type dependent. Both BPET and PLA treatments displayed more obvious impacts on P profiles compared to PET due to the changes in MP bioavailability or sediment microenvironment. This study connects individual physiological responses to broader ecosystem services, showing that MPs alter P biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Yunbo Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mingda Zhu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yi Peng
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Gang Pan
- School of Humanity, York St John University, Lord Mayor's Walk, York YO31 7EX, UK
| | - Hua Zou
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
53
|
Wang Y, Liu X, Han W, Jiao J, Ren W, Jia G, Huang C, Yang Q. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 400:130649. [PMID: 38570098 DOI: 10.1016/j.biortech.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Microplastics in wastewater have been investigated globally, but less research on the migration and transformation of microplastics throughout wastewater and sludge treatment. This study investigated the fate of microplastics in a reclaimed wastewater treatment plant and a centralized sludge treatment center with thermal hydrolysis and anaerobic digestion. The results exhibited that the effluent microplastics of this reclaimed wastewater treatment plant were 0.75 ± 0.26 items/L. Approximately 98 % of microplastics were adsorbed and precipitated into sludge. After thermal hydrolysis, anaerobic digestion and plate and frame dewatering, the removal rate of microplastics was 41 %. Thermal hydrolysis was the most effective method for removing microplastics. Polypropylene, polyamide and polyethylene were widely detected in wastewater and sludge. 30 million microplastics were released into the downstream river and 51.80 billion microplastics entered soil through sludge cake daily. Therefore, substantial microplastics still entered the natural environment despite the high microplastics removal rate of reclaimed wastewater and sludge treatment.
Collapse
Affiliation(s)
- Yaxin Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiuhong Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Weipeng Han
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiatong Jiao
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Wenyang Ren
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Gaofeng Jia
- Beijing Drainage Group Co., Ltd, Beijing 100034, China
| | - Chenduo Huang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
54
|
Silva I, Tacão M, Henriques I. Hidden threats in the plastisphere: Carbapenemase-producing Enterobacterales colonizing microplastics in river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171268. [PMID: 38423305 DOI: 10.1016/j.scitotenv.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Carbapenem resistance poses a significant burden on healthcare systems worldwide. Microplastics (MPs) have emerged as potential contributors to antibiotic resistance spread in the environment. However, the link between MPs and carbapenem resistance remains unexplored. We investigated the prevalence of carbapenem-resistant bacteria colonizing MPs placed in a river. Three replicates of a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET) and of PET alone were placed both upstream and downstream a wastewater treatment plant (WWTP) discharge. Carbapenem-resistant Enterobacterales (CRE) were further characterized by phenotypic tests and whole-genome sequencing. The abundance of carbapenem-resistant bacteria on MPs increased significantly downstream the WWTP. Their prevalence was higher in the MPs mixture compared to PET alone. CRE strains colonizing MPs included Klebsiella pneumoniae (n = 3), Klebsiella quasipneumoniae (n = 3), Raoultella ornithinolytica (n = 2), Enterobacter kobei (n = 1) and Citrobacter freundii (n = 1), most (n = 8) recovered after the WWTP discharge. All strains exhibited at least one of the tested virulence traits (biofilm formation at 37 °C, haemolytic activity and siderophore production), were multi-drug resistant and carried carbapenemase-encoding genes [blaKPC-3 (n = 5), blaGES-5 (n = 2) or blaKPC-3 + blaGES-5 (n = 3)]. Uncommon phenotypes of resistance to imipenem/relebactam (n = 3) and ceftazidime/avibactam (n = 2) were observed. Two blaKPC-3-positive K. pneumoniae successfully transfer this gene trough conjugation. Genome analysis predicted all strains as human pathogens. The blaKPC-3 was associated with the Tn4401d transposon on a pBK30683-like plasmid in most of the isolates (n = 7). The blaGES-5 was mostly linked to class 3 integrons. A K. pneumoniae strain belonging to the outbreak-causing high-risk clone ST15 carried both blaKPC-3 and blaCTX-M-15. Two K. quasipneumoniae isolates carried the plasmid-mediated colistin resistance gene mcr-9. Our results underscore the role of MPs as vectors for CRE dissemination, particularly following WWTPs discharges. MPs may act as carriers, facilitating the dissemination of carbapenemase-encoding genes and potentially contributing to increased CRE incidence in the environment.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal; CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Tacão
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
55
|
Deng W, Wang Y, Wang Z, Liu J, Wang J, Liu W. Effects of photoaging on structure and characteristics of biofilms on microplastic in soil: Biomass and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133726. [PMID: 38341883 DOI: 10.1016/j.jhazmat.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Understanding of the environmental behaviors of microplastics is limited by a lack of knowledge about how photoaging influences biofilm formation on microplastics in soil. Here, original microplastics (OMPs) and photoaged-microplastics (AMPs) were incubated in soil to study the effect of photoaging on formation and characteristics of biofilm on the poly (butylene succinate) microplastics. Because photoaging decreased the hydrophobicity of the microplastic, the biomass of biofilm on the OMPs was nearly twice that on the AMPs in the early stage of incubation. However, the significance of the substrate on biomass in the biofilm declined as the plastisphere developed. The bacterial communities in the plastisphere were distinct from, and less diverse than, those in surrounding soil. The dominant genera in the OMPs and AMPs plastispheres were Achromobacter and Burkholderia, respectively, indicating that photoaging changed the composition of the bacterial community of biofilm at the genus level. Meantime, photoaging decreased the complexity and stability of the plastisphere bacterial community network. Results of Biolog ECO-microplate assays and functional prediction from amplicons showed that photoaging treatment enhanced the carbon metabolic capacity of the microplastic biofilm. This study provides new insights into the formation of plastispheres in soil.
Collapse
Affiliation(s)
- Wenbo Deng
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yajing Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinxian Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Wenjuan Liu
- Shanxi Key Laboratory for Ecological Restoration of Loess Plateau China, Observation and Research Station of the Ministry of Education of Shanxi Subalpine Grassland Ecosystem, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
56
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
57
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
58
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
59
|
Zhu L, Wang K, Wu X, Zheng H, Liao X. Association of specific gut microbiota with polyethylene microplastics caused gut dysbiosis and increased susceptibility to opportunistic pathogens in honeybees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170642. [PMID: 38320694 DOI: 10.1016/j.scitotenv.2024.170642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 μm, 10 μm, 100 μm in diameter). Oral exposure to 100-μm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.
Collapse
Affiliation(s)
- Liya Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| |
Collapse
|
60
|
Tian H, Zheng C, Huang X, Qi C, Li B, Du Z, Zhu L, Wang J, Wang J. Effects of farmland residual mulch film-derived microplastics on the structure and function of soil and earthworm Metaphire guillelmi gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170094. [PMID: 38224880 DOI: 10.1016/j.scitotenv.2024.170094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Microplastics derived from polyethylene (PE) mulch films are widely found in farmland soils and present considerable potential threats to agricultural soil ecosystems. However, the influence of microplastics derived from PE mulch films, especially those derived from farmland residual PE mulch films, on soil ecosystems remains unclear. In this study, we analyzed the bacterial communities attached to farmland residual transparent PE mulch film (FRMF) collected from peanut fields and the different ecological effects of unused PE mulch film-derived microplastics (MPs) and FRMF-derived microplastics (MPs-aged) on the soil and earthworm Metaphire guillelmi gut microbiota, functional traits, and co-occurrence patterns. The results showed that the assembly and functional patterns of the bacterial communities attached to the FRMF were clearly distinct from those in the surrounding farmland soil, and the FRMF enriched some potential plastic-degrading and pathogenic bacteria, such as Nocardioidaceae, Clostridiaceae, Micrococcaceae, and Mycobacteriaceae. MPs substantially influenced the assembly and functional traits of soil bacterial communities; however, they only significantly changed the functional traits of earthworm gut bacterial communities. MPs-aged considerably affected the assembly and functional traits of both soil and earthworm gut bacterial communities. Notably, MPs had a more remarkable effect on nitrogen-related functions than the MPs-aged in numbers for both soil and earthworm gut samples. Co-occurrence network analysis revealed that both MPs and MPs-aged enhanced the synergistic interactions among operational taxonomic units (OTUs) of the composition networks for all samples. For community functional networks, MPs and MPs-aged enhanced the antagonistic interactions for soil samples; however, they exhibited contrasting effects for earthworm gut samples, as MPs enhanced the synergistic interactions among the functional contents. These findings broaden and deepen our understanding of the effects of FRMF-derived microplastics on soil ecosystems, suggesting that the harmful effects of aged plastics on the ecological environment should be considered.
Collapse
Affiliation(s)
- Huimei Tian
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Chuanwei Zheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China
| | - Xinjie Huang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China
| | - Chen Qi
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| |
Collapse
|
61
|
Huang Y, Zhu Z, Li T, Li M, Cai Z, Wang X, Gong H, Yan M. Mangrove plants are promising bioindicator of coastal atmospheric microplastics pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133473. [PMID: 38219586 DOI: 10.1016/j.jhazmat.2024.133473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Plastics are commonly used by society and their break down into millimeter-sized bits known as microplastics (MPs). Due to the possibility of exposure, reports of them in atmospheric deposition, indoor, and outdoor air have sparked worry for public health. In tropical and subtropical regions all throughout the world, mangroves constitute a distinctive and significant type of coastal wetlands. Mangrove plants are considered to have the effect of accumulating sediment MPs, but the sedimentation of atmospheric MPs has not been reported. In this study, we illustrated the characteristics, abundance and spatial distribution of MPs in different species of mangrove leaves along the Seagull Island in Guangzhou. MPs samples from leaves in five species showed various shapes, colors, compositions, sizes and abundance. Acanthus ilicifolius had an average fallout rate of 1223 items/m2/day which has the highest abundance of MPs in all samples. Four shapes of MPs were found in all leaves surfaces including fiber, fragment, pellet, and film, with fiber is the most. The dominant types of MPs in all leaves were cellulose and rayon. Most of the total MPs size were smaller than 2 mm. Clearly, the microstructures of each species leaf surfaces had an impact on its ability to retain MPs. The plants rough blade surfaces and big folds or gullies caused more particles to accumulate and had a higher MPs retention capacity. Overall, our study contributes to a better knowledge of the condition of MPs pollution in atmosphere and the connection between leaves structure and the retention of MPs, which indicates that mangrove plants are promising bioindicator of coastal atmospheric MPs pollution.
Collapse
Affiliation(s)
- Yuanyin Huang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ziying Zhu
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tianmu Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Minqian Li
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zeming Cai
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaocui Wang
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Han Gong
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Muting Yan
- Joint laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
62
|
Shao Y, Liu B, Guo K, Gao Y, Yue Q, Gao B. Coagulation performance and mechanism of different hydrolyzed aluminum species for the removal of composite pollutants of polyethylene and humic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133076. [PMID: 38029592 DOI: 10.1016/j.jhazmat.2023.133076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs) and natural organic matter (NOM) composite pollutants have become emerging contaminants with potential threats. Coagulation has been widely used to remove MPs and NOM, but the underlying mechanisms for the removal of MPs-NOM composite pollutants by hydrolyzed Al species remain unclear. Therefore, the coagulation performance and mechanism of AlCl3, polyaluminum chloride with basicity of 2.2 (PAC22), and PAC25 in treating polyethylene (PE), humic acid (HA), and PE-HA composite systems were systematically investigated. The results showed that in the single PE system, PAC25 with hexagonal clusters achieved the maximum removal (68.09 %) (pH: 5, dosage: 0.5 mM) since adsorption bridging and sweeping effect were the main mechanisms for PE removal. The adsorption of HA on the PE surface enhanced its hydrophilicity and electrostatic repulsion, resulting in decreased PE removal. In the AlCl3-PE-HA system, the oligomeric Al first interacted with the -COOH and C-OH of HA through complexation, followed by the meso- and polymers of Al interacted with PE by electrostatic adsorption. The pre-formed medium polymeric Al species (Alb) and colloidal or solid Al species (Alc) in PAC22 and PAC25 formed complexes with the -OH and -COOH groups of HA, respectively, and then removed PE by adsorption bridging and sweeping effect.
Collapse
Affiliation(s)
- Yanlei Shao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, China.
| |
Collapse
|
63
|
Jin W, Zhang W, Tang H, Wang P, Zhang Y, Liu S, Qiu J, Chen H, Wang L, Wang R, Sun Y, Liu P, Tang H, Zhu Y. Microplastics exposure causes the senescence of human lung epithelial cells and mouse lungs by inducing ROS signaling. ENVIRONMENT INTERNATIONAL 2024; 185:108489. [PMID: 38367553 DOI: 10.1016/j.envint.2024.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Microplastics (MPs) are environmental pollutants and can be inhaled by humans to threaten health. The lung tissue, responsible for the gas exchange between the body and the environment, is vulnerable to MPs exposure. However, from the perspective of cellular senescence, the effect of MPs on lung cells and tissues has not yet been deeply dissected. In this study, we reported that all the four typical MPs exhibited the significant biological effects in term of inducing senescence of human lung derived cells A549 and BEAS-2B in vitro. We further found that polyvinyl chloride (PVC) increased the reactive oxygen species (ROS) level in A549 cells and that PVC-induced senescent characteristics could be largely reversed by antioxidant treatment. Importantly, intratracheal instillation of PVC MPs in mice could effectively impair their physical function, induce the increased systemic inflammation level, cause the accumulation of senescent cells. Our study demonstrates that MPs induce senescence in human lung epithelial cells and mouse lungs by activating ROS signaling, and provides new insight into the potential pathogenesis of MPs on lung diseases.
Collapse
Affiliation(s)
- Wenhua Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Weibo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hejing Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Siyuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ju Qiu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Han Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lijuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ping Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yinhua Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
64
|
Song H, Xiao S, Zhou X, Li Y, Tao M, Wu F, Xu X. Temporal dynamics of bacterial colonization on five types of microplastics in a freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169697. [PMID: 38163614 DOI: 10.1016/j.scitotenv.2023.169697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs), as a new substrate, provide a unique niche for microbial colonization in the freshwater ecosystems; however, the impacts of long-term MP exposure on colonized bacteria are still unclear. In this study, five MP types were exposed in a freshwater lake for approximately one year, and the MP particles, together with the surrounding water, were collected on days 60, 150, 250 and 330 during the in situ field experiment. Bacteria on the MP surface, as well as free-living bacteria in the surrounding water, were analyzed to evaluate the temporal dynamics of these bacterial communities. Results show that all five MP types exhibited signs of degradation during the exposure process. Additionally, the alpha diversity, community structure and composition of MP-attached bacteria significantly differed from that of the free-living bacteria in the surrounding water, indicating that the five MP types could provide a preferable niche for bacterial colonization in a freshwater environment. Proteobacteria, Chloroflexi, Verrucomicrobiota, Actinobacteriota and Firmicutes were the top five dominant phyla. Some plastic-degrading bacteria included in these phyla were detected, verifying that MP-attached biofilms had a certain degree of MP degradation potential. Some potentially pathogenic bacteria were also detected, suggesting an ecological threat for spreading disease in the aquatic ecosystem. Furthermore, the bacterial community and some metabolic pathways were significantly affected by the MP type (P < 0.01) and exposure time (P < 0.01), indicating that the presence of MPs not only alters the bacterial community structure and composition, but also influences their potential functional properties in freshwater ecosystems. Multiple factors, including the physicochemical properties related to MPs and the environmental parameters of the surrounding water, affect the community composition and the function of MP-attached bacteria to different degrees. Our findings indicate that the presence of MPs has a potential ecological impact on freshwater ecosystems.
Collapse
Affiliation(s)
- Haiya Song
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yanan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Tao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fan Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohong Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
65
|
Xu M, Chen M, Pan C, Xu RZ, Gao P, Chen HQ, Shen XX. Microplastics shape microbial interactions and affect the dissemination of antibiotic resistance genes in different full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168313. [PMID: 38007128 DOI: 10.1016/j.scitotenv.2023.168313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Wastewater treatment plants (WWTPs) pose a potential threat to the environment because of the accumulation of antibiotic resistance genes (ARGs) and microplastics (MPs). However, the interactions between ARGs and MPs, which have both indirect and direct effects on ARG dissemination in WWTPs, remain unclear. In this study, spatiotemporal variations in different types of MPs, ten ARGs (sul1, sul2, tetA, tetO, tetM, tetX, tetW, qnrS, ermB, and ermC), class 1 integron integrase (intI1) and transposon Tn916/1545 in three typical WWTPs were characterized. Sul1, tetO, and sul2 were the predominant ARGs in the targeted WWTPs, whereas the intI1 and transposon Tn916/1545 were positively correlated with most of the targeted ARGs. Saccharimonadales (4.15 %), Trichococcus (2.60 %), Nitrospira (1.96 %), Candidatus amarolinea (1.79 %), and SC-I-84 (belonging to phylum Proteobacteria) (1.78 %) were the dominant genera. Network and redundancy analyses showed that Trichococcus, Faecalibacterium, Arcobacter, and Prevotella copri were potential hosts of ARGs, whereas Candidatus campbellbacteria and Candidatus kaiserbacteria were negatively correlated with ARGs. The potential hosts of ARGs had a strong positive correlation with polyethylene terephthalate, silicone resin, and fluor rubber and a negative correlation with polyurethane. Candidatus campbellbacteria and Candidatus kaiserbacteria were positively correlated with polyurethane, whereas potential hosts of ARGs were positively correlated with polypropylene and fluor rubber. Structural equation modeling highlighted that intI1, transposon Tn916/1545 and microbial communities, particularly microbial diversity, dominated the dissemination of ARGs, whereas MPs had a significant positive correlation with microbial abundance. Our study deepens the understanding of the relationships between ARGs and MPs in WWTPs, which will be helpful in designing strategies for inhibiting ARG hosts in WWTPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Mengkai Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Chengyu Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao-Xiao Shen
- Institute of Water Science and Technology, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| |
Collapse
|
66
|
Nguyen MT, Phuong NN, Saad M, Tassin B, Gillet T, Guérin-Rechdaoui S, Azimi S, Rocher V, Gasperi J, Dris R. Microplastic accumulation in sewer sediments and its potential entering the environment via combined sewer overflows: a study case in Paris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10501-10507. [PMID: 38196043 DOI: 10.1007/s11356-023-31734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
During wet weather events, combined sewer overflows (CSOs) transfer large amount of particulate matter and associated pollutants into surrounding water bodies, thereby deteriorating the recipients' ecological health. Resuspension of sewer sediments during these events contributes significantly to pollution level of these discharges. However, how much this in-sewer process contributes to CSOs' quality regarding microplastic (MP) pollution is little known. Therefore, an investigation on sewer deposits inside the Parisian combined sewer network was carried out. The study found high MP concentrations stored in this matrix, ranging from 5 × 103 to 178 × 103 particle/kg dry weight. Polymer composition is similar to what found in raw wastewater, containing a high proportion of polyethylene and polypropylene. Thus, the results indicated the persistence of MPs in sewer network during transport during dry weather periods to treatment facilities. Once resuspension of sewer deposits happens, MPs can be released into water flow and get discharged along with CSOs. This highlights another potential pathway of MPs into freshwater environment.
Collapse
Affiliation(s)
- Minh Trang Nguyen
- LEESU, Ecole Des Ponts ParisTech, Université Paris Est Créteil, Marne-La-Vallée, France.
| | - Ngoc Nam Phuong
- Université Gustave Eiffel-Laboratoire Eau Environnement (LEE)-Allée Des Ponts Et Chaussées, 44344, Bouguenais, France
| | - Mohamed Saad
- LEESU, Ecole Des Ponts ParisTech, Université Paris Est Créteil, Marne-La-Vallée, France
| | - Bruno Tassin
- LEESU, Ecole Des Ponts ParisTech, Université Paris Est Créteil, Marne-La-Vallée, France
| | - Thomas Gillet
- Section de L'Assainissement de Paris, Subdivision Contrôle Des Eaux, 17 Rue Delesseux, 75019, Paris, France
| | - Sabrina Guérin-Rechdaoui
- Syndicat Interdépartemental Pour L'Assainissement de L'Agglomération Parisienne (SIAAP), Direction de L'innovation, 82 Avenue Kléber, 92700, Colombes, France
| | - Sam Azimi
- Syndicat Interdépartemental Pour L'Assainissement de L'Agglomération Parisienne (SIAAP), Direction de L'innovation, 82 Avenue Kléber, 92700, Colombes, France
| | - Vincent Rocher
- Syndicat Interdépartemental Pour L'Assainissement de L'Agglomération Parisienne (SIAAP), Direction de L'innovation, 82 Avenue Kléber, 92700, Colombes, France
| | - Johnny Gasperi
- Université Gustave Eiffel-Laboratoire Eau Environnement (LEE)-Allée Des Ponts Et Chaussées, 44344, Bouguenais, France
| | - Rachid Dris
- LEESU, Ecole Des Ponts ParisTech, Université Paris Est Créteil, Marne-La-Vallée, France
| |
Collapse
|
67
|
Dong D, Guo Z, Yang X, Dai Y. Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123034. [PMID: 38016589 DOI: 10.1016/j.envpol.2023.123034] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
68
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
69
|
Li K, Xiu X, Hao W. Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. CHEMOSPHERE 2024; 350:141060. [PMID: 38159733 DOI: 10.1016/j.chemosphere.2023.141060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years, microplastics (MPs) pollution has become a hot ecological issue of global concern and MP pollution in soil is becoming increasingly serious. Studies have shown that MPs have adverse effects on soil biology and ecological functions. Although MPs are evident in soils, identifying their source, abundance, and types is difficult because of the complexity and variability of soil components. In addition, the effects of MPs on soil physicochemical properties (PCP), including direct effects such as direct interaction with soil particles and indirect effects such as the impact on soil organisms, have not been reported in a differentiated manner. Furthermore, at present, the soil ecological effects of MPs are mostly based on biological toxicity reports of their exudate or size effects, whereas the impact of their surface-specific properties (such as environmentally persistent free radicals, surface functional groups, charge, and curvature) on soil ecological functions is not fully understood. Considering this, this paper reviews the latest research findings on the production and behavioral processes of MPs in soil, the effects on soil PCP, the impacts on different soil organisms, and the related toxic mechanisms. The above discussion will enhance further understanding of the behavioral characteristics and risks of MPs in soil ecosystems and provide some theoretical basis for further clarification of the molecular mechanisms of the effects of MPs on soil organisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
70
|
Meng D, Li Y. Assessing the Settling Velocity of Biofilm-Encrusted Microplastics: Accounting for Biofilms as an Equivalent to Surface Roughness. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1329-1337. [PMID: 38163930 DOI: 10.1021/acs.est.3c07147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
While it is well established that a biofilm contributes to the sinking of plastics, the underlying mechanisms of how it influences the vertical transport of plastics have not been well explained. In this context, our study dives into the intricate effects of biofouling on the settling velocity (Ws) of microplastics (MPs) within the fluid. We adopt the perspective that the biofilm is a form of surface roughness impacting the drag coefficient (Cd) and vertical settling of MPs. By advancing the biofouling process model, we simulate the temporal variations of density and biofilm thickness of biofouled floating MPs, accounting for realistic parameters and assuming a layer-by-layer growth of biofilm on plastisphere surfaces. MPs of polyethylene (PE) exhibit a quicker initiation of descent compared to their polypropylene (PP) counterparts. Furthermore, leveraging computational fluid dynamics (CFD) simulation, the method to predict the Cd of spherical MPs with surface roughness is established. By treating the thickness of the biofilm as roughness height, an explicit method to predict the Ws of biofouled MPs is derived. The settling experiments for biofouled MPs conducted not only support the combination of the biofouling model and the explicit method to predict the Ws of biofouled MPs but also enhance the prediction accuracy by introducing a ratio parameter Co to better relate the equivalent surface roughness height (k) to the biofilm thickness (σ), i.e., k = Co·σ, where the recommended value of Co for spherical PP and PE MPs is between 0.5 to 0.8. This study, thus, provides new insights into the dynamics of biofouled MPs in hydraulic ecosystems.
Collapse
Affiliation(s)
- Daizong Meng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | - Yuzhu Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| |
Collapse
|
71
|
Lv S, Li Y, Zhao S, Shao Z. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int J Mol Sci 2024; 25:593. [PMID: 38203764 PMCID: PMC10778777 DOI: 10.3390/ijms25010593] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Plastic production has increased dramatically, leading to accumulated plastic waste in the ocean. Marine plastics can be broken down into microplastics (<5 mm) by sunlight, machinery, and pressure. The accumulation of microplastics in organisms and the release of plastic additives can adversely affect the health of marine organisms. Biodegradation is one way to address plastic pollution in an environmentally friendly manner. Marine microorganisms can be more adapted to fluctuating environmental conditions such as salinity, temperature, pH, and pressure compared with terrestrial microorganisms, providing new opportunities to address plastic pollution. Pseudomonadota (Proteobacteria), Bacteroidota (Bacteroidetes), Bacillota (Firmicutes), and Cyanobacteria were frequently found on plastic biofilms and may degrade plastics. Currently, diverse plastic-degrading bacteria are being isolated from marine environments such as offshore and deep oceanic waters, especially Pseudomonas spp. Bacillus spp. Alcanivoras spp. and Actinomycetes. Some marine fungi and algae have also been revealed as plastic degraders. In this review, we focused on the advances in plastic biodegradation by marine microorganisms and their enzymes (esterase, cutinase, laccase, etc.) involved in the process of biodegradation of polyethylene terephthalate (PET), polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), and polypropylene (PP) and highlighted the need to study plastic biodegradation in the deep sea.
Collapse
Affiliation(s)
- Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, China; (S.L.); (Y.L.); (S.Z.)
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
72
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Microplastic contamination in commercially packaged edible seaweeds and exposure of the ethnic minority and local population in Mexico. Food Res Int 2024; 176:113840. [PMID: 38163691 DOI: 10.1016/j.foodres.2023.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Diet is an important pathway for microplastic exposure. This study examined distinct edible seaweed products sold at ethnic food stores in Mexico for microplastic contamination, as well as the exposure of the Asian ethnic minority and local population to microplastics. Microplastics were extracted from seaweed samples using a wet oxide digestion with hydrogen peroxide followed by zinc chloride density separation. They were subsequently detected, quantified, and the polymer type was determined via microscopic inspection and Fourier transform infrared spectroscopy. Microplastic contamination was detected in all samples, with an average abundance of 24.0 ± 9.4 items g-1. Fibrous-shaped (61 %) and non-colored (57 %) microplastics were prevalent. Microplastics with sizes smaller than 0.2 mm prevailed (60 %), and they have the potential to penetrate gut barriers and endanger human health. Polymers identified consisted of polyethylene-polypropylene, polyamide, cellophane, rayon, and polyethylene terephthalate. According to pollution load index values, seaweed samples were minimally contaminated with microplastics, with values ranging between 3.7 and 6.0. The estimated yearly intake of microplastic from seaweed consumption by the South Korean and Chinese populations in Mexico was 5.8 × 104 ± 2.3 × 104 and 5.7 × 104 ± 4.9 × 104, respectively. This study's findings highlight the importance of improved control measures for minimizing microplastics in foods for export.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
73
|
Li Y, Liu C, Yang H, He W, Li B, Zhu X, Liu S, Jia S, Li R, Tang KHD. Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167666. [PMID: 37820817 DOI: 10.1016/j.scitotenv.2023.167666] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
It is widely known that microplastics are present everywhere and they pose certain risks to the ecosystem and humans which are partly attributed to the leaching of additives and chemicals from them. However, the leaching mechanisms remain insufficiently understood. This review paper aims to comprehensively and critically illustrate the leaching mechanisms in biotic and abiotic environments. It analyzes and synthesizes the factors influencing the leaching processes. It achieves the aims by reviewing >165 relevant scholarly papers published mainly in the past 10 years. According to this review, flame retardants, plasticizers and antioxidants are the three main groups of additives in microplastics with the potentials to disrupt endocrine functions, reproduction, brain development and kidney functions. Upon ingestion, the MPs are exposed to digestive fluids containing enzymes and acids which facilitate their degradation and leaching of chemicals. Fats and oils in the digestive tracts also aid the leaching and transport of these chemicals particularly the fat-soluble ones. Leaching is highly variable depending on chemical properties and bisphenols leach to a larger extent than other endocrine disrupting chemicals. However, the rates of leaching remain poorly understood, owing probably to multiple factors at play. Diffusion and partitioning are two main mechanisms of leaching in biotic and abiotic environments. Photodegradation is more predominant in the latter, generating reactive oxygen species which cause microplastic aging and leaching with minimal destruction of the chemicals leached. Effects of microplastic sizes on leaching are governed by Sherwood number, thickness of aqueous boundary layer and desorption half-life. This review contributes to better understanding of leaching of chemicals from microplastics which affect their ecotoxicities and human toxicity.
Collapse
Affiliation(s)
- Yage Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Chen Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Haotian Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Wenhui He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Beibei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Xinyi Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shuyan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Shihao Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
74
|
Su X, Liu M, Dai H, Dou J, Lu Z, Xu J, He Y. Novel insight into the aging process of microplastics: An in-situ study in coastal wetlands. WATER RESEARCH 2024; 248:120871. [PMID: 37979566 DOI: 10.1016/j.watres.2023.120871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Coastal wetlands, the critical interface between the terrestrial and marine environments, provide a dynamic and unique environment for the aging of microplastics (MPs). Nevertheless, both abiotic and biotic processes that contribute to the aging of MPs in coastal wetlands have been largely neglected. In this study, the aging of MPs was continuously characterized in Hangzhou Bay, a representative coastal wetland in Zhejiang, China. Three-month exposure of polymers in sediment-water interface induced the aging phenomenon with embrittlement and exfoliation, as evidenced by simultaneous observed alternations in crystallinity and functional groups. A first-order kinetic model was fitted to describe the rate and degree of aging quantitatively. As evidenced by the carbonyl index, the residence time of all the examined MPs exhibited significant variance, ranging from 335 to 661 days. These variations might be caused by the selective attachment of plastic-degrading microorganisms (such as Moraxella sp. and Rhodococcus sp.). A positive correlation between the carbonyl index, the number of OTUs in the MP-associated biofilm, and irradiation was observed (p < 0.001), suggesting that the aging process may be co-regulated by natural sunlight and wetland microbial colonization. This study sheds new light on the long-term environmental fate of MPs and their associated ecological risks.
Collapse
Affiliation(s)
- Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
75
|
Li T, Cui L, Xu Z, Liu H, Cui X, Fantke P. Micro- and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166925. [PMID: 37689210 DOI: 10.1016/j.scitotenv.2023.166925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA.
Collapse
Affiliation(s)
- Tong Li
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Hongdou Liu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
76
|
Liu X, Fang L, Yan X, Gardea-Torresdey JL, Gao Y, Zhou X, Yan B. Surface functional groups and biofilm formation on microplastics: Environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166585. [PMID: 37643702 DOI: 10.1016/j.scitotenv.2023.166585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MPs) contamination is becoming a significant environmental issue, as the widespread omnipresence of MPs can cause many adverse consequences for both ecological systems and humans. Contrary to what is commonly thought, the toxicity-inducing MPs are not the original pristine plastics; rather, they are completely transformed through various surface functional groups and aggressive biofilm formation on MPs via aging or weathering processes. Therefore, understanding the impacts of MPs' surface functional groups and biofilm formation on biogeochemical processes, such as environmental fate, transport, and toxicity, is crucial. In this review, we present a comprehensive summary of the distinctive impact that surface functional groups and biofilm formation of MPs have on their significant biogeochemical behavior in various environmental media, as well as their toxicity and biological effects. We place emphasis on the role of surface functional groups and biofilm formation as a means of influencing the biogeochemical processes of MPs. This includes their effects on pollutant fate and element cycling, which in turn impacts the aggregation, transport, and toxicity of MPs. Ultimately, future research studies and tactics are needed to improve our understanding of the biogeochemical processes that are influenced by the surface functional groups and biofilm formation of MPs.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoxia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
77
|
Zhang M, Hou J, Xia J, Wu J, Miao L, Lv B, Ji D. Combined effects of bacteria and antibiotics on surface properties and transport of nanoplastics in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166485. [PMID: 37611715 DOI: 10.1016/j.scitotenv.2023.166485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Currently, research on the individual effects of bacteria and antibiotics on the transport of nanoplastics (NPs) in porous media is in its infancy, while research on their combined effect is absent. It is well known that bacteria and antibiotics also interact with each other, so this synergistic transport of bacteria, antibiotics, and NPs in porous media must be very interesting. For exploring this aspect, we investigated the individual and combined effects of bacteria and antibiotics on the transport of polystyrene NPs (PS-NPs) in saturated porous media. Hydrophobicity, roughness, and the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. The PS-NPs' transport in porous media was fitted using a mathematical model. Enhanced roughness and size of PS-NPs with increased bacterial concentration dominated and inhibited the PS-NPs' transport in porous media, although the hydrophilicity of PS-NPs and the energy barrier between PS-NPs and porous media were also increased. An increase in antibiotic concentration reduced the energy barrier between PS-NPs and porous media, thereby decreasing the PS-NPs' transport. Combined effects of bacteria and antibiotics on the PS-NPs' transport were complex and distinct from individual effects, but the mechanisms were clear. Roughness and hydrophilicity of PS-NPs and the DLVO interaction energy between PS-NPs and porous media together influenced this process. In the presence of bacteria, antibiotics could alter the bacterial surface roughness by altering bacterial extracellular polymeric substances, and thus alter the PS-NPs' surface roughness, thereby affecting the PS-NPs' transport in porous media. When antibiotics were present, enhanced bacterial concentration increased the PS-NPs' hydrophilicity and the energy barrier between PS-NPs and porous media, thus promoting the PS-NPs' transport. The findings of this study provided a theoretical basis for clarifying the transport of NPs in porous media under complex environments, facilitating a reduction in environmental pollution of NPs.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bowen Lv
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100000, People's Republic of China
| | - Dongliang Ji
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210036, People's Republic of China.
| |
Collapse
|
78
|
Zhang C, Dong Z, Chen Q, Lin Y, Zhou Y, Xu Q. Determination of key factors affecting biofilm formation on the aged Poly(ethylene terephthalate) during anaerobic digestion. CHEMOSPHERE 2023; 344:140435. [PMID: 37832880 DOI: 10.1016/j.chemosphere.2023.140435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Biofilm formation on plastic surface is a growing concern because it can alter the plastic surface properties and exacerbate the ecological risk. Identifying key factors that affecting biofilm formation is critical for effective pollution control. In this study, the poly (ethylene terephthalate) (PET) was aged in water and air conditions with UV irradiation, then incubated in the digestate of food waste anaerobic digestion to allow biofilm formation. Surface analysis techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), were utilized to investigated the changes in the topography, roughness, hydrophily, and functional groups change of the PET surface during the aging process. Confocal laser scanning microscopy (CLSM) was used to determine the distribution of microorganisms on the PET surface after incubation in the digestate. This study focused on understanding the interactions between the PET surface and biofilm to identify critical surface factors that affect biofilm formation. Results showed that the four months aging process decreased the contact angle of the PET surface from 96.92° to 76.08° and 68.97° in water and air conditions, respectively, corresponding to an increase of 44% and 70% in the surface energy. Additionally, aging in air conditions led to a rougher surface compared to water conditions. The arithmetic roughness average (Ra) of the PET-Water was 11.0 nm, comparable to that of the pristine PET, while the value of PET-Air was much higher (43.9 nm). The results further indicated that biofilm formation during anaerobic digestion was more sensitive to roughness than hydrophily. The PET surface aged in air conditions provided a more suitable environment for microbial reproduction, leading to the aggradation of living cells.
Collapse
Affiliation(s)
- Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Zihang Dong
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Yeqi Lin
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Yutong Zhou
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
79
|
Procházková P, Mácová S, Aydın S, Zlámalová Gargošová H, Kalčíková G, Kučerík J. Effects of biodegradable P3HB on the specific growth rate, root length and chlorophyll content of duckweed, Lemna minor. Heliyon 2023; 9:e23128. [PMID: 38076089 PMCID: PMC10703853 DOI: 10.1016/j.heliyon.2023.e23128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
The extensive production and use of plastics have led to widespread pollution of the environment. As a result, biodegradable polymers (BDPs) are receiving a great deal of attention because they are expected to degrade entirely in the environment. Therefore, in this work, we tested the effect of two fractions (particles <63 μm and particles from 63 to 125 μm) of biodegradable poly-3-hydroxybutyrate (P3HB) at different concentrations on the specific growth rate, root length, and photosynthetic pigment content of the freshwater plant Lemna minor. Microparticles with similar properties made of polyethylene terephthalate (PET) were also tested for comparison. No adverse effects on the studied parameters were observed for either size fraction; the only effect was the root elongation with increasing P3HB concentration. PET caused statistically significant root elongation only in the highest concentration, but the effect was not as extensive as for P3HB. The development of a biofilm on P3HB particles was observed during the experiment, and the nutrient sorption experiment showed that the sorption capacity of P3HB was greater than PET's. Therefore, depleting the nutrients from the solution could force the plant to increase the root surface area by their elongation. The results suggest that biodegradable microplastics may cause secondary nutrient problems in the aquatic environment due to their biodegradability.
Collapse
Affiliation(s)
- Petra Procházková
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Sabina Mácová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Seçil Aydın
- Department of Chemical Engineering, Faculty of Chemistry-Metallurgical, Yıldız Technical University, 34210, Davutpasa Esenler, Istanbul, Turkiye
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Jiří Kučerík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
80
|
Zhang X, Niu Z, Zhang Y, Guan S, Jing M, Wu N, Ma Y. Role of traveling microplastics as bacterial carriers based on spatial and temporal dynamics of bacterial communities. WATER RESEARCH 2023; 247:120832. [PMID: 37976625 DOI: 10.1016/j.watres.2023.120832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) are considered as distinct substrates for bacterial colonization, they can carry bacterial communities to travel around environments. The bacterial communities on traveling MPs prefer to be gradually consistent with those on local MPs that were always in the same environment, and this process of change in the bacterial communities on traveling MPs was called 'localization'. However, the dynamics of localization process and their influencing factors are still unclear. Therefore, we simulated the MPs migration process along the water flow direction in the estuary. We used quantitative analysis to study the dynamics of bacterial communities on the migrated MPs. We found the localization characteristics depended on the differences between the former and latter environments, as well as the preexisting bacteria. The localization degree was higher when the former and latter environments were similar. In most cases, compared with the first cultivation of pristine MPs, the time for localization was shorter. Moreover, although the entire bacterial communities tended to be localized, the preexisting bacteria on the migrated MPs had selective effects on subsequent bacterial colonization. Furthermore, the preexisting bacteria on MPs could set up the connections with the bacteria that existed at the latter site, and the stability of the entire bacterial communities on the migrated MPs increased with time. Overall, our findings indicated that the localization characteristics of bacterial communities on traveling MPs were related to the precultured time and environmental differences, which were helpful to understand the colonized bacteria transportation and MPs ecological effects.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; International Joint Institute of Tianjin University, Fuzhou, Fuzhou 350205, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Shijia Guan
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Meiqi Jing
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Wu
- School of Geography, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
81
|
Liang B, Gao S, Wang Z, Shu R, Wang N, Tan W, Gao C, Zhang S. Spatial distribution characteristics of microplastics in the seawater column and sediments of the artificial reef area and adjacent water in Haizhou Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166236. [PMID: 37572897 DOI: 10.1016/j.scitotenv.2023.166236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Recently, scholars have been increasing concerned about microplastics (MPs). Unfortunately, information is lacking on the spatial distribution patterns of MPs in coastal seas; therefore, our understanding of the extent of offshore MP contamination remains incomplete. MP distribution in the seawater and surface sediments of an aquaculture area (AA), artificial reef area (AR), and comprehensive effect area (CEA) in Haizhou Bay were investigated in this study. The results showed that the mean abundances of MPs in the surface, middle and bottom seawater were 6.98 ± 3.01 n/m3, 9.12 ± 3.07 n/m3 and 10.20 ± 2.41 n/m3, respectively, and that the abundance in the sediment was 3.09 ± 1.16 n/g. The MP abundance in the bottom seawater was significantly higher than that in the surface seawater (P < 0.05). The correlation among MPs at different depths was not significant, but MPs in most habitats showed a significant correlation. We discovered a significant correlation between the abundance of MPs in the CEA seawater and AR sediments, but not between that in the CEA sediments and AR sediments. MPs can be transported from surface seawater to deeper layers by natural deposition processes. The horizontal transport of MPs due to the coastal gulf current and regular semidiurnal tides lead to the correlations observed in of MP abundance among the AA, CEA, and AR. Migration of MPs from the CEA to the AR was primarily caused by the southern eddies in Haizhou Bay, while migration of MPs from the sediment to the seawater could be due to upwelling in the AR. This was also the main reason there was a lack of a correlation between the sediment from the AR and the seawater from the CEA. This work provides a theoretical and empirical foundation for MP transport and source tracking.
Collapse
Affiliation(s)
- Baogui Liang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zheyu Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilin Shu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Nuo Wang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjing Tan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chunmei Gao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Shanghai Ocean University Environmental Monitoring and Evaluation Center, Shanghai 201306, China.
| | - Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| |
Collapse
|
82
|
Ha X, Gao Y, Jia J, Sun K, Wang S. Estimated microplastic stress and potential affiliated toxic elements on phytoplankton in a floodplain-lake system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112836-112846. [PMID: 37840084 DOI: 10.1007/s11356-023-29999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Hazards associated with microplastics (MPs) and the pollutants they absorb in freshwater lake ecosystems have become a hot research topic in academia. In this study, in order to investigate potential affiliated MP hazards, lake MP samples were collected from a typical subtropical freshwater lake system in China (Poyang Lake) during the dry season (here, you should show the specific months) to explore their potential toxic element (PTE) response (i.e., exposure to Cu, Pb, and Zn) respective to the ecological environment and resident phytoplankton. Results show that average MP abundance in surface water can reach up to 1800 items m-3, which higher in the Nanjishan Wetland National Nature Reserve (NWNNR) (1175 items m-3). Polyester (i.e., purified terephthalic acid [PTA]) and polyethylene (PE) were the main polymer types found in surface water, fiber was the main MP shape, and most of the MP particle sizes are greater than 100 μm. Moreover, phytoplankton biomass was significantly higher in the NWNNR compared to Poyang Lake's retention basin and water channel. It indicated that MP pollutant status of Poyang Lake is mild; however, the ecological risks that MPs pose should not be ignored. The significant positive correlation between MPs and PTEs indicated that PTE absorption and desorption by MPs may cause potential ecological stress. Although we anticipate no direct link between ecotoxicity and phytoplankton, MPs may have indirect effects on phytoplankton through their regulatory effects on PTE levels in water.
Collapse
Affiliation(s)
- Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Kun Sun
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
83
|
Zhuang S, Wang J. Interaction between antibiotics and microplastics: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165414. [PMID: 37429470 DOI: 10.1016/j.scitotenv.2023.165414] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Both microplastics and antibiotics are emerging pollutants, which are ubiquitous in aquatic environments. With small size, high specific surface area, and attached biofilm, microplastics are capable of adsorbing or biodegrading antibiotic pollutants across aquatic environments. However, the interactions between them are poorly understood, especially factors that affect microplastics' chemical vector effects and the mechanisms driving these interactions. In this review, the properties of microplastics and their interaction behavior and mechanisms towards antibiotics were comprehensively summarized. Particularly, the impact of weathering properties of microplastics and the growth of attached biofilm was highlighted. We concluded that compared with virgin microplastics, aged microplastics usually adsorb more types and quantities of antibiotics from aquatic environments, whilst the attached biofilm could further enhance the adsorption capacities and biodegrade some antibiotics. This review can answer the knowledge gaps of the interaction between microplastics and antibiotics (or other pollutants), offer basic information for evaluating their combined toxicity, provide insights into the distribution of both emerging pollutants in the global water chemical cycle, and inform measures to remove microplastic-antibiotic pollution.
Collapse
Affiliation(s)
- Shuting Zhuang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
84
|
Zhu J, Dong G, Feng F, Ye J, Liao CH, Wu CH, Chen SC. Microplastics in the soil environment: Focusing on the sources, its transformation and change in morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165291. [PMID: 37406689 DOI: 10.1016/j.scitotenv.2023.165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.
Collapse
Affiliation(s)
- Junyu Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Guowen Dong
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Fu Feng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Jing Ye
- College of Environment and chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, People's Republic of China
| | - Ching-Hua Liao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Chih-Hung Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Sheng-Chung Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China.
| |
Collapse
|
85
|
Wu L, Shen Z, Zhou Y, Zuo J. Stimulating anaerobic digestion to degrade recalcitrant organic pollutants: Potential role of conductive materials-led direct interspecies electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118337. [PMID: 37343473 DOI: 10.1016/j.jenvman.2023.118337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
This review aims to provide a comprehensive understanding of the potential of CMs-dominated DIET in the degradation of recalcitrant organic pollutants in AD. The review covers the mechanisms and efficiencies of recalcitrant organic pollutant degradation by CMs-dominated DIET, the comparison of degradation pathways between DIET and chemical treatment, recent insights on DIET-enhanced degradation, and the evaluation of the potential and future development of CMs-dominated DIET. The review emphasizes the importance of coupled syntrophic microorganisms, electron flux, and physicochemical properties of CMs in enhancing the degradation performance of AD. Additionally, it highlights the advantages of DIET-led syntrophic metabolism over traditional oxidation technologies in terms of environmental friendliness and efficiency. Finally, the review acknowledges the potential risks associated with introducing CMs into AD systems and provides guidance for waste treatment and energy recovery.
Collapse
Affiliation(s)
- Linjun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
86
|
Zheng Z, Huang Y, Liu L, Wang L, Tang J. Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132099. [PMID: 37517232 DOI: 10.1016/j.jhazmat.2023.132099] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants.
Collapse
Affiliation(s)
- Zhijie Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
87
|
Pang X, Chen C, Sun J, Zhan H, Xiao Y, Cai J, Yu X, Liu Y, Long L, Yang G. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131989. [PMID: 37453357 DOI: 10.1016/j.jhazmat.2023.131989] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.
Collapse
Affiliation(s)
- Xinghua Pang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jie Sun
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, No.15 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Haiquan Zhan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoyu Yu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
88
|
Wang B, Wang P, Zhao S, Shi H, Zhu Y, Teng Y, Jiang G, Liu S. Combined effects of microplastics and cadmium on the soil-plant system: Phytotoxicity, Cd accumulation and microbial activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121960. [PMID: 37271366 DOI: 10.1016/j.envpol.2023.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Microplastics (MPs), an emerging pollutant of concern, widely cooccurred with heavy metals in soil, however, little is known about the combined effects of the interactions of MPs and cadmium (Cd) on the soil-plant system. In this study, the combined effects of several types of MPs and soil Cd contamination on Brassica juncea growth, Cd uptake, and soil microbial carbon metabolism were investigated in a 50-day pot experiment. Aged polyethylene (PE), aged polypropylene (PP), biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) displayed moderate phytotoxicity, with reductions in leaf chlorophyll content and shoot biomass. Compared with the control treatment without MPs or B. juncea, B. juncea growth significantly increased the soil pH by 0.3 pH units, and the growth of B. juncea in the presence of biodegradable PBAT or PLA MPs increased the soil pH by an additional 0.4 or 0.6 pH units, respectively. The presence of PBAT or PLA MPs greatly reduced soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cd concentrations and plant Cd accumulation. The Cd bioconcentration factor was higher in roots than shoots in all treatments except the treatment containing PBAT MPs. The average well color development (AWCD), an indicator of metabolic activity, was highest in the treatment with B. juncea alone and was reduced by both biodegradable and conventional MPs. The microbial utilization efficiency of esters and alcohols was enhanced in the treatment with PBAT MPs, whereas carboxylic acids were preferentially utilized in the treatment with PLA MPs. These findings indicate that co-exposure to MPs and Cd may alter soil microenvironmental characteristics such as soil pH, leading to changes in Cd bioavailability, plant growth and Cd accumulation, and the microbial community's capacity to metabolize carbon. These effects of MPs in soil warrant further exploration.
Collapse
Affiliation(s)
- Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Peiheng Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shibo Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaru Zhu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guiying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
89
|
Su Y, Gao L, Peng L, Diao X, Lin S, Bao R, Mehmood T. Heterogeneous aggregation between microplastics and microalgae: May provide new insights for microplastics removal. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106638. [PMID: 37517318 DOI: 10.1016/j.aquatox.2023.106638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Existing studies have shown that microplastics (MPs) as artificial surfaces can be colonized by plankton microorganisms. However, systematic research on exploring the aggregation formation process of MPs and microalgae is still lacking and particularly the influencing factors of aggregation remain to be elucidated. Therefore, this study investigated the heterogeneous aggregation process between various microalgal species (i.e., Chlorella vulgaris, Scenedesmus obliquus, Tetraselmis subcordiformis, Chaetoceros müelleri and Streptococcus westermani) and MPs (i.e., mPS and mPLA) with different sizes (i.e., 74 μm and 613 μm), concentrations (i.e., 0.1 g/L, 1 g/L and 2 g/L) and shapes (i.e., the particle and sheet). The results showed that microalgae can first attach to the holes or protrusions of MPs and highly accumulate in the local region, and then multi-layer aggregation can be formed subsequently. The aggregation degree between MPs and microalgae was closely related to the MPs shape and size, and was less related to the MPs concentration. The aggregation speed of small-sized MPs (e.g., 74 μm) was faster than the large-sized ones (e.g., 613 μm). The MPs in a shape of sheet were more obvious than those in particle on their aggregation with microalgae. The density of aggregates was increased compared with pristine MPs, which is related to the cell density and cell number of attached microalgae. For the same type of MPs, the aggregation degree for the tested microalgae was as follows: Scenedesmus obliquus > C. vulgaris > T. subcordiformis > C. müelleri > S. westermani. Meanwhile, MPs inhibited cell growth of microalgae, particularly under the circumstance of their aggregation, by limiting the gas and mass transfer between microalgal cells and the extracellular environment. The heterogeneous aggregation of MPs and microalgae may provide new ideas for treatment and controlling of MPs in the environment.
Collapse
Affiliation(s)
- Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Shengyou Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Tariq Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
90
|
Dong T, Ye H, Wang W, Zhang Y, Han G, Peng F, Lou CW, Chi S, Liu Y, Liu C, Lin JH. A sustainable layered nanofiber/sheet aerogels enabling repeated life cycles for effective oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131474. [PMID: 37116327 DOI: 10.1016/j.jhazmat.2023.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Discarded oil-containing absorbents, which has been used in handling oil spills, are tricky to deal with and have rose global environmental concerns regarding release of microplastics. Herein, we developed a facile strategy to fabricate sustainable absorbents by a gas-inflating method, through which 2D electrospinning polycaprolactone nanofiber membranes were directly inflated into highly porous 3D nanofiber/sheet aerogels with layered long fiber structure. The membranes were inflated rapidly from a baseline porosity of 81.98% into 97.36-99.42% in 10-60 min. The obtained aerogels were further wrapped with -CH3 ended siloxane structures using CH3SiCl3. This hydrophobic absorbent (CA ≈ 145°) could rapidly trap oils from water with sorption range of 25.60-42.13 g/g and be recycled by simple squeeze due to its mechanical robustness. As-prepared aerogels also showed high separation efficiency to separate oils from both oil/water mixtures and oil-in-water emulsions (>96.4%). Interestingly, the oil-loaded absorbent after cleaning with absolute ethanol could be re-dissolved in selected solvents and promptly reconstituted by re-electrospinning and gas-inflation. The reconstituted aerogels were used as fire-new oil absorbents for repeated life cycles. The novel design, low cost and sustainability of the absorbent provides an efficient and environmentally-friendly solution for handling oil spills.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China.
| | - Huabiao Ye
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Wenhui Wang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd, Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan.
| |
Collapse
|
91
|
Fajardo C, Sánchez-Fortún S, Videira-Quintela D, Martin C, Nande M, D Ors A, Costa G, Guillen F, Montalvo G, Martin M. Biofilm formation on polyethylene microplastics and their role as transfer vector of emerging organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84462-84473. [PMID: 37368211 DOI: 10.1007/s11356-023-28278-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Microplastic (MP)-colonizing microorganisms are important links for the potential impacts on environmental, health, and biochemical circulation in various ecosystems but are not yet well understood. In addition, biofilms serve as bioindicators for the evaluation of pollutant effects on ecosystems. This study describes the ability of three polyethylene-type microplastics, white (W-), blue (B-), and fluorescent blue (FB-) MPs, to support microbial colonization of Pseudomonas aeruginosa, the effect of mixed organic contaminants (OCs: amoxicillin, ibuprofen, sertraline, and simazine) on plastic-associated biofilms, and the role of biofilms as transfer vectors of such emerging pollutants. Our results showed that P. aeruginosa had a strong ability to produce biofilms on MPs, although the protein amount of biomass formed on FB-MP was 1.6- and 2.4-fold higher than that on B- and W-MP, respectively. When OCs were present in the culture medium, a decrease in cell viability was observed in the W-MP biofilm (65.0%), although a general impairing effect of OCs on biofilm formation was ruled out. Microbial colonization influenced the ability of MPs to accumulate OCs, which was higher for FB-MP. In particular, the sorption of amoxicillin was lower for all bacterial-colonized MPs than for the bare MPs. Moreover, we analysed oxidative stress production to assess the impact of MPs or MPs/OCs on biofilm development. The exposure of biofilms to OCs induced an adaptive stress response reflected in the upregulation of the katB gene and ROS production, particularly on B- and FB-MP. This study improves our understanding of MP biofilm formation, which modifies the ability of MPs to interact with some organic pollutants. However, such pollutants could hinder microbial colonization through oxidative stress production, and thus, considering the key role of biofilms in biogeochemical cycles or plastic degradation, the co-occurrence of MPs/OCs should be considered to assess the potential risks of MPs in the environment.
Collapse
Affiliation(s)
- Carmen Fajardo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain.
| | - Sebastián Sánchez-Fortún
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Diogo Videira-Quintela
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Carmen Martin
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid, 3 Complutense Ave, Madrid, Spain
| | - Mar Nande
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Ana D Ors
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| | - Gonzalo Costa
- Department of Animal Physiology, Faculty ofVeterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, 28040, Madrid, Spain
| | - Francisco Guillen
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Gemma Montalvo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Pharmacy, University of Alcala, Ctra. Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid, Spain
| | - Margarita Martin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University Complutense of Madrid, W/N Puerta de Hierro Ave, Madrid, Spain
| |
Collapse
|
92
|
Kiki C, Adéoyé ABE, Li X, Yan X, Feng J, Yu CP, Sun Q. Contrasting effects of phytoplankton aging on microplastic antibiotic adsorption depending on species tolerance, and biofouling level. WATER RESEARCH 2023; 237:119992. [PMID: 37099873 DOI: 10.1016/j.watres.2023.119992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Recent studies have reported conflicting results on the effects of biofouling on the adsorption behavior of microplastics (MPs). However, the underlying mechanisms driving the adsorption of MPs undergoing biofouling in aquatic environments remain unclear. This study examined the interactions between polyamide (PA), polyvinyl chloride (PVC) and polyethylene (PE) with two phytoplankton, namely cyanobacteria Microcystis aeruginosa and microalgae Chlorella vulgaris. Results indicated that MP effects on phytoplankton were dose- and crystalline-type dependent, with M. aeruginosa being more sensitive to MP exposure than C. vulgaris in the inhibitory order PA > PE > PVC. Analysis of antibiotic adsorption of the MPs showed significant contributions from CH/π interactions on PE and PVC and hydrogen bonding on PA, which decreased with phytoplankton biofouling and aging. Meanwhile, higher levels of extracellular polymeric substances on microalgae-aged MPs compared to cyanobacteria-aged MPs were conducive to adsorption of antibiotics, mainly through hydrophobic interactions. Overall, promotional and anti-promotional adsorption of antibiotics on MPs was induced by biofouling and aging of microalgae and cyanobacteria, respectively. This study provides deep insights into the specific mechanisms by which biofouling affects MP adsorption in aquatic environments, thus advancing our understanding of this critical environmental issue.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China; National Institute of Water, University of Abomey-Calavi, Cotonou 01 BP: 526, Benin
| | - Adénikè Bernice Eloise Adéoyé
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Xi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Jinlu Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of WatershedEcology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
93
|
Vlaanderen EJ, Ghaly TM, Moore LR, Focardi A, Paulsen IT, Tetu SG. Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121558. [PMID: 37019264 DOI: 10.1016/j.envpol.2023.121558] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.
Collapse
Affiliation(s)
- Eric J Vlaanderen
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Timothy M Ghaly
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Lisa R Moore
- School of Natural Sciences Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Ian T Paulsen
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- School of Natural Sciences Macquarie University, Sydney, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
94
|
Silva I, Rodrigues ET, Tacão M, Henriques I. Microplastics accumulate priority antibiotic-resistant pathogens: Evidence from the riverine plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121995. [PMID: 37302790 DOI: 10.1016/j.envpol.2023.121995] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) might accumulate and transport antibiotic-resistant bacteria (ARB) in aquatic systems. We determined the abundance and diversity of culturable ciprofloxacin- and cefotaxime-resistant bacteria in biofilms covering MPs placed in river water, and characterized priority pathogens from these biofilms. Our results showed that the abundance of ARB colonizing MPs tends to be higher compared to sand particles. Also, higher numbers were cultivated from a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET), compared to PP and PET alone. Aeromonas and Pseudomonas isolates were the most frequently retrieved from MPs placed before a WWTP discharge while Enterobacteriaceae dominated the culturable plastisphere 200 m after the WWTP discharge. Ciprofloxacin- and/or cefotaxime-resistant Enterobacteriaceae (n = 54 unique isolates) were identified as Escherichia coli (n = 37), Klebsiella pneumoniae (n = 3), Citrobacter spp. (n = 9), Enterobacter spp. (n = 4) and Shigella sp. (n = 1). All isolates presented at least one of the virulence features tested (i.e. biofilm formation, haemolytic activity and production of siderophores), 70% carried the intI1 gene and 85% exhibited a multi-drug resistance phenotype. Plasmid-mediated quinolone resistance genes were detected in ciprofloxacin-resistant Enterobacteriaceae [aacA4-cr (40% of the isolates), qnrS (30%), qnrB (25%), and qnrVC (8%)], along with mutations in gyrA (70%) and parC (72%). Cefotaxime-resistant strains (n = 23) harbored blaCTX-M (70%), blaTEM (61%) and blaSHV (39%). Among CTX-M producers, high-risk clones of E. coli (e.g. ST10 or ST131) and K. pneumoniae (ST17) were identified, most of which carrying blaCTX-M-15. Ten out of 16 CTX-M producers were able to transfer blaCTX-M to a recipient strain. Our results demonstrated the occurrence of multidrug resistant Enterobacteriaceae in the riverine plastisphere, harboring ARGs of clinical concern and exhibiting virulence traits, suggesting a contribution of MPs to the dissemination of antibiotic-resistant priority pathogens. The type of MPs and especially water contamination (e.g. by WWTPs discharges) seem to determine the resistome of the riverine plastisphere.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal; CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa T Rodrigues
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Marta Tacão
- CESAM (Centre for Environmental and Marine Studies) University of Aveiro, 3810-193, Aveiro, Portugal; Department of Biology University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
95
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
96
|
He X, Qian Y, Li Z, Yang S, Tian J, Wang Q, Lei J, Qi R, Feng C. Identification of factors influencing the microplastic distribution in agricultural soil on Hainan Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162426. [PMID: 36842590 DOI: 10.1016/j.scitotenv.2023.162426] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8 %), MPs smaller than 0.5 mm (37.8 %), black MPs (48.3 %), and polypropylene MPs (56.8 %) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Shuai Yang
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Jinfei Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
97
|
Chen Z, Shi X, Zhang J, Wu L, Wei W, Ni BJ. Nanoplastics are significantly different from microplastics in urban waters. WATER RESEARCH X 2023; 19:100169. [PMID: 36798904 PMCID: PMC9926019 DOI: 10.1016/j.wroa.2023.100169] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous and intractable in urban waters. Compared with MPs, the smaller NPs have shown distinct physicochemical features, such as Brownian motion, higher specific surface area, and stronger interaction with other pollutants. Therefore, the qualitative and quantitative analysis of NPs is more challenging than that of MPs. Moreover, these characteristics endow NPs with significantly different environmental fate, interactions with pollutants, and eco-impacts from those of MPs in urban waters. Herein, we critically analyze the current advances in the difference between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are comparably discussed., The characterizations and fate studies of NPs are more challenging compared to MPs. Furthermore, NPs in most cases exhibit stronger interactions with other pollutants and more adverse eco-impacts on living things than MPs. Subsequently, perspective in this field is proposed to stimulate further size-dependent studies on MPs and NPs. This review would benefit the understanding of the role of NPs in the urban water ecosystem and guide future studies on plastic pollution management.
Collapse
|
98
|
Wang Q, Zhang Y, Chen H, Chen S, Wang Y. Effects of humic acids on the adsorption of Pb(II) ions onto biofilm-developed microplastics in aqueous ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163466. [PMID: 37088385 DOI: 10.1016/j.scitotenv.2023.163466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as emerging contaminants can behave as carriers for heavy metals in the water environments. Although the adsorption performance of heavy metals on MPs has been widely investigated, the effects of humic acids (HA) on the adsorption have seldom been explored. The authors were compared the Pb(II) adsorption onto biofilm-developed polyvinyl chloride (Bio-PVC) MPs with Pb(II) adsorption onto virgin PVC MPs (V-PVC), and explored the relationship between surface characteristics and the adsorption properties in the coexistence of HA. Our results showed that due to a larger specific surface area and more oxygen containing groups, Bio-PVC had a larger adsorption capability with a value of 3.57 mg/g than original ones (1.85 mg/g) due to its huge specific surface area and more oxygen containing groups. Microbial community analysis showed that the predominate bacteria in biofilms as Proteobacteria, Acidobacteria, Cyanobacteria, Firmicutes, and Bacteroidetes. Notably, the Pb(II) adsorption onto the V-PVC surfaces was increased, but the adsorption capacities of Pb(II) on Bio-PVC were suppressed with increasing HA. With the co-existence of HA, the increasing complexation and electrostatic attraction had attributed to the increased Pb(II) adsorption ability on V-PVC. Except for its competitive ability, HA has a shield effect which decreases the sorption sites on Bio-PVC. Overall, our findings provide a better understanding of the HA effect on the adsorption mechanism of heavy metals onto MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yangyang Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Sulin Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| |
Collapse
|
99
|
Song X, Ding J, Tian W, Xu H, Zou H, Wang Z. Effects of plastisphere on phosphorus availability in freshwater system: Critical roles of polymer type and colonizing habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161990. [PMID: 36737019 DOI: 10.1016/j.scitotenv.2023.161990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Biofilm covered microplastics (BMPs) can act as vectors for the transport of exogenous microbial groups to aquatic ecosystem. However, a consensus regarding the formation and development of BMPs and their effect on phosphorus (P) availability has not been reached. Herein, plastic particles made of fuel-based (PET) and biobased polymers (PLA) were deployed in water and hyporheic zones of an urban river for biofilm colonization. Then, BMPs were transferred to lab incubation to study their effects on the P availability. The results showed that different microplastic biofilms had various bacteria and phytoplankton compositions. Additionally, BMPs induced a shift in the microbial co-occurrence patterns co-differentiated by polymer type and colonizing habitats. Network analyses revealed that the structure of PLA BMPs was more robust, while PET colonized in the hyporheic zone reduced network complexity with looser connections between species, and stronger negatively correlated interactions. However, PET formed denser biofilms by the excretion of extracellular polymeric substances from microalgae, which contributed to the better capacity of P utilization. PET colonized in the water/hyporheic zone significantly decreased soluble reactive phosphate by 42.5 % and 30.8 %, respectively. The abovementioned results indicated that BMPs have the potential to disrupt nutrient availability. This study broadens our perspectives for the ecological effects of BMPs in the aquatic environment.
Collapse
Affiliation(s)
- Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China.
| | - Wenqing Tian
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Xu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
100
|
Wang W, Lin JH, Guo J, Sun R, Han G, Peng F, Chi S, Dong T. Biomass Chitosan-Based Tubular/Sheet Superhydrophobic Aerogels Enable Efficient Oil/Water Separation. Gels 2023; 9:346. [PMID: 37102958 PMCID: PMC10137560 DOI: 10.3390/gels9040346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
Water pollution, which is caused by leakage of oily substances, has been recognized as one of the most serious global environmental pollutions endangering the ecosystem. High-quality porous materials with superwettability, which are typically constructed in the form of aerogels, hold huge potential in the field of adsorption and removal of oily substances form water. Herein, we developed a facile strategy to fabricate a novel biomass absorbent with a layered tubular/sheet structure for efficient oil/water separation. The aerogels were fabricated by assembling hollow poplar catkin fiber into chitosan sheets using a directional freeze-drying method. The obtained aerogels were further wrapped with -CH3-ended siloxane structures using CH3SiCl3. This superhydrophobic aerogel (CA ≈ 154 ± 0.4°) could rapidly trap and remove oils from water with a large sorption range of 33.06-73.22 g/g. The aerogel facilitated stable oil recovery (90.07-92.34%) by squeezing after 10 sorption-desorption cycles because of its mechanical robustness (91.76% strain remaining after 50 compress-release cycles). The novel design, low cost, and sustainability of the aerogel provide an efficient and environmentally friendly solution for handling oil spills.
Collapse
Affiliation(s)
- Wenhui Wang
- College of Textile and Clothing, Qingdao University, 308, Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308, Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Jiali Guo
- College of Textile and Clothing, Qingdao University, 308, Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Rui Sun
- College of Textile and Clothing, Qingdao University, 308, Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd., Fujian 350304, China
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao 266001, China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, 308, Ningxia Road, Qingdao 266071, China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|