51
|
Fromme M, Schneider CV, Pereira V, Hamesch K, Pons M, Reichert MC, Benini F, Ellis P, H Thorhauge K, Mandorfer M, Burbaum B, Woditsch V, Chorostowska-Wynimko J, Verbeek J, Nevens F, Genesca J, Miravitlles M, Nuñez A, Schaefer B, Zoller H, Janciauskiene S, Abreu N, Jasmins L, Gaspar R, Liberal R, Macedo G, Mahadeva R, Gomes C, Schneider KM, Trauner M, Krag A, Gooptu B, Thorburn D, Marshall A, Hurst JR, Lomas DA, Lammert F, Gaisa NT, Clark V, Griffiths W, Trautwein C, Turner AM, McElvaney NG, Strnad P. Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency. Gut 2022; 71:415-423. [PMID: 33632708 DOI: 10.1136/gutjnl-2020-323729] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Alpha-1 antitrypsin deficiency (AATD) is a common, potentially lethal inborn disorder caused by mutations in alpha-1 antitrypsin (AAT). Homozygosity for the 'Pi*Z' variant of AAT (Pi*ZZ genotype) causes lung and liver disease, whereas heterozygous 'Pi*Z' carriage (Pi*MZ genotype) predisposes to gallstones and liver fibrosis. The clinical significance of the more common 'Pi*S' variant remains largely undefined and no robust data exist on the prevalence of liver tumours in AATD. DESIGN Baseline phenotypes of AATD individuals and non-carriers were analysed in 482 380 participants in the UK Biobank. 1104 participants of a multinational cohort (586 Pi*ZZ, 239 Pi*SZ, 279 non-carriers) underwent a comprehensive clinical assessment. Associations were adjusted for age, sex, body mass index, diabetes and alcohol consumption. RESULTS Among UK Biobank participants, Pi*ZZ individuals displayed the highest liver enzyme values, the highest occurrence of liver fibrosis/cirrhosis (adjusted OR (aOR)=21.7 (8.8-53.7)) and primary liver cancer (aOR=44.5 (10.8-183.6)). Subjects with Pi*MZ genotype had slightly elevated liver enzymes and moderately increased odds for liver fibrosis/cirrhosis (aOR=1.7 (1.2-2.2)) and cholelithiasis (aOR=1.3 (1.2-1.4)). Individuals with homozygous Pi*S mutation (Pi*SS genotype) harboured minimally elevated alanine aminotransferase values, but no other hepatobiliary abnormalities. Pi*SZ participants displayed higher liver enzymes, more frequent liver fibrosis/cirrhosis (aOR=3.1 (1.1-8.2)) and primary liver cancer (aOR=6.6 (1.6-26.9)). The higher fibrosis burden was confirmed in a multinational cohort. Male sex, age ≥50 years, obesity and the presence of diabetes were associated with significant liver fibrosis. CONCLUSION Our study defines the hepatobiliary phenotype of individuals with the most relevant AATD genotypes including their predisposition to liver tumours, thereby allowing evidence-based advice and individualised hepatological surveillance.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Brescia, Italy
| | - Paul Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Tuberculosis and Lung Diseases Institute, Warszawa, Poland
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Frederik Nevens
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | | | - Nélia Abreu
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Luís Jasmins
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Guilherme Macedo
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Catarina Gomes
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Porto, Portugal
| | - Kai Markus Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Bibek Gooptu
- NIHR Leicester BRC-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, Leicestershire, UK.,London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
| | - Douglas Thorburn
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Aileen Marshall
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - John R Hurst
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,UCL Respiratory, Division of Medicine, University College London, London, UK
| | - David A Lomas
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - William Griffiths
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
52
|
Liedtke C, Nevzorova YA, Luedde T, Zimmermann H, Kroy D, Strnad P, Berres ML, Bernhagen J, Tacke F, Nattermann J, Spengler U, Sauerbruch T, Wree A, Abdullah Z, Tolba RH, Trebicka J, Lammers T, Trautwein C, Weiskirchen R. Liver Fibrosis-From Mechanisms of Injury to Modulation of Disease. Front Med (Lausanne) 2022; 8:814496. [PMID: 35087852 PMCID: PMC8787129 DOI: 10.3389/fmed.2021.814496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
The Transregional Collaborative Research Center "Organ Fibrosis: From Mechanisms of Injury to Modulation of Disease" (referred to as SFB/TRR57) was funded for 13 years (2009-2021) by the German Research Council (DFG). This consortium was hosted by the Medical Schools of the RWTH Aachen University and Bonn University in Germany. The SFB/TRR57 implemented combined basic and clinical research to achieve detailed knowledge in three selected key questions: (i) What are the relevant mechanisms and signal pathways required for initiating organ fibrosis? (ii) Which immunological mechanisms and molecules contribute to organ fibrosis? and (iii) How can organ fibrosis be modulated, e.g., by interventional strategies including imaging and pharmacological approaches? In this review we will summarize the liver-related key findings of this consortium gained within the last 12 years on these three aspects of liver fibrogenesis. We will highlight the role of cell death and cell cycle pathways as well as nutritional and iron-related mechanisms for liver fibrosis initiation. Moreover, we will define and characterize the major immune cell compartments relevant for liver fibrogenesis, and finally point to potential signaling pathways and pharmacological targets that turned out to be suitable to develop novel approaches for improved therapy and diagnosis of liver fibrosis. In summary, this review will provide a comprehensive overview about the knowledge on liver fibrogenesis and its potential therapy gained by the SFB/TRR57 consortium within the last decade. The kidney-related research results obtained by the same consortium are highlighted in an article published back-to-back in Frontiers in Medicine.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Yulia A. Nevzorova
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Department of Immunology, Ophthalmology and Otolaryngology, School of Medicine, Complutense University Madrid, Madrid, Spain
| | - Tom Luedde
- Medical Faculty, Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Henning Zimmermann
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniela Kroy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Zeinab Abdullah
- Institute for Molecular Medicine and Experimental Immunology, University Hospital of Bonn, Bonn, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
53
|
Non-invasive diagnosis and follow-up of rare genetic liver diseases. Clin Res Hepatol Gastroenterol 2022; 46:101768. [PMID: 34332127 DOI: 10.1016/j.clinre.2021.101768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 02/04/2023]
Abstract
Rare genetic liver diseases can result in multi-systemic damage, which may compromise the patient's prognosis. Wilson's disease and alpha-1 antitrypsin deficiency must be investigated in any patient with unexplained liver disease. Cystic fibrosis screening of new-borns is now implemented in most high-prevalence countries. The diagnosis of these diseases can be strongly suggested with specific non-invasive tests. Molecular analysis gene for these diseases is long and tedious but is recommended to confirm the diagnosis and help for the family screening. Liver biopsy is not systematic and is discussed when it helps diagnosis. Currently, for these three diseases, non-invasive fibrosis markers could identify patients with risk of cirrhosis and complications. Rare genetic liver diseases can result in multi-systemic damage, which may compromise the patient's prognosis. Wilson's disease, must be investigated in any patient with unexplained liver disease and/or unexplained neurological or neuropsychiatric disorders. The diagnosis is based on a combination of clinical, biological features, including copper balance. The exchangeable copper/total copper ratio is a new sensible and specific biological marker, useful for the diagnosis of the disease. Timely diagnosis and treatment will prevent serious complications from the disease. Neurological evaluation and familial screening are essential in patients with Wilson's disease.
Collapse
|
54
|
Khodayari N, Wang RL, Oshins R, Lu Y, Millett M, Aranyos AM, Mostofizadeh S, Scindia Y, Flagg TO, Brantly M. The Mechanism of Mitochondrial Injury in Alpha-1 Antitrypsin Deficiency Mediated Liver Disease. Int J Mol Sci 2021; 22:13255. [PMID: 34948056 PMCID: PMC8704552 DOI: 10.3390/ijms222413255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Rejean L. Wang
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Michael Millett
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Alek M. Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Yogesh Scindia
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Tammy O. Flagg
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.W.); (R.O.); (Y.L.); (M.M.); (A.M.A.); (Y.S.); (T.O.F.)
| |
Collapse
|
55
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
56
|
Alpha-1 Antitrypsin and Hepatocellular Carcinoma in Liver Cirrhosis: SERPINA1 MZ or MS Genotype Carriage Decreases the Risk. Int J Mol Sci 2021; 22:ijms221910560. [PMID: 34638908 PMCID: PMC8509047 DOI: 10.3390/ijms221910560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Heterozygotes for Z or S alleles of alpha-1-antrypsin (AAT) have low serum AAT levels. Our aim was to compare the risk of hepatocellular carcinoma (HCC) in patients with liver cirrhosis carrying the SERPINA1 MM, MZ and MS genotypes. The study groups consisted of 1119 patients with liver cirrhosis of various aetiologies, and 3240 healthy individuals served as population controls. The MZ genotype was significantly more frequent in the study group (55/1119 vs. 87/3240, p < 0.0001). The MS genotype frequency was comparable in controls (32/119 vs. 101/3240, p = 0.84). MZ and MS heterozygotes had lower serum AAT level than MM homozygotes (medians: 0.90 g/L; 1.40 g/L and 1.67 g/L; p < 0.001 for both). There were significantly fewer patients with HCC in the cirrhosis group among MZ and MS heterozygotes than in MM homozygotes (5/55 and 1/32 respectively, vs. 243/1022, p < 0.01 for both). The risk of HCC was lower in MZ and MS heterozygotes than in MM homozygotes (OR 0.3202; 95% CI 0.1361–0.7719 and OR 0.1522; 95% CI 0.02941–0.7882, respectively). Multivariate analysis of HCC risk factors identified MZ or MS genotype carriage as a protective factor, whereas age, male sex, BMI and viral aetiology of cirrhosis increased HCC risk.
Collapse
|
57
|
Marek G, Collinsworth A, Liu C, Brantly M, Clark V. Quantitative measurement of the histological features of alpha-1 antitrypsin deficiency-associated liver disease in biopsy specimens. PLoS One 2021; 16:e0256117. [PMID: 34398915 PMCID: PMC8366994 DOI: 10.1371/journal.pone.0256117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022] Open
Abstract
Background Pathological mutations in Alpha-1 Antitrypsin (AAT) protein cause retention of toxic polymers in the hepatocyte endoplasmic reticulum. The risk for cirrhosis in AAT deficiency is likely directly related to retention of these polymers within the liver. Polymers are classically identified on liver biopsy as inclusion bodies by periodic acid schiff staining after diastase treatment and immunohistochemistry. However, characterization of the polymer burden within a biopsy sample is limited to a semi-quantitative scale as described by a pathologist. Better methods to quantify polymer are needed to advance our understanding of pathogenesis of disease. Therefore, we developed a method to quantify polymer aggregation from standard histologic specimens. In addition, we sought to understand the relationship of polymer burden and other histologic findings to the presence of liver fibrosis. Methods Liver samples from a well-categorized AATD cohort were used to develop histo-morphometric tools to measure protein aggregation. Results Whole-slide morphometry reliably quantifies aggregates in AATD individuals. Despite very low levels of inclusions present (0–0.41%), accumulation of globules is not linear and is associated with higher fibrosis stages. Immunohistochemistry demonstrates that fibrosis is associated with polymer accumulation and not total AAT. A proportion of patients were found to be “heavy accumulators” with a polymer burden above the upper 25% of normal distribution. Males had significantly more liver inclusions and polymer than females. These measurements also highlight interrelated phenotypes of hepatocellular degeneration and autophagy in AATD liver disease. Conclusion Quantitative inclusion analysis measures AAT accumulation in liver biopsy specimens. Quantification of polymer may identify individuals at risk for progressive disease and candidates for therapeutic interventions. Furthermore, these methods may be useful for evaluating efficacy of drugs targeting accumulation of AAT.
Collapse
Affiliation(s)
- George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Amy Collinsworth
- Advanced Pathology Solutions, Little Rock, Arkansas, United States of America
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
58
|
Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci U S A 2021; 118:2025242118. [PMID: 33649241 DOI: 10.1073/pnas.2025242118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.
Collapse
|
59
|
Hakim A, Moll M, Qiao D, Liu J, Lasky‐Su JA, Silverman EK, Vilarinho S, Jiang ZG, Hobbs BD, Cho MH. Heterozygosity of the Alpha 1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatol Commun 2021; 5:1348-1361. [PMID: 34430780 PMCID: PMC8369947 DOI: 10.1002/hep4.1718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
The serpin family A member 1 (SERPINA1) Z allele is present in approximately one in 25 individuals of European ancestry. Z allele homozygosity (Pi*ZZ) is the most common cause of alpha 1-antitrypsin deficiency and is a proven risk factor for cirrhosis. We examined whether heterozygous Z allele (Pi*Z) carriers in United Kingdom (UK) Biobank, a population-based cohort, are at increased risk of liver disease. We replicated findings in Massachusetts General Brigham Biobank, a hospital-based cohort. We also examined variants associated with liver disease and assessed for gene-gene and gene-environment interactions. In UK Biobank, we identified 1,493 cases of cirrhosis, 12,603 Z allele heterozygotes, and 129 Z allele homozygotes among 312,671 unrelated white British participants. Heterozygous carriage of the Z allele was associated with cirrhosis compared to noncarriage (odds ratio [OR], 1.53; P = 1.1×10-04); homozygosity of the Z allele also increased the risk of cirrhosis (OR, 11.8; P = 1.8 × 10-09). The OR for cirrhosis of the Z allele was comparable to that of well-established genetic variants, including patatin-like phospholipase domain containing 3 (PNPLA3) I148M (OR, 1.48; P = 1.1 × 10-22) and transmembrane 6 superfamily member 2 (TM6SF2) E167K (OR, 1.34; P = 2.6 × 10-06). In heterozygotes compared to noncarriers, the Z allele was associated with higher alanine aminotransferase (ALT; P = = 4.6 × 10-46), aspartate aminotransferase (AST; P = 2.2 × 10-27), alkaline phosphatase (P = 3.3 × 10-43), gamma-glutamyltransferase (P = 1.2 × 10-05), and total bilirubin (P = 6.4 × 10-06); Z allele homozygotes had even greater elevations in liver biochemistries. Body mass index (BMI) amplified the association of the Z allele for ALT (P interaction = 0.021) and AST (P interaction = 0.0040), suggesting a gene-environment interaction. Finally, we demonstrated genetic interactions between variants in PNPLA3, TM6SF2, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13); there was no evidence of epistasis between the Z allele and these variants. Conclusion: SERPINA1 Z allele heterozygosity is an important risk factor for liver disease; this risk is amplified by increasing BMI.
Collapse
Affiliation(s)
- Aaron Hakim
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Division of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterBostonMAUSA
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Matthew Moll
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Dandi Qiao
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Jiangyuan Liu
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Jessica A. Lasky‐Su
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
| | - Edwin K. Silverman
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Silvia Vilarinho
- Department of Internal MedicineSection of Digestive DiseasesYale School of MedicineNew HavenCTUSA
- Department of PathologyYale School of MedicineNew HavenCTUSA
| | - Z. Gordon Jiang
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Division of Gastroenterology and HepatologyBeth Israel Deaconess Medical CenterBostonMAUSA
| | - Brian D. Hobbs
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| | - Michael H. Cho
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMAUSA
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMAUSA
- Division of Pulmonary and Critical Care MedicineBrigham and Women's HospitalBostonMAUSA
| |
Collapse
|
60
|
Burbaum B, Fromme M, Strnad P. [Alpha-1 antitrypsin deficiency: cause and cofactor for liver disease]. Dtsch Med Wochenschr 2021; 146:714-718. [PMID: 34062584 DOI: 10.1055/a-1277-9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder arising due to mutation in alpha1-antitrypsin (AAT). AAT mutations interfere with the AAT production/secretion, cause decreased AAT serum levels and accumulation of AAT in the liver. The excess AAT leads to a proteotoxic liver disease, while the lack of AAT in systemic circulation predisposes to lung injury. While AATD related lung disease is well understood, liver disease needs further awareness. Non-invasive liver stiffness measurement constitutes a useful method to estimate the extent of liver fibrosis. Significant liver fibrosis occurs in 20-35 % of individuals with the classic, severe genotype Pi*ZZ. Genotype Pi*SZ, also known as the compound heterozygous form, confers an increased risk of both liver fibrosis and liver neoplasia. Even the heterozygous genotype Pi*MZ increases the odds of fibrosis in presence of further risk factors such as obesity, male sex, metabolic syndrome and diabetes mellitus. In individuals with non-alcoholic fatty liver disease or alcohol misuse it promotes the development of liver cirrhosis. While no drug treatment exists for AATD-related liver disease, there are several compounds in clinical phase II/III-trials. These either silence the AAT production via siRNA or facilitate the secretion of AAT from the liver due to an improved folding.
Collapse
Affiliation(s)
- Barbara Burbaum
- Medizinische Klinik III, Gastroenterologie, Stoffwechselerkrankungen und Intensivmedizin, Uniklinik Aachen, Aachen, Deutschland
| | - Malin Fromme
- Medizinische Klinik III, Gastroenterologie, Stoffwechselerkrankungen und Intensivmedizin, Uniklinik Aachen, Aachen, Deutschland
| | - Pavel Strnad
- Medizinische Klinik III, Gastroenterologie, Stoffwechselerkrankungen und Intensivmedizin, Uniklinik Aachen, Aachen, Deutschland
| |
Collapse
|
61
|
Ronzoni R, Ferrarotti I, D’Acunto E, Balderacchi AM, Ottaviani S, Lomas DA, Irving JA, Miranda E, Fra A. The Importance of N186 in the Alpha-1-Antitrypsin Shutter Region Is Revealed by the Novel Bologna Deficiency Variant. Int J Mol Sci 2021; 22:5668. [PMID: 34073489 PMCID: PMC8198886 DOI: 10.3390/ijms22115668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) deficiency causes pulmonary disease due to decreased levels of circulating AAT and consequently unbalanced protease activity in the lungs. Deposition of specific AAT variants, such as the common Z AAT, within hepatocytes may also result in liver disease. These deposits are comprised of ordered polymers of AAT formed by an inter-molecular domain swap. The discovery and characterization of rare variants of AAT and other serpins have historically played a crucial role in the dissection of the structural mechanisms leading to AAT polymer formation. Here, we report a severely deficient shutter region variant, Bologna AAT (N186Y), which was identified in five unrelated subjects with different geographical origins. We characterized the new variant by expression in cellular models in comparison with known polymerogenic AAT variants. Bologna AAT showed secretion deficiency and intracellular accumulation as detergent-insoluble polymers. Extracellular polymers were detected in both the culture media of cells expressing Bologna AAT and in the plasma of a patient homozygous for this variant. Structural modelling revealed that the mutation disrupts the hydrogen bonding network in the AAT shutter region. These data support a crucial coordinating role for asparagine 186 and the importance of this network in promoting formation of the native structure.
Collapse
Affiliation(s)
- Riccardo Ronzoni
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Ilaria Ferrarotti
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Emanuela D’Acunto
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
| | - Alice M. Balderacchi
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - Stefania Ottaviani
- Pneumology Unit, Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, IRCCS San Matteo Hospital Foundation, University of Pavia, 27100 Pavia, Italy; (I.F.); (A.M.B.); (S.O.)
| | - David A. Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - James A. Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK; (D.A.L.); (J.A.I.)
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy; (E.D.); (E.M.)
- Italian Pasteur Institute—Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
62
|
Karatas E, Bouchecareilh M. Alpha 1-Antitrypsin deficiency in liver explants in a Mexican cohort: A unique cohort to assess the role of heterozygous genotypes in liver disease. Clin Res Hepatol Gastroenterol 2021; 45:101538. [PMID: 33069636 DOI: 10.1016/j.clinre.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023]
Affiliation(s)
- E Karatas
- Univ. Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bat 1A 2eme étage 146, Rue Léo Saignat, F-33000 Bordeaux, France
| | - M Bouchecareilh
- Univ. Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bat 1A 2eme étage 146, Rue Léo Saignat, F-33000 Bordeaux, France.
| |
Collapse
|
63
|
Guillaud O, Jacquemin E, Couchonnal E, Vanlemmens C, Francoz C, Chouik Y, Conti F, Duvoux C, Hilleret MN, Kamar N, Houssel-Debry P, Neau-Cransac M, Pageaux GP, Gonzales E, Ackermann O, Gugenheim J, Lachaux A, Ruiz M, Radenne S, Debray D, Lacaille F, McLin V, Duclos-Vallée JC, Samuel D, Coilly A, Dumortier J. Long term results of liver transplantation for alpha-1 antitrypsin deficiency. Dig Liver Dis 2021; 53:606-611. [PMID: 33139195 DOI: 10.1016/j.dld.2020.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Liver transplantation (LT) is the therapeutic option for end-stage liver disease associated with alpha1 antitrypsin (A1AT) deficiency. The aim of the present retrospective study was to report on long-term outcomes following LT for A1AT deficiency. METHODS The medical records of 90 pediatric and adult patients transplanted between 1982 and 2017 in France and Geneva (Switzerland) were reviewed. RESULTS The study population consisted of 32 adults and 58 children; median age at transplant was 13.0 years (range: 0.2-65.1), and 65 were male (72.2%). Eighty-two patients (94.8% of children and 84.4% of adults) had the PI*ZZ genotype/phenotype and eight patients (8.9%) had the Pi*SZ genotype/phenotype. Eighty-four patients (93.3%) were transplanted for end-stage liver disease and six (all Pi*ZZ adults) for HCC. Median follow-up after LT was 13.6 years (0.1-31.7). The overall cumulative patient survival rates post-transplant were 97.8% at 1 year, and 95.5%, 95.5%, 92.0%, 89.1% at 5, 10, 15, 20 years respectively. The overall cumulative graft survival rates were 92.2% at 1 year, and 89.9%, 89.9%, 84.4%, 81.5% at 5, 10, 15 and 20 years, respectively. CONCLUSIONS In a representative cohort of patients having presented with end-stage-liver disease or HCC secondary to A1AT, liver transplantation offered very good patient and graft survival rates.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France; Ramsay Générale de Santé, Clinique de la Sauvegarde, Lyon, France
| | - Emmanuel Jacquemin
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Eduardo Couchonnal
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France
| | | | - Claire Francoz
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Service d'Hépatologie, Clichy, France
| | - Yasmina Chouik
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France
| | - Filomena Conti
- Assistance Publique-Hôpitaux de Paris, Hôpital La Pitié-Salpétrière, Service d'Hépato-gastroentérolgie, Paris, France
| | - Christophe Duvoux
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | - Marie-Noëlle Hilleret
- CHU de Grenoble, Hôpital Michalon, Service d'Hépato-Gastroentérologie, La Tronche, France
| | - Nassim Kamar
- CHU de Toulouse, Hôpital Rangueil, Service de Néphrologie-Hypertension artérielle-Dialyse-Transplantation, Toulouse, France
| | | | - Martine Neau-Cransac
- CHU de Bordeaux, Hôpital Haut Lévêque, Service de Chirurgie Hépatobiliaire et de Transplantation Hépatique, Bordeaux, France
| | - Georges-Philippe Pageaux
- CHU de Montpellier, Hôpital Saint-Eloi, Fédération Médico-Chirurgicale des Maladies de l'Appareil Digestif, Montpellier, France
| | - Emmanuel Gonzales
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Oanez Ackermann
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Hépatologie et Transplantation Hépatique Pédiatriques, Centre National de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Université Paris Saclay, Le Kremlin-Bicêtre, France; Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France
| | - Jean Gugenheim
- CHU de Nice, Hôpital L'Archet 2, Service de Chirurgie Digestive, Nice, France
| | - Alain Lachaux
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France; Université de Lyon, Lyon, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d'Hépato-gastroentérologie et Nutrition Pédiatrique, Bron, France
| | - Sylvie Radenne
- Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Service d'Hépatologie, Lyon, France
| | - Dominique Debray
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants malades, Unité d'Hépatologie pédiatrique, Centre de référence de l'Atrèsie des voies biliaires et cholestases génétiques, filière de santé Filfoie, Paris, France
| | - Florence Lacaille
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants malades, Unité d'Hépatologie pédiatrique, Centre de référence de l'Atrèsie des voies biliaires et cholestases génétiques, filière de santé Filfoie, Paris, France
| | - Valérie McLin
- Centre Suisse du Foie de l'Enfant, Hôpitaux Universitaires de Genève, Département de Pédiatrie, Gynécologie et Obstétrique, Genève, Suisse
| | - Jean-Charles Duclos-Vallée
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Didier Samuel
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Audrey Coilly
- Inserm U1193, Hepatinov, Université Paris Saclay, Orsay, France; Assistance Publique-Hôpitaux de Paris, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des spécialités digestives, Lyon, France; Université de Lyon, Lyon, France.
| |
Collapse
|
64
|
Karatas E, Raymond AA, Leon C, Dupuy JW, Di-Tommaso S, Senant N, Collardeau-Frachon S, Ruiz M, Lachaux A, Saltel F, Bouchecareilh M. Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Rep 2021; 3:100297. [PMID: 34151245 PMCID: PMC8192868 DOI: 10.1016/j.jhepr.2021.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background & Aims A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. Methods Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. Results We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. Conclusions PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. Lay summary Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease. PDIA4 is upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. Knockdown of PDIA4 by siRNA or inhibition upon cysteamine treatment leads to improvements in features of AATD. RNA interference against PDIA4 or cysteamine represent approaches for treatment of AATD-mediated liver disease.
Collapse
Key Words
- AAT, alpha 1-antitrypsin
- AATD, alpha 1-antitrypsin deficiency
- Alpha 1-antitrypsin deficiency
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cysteamine
- ER, endoplasmic reticulum
- FFPE, formalin-fixed paraffin-embedded
- FKBP10, FK506-binding protein (FKBP) isoform 10
- HCC, hepatocellular carcinoma
- IHC, immunohistochemistry
- IP, immunoprecipitation
- Liver damage
- NHK, null Hong Kong variant of AAT
- P4HB, prolyl 4-hydroxylase subunit beta/PDIA1
- PDI, protein disulfide isomerase
- PDIA3, protein disulfide isomerase family A member 3/ERP57
- PDIA4
- PDIA4, protein disulfide isomerase family A member 4/ERP70/ERP72
- PDIi, PDI inhibitors
- Protein disulfide isomerase
- ROS, reactive oxygen species
- SURF4, proteins Surfeit 4
- Scr, scramble
- TRX, thioredoxin
- TXNDC5, thioredoxin domain containing 5/PDIA15
- Treatment
- WT, wild-type
- Z-AAT, alpha 1-antitrypsin Z variant
- ZZ, homozygosis for the Z mutant allele
- siRNA, small RNA interference
- ΔF508-CFTR, most common mutation of CFTR, which deletes phenylalanine508
Collapse
Affiliation(s)
- Esra Karatas
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Céline Leon
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | | | - Sylvaine Di-Tommaso
- Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Nathalie Senant
- Plateforme d'histopathologie, TBM-Core US 005, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Lachaux
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Saltel
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | | |
Collapse
|
65
|
Pons M, Núñez A, Esquinas C, Torres-Durán M, Rodríguez-Hermosa JL, Calle M, Tubio-Pérez R, Belmonte I, Rodríguez-Frías F, Rodríguez E, Genescà J, Miravitlles M, Barrecheguren M. Utility of Transient Elastography for the Screening of Liver Disease in Patients with Alpha1-Antitrypsin Deficiency. J Clin Med 2021; 10:jcm10081724. [PMID: 33923569 PMCID: PMC8073267 DOI: 10.3390/jcm10081724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Screening of liver disease in alpha-1 antitrypsin deficiency (AATD) is usually carried out with liver enzymes, with low sensitivity. We conducted a multicenter cross-sectional study aiming to describe the utility of transient elastography for the identification of liver disease in patients with AATD. A total of 148 AATD patients were included. Among these, 54.7% were Pi*ZZ and 45.3% were heterozygous for the Z allele. Between 4.9% and 16.5% of patients had abnormal liver enzymes, without differences among genotypes. Liver stiffness measurement (LSM) was significantly higher in Pi*ZZ individuals than in heterozygous Z (5.6 vs. 4.6 kPa; p = 0.001). In total, in 8 (5%) individuals LSM was >7.5 kPa, considered significant liver fibrosis, and ≥10 kPa in 3 (1.9%) all being Pi*ZZ. Elevated liver enzymes were more frequently observed in patients with LSM > 7.5 kPa, but in 5 out of 8 of these patients all liver enzymes were within normal range. In patients with AATD, the presence of abnormal liver enzymes is frequent; however, most of these patients do not present significant liver fibrosis. Transient elastography can help to identify patients with liver fibrosis even with normal liver enzymes and should be performed in all Z-allele carriers to screen for liver disease.
Collapse
Affiliation(s)
- Mònica Pons
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.P.); (J.G.)
| | - Alexa Núñez
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Esquinas
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - María Torres-Durán
- Pneumology Department, University Hospital Complex of Vigo, Instituto de Investigación Biomédica Galicia Sur, 36213 Vigo, Spain; (M.T.-D.); (R.T.-P.)
| | - Juan Luis Rodríguez-Hermosa
- Pneumology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico de San Carlos, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.L.R.-H.); (M.C.)
| | - Myriam Calle
- Pneumology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico de San Carlos, Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.L.R.-H.); (M.C.)
| | - Ramón Tubio-Pérez
- Pneumology Department, University Hospital Complex of Vigo, Instituto de Investigación Biomédica Galicia Sur, 36213 Vigo, Spain; (M.T.-D.); (R.T.-P.)
| | - Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
| | - Francisco Rodríguez-Frías
- Department of Clinical Biochemistry, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Esther Rodríguez
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.P.); (J.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence:
| | - Miriam Barrecheguren
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.N.); (C.E.); (I.B.); (E.R.); (M.B.)
| |
Collapse
|
66
|
Schulz M, Kleinjans M, Strnad P, Demir M, Holtmann TM, Tacke F, Wree A. Shear Wave Elastography and Shear Wave Dispersion Imaging in the Assessment of Liver Disease in Alpha1-Antitrypsin Deficiency. Diagnostics (Basel) 2021; 11:diagnostics11040629. [PMID: 33807358 PMCID: PMC8066059 DOI: 10.3390/diagnostics11040629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/19/2022] Open
Abstract
Liver affection of Alpha1-antitrypsin deficiency (AATD) can lead to cirrhosis and hepatocellular carcinoma (HCC). A noninvasive severity assessment of liver disease in AATD is urgently needed since laboratory parameters may not accurately reflect the extent of liver involvement. Preliminary data exist on two-dimensional shear wave elastography (2D-SWE) being a suitable method for liver fibrosis measurement in AATD. AATD patients without HCC were examined using 2D-SWE, shear wave dispersion imaging (SWD) and transient elastography (TE). Furthermore, liver steatosis was assessed using the controlled attenuation parameter (CAP) and compared to the new method of attenuation imaging (ATI). 29 AATD patients were enrolled, of which 18 had the PiZZ genotype, eight had PiMZ, two had PiSZ and one had a PiZP-Lowell genotype. 2D-SWE (median 1.42 m/S, range 1.14–1.83 m/S) and TE (median 4.8 kPa, range 2.8–24.6 kPa) values displayed a significant correlation (R = 0.475, p < 0.05). 2D-SWE, ATI (median 0.56 dB/cm/MHz, range 0.43–0.96 dB/cm/MHz) and CAP (median 249.5 dB/m, range 156–347 dB/m) values were higher in PiZZ when compared to other AATD genotypes. This study provides evidence that 2D-SWE is a suitable method for the assessment of liver disease in AATD. The newer methods of SWD and ATI require further evaluation in the context of AATD.
Collapse
Affiliation(s)
- Marten Schulz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
- Correspondence:
| | - Moritz Kleinjans
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (M.K.); (P.S.)
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network (ERN) “Rare Liver” and the European Association for the Study of the Liver (EASL) Registry Group “Alpha1-Liver”, 52074 Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (M.K.); (P.S.)
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network (ERN) “Rare Liver” and the European Association for the Study of the Liver (EASL) Registry Group “Alpha1-Liver”, 52074 Aachen, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Theresa M. Holtmann
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| |
Collapse
|
67
|
The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries. Int J Mol Sci 2021; 22:ijms22041875. [PMID: 33668611 PMCID: PMC7917825 DOI: 10.3390/ijms22041875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
The maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease.
Collapse
|
68
|
Tian RD, Chen YQ, He YH, Tang YJ, Chen GM, Yang FW, Li Y, Huang WG, Chen H, Liu X, Lin SD. Phosphorylation of eIF2α mitigates endoplasmic reticulum stress and hepatocyte necroptosis in acute liver injury. Ann Hepatol 2021; 19:79-87. [PMID: 31548168 DOI: 10.1016/j.aohep.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Necroptosis and endoplasmic reticulum (ER) stress has been implicated in acute and chronic liver injury. Activated eukaryotic initiation factor 2 alpha (eIF2α) attenuates protein synthesis and relieves the load of protein folding in the ER. In this study, we aimed to analyze the impact of eIF2α phosphorylation on hepatocyte necroptosis in acute liver injury. MATERIALS AND METHODS Male BALB/c mice were injected with tunicamycin or d-galactosamine, and LO2 cells were incubated with tunicamycin to induce acute liver injury. 4-Phenylbutyric acid (PBA) and salubrinal were used to inhibit ER stress and eIF2α dephosphorylation, respectively. We analyzed the eIF2α phosphorylation, ER stress, and hepatocyte necroptosis in mice and cells model. RESULTS Tunicamycin or d-galactosamine significantly induced ER stress and necroptosis, as well as eIF2α phosphorylation, in mice and LO2 cells (p<0.05). ER stress aggravated tunicamycin-induced hepatocyte necroptosis in mice and LO2 cells (p<0.05). Elevated eIF2α phosphorylation significantly mitigated hepatocyte ER stress (p<0.05) and hepatocyte necroptosis in mice (34.37±3.39% vs 22.53±2.18%; p<0.05) and LO2 cells (1±0.11 vs 0.33±0.05; p<0.05). Interestingly, tumor necrosis factor receptor (TNFR) 1 protein levels were not completely synchronized with necroptosis. TNFR1 expression was reduced in d-galactosamine-treated mice (p<0.05) and cells incubated with tunicamycin for 12 and 24h (p<0.05). ER stress partially restored TNFR1 expression and increased necroptosis in tunicamycin-incubated cells (p<0.05). CONCLUSIONS These results imply that ER stress can mediate hepatocyte necroptosis independent of TNFR1 signaling and elevated eIF2α phosphorylation can mitigate ER stress during acute liver injury.
Collapse
Affiliation(s)
- Ren-Dong Tian
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Yi-Qun Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Yi-Huai He
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China.
| | - Yong-Jing Tang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Gui-Mei Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Fang-Wan Yang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Ying Li
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Wen-Ge Huang
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Huan Chen
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Xia Liu
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| | - Shi-De Lin
- Department of Infectious Diseases, the Affiliated Hospital of Zunyi Medical College, ZunyiGuizhou, China
| |
Collapse
|
69
|
Poothong J, Jang I, Kaufman RJ. Defects in Protein Folding and/or Quality Control Cause Protein Aggregation in the Endoplasmic Reticulum. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:115-143. [PMID: 34050864 DOI: 10.1007/978-3-030-67696-4_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aβ (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.
Collapse
Affiliation(s)
- Juthakorn Poothong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Insook Jang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
70
|
Pye A, Khan S, Whitehouse T, Turner AM. Personalizing liver targeted treatments and transplantation for patients with alpha-1 antitrypsin deficiency. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2021.1862648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sheeba Khan
- University Hospital Birmingham NHS FT, Birmingham, UK
| | | | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
71
|
Quinn M, Ellis P, Pye A, Turner AM. Obstacles to Early Diagnosis and Treatment of Alpha-1 Antitrypsin Deficiency: Current Perspectives. Ther Clin Risk Manag 2020; 16:1243-1255. [PMID: 33364772 PMCID: PMC7751439 DOI: 10.2147/tcrm.s234377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
This review summarizes the current research and outlooks regarding the obstacles to diagnosing and treating early alpha-1-antitrypsin deficiency (AATD). It draws on prior systematic reviews and expert surveys to discover precisely what difficulties exist in early diagnosis and treatment of AATD and elucidate potential solutions to ease these difficulties. The perceived rarity of AATD may translate to a condition poorly understood by primary care physicians, and even many respiratory physicians, which results in opportunities for diagnosis being missed, especially in mild or asymptomatic patients. There are diagnostic techniques involving biomarkers and home testing methods which could improve the rate of early diagnosis. With respect to treatment, AATD involves treating two separate pathologies, lung disease and liver disease. The only specific AATD treatment, augmentation therapy, has proven ability in treating lung disease but not liver disease. Alpha-1-antitrypsin (AAT) synthesized in the liver can form damaging polymers that also result in reduced circulating AAT levels and, whilst liver transplantation is used to effectively treat AATD, it is inappropriate in early disease. Novel therapeutic areas such as gene editing and increasing autophagy are therefore being researched as future treatments. Ultimately, diagnosis and treatment are intrinsically linked in AATD, with earlier diagnosis leading to better treatment options and thus better patient outcomes.
Collapse
Affiliation(s)
- Mark Quinn
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Paul Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Anita Pye
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,University Hospitals Birmingham, Birmingham, UK
| |
Collapse
|
72
|
Abbas SH, Pickett E, Lomas DA, Thorburn D, Gooptu B, Hurst JR, Marshall A. Non-invasive testing for liver pathology in alpha-1 antitrypsin deficiency. BMJ Open Respir Res 2020; 7:7/1/e000820. [PMID: 33323365 PMCID: PMC7745521 DOI: 10.1136/bmjresp-2020-000820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Many patients with alpha-1 antitrypsin deficiency (A1ATD) receive care in respiratory clinics without access to specialist hepatology expertise. Liver disease can develop asymptomatically, and non-invasive markers of fibrosis may help identify patients who require definitive assessment with liver biopsy. We evaluated the utility of non-invasive markers of liver fibrosis in A1ATD to guide testing in settings without ready access to hepatology expertise. Methods Patients attending the London A1ATD service undergo assessment using blood tests to calculate the ‘APRI’ and ‘FIB-4’ score, liver ultrasound and Fibroscan. Liver biopsy is offered to patients who have abnormal liver function tests with abnormal liver ultrasound and/or liver stiffness >6 kPa on Fibroscan. Liver biopsies were assessed for the presence of A1AT, steatosis, fibrosis and inflammation. Results 75 patients with A1ATD had results for analysis, 56% were female, age 16–82 years. 75% of patients had Fibroscan <6 kPa, 19% had Fibroscan 6–7.9 kPa and 6%>8 kPa. There was a significant correlation between FIB-4 and Fibroscan (r=0.244, p=0.035). Fibroscan >6 kPa corresponded to a FIB-4 score of >1.26. However, FIB-4 >1.26 had poor sensitivity (47%), specificity (32%) and positive-predictive value (PPV; 36%) to identify Fibroscan >6 kPa. The negative-predictive value (NPV) was stronger at 81%. APRI data were similar. Twelve patients underwent liver biopsy, with 11 reports available for analysis. Six had FIB-4 scores<1.26 and five had Fibroscan of <6 kPa. A1AT was present in 64% of biopsies, steatosis in 82%, mild fibrosis in 36%, moderate fibrosis in 9% and severe fibrosis in 9%. Conclusion A combination of liver ultrasound and non-invasive fibrosis tests can help identify patients with A1ATD liver injury. However, APRI and FIB-4 scores alone had poor sensitivity and specificity to justify use as an independent tool for liver pathology in A1ATD.
Collapse
Affiliation(s)
| | - Elisha Pickett
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK
| | - David A Lomas
- UCL Medical School, London, UK.,London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK.,UCL Respiratory, University College London, London, UK
| | - Douglas Thorburn
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK.,Sheila Sherlock Liver Unit, Royal Free London NHS Foundation Trust, London, UK
| | - Bibek Gooptu
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK.,NIHR Leicester BRC-Respiratory, Glenfield Hospital, University Hospitals of Leicester, Leicester, UK.,University of Leicester, Leicester, UK
| | - John R Hurst
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK .,Sheila Sherlock Liver Unit, Royal Free London NHS Foundation Trust, London, UK
| | - Aileen Marshall
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free London NHS Foundation Trust, London, UK.,Sheila Sherlock Liver Unit, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
73
|
Khodayari N, Oshins R, Holliday LS, Clark V, Xiao Q, Marek G, Mehrad B, Brantly M. Alpha-1 antitrypsin deficient individuals have circulating extracellular vesicles with profibrogenic cargo. Cell Commun Signal 2020; 18:140. [PMID: 32887613 PMCID: PMC7487708 DOI: 10.1186/s12964-020-00648-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD)-mediated liver disease is a toxic “gain-of-function” inflammation in the liver associated with intracellular retention of mutant alpha-1 antitrypsin. The clinical presentation of the disease includes fibrosis, cirrhosis and liver failure. However, the pathogenic mechanism of AATD-mediated liver disease is not well understood. Here, we investigated the role of plasma extracellular vesicles (EVs) in progression of AATD-mediated liver disease. Methods EVs were isolated from plasma of AATD individuals with liver disease and healthy controls. Their cytokines and miRNA content were examined by multiplex assay and small RNA sequencing. The bioactivity of EVs was assessed by qPCR, western blot analysis and immunofluorescent experiments using human hepatic stellate cells (HSCs) treated with EVs isolated from control or AATD plasma samples. Results We have found that AATD individuals have a distinct population of EVs with pathological cytokine and miRNA contents. When HSCs were cultured with AATD plasma derived-EVs, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with healthy control plasma EVs. Conclusion AATD individuals have a distinct population of EVs with abnormal cytokine and miRNA contents and the capacity to activate HSCs and mediate fibrosis. Better understanding of the components which cause liver inflammation and fibrogenesis, leading to further liver injury, has the potential to lead to the development of new treatments or preventive strategies to prevent AATD-mediated liver disease. Video abstract
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA.
| | - Regina Oshins
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | | | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, USA
| | | | - George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, USA.
| |
Collapse
|
74
|
Schneider CV, Hamesch K, Gross A, Mandorfer M, Moeller LS, Pereira V, Pons M, Kuca P, Reichert MC, Benini F, Burbaum B, Voss J, Gutberlet M, Woditsch V, Lindhauer C, Fromme M, Kümpers J, Bewersdorf L, Schaefer B, Eslam M, Bals R, Janciauskiene S, Carvão J, Neureiter D, Zhou B, Wöran K, Bantel H, Geier A, Dirrichs T, Stickel F, Teumer A, Verbeek J, Nevens F, Govaere O, Krawczyk M, Roskams T, Haybaeck J, Lurje G, Chorostowska-Wynimko J, Genesca J, Reiberger T, Lammert F, Krag A, George J, Anstee QM, Trauner M, Datz C, Gaisa NT, Denk H, Trautwein C, Aigner E, Strnad P. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers. Gastroenterology 2020; 159:534-548.e11. [PMID: 32376409 DOI: 10.1053/j.gastro.2020.04.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Homozygosity for the Pi∗Z variant of the gene that encodes the alpha-1 antitrypsin peptide (AAT), called the Pi∗ZZ genotype, causes a liver and lung disease called alpha-1 antitrypsin deficiency. Heterozygosity (the Pi∗MZ genotype) is a risk factor for cirrhosis in individuals with liver disease. Up to 4% of Europeans have the Pi∗MZ genotype; we compared features of adults with and without Pi∗MZ genotype among persons without preexisting liver disease. METHODS We analyzed data from the European Alpha-1 Liver Cohort, from 419 adults with the Pi∗MZ genotype, 309 adults with the Pi∗ZZ genotype, and 284 individuals without the variant (noncarriers). All underwent a comprehensive evaluation; liver stiffness measurements (LSMs) were made by transient elastography. Liver biopsies were analyzed to define histologic and biochemical features associated with the Pi∗Z variant. Levels of serum transaminases were retrieved from 444,642 participants, available in the United Kingdom biobank. RESULTS In the UK biobank database, levels of serum transaminases were increased in subjects with the Pi∗MZ genotype compared with noncarriers. In the Alpha-1 Liver Cohort, adults with Pi∗MZ had lower levels of gamma-glutamyl transferase in serum and lower LSMs than adults with the Pi∗ZZ variant, but these were higher than in noncarriers. Ten percent of subjects with the Pi∗MZ genotype vs 4% of noncarriers had LSMs of 7.1 kPa or more (adjusted odds ratio, 4.8; 95% confidence interval, 2.0-11.8). Obesity and diabetes were the most important factors associated with LSMs ≥7.1 kPa in subjects with the Pi∗MZ genotype. AAT inclusions were detected in liver biopsies of 63% of subjects with the Pi∗MZ genotype, vs 97% of subjects with the Pi∗ZZ genotype, and increased with liver fibrosis stages. Subjects with the Pi∗MZ genotype did not have increased hepatic levels of AAT, whereas levels of insoluble AAT varied among individuals. CONCLUSIONS Adults with the Pi∗MZ genotype have lower levels of serum transaminases, fewer AAT inclusions in liver, and lower liver stiffness than adults with the Pi∗ZZ genotype, but higher than adults without the Pi∗Z variant. These findings should help determine risk of subjects with the Pi∗MZ genotype and aid in counseling.
Collapse
Affiliation(s)
- Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany
| | - Annika Gross
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Linda S Moeller
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid
| | - Pawel Kuca
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Brescia, Italy
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Marla Gutberlet
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Kümpers
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Benedikt Schaefer
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Robert Bals
- Department of Internal Medicine V, Saarland University Medical Center, Homburg, Germany
| | | | - Joana Carvão
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Biaohuan Zhou
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Katharina Wöran
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andreas Geier
- Department of Hepatology, University of Wuerzburg, Wuerzburg, Germany
| | - Timm Dirrichs
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zürich, Switzerland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology & Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Olivier Govaere
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of Medicine II Saarland University Medical Center Saarland University Homburg Germany Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Tania Roskams
- Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany; Department of Surgery, Campus Charité Mitte I Campus Virchow Klinikum Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Oberndorf, Austria
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany.
| | | |
Collapse
|
75
|
Attanasio S, Ferriero R, Gernoux G, De Cegli R, Carissimo A, Nusco E, Campione S, Teckman J, Mueller C, Piccolo P, Brunetti-Pierri N. CHOP and c-JUN up-regulate the mutant Z α 1-antitrypsin, exacerbating its aggregation and liver proteotoxicity. J Biol Chem 2020; 295:13213-13223. [PMID: 32723872 DOI: 10.1074/jbc.ra120.014307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
α1-Antitrypsin (AAT) encoded by the SERPINA1 gene is an acute-phase protein synthesized in the liver and secreted into the circulation. Its primary role is to protect lung tissue by inhibiting neutrophil elastase. The Z allele of SERPINA1 encodes a mutant AAT, named ATZ, that changes the protein structure and leads to its misfolding and polymerization, which cause endoplasmic reticulum (ER) stress and liver disease through a gain-of-function toxic mechanism. Hepatic retention of ATZ results in deficiency of one of the most important circulating proteinase inhibitors and predisposes to early-onset emphysema through a loss-of-function mechanism. The pathogenetic mechanisms underlying the liver disease are not completely understood. C/EBP-homologous protein (CHOP), a transcription factor induced by ER stress, was found among the most up-regulated genes in livers of PiZ mice that express ATZ and in human livers of patients homozygous for the Z allele. Compared with controls, juvenile PiZ/Chop -/- mice showed reduced hepatic ATZ and a transcriptional response indicative of decreased ER stress by RNA-Seq analysis. Livers of PiZ/Chop -/- mice also showed reduced SERPINA1 mRNA levels. By chromatin immunoprecipitations and luciferase reporter-based transfection assays, CHOP was found to up-regulate SERPINA1 cooperating with c-JUN, which was previously shown to up-regulate SERPINA1, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele. In summary, CHOP and c-JUN up-regulate SERPINA1 transcription and play an important role in hepatic disease by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.
Collapse
Affiliation(s)
| | - Rosa Ferriero
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Gwladys Gernoux
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Annamaria Carissimo
- Institute for Applied Mathematics "Mauro Picone" National Research Council, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Jeffrey Teckman
- St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Christian Mueller
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
76
|
Bouchecareilh M. Alpha-1 Antitrypsin Deficiency-Mediated Liver Toxicity: Why Do Some Patients Do Poorly? What Do We Know So Far? CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2020; 7:172-181. [PMID: 32558486 PMCID: PMC7857713 DOI: 10.15326/jcopdf.7.3.2019.0148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease caused by mutations in the SERPINA1 gene and is associated with a decreased level of circulating alpha-1 antitrypsin (AAT). Among all the known mutations in the SERPINA1 gene, homozygous for the Z allele is well-known to result in both lung and liver disease. Unlike the lung injury that occurs in adulthood with the environment (notably, tobacco) as a co-factor, the hepatic damage is more complicated. Despite a common underlying gene mutation, the liver disease associated with AATD presents a considerable variability in the age-of-onset and severity, ranging from transient neonatal cholestasis (in early childhood) to cirrhosis and liver cancer (in childhood and adulthood). Given that all the cofactors- genetics and/or environmental- have not been fully identified, it is still impossible to predict which individuals with AATD may develop severe liver disease. The discovery of these modifiers represents the major challenge for the detection, diagnosis, and development of new therapies to provide alternative options to liver transplantation. The aim of this current review is to provide an updated overview of our knowledge on why some AATD patients associated with liver damage progress poorly.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- National Institute of Health and Medical Research (INSERM), National Center for Scientific Research (CNRS), University Bordeaux, Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
77
|
Wooddell CI, Blomenkamp K, Peterson RM, Subbotin VM, Schwabe C, Hamilton J, Chu Q, Christianson DR, Hegge JO, Kolbe J, Hamilton HL, Branca-Afrazi MF, Given BD, Lewis DL, Gane E, Kanner SB, Teckman JH. Development of an RNAi therapeutic for alpha-1-antitrypsin liver disease. JCI Insight 2020; 5:135348. [PMID: 32379724 DOI: 10.1172/jci.insight.135348] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The autosomal codominant genetic disorder alpha-1 antitrypsin (AAT) deficiency (AATD) causes pulmonary and liver disease. Individuals homozygous for the mutant Z allele accumulate polymers of Z-AAT protein in hepatocytes, where AAT is primarily produced. This accumulation causes endoplasmic reticulum (ER) stress, oxidative stress, damage to mitochondria, and inflammation, leading to fibrosis, cirrhosis, and hepatocellular carcinoma. The magnitude of AAT reduction and duration of response from first-generation intravenously administered RNA interference (RNAi) therapeutic ARC-AAT and then with next-generation subcutaneously administered ARO-AAT were assessed by measuring AAT protein in serum of the PiZ transgenic mouse model and human volunteers. The impact of Z-AAT reduction by RNAi on liver disease phenotypes was evaluated in PiZ mice by measuring polymeric Z-AAT in the liver; expression of genes associated with fibrosis, autophagy, apoptosis, and redox regulation; inflammation; Z-AAT globule parameters; and tumor formation. Ultrastructure of the ER, mitochondria, and autophagosomes in hepatocytes was evaluated by electron microscopy. In mice, sustained RNAi treatment reduced hepatic Z-AAT polymer, restored ER and mitochondrial health, normalized expression of disease-associated genes, reduced inflammation, and prevented tumor formation. RNAi therapy holds promise for the treatment of patients with AATD-associated liver disease. ARO-AAT is currently in phase II/III clinical trials.
Collapse
Affiliation(s)
| | - Keith Blomenkamp
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Qili Chu
- Arrowhead Pharmaceuticals, Madison, Wisconsin, USA
| | | | | | - John Kolbe
- Auckland Clinical Studies, Auckland, New Zealand
| | | | | | - Bruce D Given
- Arrowhead Pharmaceuticals, Pasadena, California, USA
| | | | - Edward Gane
- Auckland Clinical Studies, Auckland, New Zealand
| | | | - Jeffrey H Teckman
- Departments of Pediatrics and Biochemistry, St. Louis University School of Medicine, Cardinal Glennon Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
78
|
Petzold G, Lasser J, Rühl J, Bremer SCB, Knoop RF, Ellenrieder V, Kunsch S, Neesse A. Diagnostic accuracy of B-Mode ultrasound and Hepatorenal Index for graduation of hepatic steatosis in patients with chronic liver disease. PLoS One 2020; 15:e0231044. [PMID: 32357147 PMCID: PMC7194436 DOI: 10.1371/journal.pone.0231044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The aim of our study was to evaluate the diagnostic accuracy of B-Mode ultrasound and Hepatorenal Index (HRI) by high-end devices for the detection and classification of hepatic steatosis in patients with various causes of chronic liver disease (CLD). METHODS We retrospectively enrolled patients with CLD who underwent liver biopsy and baseline ultrasound between March 2016 and May 2019. Sonographic graduation of steatosis (0°-III°) using B-Mode criteria and HRI were correlated with the histological graduation (S0 (<5% fat), S1 (≥5-33%), S2 (>33-66%) and S3 (>66%). Interobserver agreement was calculated. RESULTS 157 patients were evaluated. B-Mode ultrasound had a sensitivity of 75.6% and a specificity of 76.0% to differentiate between steatosis and no steatosis (AUROC 0.758). Using B-Mode criteria for advanced steatosis (≥II°), specificity for presence of histological steatosis was ≥98.7%. For detection of advanced steatosis (≥S2), sensitivity of B-mode criteria was 90.9%. In a subgroup of patients with advanced liver fibrosis, sensitivity of B-mode criteria was 95.0% for detection of advanced steatosis (S≥2). A HRI cut-off-value of 1.46 differentiates between patients with steatosis and patients without steatosis with a sensitivity of 42.7% and a specificity of 90.7% (AUROC 0.680). Interobserver agreement of both B-Mode and HRI was good to excellent. CONCLUSION B-Mode ultrasound using high-end devices is an excellent method to detect advanced steatosis in patients with various CLD. For diagnosis of mild steatosis, modern ultrasound devices may have higher sensitivity but at the expense of specificity. Stage of fibrosis and etiology of CLD seem not to impact on diagnostic accuracy. The additional calculation of HRI seems to have no additional benefit with regard to detect or grade hepatic steatosis in our study population.
Collapse
Affiliation(s)
- Golo Petzold
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Julian Lasser
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Janina Rühl
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian C. B. Bremer
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Richard F. Knoop
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Steffen Kunsch
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
79
|
Krawczyk M, Liebe R, Lammert F. Toward Genetic Prediction of Nonalcoholic Fatty Liver Disease Trajectories: PNPLA3 and Beyond. Gastroenterology 2020; 158:1865-1880.e1. [PMID: 32068025 DOI: 10.1053/j.gastro.2020.01.053] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is on the verge of becoming the leading cause of liver disease. NAFLD develops at the interface between environmental factors and inherited predisposition. Genome-wide association studies, followed by exome-wide analyses, led to identification of genetic risk variants (eg, PNPLA3, TM6SF2, and SERPINA1) and key pathways involved in fatty liver disease pathobiology. Functional studies improved our understanding of these genetic factors and the molecular mechanisms underlying the trajectories from fat accumulation to fibrosis, cirrhosis, and cancer over time. Here, we summarize key NAFLD risk genes and illustrate their interactions in a 3-dimensional "risk space." Although NAFLD genomics sometimes appears to be "lost in translation," we envision clinical utility in trial design, outcome prediction, and NAFLD surveillance.
Collapse
Affiliation(s)
- Marcin Krawczyk
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Roman Liebe
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Frank Lammert
- Department of Medicine II (Gastroenterology and Endocrinology), Saarland University Medical Center, Saarland University, Homburg.
| |
Collapse
|
80
|
Affiliation(s)
- Pavel Strnad
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - Noel G McElvaney
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| | - David A Lomas
- From the Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, Aachen, Germany (P.S.); the Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medicine, Rayne Institute, University College London, London (D.A.L.)
| |
Collapse
|
81
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
82
|
Alpha 1-Antitrypsin Deficiency: A Disorder of Proteostasis-Mediated Protein Folding and Trafficking Pathways. Int J Mol Sci 2020; 21:ijms21041493. [PMID: 32098273 PMCID: PMC7073043 DOI: 10.3390/ijms21041493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
Human cells express large amounts of different proteins continuously that must fold into well-defined structures that need to remain correctly folded and assemble in order to ensure their cellular and biological functions. The integrity of this protein balance/homeostasis, also named proteostasis, is maintained by the proteostasis network (PN). This integrated biological system, which comprises about 2000 proteins (chaperones, folding enzymes, degradation components), control and coordinate protein synthesis folding and localization, conformational maintenance, and degradation. This network is particularly challenged by mutations such as those found in genetic diseases, because of the inability of an altered peptide sequence to properly engage PN components that trigger misfolding and loss of function. Thus, deletions found in the ΔF508 variant of the Cystic Fibrosis (CF) transmembrane regulator (CFTR) triggering CF or missense mutations found in the Z variant of Alpha 1-Antitrypsin deficiency (AATD), leading to lung and liver diseases, can accelerate misfolding and/or generate aggregates. Conversely to CF variants, for which three correctors are already approved (ivacaftor, lumacaftor/ivacaftor, and most recently tezacaftor/ivacaftor), there are limited therapeutic options for AATD. Therefore, a more detailed understanding of the PN components governing AAT variant biogenesis and their manipulation by pharmacological intervention could delay, or even better, avoid the onset of AATD-related pathologies.
Collapse
|
83
|
Chen VL, Chen Y, Du X, Handelman SK, Speliotes EK. Genetic variants that associate with cirrhosis have pleiotropic effects on human traits. Liver Int 2020; 40:405-415. [PMID: 31815349 PMCID: PMC7395656 DOI: 10.1111/liv.14321] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Cirrhosis is characterized by extensive fibrosis of the liver and is a major cause of liver-related mortality. Cirrhosis is partially heritable but genetic contributions to cirrhosis have not been systemically explored. Here, we carry out association analyses with cirrhosis in two large biobanks and determine the effects of cirrhosis associated variants on multiple human disease/traits. METHODS We carried out a genome-wide association analysis of cirrhosis as a diagnosis in UK BioBank (UKBB; 1088 cases vs. 407 873 controls) and then tested top-associating loci for replication with cirrhosis in a hospital-based cohort from the Michigan Genomics Initiative (MGI; 875 cases of cirrhosis vs. 30 346 controls). For replicating variants or variants previously associated with cirrhosis that also affected cirrhosis in UKBB or MGI, we determined single nucleotide polymorphism effects on all other diagnoses in UKBB (PheWAS), common metabolic traits/diseases and serum/plasma metabolites. RESULTS Unbiased genome-wide association study identified variants in/near PNPLA3 and HFE, and candidate variant analysis identified variants in/near TM6SF2, MBOAT7, SERPINA1, HSD17B13, STAT4 and IFNL4 that reproducibly affected cirrhosis. Most affected liver enzyme concentrations and/or aspartate transaminase-to-platelet ratio index. PheWAS, metabolic trait and serum/plasma metabolite association analyses revealed effects of these variants on lipid, inflammatory and other processes including new effects on many human diseases and traits. CONCLUSIONS We identified eight loci that reproducibly associate with population-based cirrhosis and define their diverse effects on human diseases and traits.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Samuel K. Handelman
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
84
|
Mueller S. Introduction to Fibrosis Assessment by Liver Stiffness in Different Etiologies. LIVER ELASTOGRAPHY 2020:105-111. [DOI: 10.1007/978-3-030-40542-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
85
|
Hamesch K, Strnad P. Non-Invasive Assessment and Management of Liver Involvement in Adults With Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:260-271. [PMID: 32697896 DOI: 10.15326/jcopdf.7.3.2019.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a systemic disorder affecting mainly the lung and the liver and is caused by mutations in SERPINA1, the AAT gene. A homozygous "Pi*Z" mutation (Pi*ZZ genotype) may cause liver fibrosis on its own independently of pulmonary AATD manifestation, while heterozygous Pi*Z carriage (Pi*MZ genotype) is considered a strong risk factor for development of liver cirrhosis in patients with concomitant liver disease such as alcoholic and non-alcoholic liver disease. In Pi*ZZ homozygotes, liver disease constitutes the second leading cause of death and is highly heterogeneous. About 35% of Pi*ZZ individuals display significant liver fibrosis on biopsy (i.e., fibrosis stage ≥ 2 on scale 0-4). Among non-invasive methods for liver fibrosis assessment, liver stiffness measurement (LSM) via vibration-controlled transient elastography (VCTE) has been most widely evaluated. Based on these data, Pi*ZZ adults have 20x increased odds of developing advanced liver fibrosis (i.e., fibrosis stage ≥ 3) than adults without AAT mutation. Risk factors for accelerated fibrosis progression are male sex, age ≥ 50 years, alcohol misuse, obesity, diabetes mellitus, or metabolic syndrome. Unlike VCTE, other ultrasound- and magnetic resonance-based elastography methods have been assessed in small cohorts of Pi*ZZ individuals and remain to be comprehensively validated. Among blood-based fibrosis tests, AST-to-platelet ratio index (APRI) correlates moderately with histologic fibrosis stage and LSM. Given APRI's wide availability, it can be used for risk stratification as an adjunct to LSM or when LSM is not at hand. Despite recent efforts, AATD-related liver disease, especially for genotypes other than Pi*ZZ, remains greatly understudied. AATD individuals should be offered liver biochemistry, liver ultrasound, and non-invasive fibrosis assessment at the time of diagnosis to detect potential complications and for proper risk stratification. If signs of AATD-related liver disease occur (i.e., pathologic fibrosis test or repeatedly elevated liver enzymes), patients should be referred to a health care center specialized in AATD-related liver disease and be screened for potentially treatable comorbidities. To exclude the latter, they may need a liver biopsy. Moreover, every health care provider of an AATD individual should be aware of the potential liver manifestation, counsel their patient on modifiable hepatic risk factors, and offer them regular liver check-ups.
Collapse
Affiliation(s)
- Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany.,Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group "Alpha-1 Liver"
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany.,Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group "Alpha-1 Liver"
| |
Collapse
|
86
|
Marek GW, Brantly M, Clark VC. Reply to: "Assessment of liver phenotype in adults with severe alpha-1 antitrypsin deficiency (Pi*ZZ genotype)". J Hepatol 2019; 71:1274. [PMID: 31606160 DOI: 10.1016/j.jhep.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/04/2022]
Affiliation(s)
- George W Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, United States
| | - Virginia C Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, United States.
| |
Collapse
|
87
|
Assessment of liver phenotype in adults with severe alpha-1 antitrypsin deficiency (Pi*ZZ genotype). J Hepatol 2019; 71:1272-1274. [PMID: 31594657 DOI: 10.1016/j.jhep.2019.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/28/2023]
|
88
|
Guldiken N, Hamesch K, Schuller SM, Aly M, Lindhauer C, Schneider CV, Fromme M, Trautwein C, Strnad P. Mild Iron Overload as Seen in Individuals Homozygous for the Alpha-1 Antitrypsin Pi*Z Variant Does Not Promote Liver Fibrogenesis in HFE Knockout Mice. Cells 2019; 8:cells8111415. [PMID: 31717526 PMCID: PMC6912453 DOI: 10.3390/cells8111415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of the homozygous 'Pi*Z' variant of alpha-1 antitrypsin (AAT) ('Pi*ZZ' genotype) predisposes to liver fibrosis development, but the role of iron metabolism in this process remains unknown. Therefore, we assessed iron metabolism and variants in the Homeostatic Iron Regulator gene (HFE) as the major cause of hereditary iron overload in a large cohort of Pi*ZZ subjects without liver comorbidities. The human cohort comprised of 409 Pi*ZZ individuals and 254 subjects without evidence of an AAT mutation who were recruited from ten European countries. All underwent a comprehensive work-up and transient elastography to determine liver stiffness measurements (LSM). The corresponding mouse models (Pi*Z overexpressors, HFE knockouts, and double transgenic [DTg] mice) were used to evaluate the impact of mild iron overload on Pi*Z-induced liver injury. Compared to Pi*Z non-carriers, Pi*ZZ individuals had elevated serum iron, transferrin saturation, and ferritin levels, but relevant iron overload was rare. All these parameters were higher in individuals with signs of significant liver fibrosis (LSM ≥ 7.1 kPa) compared to those without signs of significant liver fibrosis. HFE knockout and DTg mice displayed similar extent of iron overload and of fibrosis. Loss of HFE did not alter the extent of AAT accumulation. In Pi*ZZ individuals, presence of HFE mutations was not associated with more severe liver fibrosis. Taken together, Pi*ZZ individuals display minor alterations in serum iron parameters. Neither mild iron overload seen in these individuals nor the presence of HFE mutations (C282Y and H63D) constitute a major contributor to liver fibrosis development.
Collapse
Affiliation(s)
- Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
| | - Shari Malan Schuller
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Mahmoud Aly
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Carolin V. Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, D-52074 Aachen, Germany; (N.G.); (K.H.); (S.M.S.); (M.A.); (C.L.); (C.V.S.); (M.F.); (C.T.)
- Coordinating Center for Alpha-1 Antitrypsin Deficiency-Related Liver Disease of the European Reference Network on Hepatological Diseases (ERN RARE-LIVER) and the European Association for the Study of the Liver (EASL) Registry Group “Alpha-1 Liver”, Germany
- Correspondence: ; Tel.: +49-(241)-80-35324; Fax: +49-(241)-80-82455
| |
Collapse
|
89
|
Sobani ZA, Paniz GR, Wong M, McCarthy DM. Don't Miss the BoAAT: Correctly Diagnosing Acute-on-Chronic Liver Disease. Dig Dis Sci 2019; 64:2780-2783. [PMID: 31456092 DOI: 10.1007/s10620-019-05816-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zain A Sobani
- Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA. .,Division of Gastroenterology and Hepatology, 1 University of New Mexico, MSC10-5550, Albuquerque, NM, 87131, USA.
| | - Graziella R Paniz
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Morgan Wong
- Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Denis M McCarthy
- Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
90
|
Hamesch K, Mandorfer M, Pereira VM, Moeller LS, Pons M, Dolman GE, Reichert MC, Schneider CV, Woditsch V, Voss J, Lindhauer C, Fromme M, Spivak I, Guldiken N, Zhou B, Arslanow A, Schaefer B, Zoller H, Aigner E, Reiberger T, Wetzel M, Siegmund B, Simões C, Gaspar R, Maia L, Costa D, Bento-Miranda M, van Helden J, Yagmur E, Bzdok D, Stolk J, Gleiber W, Knipel V, Windisch W, Mahadeva R, Bals R, Koczulla R, Barrecheguren M, Miravitlles M, Janciauskiene S, Stickel F, Lammert F, Liberal R, Genesca J, Griffiths WJ, Trauner M, Krag A, Trautwein C, Strnad P. Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology 2019; 157:705-719.e18. [PMID: 31121167 DOI: 10.1053/j.gastro.2019.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation-associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%-36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or γ-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter ≥280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-low-density lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Z-overexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosis and impaired lipid secretion. We identified factors associated with significant liver fibrosis in patients, which could facilitate hepatologic assessment and counseling of individuals who carry the Pi*ZZ mutation. ClinicalTrials.gov Number NCT02929940.
Collapse
Affiliation(s)
- Karim Hamesch
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Vítor M Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Linda S Moeller
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Grace E Dolman
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Igor Spivak
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Martin Wetzel
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Britta Siegmund
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carolina Simões
- Gastroenterology Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Luís Maia
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Dalila Costa
- Gastroenterology Department, Hospital de Braga, Braga, Portugal
| | - Mário Bento-Miranda
- Gastroenterology Department, Hospital Universitário de Coimbra, Coimbra, Portugal
| | - Josef van Helden
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Jülich Aachen Research Alliance-Brain, Aachen, Germany
| | - Jan Stolk
- Clinic for Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Gleiber
- Clinic for Pulmonology, University Hospital Frankfurt, Frankfurt, Germany
| | - Verena Knipel
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge National Institute for Health Research, Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Robert Bals
- Department of Medicine V, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rembert Koczulla
- Clinic for Pneumology, Marburg University Hospital, Marburg, Germany; Institute for Pulmonary Rehabilitation Research, Schoen Clinic Berchtesgadener Land, Member of the Deutsches Zentrum für Lungenforschung, Schönau am Königssee, Germany
| | - Miriam Barrecheguren
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Marc Miravitlles
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Sabina Janciauskiene
- Clinic for Pneumology, German Center for Lung Research, Medical University Hannover, Hannover, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - William J Griffiths
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Christian Trautwein
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Pavel Strnad
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | |
Collapse
|
91
|
Rahaghi F, Omert L, Clark V, Sandhaus RA. Managing the Alpha-1 patient in the ICU: Adapting broad critical care strategies in AATD. J Crit Care 2019; 54:212-219. [PMID: 31614323 DOI: 10.1016/j.jcrc.2019.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/17/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Alpha-1 Antitrypsin Deficiency (AATD) is a progressive pulmonary disease under-recognized or misdiagnosed by clinicians. Patients with AATD can develop a variety of organ-specific complications and as a result, often require hospitalization and treatment within critical care and ICU settings. Due to the complexity of AATD there are minimal guidelines in place to address the specific and highly variable needs of these patients in the critical care setting. This review presents clinical considerations with respect to the management of patients with AATD and provides treatment recommendations for these patients in the critical care setting. In addition, we have outlined certain aspects of the care of this patient population that may be of interest to critical care practitioners. With greater disease awareness and earlier diagnosis the onset of symptoms can be delayed, which will ultimately reduce the frequency of deleterious health consequences.
Collapse
Affiliation(s)
- Franck Rahaghi
- Pulmonary and Critical Care Division, Cleveland Clinic Florida, Weston, Florida, United States.
| | - Laurel Omert
- CSL Behring, King of Prussia, PA, United States.
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, United States.
| | - Robert A Sandhaus
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, United States.
| |
Collapse
|
92
|
Di Bisceglie AM, Teckman J. Liver Disease Due to Alpha-1 Antitrypsin Deficiency: Are We Surprised That It Is More Complex Than We Thought? Hepatology 2019; 70:5-7. [PMID: 31058323 DOI: 10.1002/hep.30694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 12/07/2022]
Affiliation(s)
- Adrian M Di Bisceglie
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
93
|
Wang L, Marek GW, Hlady RA, Wagner RT, Zhao X, Clark VC, Fan AX, Liu C, Brantly M, Robertson KD. Alpha-1 Antitrypsin Deficiency Liver Disease, Mutational Homogeneity Modulated by Epigenetic Heterogeneity With Links to Obesity. Hepatology 2019; 70:51-66. [PMID: 30681738 DOI: 10.1002/hep.30526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) liver disease is characterized by marked heterogeneity in presentation and progression, despite a common underlying gene mutation, strongly suggesting the involvement of other genetic and/or epigenetic modifiers. Variation in clinical phenotype has added to the challenge of detection, diagnosis, and testing of new therapies in patients with AATD. We examined the contribution of DNA methylation (5-methylcytosine [5mC]) to AATD liver disease heterogeneity because 5mC responds to environmental and genetic cues and its deregulation is a major driver of liver disease. Using liver biopsies from adults with early-stage AATD and the ZZ genotype, genome-wide 5mC patterns were interrogated. We compared DNA methylation among patients with early AATD, and among patients with normal liver, cirrhosis, and hepatocellular carcinoma derived from multiple etiologic exposures, and linked patient clinical/demographic features. Global analysis revealed significant genomic hypomethylation in AATD liver-impacting genes related to liver cancer, cell cycle, and fibrosis, as well as key regulatory molecules influencing growth, migration, and immune function. Further analysis indicated that 5mC changes are localized, with hypermethylation occurring within a background of genome-wide 5mC loss and with patients with AATD manifesting distinct epigenetic landscapes despite their mutational homogeneity. By integrating clinical data with 5mC landscapes, we observed that CpGs differentially methylated among patients with AATD disease are linked to hallmark clinical features of AATD (e.g., hepatocyte degeneration and polymer accumulation) and further reveal links to well-known sex-specific effects of liver disease progression. Conclusion: Our data reveal molecular epigenetic signatures within this mutationally homogeneous group that point to ways to stratify patients for liver disease risk.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN
| | - George W Marek
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Virginia C Clark
- Division of Gastroenterology, Hepatology & Nutrition, University of Florida, Gainesville, FL
| | - Alex Xiucheng Fan
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.,Center for Individualized Medicine Epigenomics Program, Mayo Clinic, Rochester, MN
| |
Collapse
|