51
|
Billings C, Langley M, Warrington G, Mashali F, Johnson JA. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures. Int J Mol Sci 2021; 22:ijms22147651. [PMID: 34299271 PMCID: PMC8306580 DOI: 10.3390/ijms22147651] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have a wide range of applications; an area of particular interest is magnetic particle imaging (MPI). MPI is an imaging modality that utilizes superparamagnetic iron oxide particles (SPIONs) as tracer particles to produce highly sensitive and specific images in a broad range of applications, including cardiovascular, neuroimaging, tumor imaging, magnetic hyperthermia and cellular tracking. While there are hurdles to overcome, including accessibility of products, and an understanding of safety and toxicity profiles, MPI has the potential to revolutionize research and clinical biomedical imaging. This review will explore a brief history of MPI, MNP synthesis methods, current and future applications, and safety concerns associated with this newly emerging imaging modality.
Collapse
Affiliation(s)
- Caroline Billings
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mitchell Langley
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Gavin Warrington
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (M.L.); (G.W.); (F.M.)
| | - Jacqueline Anne Johnson
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
- Correspondence:
| |
Collapse
|
52
|
Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study. Phys Med 2021; 88:65-70. [PMID: 34192659 DOI: 10.1016/j.ejmp.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Magnetic Particle Imaging (MPI) is a new, background- and radiation-free tomographic imaging method that enables near real-time imaging of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal and spatial resolution. This phantom study aims to investigate the potential of MPI for visualization of the stent lumen in intracranial flow diverters (FD). METHODS Nitinol FD of different dimensions (outer diameter: 3.5 mm, 4.0 mm, 5.5 mm; total length: 22-40 mm) were scanned in vascular phantoms in a custom-built MPI scanner (in-plane resolution: ~ 2 mm, field of view: 65 mm length, 29 mm diameter). Phantoms were filled with diluted (1:50) SPION tracer agent Ferucarbotran (10 µmol (Fe)/ml; NaCL). Each phantom was measured in 32 different projections (overall acquisition time per image: 3200 ms, 5averages). After image reconstruction from raw data, two radiologists assessed image quality using a 5-point Likert scale. The signal intensity profile was measured using a semi-automatic evaluation tool. RESULTS MPI visualized the lumen of all FD without relevant differences between the stented vessel phantom and the reference phantom. At 3.5 mm image quality was slightly inferior to the larger diameters. The FD themselves neither generated an MPI signal nor did they lead to relevant imaging artifacts. Ratings of both radiologists showed no significant difference, interrater reliability was good (ICC 0.84). A quantitative evaluation of the signal intensity profile did not reveal any significant differences (p > 0.05) either. CONCLUSION MPI visualizes the lumen of nitinol FD stents in vessel phantoms without relevant stent-induced artifacts.
Collapse
|
53
|
Chilom CG, Sandu N, Iftimie S, Bălăşoiu M, Rogachev A, Orelovich O, Stolyar S. Interactions of Chemically Synthesized Ferrihydrite Nanoparticles with Human Serum Transferrin: Insights from Fluorescence Spectroscopic Studies. Int J Mol Sci 2021; 22:ijms22137034. [PMID: 34210014 PMCID: PMC8268179 DOI: 10.3390/ijms22137034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/21/2023] Open
Abstract
Human serum transferrin (HST) is a glycoprotein involved in iron transport that may be a candidate for functionalized nanoparticles to bind and target cancer cells. In this study, the effects of the simple and doped with cobalt (Co) and copper (Cu) ferrihydrite nanoparticles (Fh-NPs, Cu-Fh-NPs, and Co-Fh-NPs) were studied by spectroscopic and molecular approaches. Fluorescence spectroscopy revealed a static quenching mechanism for all three types of Fh-NPs. All Fh-NPs interacted with HST with low affinity, and the binding was driven by hydrogen bonding and van der Waals forces for simple Fh-NPs and by hydrophobic interactions for Cu-Fh-NPs and Co-Fh-NPs binding, respectively. Of all samples, simple Fh-NPs bound the most to the HST binding site. Fluorescence resonance energy transfer (FRET) allowed the efficient determination of the energy transfer between HST and NPs and the distance at which the transfer takes place and confirmed the mechanism of quenching. The denaturation of the HST is an endothermic process, both in the case of apo HST and HST in the presence of the three types of Fh-NPs. Molecular docking studies revealed that Fh binds with a low affinity to HST (Ka = 9.17 × 103 M−1) in accord with the fluorescence results, where the interaction between simple Fh-NPs and HST was described by a binding constant of 9.54 × 103 M−1.
Collapse
Affiliation(s)
- Claudia G. Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
- Correspondence:
| | - Nicoleta Sandu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
| | - Sorina Iftimie
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str Atomistilor 405, CP MG 11, RO-077125 Măgurele, Romania; (N.S.); (S.I.)
| | - Maria Bălăşoiu
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, RO-077125 Măgurele, Romania
- Moscow Institute of Physics and Technology, Institutskiy Per. No. 9, 141701 Dolgoprudniy, Russia
| | - Andrey Rogachev
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
- Moscow Institute of Physics and Technology, Institutskiy Per. No. 9, 141701 Dolgoprudniy, Russia
| | - Oleg Orelovich
- Joint Institute for Nuclear Research, Joliot-Curie No. 6, 141980 Dubna, Russia; (M.B.); (A.R.); (O.O.)
| | - Sergey Stolyar
- Krasnoyarsk Science Center of the Siberian, Branch of the Russian Academy of Sciences, Akademgorodok St. No. 50, 660036 Krasnoyarsk, Russia;
| |
Collapse
|
54
|
Mason EE, Mattingly E, Herb K, Śliwiak M, Franconi S, Cooley CZ, Slanetz PJ, Wald LL. Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery. Sci Rep 2021; 11:13456. [PMID: 34188077 PMCID: PMC8242088 DOI: 10.1038/s41598-021-92644-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Breast-conserving surgery (BCS) is a commonly utilized treatment for early stage breast cancers but has relatively high reexcision rates due to post-surgical identification of positive margins. A fast, specific, sensitive, easy-to-use tool for assessing margins intraoperatively could reduce the need for additional surgeries, and while many techniques have been explored, the clinical need is still unmet. We assess the potential of Magnetic Particle Imaging (MPI) for intraoperative margin assessment in BCS, using a passively or actively tumor-targeted iron oxide agent and two hardware devices: a hand-held Magnetic Particle detector for identifying residual tumor in the breast, and a small-bore MPI scanner for quickly imaging the tumor distribution in the excised specimen. Here, we present both hardware systems and demonstrate proof-of-concept detection and imaging of clinically relevant phantoms.
Collapse
Affiliation(s)
- Erica E Mason
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| | - Eli Mattingly
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Konstantin Herb
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Monika Śliwiak
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Sofia Franconi
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Clarissa Zimmerman Cooley
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Priscilla J Slanetz
- Department of Radiology, Boston University Medical Center, Boston, MA, 02118, USA
| | - Lawrence L Wald
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
55
|
Shasha C, Krishnan KM. Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904131. [PMID: 32557879 PMCID: PMC7746587 DOI: 10.1002/adma.201904131] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/10/2019] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Magnetic nanoparticles are currently the focus of investigation for a wide range of biomedical applications that fall into the categories of imaging, sensing, and therapeutics. A deep understanding of nanoparticle magnetization dynamics is fundamental to optimization and further development of these applications. Here, a summary of theoretical models of nanoparticle dynamics is presented, and computational nonequilibrium models are outlined, which currently represent the most sophisticated methods for modeling nanoparticle dynamics. Nanoparticle magnetization response is explored in depth; the effect of applied field amplitude, as well as nanoparticle size, on the resulting rotation mechanism and timescale is investigated. Two applications in biomedicine, magnetic particle imaging and magnetic fluid hyperthermia, are highlighted.
Collapse
Affiliation(s)
- Carolyn Shasha
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Kannan M Krishnan
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
- Department of Materials Sciences & Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
56
|
Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J Control Release 2021; 335:437-448. [PMID: 34081996 DOI: 10.1016/j.jconrel.2021.05.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022]
Abstract
Cancer is one of the leading causes of mortality worldwide. Nanoparticles have been broadly studied and emerged as a novel approach in diagnosis and treatment of tumors. Over the last decade, researches have significantly improved magnetic nanoparticle (MNP)'s theranostic potential as nanomedicine for cancer. Newer MNPs have various advantages such as wider operating temperatures, smaller sizes, lower toxicity, simpler preparations and lower production costs. With a series of unique and superior physical and chemical properties, MNPs have great potential in medical applications. In particular, using MNPs as probes for medical imaging and carriers for targeted drug delivery systems. While MNPs are expected to be the future of cancer diagnosis and precision drug delivery, more research is still required to minimize their toxicity and improve their efficacy. An ideal MNP for clinical applications should be precisely engineered to be stable to act as tracers or deliver drugs to the targeted sites, release drug components only at the targeted sites and have minimal health risks. Our review aims to consolidate the recent improvements in MNPs for clinical applications as well as discuss the future research prospects and potential of MNPs in cancer theranostics.
Collapse
Affiliation(s)
- Xuexin Li
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17121, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming 650091, Yunnan, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
57
|
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9:3543-3575. [PMID: 33634800 DOI: 10.1039/d0bm02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Theranostic platforms that combine therapy with diagnosis not only prevent the undesirable biological responses that may occur when these processes are conducted separately, but also allow individualized therapies for patients. Polymer hydrogels have been employed to provide well-controlled drug release and targeted therapy in theranostics, where injectable hydrogels enable non-invasive treatment and monitoring with a single injection, offering greater patient comfort and efficient therapy. Efforts have been focused on applying injectable polymer hydrogels in theranostic research and clinical use. This review highlights recent progress in the design of injectable polymer hydrogels for cancer theranostics, particularly focusing on the elements/components of theranostic hydrogels, and their cross-linking strategies, structures, and performance with regard to drug delivery/tracking. Therapeutic agents and tracking modalities that are essential components of the theranostic platforms are introduced, and the design strategies, properties and applications of the injectable hydrogels developed via two approaches, namely chemical bonds and physical interactions, are described. The theranostic functions of the platforms are highly dependent on the architecture and components employed for the construction of hydrogels. Challenges currently presented by theranostic platforms based on injectable hydrogels are identified, and prospects of acquiring more comfortable and personalized therapies are proposed.
Collapse
Affiliation(s)
- Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China. and Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
58
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
59
|
Rivera-Rodriguez A, Rinaldi-Ramos CM. Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields. Annu Rev Chem Biomol Eng 2021; 12:163-185. [PMID: 33856937 DOI: 10.1146/annurev-chembioeng-102720-015630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic nanoparticles are of interest for biomedical applications because of their biocompatibility, tunable surface chemistry, and actuation using applied magnetic fields. Magnetic nanoparticles respond to time-varying magnetic fields via physical particle rotation or internal dipole reorientation, which can result in signal generation or conversion of magnetic energy to heat. This dynamic magnetization response enables their use as tracers in magnetic particle imaging (MPI), an emerging biomedical imaging modality in which signal is quantitative of tracer mass and there is no tissue background signal or signal attenuation. Conversion of magnetic energy to heat motivates use in nanoscale thermal cancer therapy, magnetic actuation of drug release, and rapid rewarming of cryopreserved organs. This review introduces basic concepts of magnetic nanoparticle response to time-varying magnetic fields and presents recent advances in the field, with an emphasis on MPI and conversion of magnetic energy to heat.
Collapse
Affiliation(s)
- Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA; , .,Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
60
|
Sharif S, Nguyen KT, Bang D, Park JO, Choi E. Optimization of Field-Free Point Position, Gradient Field and Ferromagnetic Polymer Ratio for Enhanced Navigation of Magnetically Controlled Polymer-Based Microrobots in Blood Vessel. MICROMACHINES 2021; 12:mi12040424. [PMID: 33924499 PMCID: PMC8070347 DOI: 10.3390/mi12040424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Microscale and nanoscale robots, frequently referred to as future cargo systems for targeted drug delivery, can effectively convert magnetic energy into locomotion. However, navigating and imaging them within a complex colloidal vascular system at a clinical scale is exigent. Hence, a more precise and enhanced hybrid control navigation and imaging system is necessary. Magnetic particle imaging (MPI) has been successfully applied to visualize the ensemble of superparamagnetic nanoparticles (MNPs) with high temporal sensitivity. MPI uses the concept of field-free point (FFP) mechanism in the principal magnetic field. The gradient magnetic field (|∇B|) of MPI scanners can generate sufficient magnetic force in MNPs; hence, it has been recently used to navigate nanosized particles and micron-sized swimmers. In this article, we present a simulation analysis of the optimized navigation of an ensemble of microsized polymer MNP-based drug carriers in blood vessels. Initially, an ideal two-dimensional FFP case is employed for the basic optimization of the FFP position to achieve efficient navigation. Thereafter, a nine-coil electromagnetic actuation simulation system is developed to generate and manipulate the FFP position and |∇B|. Under certain vessel and fluid conditions, the particle trajectories of different ferromagnetic polymer ratios and |∇B| were compared to optimize the FFP position.
Collapse
Affiliation(s)
- Saqib Sharif
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
| | - Kim Tien Nguyen
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju 61186, Korea; (S.S.); (K.T.N.)
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea;
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
61
|
Pagan J, McDonough C, Vo T, Tonyushkin A. Single-Sided Magnetic Particle Imaging Device with Field-Free-Line Geometry for in-vivo Imaging Applications. IEEE TRANSACTIONS ON MAGNETICS 2021; 57:5300105. [PMID: 33746245 PMCID: PMC7978233 DOI: 10.1109/tmag.2020.3008596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic Particle Imaging (MPI) has shown great promise to surpass existing in vivo imaging modalities in some clinical applications. However, one of the challenges to MPI being translated into clinical practice has been the ability to scale up the selection field coils to surround a human body while being able to generate and drive a sufficiently strong magnetic field gradient. These requirements impose safety concerns as well as prohibitively high-power consumption in devices with large cylindrical volume. Therefore, we consider an alternative approach such as a single-sided topology, in which all the hardware is located on one side of the imaging volume accommodating larger subjects. Moreover, different from the previously implemented field-free point single-sided scanners, we realized a field-free line geometry providing, in principle, factor of ten higher signal and benefiting from a more robust back-projection image reconstruction technique. In this work, we present and characterize a first prototype of a single-sided MPI device with field-free-line geometry suited for in-vivo imaging of small animals as well as regions of interest in humans.
Collapse
Affiliation(s)
- Jason Pagan
- Physics Department, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Chris McDonough
- Physics Department, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Triet Vo
- Engineering Department, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Alexey Tonyushkin
- Physics Department, University of Massachusetts Boston, Boston, MA 02125 USA
| |
Collapse
|
62
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
63
|
Lu Y, Rivera-Rodriguez A, Tay ZW, Hensley D, Fung KLB, Colson C, Saayujya C, Huynh Q, Kabuli L, Fellows B, Chandrasekharan P, Rinaldi C, Conolly S. Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperthermia 2021; 37:141-154. [PMID: 33426994 DOI: 10.1080/02656736.2020.1853252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Magnetic fluid hyperthermia (MFH) has been widely investigated as a treatment tool for cancer and other diseases. However, focusing traditional MFH to a tumor deep in the body is not feasible because the in vivo wavelength of 300 kHz very low frequency (VLF) excitation fields is longer than 100 m. Recently we demonstrated that millimeter-precision localized heating can be achieved by combining magnetic particle imaging (MPI) with MFH. In principle, real-time MPI imaging can also guide the location and dosing of MFH treatments. Hence, the combination of MPI imaging plus real time localized MPI-MFH could soon permit closed-loop high-resolution hyperthermia treatment. In this review, we will discuss the fundamentals of localized MFH (e.g. physics and biosafety limitations), hardware implementation, MPI real-time guidance, and new research directions on MPI-MFH. We will also discuss how the scale up to human-sized MPI-MFH scanners could proceed.
Collapse
Affiliation(s)
- Yao Lu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Angelie Rivera-Rodriguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - K L Barry Fung
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Caylin Colson
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Leyla Kabuli
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Benjamin Fellows
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Steven Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
64
|
Wegner F, von Gladiss A, Haegele J, Grzyska U, Sieren MM, Stahlberg E, Oechtering TH, Lüdtke-Buzug K, Barkhausen J, Buzug TM, Friedrich T. Magnetic Particle Imaging: In vitro Signal Analysis and Lumen Quantification of 21 Endovascular Stents. Int J Nanomedicine 2021; 16:213-221. [PMID: 33469281 PMCID: PMC7810673 DOI: 10.2147/ijn.s284694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/11/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Endovascular stents are medical devices, which are implanted in stenosed blood vessels to ensure sufficient blood flow. Due to a high rate of in-stent re-stenoses, there is the need of a noninvasive imaging method for the early detection of stent occlusion. The evaluation of the stent lumen with computed tomography (CT) and magnetic resonance imaging (MRI) is limited by material-induced artifacts. The purpose of this work is to investigate the potential of the tracer-based modality magnetic particle imaging (MPI) for stent lumen visualization and quantification. Methods In this in vitro study, 21 endovascular stents were investigated in a preclinical MPI scanner. Therefore, the stents were implanted in vessel phantoms. For the signal analysis, the phantoms were scanned without tracer material, and the signal-to-noise-ratio was analyzed. For the evaluation of potential artifacts and the lumen quantification, the phantoms were filled with diluted tracer agent. To calculate the stent lumen diameter a calibrated threshold value was applied. Results We can show that it is possible to visualize the lumen of a variety of endovascular stents without material induced artifacts, as the stents do not generate sufficient signals in MPI. The stent lumen quantification showed a direct correlation between the calculated and nominal diameter (r = 0.98). Conclusion In contrast to MRI and CT, MPI is able to visualize and quantify stent lumina very accurately.
Collapse
Affiliation(s)
- Franz Wegner
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | | | - Julian Haegele
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany.,Zentrum für Radiologie und Nuklearmedizin Rheinland, Dormagen, Germany
| | - Ulrike Grzyska
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Malte Maria Sieren
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Erik Stahlberg
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | | | | | - Joerg Barkhausen
- Department of Radiology and Nuclear Medicine, University of Lübeck, Lübeck, Germany
| | - Thorsten M Buzug
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany.,Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Thomas Friedrich
- Institute of Medical Engineering, University of Lübeck, Lübeck, Germany.,Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| |
Collapse
|
65
|
Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, Yang X, Tian J, Chen Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Am J Cancer Res 2021; 11:506-521. [PMID: 33391489 PMCID: PMC7738857 DOI: 10.7150/thno.49812] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a pivotal driver of atherosclerotic plaque progression and rupture and is a target for identifying vulnerable plaques. However, challenges arise with the current in vivo imaging modalities for differentiating vulnerable atherosclerotic plaques from stable plaques due to their low specificity and sensitivity. Herein, we aimed to develop a novel multimodal imaging platform that specifically targets and identifies high-risk plaques in vivo by detecting active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable atherosclerotic plaque. Methods: A novel multimodal imaging agent, 5-HT-Fe3O4-Cy7 nanoparticles (5HFeC NPs), used for active MPO targeting, was designed by conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide ester. The specificity and sensitivity of 5HFeC NPs were evaluated using magnetic particle imaging (MPI), fluorescence imaging (FLI), and computed tomographic angiography (CTA) in an ApoE-/- atherosclerosis mouse model. Treatment with 4-ABAH, an MPO inhibitor, was used to assess the monitoring ability of 5HFeC NPs. Results: 5HFeC NPs can sensitively differentiate and accurately localize vulnerable atherosclerotic plaques in ApoE-/- mice via MPI/FLI/CTA. High MPI and FLI signals were observed in atherosclerotic plaques within the abdominal aorta, which were histologically confirmed by multiple high-risk features of macrophage infiltration, neovascularization, and microcalcification. Inhibition of active MPO reduced accumulation of 5HFeC NPs in the abdominal aorta. Accumulation of 5HFeC NPs in plaques enabled quantitative evaluation of the severity of inflammation and monitoring of MPO activity. Conclusions: This multimodal MPI approach revealed that active MPO-targeted nanoparticles might serve as a method for detecting vulnerable atherosclerotic plaques and monitoring MPO activity.
Collapse
|
66
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
67
|
Top CB, Gungor A. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4164-4173. [PMID: 32746156 DOI: 10.1109/tmi.2020.3014197] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have a high potential for use in clinical diagnostic and therapeutic applications. In vivo distribution of SPIONs can be imaged with the Magnetic Particle Imaging (MPI) method, which uses an inhomogeneous magnetic field with a field free region (FFR). The spatial distribution of the SPIONs are obtained by scanning the FFR inside the field of view (FOV) and sensing SPION related magnetic field disturbance. MPI magnets can be configured to generate a field free point (FFP), or a field free line (FFL) to scan the FOV. FFL scanners provide more sensitivity, and are also more suitable for scanning large regions compared to FFP scanners. Interventional procedures will benefit greatly from FFL based open magnet configurations. Here, we present the first open-sided MPI system that can electronically scan the FOV with an FFL to generate tomographic MPI images. Magnetic field measurements show that FFL can be rotated electronically in the horizontal plane and translated in three dimensions to generate 3D MPI images. Using the developed scanner, we obtained 2D images of dot and cylinder phantoms with varying iron concentrations between 11 [Formula: see text]/ml and 770 [Formula: see text]/ml. We used a measurement based system matrix image reconstruction method that minimizes l1 -norm and total variation in the images. Furthermore, we present 2D imaging results of two 4 mm-diameter vessel phantoms with 0% and 75% stenosis. The experiments show high quality imaging results with a resolution down to 2.5 mm for a relatively low gradient field of 0.6 T/m.
Collapse
|
68
|
Abstract
Many labs have been developing cellular magnetic resonance imaging (MRI), using both superparamagnetic iron oxide nanoparticles (SPIONs) and fluorine-19 (19F)-based cell labels, to track immune and stem cells used for cellular therapies. Although SPION-based MRI cell tracking has very high sensitivity for cell detection, SPIONs are indirectly detected owing to relaxation effects on protons, producing negative magnetic resonance contrast with low signal specificity. Therefore, it is not possible to reliably quantify the local tissue concentration of SPION particles, and cell number cannot be determined. 19F-based cell tracking has high specificity for perfluorocarbon-labeled cells, and 19F signal is directly related to cell number. However, 19F MRI has low sensitivity. Magnetic particle imaging (MPI) is a new imaging modality that directly detects SPIONs. SPION-based cell tracking using MPI displays great potential for overcoming the challenges of MRI-based cell tracking, allowing for both high cellular sensitivity and specificity, and quantification of SPION-labeled cell number. Here we describe nanoparticle and MPI system factors that influence MPI sensitivity and resolution, quantification methods, and give our perspective on testing and applying MPI for cell tracking.
Collapse
Affiliation(s)
- Olivia C. Sehl
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Julia J. Gevaert
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Kierstin P. Melo
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Natasha N. Knier
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Paula J. Foster
- Imaging Research Laboratories, Robarts Research Institute; and
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
69
|
Localization and Actuation for MNPs Based on Magnetic Field-Free Point: Feasibility of Movable Electromagnetic Actuations. MICROMACHINES 2020; 11:mi11111020. [PMID: 33233414 PMCID: PMC7700462 DOI: 10.3390/mi11111020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023]
Abstract
Targeted drug delivery (TDD) based on magnetic nanoparticles (MNPs) and external magnetic actuation is a promising drug delivery technology compared to conventional treatments usually utilized in cancer therapy. However, the implementation of a TDD system at a clinical site based on considerations for the actual size of the human body requires a simplified structure capable of both external actuation and localization. To address these requirements, we propose a novel approach to localize drug carriers containing MNPs by manipulating the field-free point (FFP) mechanism in the principal magnetic field. To this end, we devise a versatile electromagnetic actuation (EMA) system for FFP generation based on four coils affixed to a movable frame. By the Biot-Savart law, the FFP can be manipulated by appropriately controlling the gradient field strength at the target area using the EMA system. Further, weighted-norm solutions are utilized to correct the positions of FFP to improve the accuracy of FFP displacement in the region of interest (ROI). As MNPs, ferrofluid is used to experiment with 2D and 3D localizations in a blocked phantom placed in the designed ROI. The resultant root mean square error of the localizations is observed to be approximately 1.4 mm in the 2D case and 1.6 mm in the 3D case. Further, the proposed movable EMA is verified to be capable of simultaneously scanning multiple points as well as the actuation and imaging of MNPs. Based on the success of the experiments in this study, further research is intended to be conducted in scale-up system development to design precise TDD systems at clinical sites.
Collapse
|
70
|
Kurt S, Muslu Y, Saritas EU. Partial FOV Center Imaging (PCI): A Robust X-Space Image Reconstruction for Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3441-3450. [PMID: 32746094 DOI: 10.1109/tmi.2020.2995410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic Particle Imaging (MPI) is an emerging medical imaging modality that images the spatial distribution of superparamagnetic iron oxide (SPIO) nanoparticles using their nonlinear response to applied magnetic fields. In standard x-space approach to MPI, the image is reconstructed by gridding the speed-compensated nanoparticle signal to the instantaneous position of the field free point (FFP). However, due to safety limits on the drive field, the field-of-view (FOV) needs to be covered by multiple relatively small partial field-of-views (pFOVs). The image of the entire FOV is then pieced together from individually processed pFOVs. These processing steps can be sensitive to non-ideal signal conditions such as harmonic interference, noise, and relaxation effects. In this work, we propose a robust x-space reconstruction technique, Partial FOV Center Imaging (PCI), with substantially simplified pFOV processing. PCI first forms a raw image of the entire FOV by mapping MPI signal directly to pFOV center locations. The corresponding MPI image is then obtained by deconvolving this raw image by a compact kernel, whose fully-known shape solely depends on the pFOV size. We analyze the performance of the proposed reconstruction via extensive simulations, as well as imaging experiments on our in-house FFP MPI scanner. The results show that PCI offers a trade-off between noise robustness and interference robustness, outperforming standard x-space reconstruction in terms of both robustness against non-ideal signal conditions and image quality.
Collapse
|
71
|
In vivo magnetic particle imaging: angiography of inferior vena cava and aorta in rats using newly developed multicore particles. Sci Rep 2020; 10:17247. [PMID: 33057029 PMCID: PMC7560824 DOI: 10.1038/s41598-020-74151-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 11/08/2022] Open
Abstract
Magnetic Particle Imaging (MPI) is a new imaging modality, which maps the distribution of magnetic nanoparticles (MNP) in 3D with high temporal resolution. It thus may be suited for cardiovascular imaging. Its sensitivity and spatial resolution critically depend on the magnetic properties of MNP. Therefore, we used novel multicore nanoparticles (MCP 3) for in-vivo MPI in rats and analyzed dose requirements, sensitivity and detail resolution. 8 rats were examined using a preclinical MPI scanner (Bruker Biospin GmbH, Germany) equipped with a separate receive coil. MCP 3 and Resovist were administered intravenously (i.v.) into the rats' tail veins at doses of 0.1, 0.05 and 0.025 mmol Fe/kg followed by serial MPI acquisition with a temporal resolution of 46 volumes per second. Based on a qualitative visual scoring system MCP 3-MPI images showed a significantly (P ≤ 0.05) higher image quality than Resovist-MPI images. Morphological features such as vessel lumen diameters (DL) of the inferior vena cava (IVC) and abdominal aorta (AA) could be assessed along a 2-cm segment in mesenteric area only after administration of MCP 3 at dosages of 0.1, 0.05 mmol Fe/kg. The mean DL ± SD estimated was 2.7 ± 0.6 mm for IVC and 2.4 ± 0.7 mm for AA. Evaluation of DL of the IVC and AA was not possible in Resovist-MPI images. Our results show, that MCP 3 provide better image quality at a lower dosage than Resovist. MCP 3-MPI with a clinically acceptable dose of 0.05 mmol Fe/kg increased the visibility of vessel lumens compared to Resovist-based MPI towards possible detection of vascular abnormalities such as stenosis or aneurysms, in vivo.
Collapse
|
72
|
Liang X, Wang K, Du J, Tian J, Zhang H. The first visualization of chemotherapy-induced tumor apoptosis via magnetic particle imaging in a mouse model. Phys Med Biol 2020; 65:195004. [PMID: 32764190 DOI: 10.1088/1361-6560/abad7c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Imaging technologies that allow non-radiative visualization and quantification of apoptosis have a great potential for assessing therapy response, early diagnosis, and disease monitoring. Magnetic particle imaging (MPI), the direct imaging of magnetic nanoparticles as positive contrast agent and sole signal source, enables high image contrast (no tissue background signal), potential high sensitivity, and quantifiable signal intensity. These properties confer a great potential for application to tumor apoptosis monitoring. In this study, a simple and robust method was used to conjugate Alexa Fluor 647-AnnexinV (AF647-Anx), which can avidly bind to apoptotic cells, to superparamagnetic iron oxide (SPIO) nanoparticles, termed AF647-Anx-SPIO, which serves as an MPI-detectable tracer. Based on this apoptosis-specific tracer, MPI can accurately and unambiguously detect and quantify apoptotic tumor cells. AF647-Anx-SPIO showed relatively high affinity for apoptotic cells, and differences in binding between treated (apoptotic rate 67.21% ± 1.36%) and untreated (apoptotic rate 10.12 ± 0.11%) cells could be detected by MPI in vitro (P < 0.05). Moreover, the imaging signal was almost proportional to the number of apoptotic cells determined using an MPI scanner (R 2 = 0.99). There was a greater accumulation of AF647-Anx-SPIO in tumors of drug-treated animals than in tumors of untreated animals (P < 0.05), and the difference could be detected by MPI ex vivo, while for in vivo imaging, no MPI imaging signal was detected in either group. Overall, this preliminary study demonstrates that MPI could be a potential imaging modality for tumor apoptosis imaging.
Collapse
Affiliation(s)
- Xin Liang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China. College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
73
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
74
|
Choi SM, Jeong JC, Kim J, Lim EG, Kim CB, Park SJ, Song DY, Krause HJ, Hong H, Kweon IS. A novel three-dimensional magnetic particle imaging system based on the frequency mixing for the point-of-care diagnostics. Sci Rep 2020; 10:11833. [PMID: 32678265 PMCID: PMC7366937 DOI: 10.1038/s41598-020-68864-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 11/14/2022] Open
Abstract
The magnetic particle imaging (MPI) is a technology that can image the concentrations of the superparamagnetic iron oxide nanoparticles (SPIONs) which can be used in biomedical diagnostics and therapeutics as non-radioactive tracers. We proposed a point-of-care testing MPI system (PoCT-MPI) that can be used for preclinical use for imaging small rodents (mice) injected with SPIONs not only in laboratories, but also at emergency sites far from laboratories. In particular, we applied a frequency mixing magnetic detection method to the PoCT-MPI, and proposed a hybrid field free line generator to reduce the power consumption, size and weight of the system. The PoCT-MPI is [Formula: see text] in size and weighs less than 100 kg. It can image a three-dimensional distribution of SPIONs injected into a biosample with less than 120 Wh of power consumption. Its detection limit is [Formula: see text], 10 mg/mL, [Formula: see text] (Fe).
Collapse
Affiliation(s)
- Seung-Min Choi
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea.
- Division of Future Vehicle, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Jae-Chan Jeong
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - Jinsun Kim
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - Eul-Gyoon Lim
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - Chang-Beom Kim
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - Sang-Jin Park
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich, Germany
| | - Hyobong Hong
- Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea
| | - In So Kweon
- Division of Future Vehicle, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
75
|
Feng L, Wang H, Xue X. Recent Progress of Nanomedicine in the Treatment of Central Nervous System Diseases. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Leyan Feng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy, Nankai University Haihe Education Park, 38 Tongyan Road Tianjin 300353 P. R. China
| |
Collapse
|
76
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
77
|
Colombo S, Lebedev V, Tonyushkin A, Pengue S, Weis A. Imaging Magnetic Nanoparticle Distributions by Atomic Magnetometry-Based Susceptometry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:922-933. [PMID: 31478841 PMCID: PMC10536941 DOI: 10.1109/tmi.2019.2937670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a Magnetic Particle Imaging Susceptometer (MPIS) that uses a high-sensitivity atomic magnetometer (AM) for recording the spatial distribution of fluid-suspended magnetic nanoparticles. We have evaluated the MPIS performance by one-dimensional scans of structured nanoparticle phantoms, demonstrating, in particular, resolutions of ≈2.5 mm prior to deconvolution and << 1 mm after deconvolution. Our instrument conceptually follows the general principle of Magnetic Particle Imaging (MPI) for encoding spatial distributions into magnetic flux density variations. Conversely to previously demonstrated MPI methods, MPIS works in time-space by recording time series of the sample's magnetic response including all Fourier components. The device deploys a specifically designed system of coils, a low-frequency excitation scheme, and a simple source localization algorithm. The difference of the AM's frequency response with respect to the conventional receive coil detection allows us to work at much lower driving frequencies. We demonstrate operation at frequencies on the order of 100 Hz, enabling the beneficial use of larger nanoparticles. The spatial distribution encoded into the particles' susceptibility needs a much lower excitation field amplitude compared to conventional MPI scanners. These two features make MPIS least harmful for biological samples and subjects compared to conventional MPI scanners. We also address performance characteristics and other possible applications of MPIS.
Collapse
|
78
|
Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BKL, Colson C, Lu Y, Fellows BD, Huynh Q, Saayujya C, Yu E, Orendorff R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Am J Cancer Res 2020; 10:2965-2981. [PMID: 32194849 PMCID: PMC7053197 DOI: 10.7150/thno.40858] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023] Open
Abstract
Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,✉ Corresponding author: E-mail: ; Phone: +1 (510) 642 3420
| | - Zhi Wei Tay
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Daniel Hensley
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Xinyi Y Zhou
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Barry KL Fung
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Caylin Colson
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Yao Lu
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Benjamin D Fellows
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Ryan Orendorff
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States
| | | | - Carlos Rinaldi
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, FL, 32611 United States
| | - Steven Conolly
- University of California Berkeley, Department of Bioengineering, Berkeley, CA 94720, United States,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
79
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
80
|
Usov NA, Rytov RA, Bautin VA. Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2294-2303. [PMID: 31807414 PMCID: PMC6880845 DOI: 10.3762/bjnano.10.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The dynamics of magnetic nanoparticles in a viscous liquid in a rotating magnetic field has been studied by means of numerical simulations and analytical calculations. In the magneto-dynamics approximation three different modes of motion of the unit magnetization vector and particle director are distinguished depending on frequency and amplitude of the rotating magnetic field. The specific absorption rate of a dilute assembly of superparamagnetic nanoparticles in rotating magnetic field is calculated by solving the Landau-Lifshitz stochastic equation for the unit magnetization vector and the stochastic equation for the particle director. At elevated frequencies an optimal range of particle diameters is found where the specific absorption rate of an assembly in a rotating magnetic field has a maximum. It is shown that with an optimal choice of the particle sizes sufficiently large SAR values of the order of 400-500 W/g can be obtained in a rotating magnetic field with a frequency f = 400 kHz and a moderate magnetic field amplitude H 0 = 100 Oe.
Collapse
Affiliation(s)
- Nikolai A Usov
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108480, Troitsk, Moscow, Russia
| | - Ruslan A Rytov
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
| | - Vasiliy A Bautin
- National University of Science and Technology «MISIS», 119049, Moscow, Russia
| |
Collapse
|
81
|
Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic Nanomaterials for Advanced Regenerative Medicine: The Promise and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804922. [PMID: 30511746 DOI: 10.1002/adma.201804922] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/24/2018] [Indexed: 06/09/2023]
Abstract
The recent emergence of numerous nanotechnologies is expected to facilitate the development of regenerative medicine, which is a tissue regeneration technique based on the replacement/repair of diseased tissue or organs to restore the function of lost, damaged, and aging cells in the human body. In particular, the unique magnetic properties and specific dimensions of magnetic nanomaterials make them promising innovative components capable of significantly advancing the field of tissue regeneration. Their potential applications in tissue regeneration are the focus here, beginning with the fundamentals of magnetic nanomaterials. How nanomaterials-both those that are intrinsically magnetic and those that respond to an externally applied magnetic field-can enhance the efficiency of tissue regeneration is also described. Applications including magnetically controlled cargo delivery and release, real-time visualization and tracking of transplanted cells, magnetic regulation of cell proliferation/differentiation, and magnetic activation of targeted ion channels and signal pathways involved in regeneration are highlighted, and comments on the perspectives and challenges in magnetic nanomaterial-based tissue regeneration are given.
Collapse
Affiliation(s)
- Xiao-Li Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shizhu Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, P. R. China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jin Zhou
- Tissue Engineering Research Center of the Academy of Military Medical Sciences, No. 27, Taiping Road, Haidian District, Beijing, 100850, P. R. China
| | - Hai-Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
82
|
Magnetic Particle Imaging: Artifact-Free Metallic Stent Lumen Imaging in a Phantom Study. Cardiovasc Intervent Radiol 2019; 43:331-338. [PMID: 31578634 DOI: 10.1007/s00270-019-02347-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE To illustrate the potential of magnetic particle imaging (MPI) for stent lumen imaging in comparison with clinical computed tomography (CT) and magnetic resonance imaging (MRI). MATERIALS AND METHODS Imaging of eight tracer-filled, stented vessel phantoms and a tracer-filled, non-stented reference phantom for each diameter was performed on a preclinical MPI scanner: eight commercially available coronary stents of different dimensions (diameter: 3-4 mm; length: 11-38 mm) and materials (stainless steel, platinum-chromium) were implanted into silicone vessel phantoms. For comparison, all vessel phantoms were also visualized by MRI and CT. Two radiologists assessed the images regarding stent-induced artifacts using a 5-point grading scale. RESULTS The visualization of all stented vessel phantoms was achieved without stent-induced artifacts with MPI. In contrast, MRI and CT images revealed multiform stent-induced artifacts. CONCLUSION Given its clinical introduction, MPI has the potential to overcome the disadvantages of MRI and CT concerning the visualization of the stent lumen.
Collapse
|
83
|
Ozaslan AA, Alacaoglu A, Demirel OB, Çukur T, Saritas EU. Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging. Phys Med Biol 2019; 64:165018. [PMID: 31342922 DOI: 10.1088/1361-6560/ab3525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Magnetic particle imaging (MPI) is a fast emerging biomedical imaging modality that exploits the nonlinear response of superparamagnetic iron oxide (SPIO) nanoparticles to image their spatial distribution. Previously, various scanning trajectories were analyzed for the system function reconstruction (SFR) approach, providing important insight regarding their image quality performances. While Cartesian trajectories remain the most popular choice for x-space-based reconstruction, recent work suggests that non-Cartesian trajectories such as the Lissajous trajectory may prove beneficial for improving image quality. In this work, we propose a generalized reconstruction scheme for x-space MPI that can be used in conjunction with any scanning trajectory. The proposed technique automatically tunes the reconstruction parameters from the scanning trajectory, and does not induce any additional blurring. To demonstrate the proposed technique, we utilize five different trajectories with varying density levels. Comparison to alternative reconstruction methods show significant improvement in image quality achieved by the proposed technique. Among the tested trajectories, the Lissajous and bidirectional Cartesian trajectories prove more favorable for x-space MPI, and the resolution of the images from these two trajectories can further be improved via deblurring. The proposed fully automated gridding reconstruction can be utilized with these trajectories to improve the image quality in x-space MPI.
Collapse
Affiliation(s)
- A A Ozaslan
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey. National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
84
|
Wang P, Ma S, Ning G, Chen W, Wang B, Ye D, Chen B, Yang Y, Jiang Q, Gu N, Sun J. Entry-Prohibited Effect of kHz Pulsed Magnetic Field Upon Interaction Between SPIO Nanoparticles and Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2019; 67:1152-1158. [PMID: 31369367 DOI: 10.1109/tbme.2019.2931774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The interaction between superparamagnetic iron oxide (SPIO) nanoparticles and mesenchymal stem cells (MSCs) in the presence of pulsed magnetic field (PMF) has become an important area of research in recent years. METHODS A parameter-adjustable pulsed magnetic field was developed based on the principle of insulated gate bipolar translator transistor-controlled discharge of large capacitances. The internalizations of SPIO nanoparticles by MSCs were investigated under the treatment of PMF in both intermittent stimulation mode and continuous stimulation mode. RESULTS The intensities and frequencies of pulsed magnetic field can be adjustable in the range of 1.9-4.6 mT and 3-5 kHz, respectively. This PMF was safe to the MSCs. However, the uptake of SPIO nanoparticles by MSCs was significantly prohibited under the treatment of kHz-ranged PMF while the 10 Hz PMF enhanced the cellular uptake of nanoparticles. This phenomenon was relative with the magnetic effect of the PMF with different frequency. CONCLUSION The PMF can be used to effectively regulate the cellular uptake of SPIO nanoparticles and the mechanism lies in the magnetic effect. SIGNIFICANCE The interaction between SPIO nanoparticles and the MSCs is a fundamental and important issue for nanomedicine and stem cell research. Our results demonstrate that the external magnetic field can be used to regulate their interaction. We believe that this safe, facile, and flexible method will greatly promote the development and clinical translation of regenerative medicine and nanomedicine.
Collapse
|
85
|
Talebloo N, Gudi M, Robertson N, Wang P. Magnetic Particle Imaging: Current Applications in Biomedical Research. J Magn Reson Imaging 2019; 51:1659-1668. [PMID: 31332868 DOI: 10.1002/jmri.26875] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Magnetic particle imaging (MPI) is a new imaging modality with the potential for high-resolution imaging while retaining the noninvasive nature of other current modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET). It is able to track location and quantities of special superparamagnetic iron oxide nanoparticles without tracing any background signal. MPI utilizes the unique, intrinsic aspects of the nanoparticles: how they react in the presence of the magnetic field, and the subsequent turning off of the field. The current group of nanoparticles that are used in MPI are usually commercially available for MRI. Special MPI tracers are in development by many groups that utilize an iron-oxide core encompassed by various coatings. These tracers would solve the current obstacles by altering the size and material of the nanoparticles to what is required by MPI. In this review, the theory behind and the development of these tracers are discussed. In addition, applications such as cell tracking, oncology imaging, neuroimaging, and vascular imaging, among others, stemming from the implementation of MPI into the standard are discussed. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1659-1668.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.,Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan, USA
| | - Mithil Gudi
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.,Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Neil Robertson
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
86
|
Wu K, Liu J, Su D, Saha R, Wang JP. Magnetic Nanoparticle Relaxation Dynamics-Based Magnetic Particle Spectroscopy for Rapid and Wash-Free Molecular Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22979-22986. [PMID: 31252472 DOI: 10.1021/acsami.9b05233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Magnetic nanoparticles (MNPs) have been extensively used as contrasts and tracers for bioimaging, heating sources for tumor therapy, carriers for controlled drug delivery, and labels for magnetic immunoassays. Here, we describe a MNP Brownian relaxation dynamics-based magnetic particle spectroscopy (MPS) method for the quantitative detection of molecular biomarkers. In MPS measurements, the harmonics of oscillating MNPs are recorded and used as a metric for the freedom of rotational motion, which indicates the bound states of the MNPs. These harmonics can be collected from microgram quantities of iron oxide nanoparticles within 10 s. As the harmonics are largely dependent on the quantity of the MNPs in the sample, the MPS bioassay results could be biased by the deviations of MNP quantities in each sample, especially for the very low-concentration biomarker detection scenarios. Herein, we report three MNP concentration/quantity-independent metrics for characterizing the bound states of MNPs in MPS. Using a streptavidin-biotin binding system as a model, we demonstrate the feasibility of using MPS and MNP concentration/quantity-independent metrics to sense these molecular interactions, showing that this method can achieve rapid, wash-free bioassays, and is suitable for future point-of-care, sensitive, and versatile diagnosis.
Collapse
|
87
|
Takahashi K, Yamada T, Takemura Y. Circuit Parameters of a Receiver Coil Using a Wiegand Sensor for Wireless Power Transmission. SENSORS 2019; 19:s19122710. [PMID: 31208144 PMCID: PMC6632003 DOI: 10.3390/s19122710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022]
Abstract
We previously demonstrated an efficient method of wireless power transmission using a Wiegand sensor for the application in implantable medical devices. The Wiegand sensor has an advantage in inducing sharp pulse voltage independent of the drive frequency. A down-sized receiver coil for wireless power transmission within blood vessels has been prepared, which enables medical treatment on any part of a human body. In order to develop practical applications of the Wiegand sensor as implantable medical devices, the circuit design is important. The circuit parameters in the circuit model of the Wiegand sensor must be clearly identified. However, a fast reversal of magnetization of the magnetic wire used in the Wiegand sensor, known as a large Barkhausen jump, and the induced nonlinear pulse signal make the inductance of the receiver coil time-dependent and inconsistent as conventionally considered in circuit analysis. In this study, the voltage and current responses of a wire-core coil are analyzed, and the time-dependent inductance is determined. The results showed that the inductance depends on the magnetization state of the wire, which can be negative during the fast reversal of magnetization.
Collapse
Affiliation(s)
- Katsuki Takahashi
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Tsutomu Yamada
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Yasushi Takemura
- Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
88
|
Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. NANO LETTERS 2019; 19:3618-3626. [PMID: 31074627 DOI: 10.1021/acs.nanolett.9b00630] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two major technical challenges of magnetic hyperthermia are quantitative assessment of agent distribution during and following administration and achieving uniform heating of the tumor at the desired temperature without damaging the surrounding tissues. In this study, we developed a multimodal MRI/MPI theranostic agent with active biological targeting for improved magnetic hyperthermia therapy (MHT). First, by systematically elucidating the magnetic nanoparticle magnetic characteristics and the magnetic resonance imaging (MRI) and magnetic particle imaging (MPI) signal enhancement effects, which are based on the magnetic anisotropy, size, and type of nanoparticles, we found that 18 nm iron oxide NPs (IOs) could be used as superior nanocrystallines for high performance of MRI/MPI contrast agents in vitro. To improve the delivery uniformity, we then targeted tumors with the 18 nm IOs using a tumor targeting peptide, CREKA. Both MRI and MPI signals showed that the targeting agent improves the intratumoral delivery uniformity of nanoparticles in a 4T1 orthotopic mouse breast cancer model. Lastly, the in vivo antitumor MHT effect was evaluated, and the data showed that the improved targeting and delivery uniformity enables more effective magnetic hyperthermia cancer ablation than otherwise identical, nontargeting IOs. This preclinical study of image-guided MHT using cancer-targeting IOs and a novel MPI system paves the way for new MHT strategies.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoli Liu
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xing-Jie Liang
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road, Zhongguancun , Beijing 100190 , China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine , Beihang University , Beijing 100190 , China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology , Xidian University , Xi'an , Shaanxi 710126 , China
| |
Collapse
|
89
|
Herz S, Vogel P, Kampf T, Dietrich P, Veldhoen S, Rückert MA, Kickuth R, Behr VC, Bley TA. Magnetic Particle Imaging-Guided Stenting. J Endovasc Ther 2019; 26:512-519. [PMID: 31131684 DOI: 10.1177/1526602819851202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose:To assess the feasibility of magnetic particle imaging (MPI) to guide stenting in a phantom model. Materials and Methods: MPI is a new tomographic imaging method based on the background-free magnetic field detection of a tracer agent composed of superparamagnetic iron oxide nanoparticles (SPIOs). All experiments were conducted on a custom-built MPI scanner (field of view: 29-mm diameter, 65-mm length; isotropic spatial resolution 1-1.5-mm). Stenosis phantoms (n=3) consisted of polyvinyl chloride (PVC) tubes (8-mm inner diameter) prepared with centrally aligned cable binders to form a ~50% stenosis. A dedicated image reconstruction algorithm allowed precise tracking of endovascular instruments at 8 frames/s with a latency time of ~115 ms. A custom-made MPI-visible lacquer was used to manually label conventional guidewires, balloon catheters, and stainless steel balloon-expandable stents. Vascular stenoses were visualized by injecting a diluted SPIO tracer (ferucarbotran, 10 mmol iron/L) into the vessel phantoms. Balloon angioplasty and stent placement were performed by inflating balloon catheters and stent delivery balloons with diluted ferucarbotran. Results: After deployment of the stent, the markers on its ends were clearly visible. The applied lacquer markers were thin enough to not relevantly alter gliding properties of the devices while withstanding friction during the experiments. Placing an optimized flexible lacquer formulation on the preexisting radiopaque stent markers provided enough stability to withstand stent expansion. Final MPA confirmed successful stenosis treatment, facilitated by the disappearance of the lacquer markers on the stent due to differences in SPIO concentration. Thus, the in-stent lumen could be visualized without interference by the signal from the markers. Conclusion: Near real-time visualization of MPI-guided stenting of stenoses in a phantom model is feasible. Optimized MPI-visible markers can withstand the expansion process of stents.
Collapse
Affiliation(s)
- Stefan Herz
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany.,2 Comprehensive Heart Failure Center, University Hospital Würzburg, Germany
| | - Patrick Vogel
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany.,3 Department of Experimental Physics 5 (Biophysics), University of Würzburg, Germany
| | - Thomas Kampf
- 3 Department of Experimental Physics 5 (Biophysics), University of Würzburg, Germany.,4 Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Germany
| | - Philipp Dietrich
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany
| | - Simon Veldhoen
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany
| | - Martin A Rückert
- 3 Department of Experimental Physics 5 (Biophysics), University of Würzburg, Germany
| | - Ralph Kickuth
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany
| | - Volker C Behr
- 3 Department of Experimental Physics 5 (Biophysics), University of Würzburg, Germany
| | - Thorsten A Bley
- 1 Department of Diagnostic and Interventional Radiology, Würzburg, Germany
| |
Collapse
|
90
|
Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019; 14:3875-3892. [PMID: 31213807 PMCID: PMC6539172 DOI: 10.2147/ijn.s205574] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022] Open
Abstract
Multipotent mesenchymal stem cells have shown great promise for application in regenerative medicine owing to their particular therapeutic effects, such as significant self-renewability, low immunogenicity, and ability to differentiate into a variety of specialized cells. However, there remain certain complicated and unavoidable problems that limit their further development and application. One of the challenges is to noninvasively monitor the delivery and biodistribution of transplanted stem cells during treatment without relying on behavioral endpoints or tissue histology, and it is important to explore the potential mechanisms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles (NPs) and their corresponding imaging methods have been developed recently and have made great progress. In this review, we mainly discuss NPs used to label stem cells and their toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing challenges in this field.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
91
|
Dahanayake V, Pornrungroj C, Pablico-Lansigan M, Hickling WJ, Lyons T, Lah D, Lee Y, Parasido E, Bertke JA, Albanese C, Rodriguez O, Van Keuren E, Stoll SL. Paramagnetic Clusters of Mn 3(O 2CCH 3) 6(Bpy) 2 in Polyacrylamide Nanobeads as a New Design Approach to a T 1- T 2 Multimodal Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18153-18164. [PMID: 30964631 PMCID: PMC8515904 DOI: 10.1021/acsami.9b03216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There is an increasing need for gadolinium-free magnetic resonance imaging (MRI) contrast agents, particularly for patients suffering from chronic kidney disease. Using a cluster-nanocarrier combination, we have identified a novel approach to the design of biomedical nanomaterials and report here the criteria for the cluster and the nanocarrier and the advantages of this combination. We have investigated the relaxivity of the following manganese oxo clusters: the parent cluster Mn3(O2CCH3)6(Bpy)2 (1) where Bpy = 2,2'-bipyridine and three new analogs, Mn3(O2CC6H4CH═CH2)6(Bpy)2 (2), Mn3(O2CC(CH3)═CH2)6(Bpy)2 (3), and Mn3O(O2CCH3)6(Pyr)2 (4) where Pyr = pyridine. The parent cluster, Mn3(O2CCH3)6(Bpy)2 (1), had impressive relaxivity ( r1 = 6.9 mM-1 s-1, r2 = 125 mM-1 s-1) and was found to be the most amenable for the synthesis of cluster-nanocarrier nanobeads. Using the inverse miniemulsion polymerization technique (1) in combination with the hydrophilic monomer acrylamide, we synthesized nanobeads (∼125 nm diameter) with homogeneously dispersed clusters within the polyacrylamide matrix (termed Mn3Bpy-PAm). The nanobeads were surface-modified by co-polymerization with an amine-functionalized monomer. This enabled various postsynthetic modifications, for example, to attach a near-IR dye, Cyanine7, as well as a targeting agent. When evaluated as a potential multimodal MRI contrast agent, high relaxivity and contrast were observed with r1 = 54.4 mM-1 s-1 and r2 = 144 mM-1 s-1, surpassing T1 relaxivity of clinically used Gd-DTPA chelates as well as comparable T2 relaxivity to iron oxide microspheres. Physicochemical properties, cellular uptake, and impacts on cell viability were also investigated.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Chanon Pornrungroj
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Michele Pablico-Lansigan
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, United States
| | - William J. Hickling
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - David Lah
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Edward Van Keuren
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Sarah L. Stoll
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- Corresponding Author:
| |
Collapse
|
92
|
Magnetic Particle Imaging in Neurosurgery. World Neurosurg 2019; 125:261-270. [DOI: 10.1016/j.wneu.2019.01.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023]
|
93
|
Soares GA, Prospero AG, Calabresi MF, Rodrigues DS, Simoes LG, Quini CC, Matos RR, Pinto LA, Sousa-Junior AA, Bakuzis AF, Mancera PA, Miranda JRA. Multichannel AC Biosusceptometry System to Map Biodistribution and Assess the Pharmacokinetic Profile of Magnetic Nanoparticles by Imaging. IEEE Trans Nanobioscience 2019; 18:456-462. [PMID: 30998477 DOI: 10.1109/tnb.2019.2912073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.
Collapse
|
94
|
Wu LC, Zhang Y, Steinberg G, Qu H, Huang S, Cheng M, Bliss T, Du F, Rao J, Song G, Pisani L, Doyle T, Conolly S, Krishnan K, Grant G, Wintermark M. A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. AJNR Am J Neuroradiol 2019; 40:206-212. [PMID: 30655254 DOI: 10.3174/ajnr.a5896] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Magnetic particle imaging is an emerging tomographic technique with the potential for simultaneous high-resolution, high-sensitivity, and real-time imaging. Magnetic particle imaging is based on the unique behavior of superparamagnetic iron oxide nanoparticles modeled by the Langevin theory, with the ability to track and quantify nanoparticle concentrations without tissue background noise. It is a promising new imaging technique for multiple applications, including vascular and perfusion imaging, oncology imaging, cell tracking, inflammation imaging, and trauma imaging. In particular, many neuroimaging applications may be enabled and enhanced with magnetic particle imaging. In this review, we will provide an overview of magnetic particle imaging principles and implementation, current applications, promising neuroimaging applications, and practical considerations.
Collapse
Affiliation(s)
- L C Wu
- From the Departments of Bioengineering (L.C.W.)
| | - Y Zhang
- Radiology (Y.Z., H.Q., S.H., M.W.)
| | - G Steinberg
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.).,Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - H Qu
- Radiology (Y.Z., H.Q., S.H., M.W.)
| | - S Huang
- Radiology (Y.Z., H.Q., S.H., M.W.).,Chongqing Medical University (S.H.), Traditional Chinese Medicine College, Chongqing, China
| | - M Cheng
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - T Bliss
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - F Du
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | - J Rao
- Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - G Song
- From the Departments of Bioengineering (L.C.W.)
| | - L Pisani
- Neuroradiology Section, Radiology (J.R., G.S., L.P.)
| | - T Doyle
- Pediatrics (T.D.), Stanford University, Stanford, California
| | - S Conolly
- Department of Electrical Engineering and Computer Sciences (S.C.), University of California Berkeley, Berkeley, California
| | - K Krishnan
- Departments of Materials Sciences and Engineering and Physics (K.K.), University of Washington, Seattle, Washington
| | - G Grant
- Neurosurgery (G.S., M.C., T.B., F.D., G.G.)
| | | |
Collapse
|
95
|
Lu K, Goodwill P, Zheng B, Conolly S. Multi-Channel Acquisition for Isotropic Resolution in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1989-1998. [PMID: 29990139 PMCID: PMC6200336 DOI: 10.1109/tmi.2017.2787500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic Particle Imaging (MPI), a molecular imaging modality that images biocompatible superparamagnetic iron oxide tracers, is well-suited for clinical angiography, in vivo cell tracking, cancer detection, and inflammation imaging. MPI is sensitive and quantitative to tracer concentration, with a positive contrast that is not attenuated or corrupted by tissue background. Like other clinical imaging techniques, such as computed tomography, magnetic resonance imaging, and nuclear medicine, MPI can be modeled as a linear and shift-invariant system with a well-defined point spread function (PSF) capturing the system blur. The key difference, as we show here, is that the MPI PSF is highly dependent on scanning parameters and is anisotropic using only a single-imaging trajectory. This anisotropic resolution poses a major challenge for clear and accurate clinical diagnosis. In this paper, we generalize a tensor imaging theory for multidimensional x-space MPI to explore the physical source of this anisotropy, present a multi-channel scanning algorithm to enable isotropic resolution, and experimentally demonstrate isotropic MPI resolution through the construction and the use of two orthogonal excitation and detector coil pairs.
Collapse
|
96
|
Zhou XY, Tay ZW, Chandrasekharan P, Yu EY, Hensley DW, Orendorff R, Jeffris KE, Mai D, Zheng B, Goodwill PW, Conolly SM. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. Curr Opin Chem Biol 2018; 45:131-138. [PMID: 29754007 PMCID: PMC6500458 DOI: 10.1016/j.cbpa.2018.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications.
Collapse
Affiliation(s)
- Xinyi Y Zhou
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States.
| | - Zhi Wei Tay
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Elaine Y Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Daniel W Hensley
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Ryan Orendorff
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Kenneth E Jeffris
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - David Mai
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States
| | | | - Steven M Conolly
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, United States; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
97
|
Muslu Y, Utkur M, Demirel OB, Saritas EU. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1920-1931. [PMID: 29993774 DOI: 10.1109/tmi.2018.2818261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic particle imaging (MPI) is a novel imaging modality with important potential applications, such as angiography, stem cell tracking, and cancer imaging. Recently, there have been efforts to increase the functionality of MPI via multi-color imaging methods that can distinguish the responses of different nanoparticles, or nanoparticles in different environmental conditions. The proposed techniques typically rely on extensive calibrations that capture the differences in the harmonic responses of the nanoparticles. In this paper, we propose a method to directly estimate the relaxation time constant of the nanoparticles from the MPI signal, which is then used to generate a multi-color relaxation map. The technique is based on the underlying mirror symmetry of the adiabatic MPI signal when the same region is scanned back and forth. We validate the proposed method via simulations, and via experiments on our in-house magnetic particle spectrometer setup at 10.8 kHz and our in-house MPI scanner at 9.7 kHz. Our results show that nanoparticles can be successfully distinguished with the proposed technique, without any calibration or prior knowledge about the nanoparticles.
Collapse
|
98
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
99
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu E, Orendorff R, Hensley D, Huynh Q, Fung KLB, VanHook CC, Goodwill P, Zheng B, Conolly S. A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 2018; 91:20180326. [PMID: 29888968 DOI: 10.1259/bjr.20180326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.
Collapse
Affiliation(s)
| | - Zhi Wei Tay
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Xinyi Yedda Zhou
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Elaine Yu
- 2 Magnetic Insight Inc , Alameda, CA , USA
| | | | | | - Quincy Huynh
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - K L Barry Fung
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | | | | | - Bo Zheng
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA
| | - Steven Conolly
- 1 Department of Bioengineering, University of California , Berkeley, CA , USA.,3 Department of Electrical Engineering and Computer Sciences, University of California , Berkeley, CA , USA
| |
Collapse
|
100
|
Tay ZW, Chandrasekharan P, Zhou XY, Yu E, Zheng B, Conolly S. In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring. Theranostics 2018; 8:3676-3687. [PMID: 30026874 PMCID: PMC6037024 DOI: 10.7150/thno.26608] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Pulmonary delivery of therapeutics is attractive due to rapid absorption and non-invasiveness but it is challenging to monitor and quantify the delivered aerosol or powder. Currently, single-photon emission computed tomography (SPECT) is used but requires inhalation of radioactive labels that typically have to be synthesized and attached by hot chemistry techniques just prior to every scan. Methods: In this work, we demonstrate that superparamagnetic iron oxide nanoparticles (SPIONs) can be used to label and track aerosols in vivo with high sensitivity using an emerging medical imaging technique known as magnetic particle imaging (MPI). We perform proof-of-concept experiments with SPIONs for various lung applications such as evaluation of efficiency and uniformity of aerosol delivery, tracking of the initial aerosolized therapeutic deposition in vivo, and finally, sensitive visualization of the entire mucociliary clearance pathway from the lung up to the epiglottis and down the gastrointestinal tract to be excreted. Results: Imaging of SPIONs in the lung has previously been limited by difficulty of lung imaging with magnetic resonance imaging (MRI). In our results, MPI enabled SPION lung imaging with high sensitivity, and a key implication is the potential combination with magnetic actuation or hyperthermia for MPI-guided therapy in the lung with SPIONs. Conclusion: This work shows how magnetic particle imaging can be enabling for new imaging and therapeutic applications of SPIONs in the lung.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | | | - Xinyi Yedda Zhou
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Elaine Yu
- Magnetic Insight, Inc., Alameda, CA 94501, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Steven Conolly
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States
| |
Collapse
|