51
|
Xiao T, Zhang P, Feng T, Lu K, Wang X, Zhou S, Qiang Y. Butyrate functions in concert with myeloid-derived suppressor cells recruited by CCR9 to alleviate DSS-induced murine colitis. Int Immunopharmacol 2021; 99:108034. [PMID: 34426112 DOI: 10.1016/j.intimp.2021.108034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is a precancerous disease caused mainly by a combination of genetic susceptibility, environmental factors and microbiota dysbiosis. As a kind of short-chain fatty acid (SCFA), butyrate has been shown to be closely related to the progression of colitis. However, the exact regulatory mechanism of butyrate in colitis needs to be further elucidated. In our current research, the effects of butyrate were examined in a dextran sulfate sodium (DSS)-induced murine colitis model, which simulates human UC. The administration of butyrate significantly reversed the signs of colitis and alleviated colonic histological damage in DSS‑induced colitis. The transcription levels of the main proinflammatory mediators, including tumor necrosis factor-α, interleukin-6 and interleukin-12, were also reduced, as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This indicates that butyrate could alleviate DSS-induced colitis by inhibiting proinflammatory mediators. In addition, we found that myeloid-derived suppressor cells (MDSCs), which have an inflammation-relieving effect, did not effectively alleviate DSS‑induced colitis but showed a compensatory increase in the DSS group. However, the compensatory increase in MDSCs in the DSS group significantly decreased after butyrate treatment. Moreover, the chemokine receptor CCR9, which mediates the homing of intestinal immune cells, also showed consistent changes similar to MDSCs. Butyrate alone did not have the aforementioned effects on mice. Thus, butyrate may effectively relieve DSS‑induced colitis by synergistic regulatory effects with MDSCs, which migrate and gather through CCR9 recruitment.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, 224000, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Kefeng Lu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Xiaoyan Wang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Siyuan Zhou
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Yetao Qiang
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, China.
| |
Collapse
|
52
|
Tian L, Zhao JL, Kang JQ, Guo SB, Zhang N, Shang L, Zhang YL, Zhang J, Jiang X, Lin Y. Astragaloside IV Alleviates the Experimental DSS-Induced Colitis by Remodeling Macrophage Polarization Through STAT Signaling. Front Immunol 2021; 12:740565. [PMID: 34589089 PMCID: PMC8473681 DOI: 10.3389/fimmu.2021.740565] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicine. Some previous studies indicated that Astragaloside IV (AS-IV), a natural saponin extracted from the traditional Chinese medicine herb Ligusticum chuanxiong, alleviates the experimental colitis symptoms in vitro and in vivo. However, the mechanism of AS-IV on IBD remains unclear. Accumulating evidence suggests that M2-polarized intestinal macrophages play a pivotal role in IBD progression. Here, we found that AS-IV attenuated clinical activity of DSS-induced colitis that mimics human IBD and resulted in the phenotypic transition of macrophages from immature pro-inflammatory macrophages to mature pro-resolving macrophages. In vitro, the phenotype changes of macrophages were observed by qRT-PCR after bone marrow-derived macrophages (BMDMs) were induced to M1/M2 and incubated with AS-IV, respectively. In addition, AS-IV was effective in inhibiting pro-inflammatory macrophages and promoting the pro-resolving macrophages to ameliorate experimental colitis via the regulation of the STAT signaling pathway. Hence, we propose that AS-IV can ameliorate experimental colitis partially by modulating macrophage phenotype by remodeling the STAT signaling, which seems to have an essential function in the ability of AS-IV to alleviate the pathological progress of IBD.
Collapse
Affiliation(s)
- Lianlian Tian
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi'an, China
| | - Jian-Qin Kang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shi-Bo Guo
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nini Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lei Shang
- Department of Health Statistics and Ministry of Education, Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Air Force Medical University, Xi'an, China
| | - Ya-Long Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan Lin
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
53
|
Kang ZP, Wang MX, Wu TT, Liu DY, Wang HY, Long J, Zhao HM, Zhong YB. Curcumin Alleviated Dextran Sulfate Sodium-Induced Colitis by Regulating M1/M2 Macrophage Polarization and TLRs Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3334994. [PMID: 34567209 PMCID: PMC8463179 DOI: 10.1155/2021/3334994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023]
Abstract
Curcumin has shown good efficacy in mice with experimental colitis and in patients with ulcerative colitis, but the mechanism of action through the regulation of M1/M2 macrophage polarization has not been elaborated. The ulcerative colitis was modeled by dextran sulfate sodium; colitis mice were orally administrated with curcumin (10 mg/kg/day) or 5-ASA (300 mg/kg/day) for 14 consecutive days. After curcumin treatment, the body weight, colon weight and length, colonic weight index, and histopathological damage in colitis mice were effectively improved. The concentrations of proinflammatory cytokines IL-1β, IL-6, and CCL-2 in the colonic tissues of colitis mice decreased significantly, while anti-inflammatory cytokines IL-33 and IL-10 increased significantly. Importantly, macrophage activation was suppressed and M1/M2 macrophage polarization was regulated in colitis mice, and the percentage of CD11b+F4/80+ and CD11b+F4/80+TIM-1+ and CD11b+F4/80+iNOS+ decreased significantly and CD11b+F4/80+CD206+ and CD11b+F4/80+CD163+ increased significantly. Additionally, curcumin significantly downregulated CD11b+F4/80+TLR4+ macrophages and the protein levels of TLR2, TLR4, MyD88, NF-κBp65, p38MAPK, and AP-1 in colitis mice. Our study suggested that curcumin exerted therapeutic effects in colitis mice by regulating the balance of M1/M2 macrophage polarization and TLRs signaling pathway.
Collapse
Affiliation(s)
- Zeng-Ping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Meng-Xue Wang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Tian-Tian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Yan Wang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jian Long
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - You-Bao Zhong
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
54
|
Dong JY, Xia KJ, Liang W, Liu LL, Yang F, Fang XS, Xiong YJ, Wang L, Zhou ZJ, Li CY, Zhang WD, Wang JY, Chen DP. Ginsenoside Rb1 alleviates colitis in mice via activation of endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 signaling pathway. Acta Pharmacol Sin 2021; 42:1461-1471. [PMID: 33268823 PMCID: PMC8379258 DOI: 10.1038/s41401-020-00561-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is regulated by ER-resident E3 ubiquitin ligase Hrd1, which has been implicated in inflammatory bowel disease (IBD). Ginsenoside Rb1 (GRb1) is the major ginsenoside in ginseng with multiple pharmacological activities. In this study we investigated the role of Hrd1 in IBD and its regulation by GRb1. Two mouse colitis models were established to mimic human IBD: drinking water containing dextran sodium sulfate (DSS) as well as intra-colonic infusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Colitis mice were treated with GRb1 (20, 40 mg·kg-1·d-1, ig) or a positive control drug sulfasalazine (500 mg·kg-1·d-1, ig) for 7 days. The model mice showed typical colitis symptoms and pathological changes in colon tissue. In addition to significant inflammatory responses and cell apoptosis in colon tissue, colon epithelial expression of Hrd1 was significantly decreased, the expression of ER stress markers GRP78, PERK, CHOP, and caspase 12 was increased, and the expression of Fas was increased (Fas was removed by Hrd1-induced ubiquitination). These changes were partially, or completely, reversed by GRb1 administration, whereas injection of Hrd1 inhibitor LS102 (50 mg·kg-1· d-1, ip, for 6 days) exacerbated colitis symptoms in colitis mice. GRb1 administration not only normalized Hrd1 expression at both the mRNA and protein levels, but also alleviated the ER stress response, Fas-related apoptosis, and other colitis symptoms. In intestinal cell line IEC-6, the expression of Hrd1 was significantly decreased by LPS treatment, but was normalized by GRb1 (200 μM). GRb1 alleviated LPS-induced ER stress and cell apoptosis in IEC-6 cells, and GRb1 action was inhibited by knockdown of Hrd1 using small interfering RNA. In summary, these results reveal a pathological role of Hrd1 in colitis, and provide a novel insight into alternative treatment of colitis using GRb1 activating Hrd1 signaling pathway.
Collapse
|
55
|
Li JY, Yao YM, Tian YP. Ferroptosis: A Trigger of Proinflammatory State Progression to Immunogenicity in Necroinflammatory Disease. Front Immunol 2021; 12:701163. [PMID: 34489948 PMCID: PMC8418153 DOI: 10.3389/fimmu.2021.701163] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Until recently, necrosis is generally regarded as traumatic cell death due to mechanical shear stress or other physicochemical factors, while apoptosis is commonly thought to be programmed cell death, which is silent to immunological response. Actually, multiple modalities of cell death are programmed to maintain systematic immunity. Programmed necrosis, such as necrosis, pyroptosis, and ferroptosis, are inherently more immunogenic than apoptosis. Programmed necrosis leads to the release of inflammatory cytokines, defined as danger-associated molecular patterns (DAMPs), resulting in a necroinflammatory response, which can drive the proinflammatory state under certain biological circumstances. Ferroptosis as a newly discovered non-apoptotic form of cell death, is characterized by excessive lipid peroxidation and overload iron, which occurs in cancer, neurodegeneration, immune and inflammatory diseases, as well as ischemia/reperfusion (I/R) injury. It is triggered by a surplus of reactive oxygen species (ROS) induced in an imbalanced redox reaction due to the decrease in glutathione synthesis and inaction of enzyme glutathione peroxidase 4 (GPX4). Ferroptosis is considered as a potential therapeutic and molecular target for the treatment of necroinflammatory disease, and further investigation into the underlying pathophysiological characteristics and molecular mechanisms implicated may lay the foundations for an interventional therapeutic strategy. This review aims to demonstrate the key roles of ferroptosis in the development of necroinflammatory diseases, the major regulatory mechanisms involved, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jing-yan Li
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-ming Yao
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Ying-ping Tian
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
56
|
Pan LL, Zhang M, Li Z, Li B, Pan X, Chen X, Yang B, Zhang H, Chen W, Zhang L, Sun J. CRAMP-encoding Lactobacillus plantarum FCQHC24 attenuates experimental colitis in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Liu J, Xu H, Zhang L, Wang S, Lu D, Chen M, Wu B. Chronoeffects of the Herbal Medicines Puerariae radix and Coptidis rhizoma in Mice: A Potential Role of REV-ERBα. Front Pharmacol 2021; 12:707844. [PMID: 34393786 PMCID: PMC8355589 DOI: 10.3389/fphar.2021.707844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying drugs with dosing time-dependent effects (chronoeffects) and understanding the underlying mechanisms would help to improve drug treatment outcome. Here, we aimed to determine chronoeffects of the herbal medicines Puerariae radix (PR) and Coptidis rhizoma (CR), and investigate a potential role of REV-ERBα as a drug target in generating chronoeffects. The pharmacological effect of PR on hyperhomocysteinemia in mice was evaluated by measuring total homocysteine, triglyceride levels and lipid accumulation. PR dosed at ZT10 generated a stronger effect on hyperhomocysteinemia than drug dosed at ZT2. Furthermore, PR increased the expression levels of REV-ERBα target genes Bhmt, Cbs and Cth (encoding three key enzymes responsible for homocysteine catabolism), thereby alleviating hyperhomocysteinemia in mice. Moreover, CR attenuated chronic colitis in mice in a dosing time-dependent manner based on measurements of disease activity index, colon length, malondialdehyde/myeloperoxidase activities and IL-1β/IL-6 levels. ZT10 dosing generated a stronger anti-colitis effect as compared to ZT2 dosing. This was accompanied by lower production of colonic inflammatory cytokines (i.e., Nlrp3, IL-1β, IL-6, Tnf-α and Ccl2, REV-ERBα target genes) in colitis mice dosed at ZT10. The diurnal patterns of PR and CR effects were respectively consistent with those of puerarin (a main active constituent of PR, a REV-ERBα antagonist) and berberine (a main active constituent of CR, a REV-ERBα agonist). In addition, loss of Rev-erbα in mice abolished the dosing time-dependency in PR and CR effects. In conclusion, the therapeutic effects of PR and CR depend on dosing time in mice, which are probably attributed to diurnal expression of REV-ERBα as the drug target. Our findings have implications for improving therapeutic outcomes of herbal medicines with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Critical Care Medicine, Zhongshan Torch Development Zone Hospital, Zhongshan, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyi Lu
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
58
|
Wang R, Chen T, Wang Q, Yuan XM, Duan ZL, Feng ZY, Ding Y, Bu F, Shi GP, Chen YG. Total Flavone of Abelmoschus manihot Ameliorates Stress-Induced Microbial Alterations Drive Intestinal Barrier Injury in DSS Colitis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2999-3016. [PMID: 34267502 PMCID: PMC8276878 DOI: 10.2147/dddt.s313150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Purpose Total flavone of Abelmoschus manihot (TFA), the effective constituents extracted from Flos Abelmoschus Manihot, has been reported to inhibit inflammation. However, the effect of TFA on ulcerative colitis (UC) progression in patients with depression is unknown. The purpose of our research was to explore the anti-UC effects of TFA in the context of depression in mice with UC by regulating the gut microbiota to drive the intestinal barrier. Methods In this study, chronic stress (CS) and dextran sodium sulfate (DSS) were used to induce depression and UC, respectively, in C57BL/6J mice. Fecal microbiota transplantation (FMT) was used to evaluate how treating mice modeling UC and depression with TFA effected their gut microbiota. Results Our results showed that TFA effectively improved UC aggravated by CS. In addition, TFA treatment improved the depression-like phenotype, the disturbed gut microbiota, and the intestinal barrier function in CS mice. It is worth noting that FMT from the CS mice to the receptor group further aggravated the damage of the intestinal barrier and the disturbance of the gut microbiota in the recipient DSS mice, thus further aggravating UC, however, treatment of the intervention of TFA in the CS fecal microbiota transplant with TFA also played its therapeutic outcome. Conclusion Taken together, our results show that CS disrupts the gut microbiota, triggers intestinal barrier injury and aggravates DSS colitis, while TFA is a promising drug for the treatment of UC in patients with depression.
Collapse
Affiliation(s)
- Rong Wang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Tuo Chen
- Department of General Surgery, Affiliated hospital of Yangzhou university, Yangzhou, Jiangsu, 225000, People's Republic of China
| | - Qiong Wang
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiao-Min Yuan
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Zheng-Lan Duan
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Ze-Yu Feng
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yang Ding
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Fan Bu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Guo-Ping Shi
- Collaborative Innovation Center for Cancer Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
59
|
Shan D, Zheng J, Klimowicz A, Panzenbeck M, Liu Z, Feng D. Deep learning for discovering pathological continuum of crypts and evaluating therapeutic effects: An implication for in vivo preclinical study. PLoS One 2021; 16:e0252429. [PMID: 34125849 PMCID: PMC8202954 DOI: 10.1371/journal.pone.0252429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/16/2021] [Indexed: 11/21/2022] Open
Abstract
Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect with the potential to unlock decades worth of underutilized data. As a proof of concept, we performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in therapeutic care of inflammatory bowel disease. We aimed to evaluate the colonic mucosa improvement associated with the recovery response of the crypts, a complex histologic structure reflecting tissue homeostasis and repair in response to inflammation. Our approach requires robust image segmentation of objects of interest from whole slide images, a composite low dimensional representation of the typical or novel morphological variants of the segmented objects, and exploration of image features of significance towards biology and treatment efficacy. Both interpretable features (eg. counts, area, distance and angle) as well as statistical texture features calculated using Gray Level Co-Occurance Matrices (GLCMs), are shown to have significance in analysis. Ultimately, this analytic framework of supervised image segmentation, unsupervised learning, and feature analysis can be generally applied to preclinical data. We hope our report will inspire more efforts to utilize deep learning in preclinical in vivo studies and ultimately make the field more innovative and efficient.
Collapse
Affiliation(s)
- Dechao Shan
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Jie Zheng
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Alexander Klimowicz
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Mark Panzenbeck
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Zheng Liu
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| | - Di Feng
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, United States of America
| |
Collapse
|
60
|
Tian WJ, Wang QN, Wang XF, Dong DF. Clophosome alleviate dextran sulphate sodium-induced colitis by regulating gut immune responses and maintaining intestinal integrity in mice. Clin Exp Pharmacol Physiol 2021; 48:902-910. [PMID: 33527445 DOI: 10.1111/1440-1681.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic progressive disorder characterized by complicated gastrointestinal inflammation. Research on therapeutic agents is still urgent due to the lack of satisfactory treatments. Gut macrophages are considered to be predominant in excessive inflammatory responses. Thus, we aimed to investigate whether depletion of macrophages would have a beneficial effect on IBD and could be a potential therapeutic strategy. In this study, we established a 12-day Dextran sodium sulphate (DSS)-induced colitis mouse model and determined the effect of the macrophage depletion agent Clophosome (neutral clodronate liposomes; CNC). The results showed that CNC significantly alleviated the symptoms of colitis, as demonstrated by greater weight gain, decreased disease activity index (DAI) scores, and lower histopathological damage scores, as well was reduced levels of the proinflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF)-α. To investigate T cell subsets, cells were isolated from the lamina propria and cultured to analyse the expression of IL-17A, interferon (IFN)-γ and Foxp3 in CD4+ cells by flow cytometry. The data showed that during the process of colitis, the frequencies of CD4+ IL-17A+ T cells were significantly increased. Notably, CNC treatment markedly reduced the population of CD4+ IL-17A+ T cells, especially CD4+ IL-17A+ IFN-γ+ T cells. Furthermore, intestinal barrier integrity, as assessed by immunostaining of mucin and tight junction proteins, was severely disrupted in colitis. CNC improved the intestinal barrier by enhancing the expression of muc-2 and occludin. In summary, our findings demonstrated that CNC successfully ameliorated DSS-induced colitis and that its effect may be associated with inhibiting inflammatory responses and maintaining intestinal integrity.
Collapse
Affiliation(s)
- Wen-Jie Tian
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian-Nan Wang
- Department of Pathology and Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xue-Feng Wang
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan-Feng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
61
|
Arredondo-Amador M, Aranda CJ, Ocón B, González R, Martínez-Augustin O, Sánchez de Medina F. Epithelial deletion of the glucocorticoid receptor (Nr3c1) protects the mouse intestine against experimental inflammation. Br J Pharmacol 2021; 178:2482-2495. [PMID: 33684964 DOI: 10.1111/bph.15434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are the first line treatment for the flare-ups of inflammatory bowel disease, but they have significant limitations. The objective of this study is to investigate whether glucocorticoid epithelial actions contribute to such limitations. EXPERIMENTAL APPROACH Intestinal epithelium glucocorticoid receptor knockout mice (Nr3c1ΔIEC ) received dextran sulfate sodium (DSS) to induce colitis. Inflammatory status was assessed by morphological and biochemical methods, and corticoid production was measured in colonic explants. Some mice were administered budesonide. KEY RESULTS After 7 days of DSS Nr3c1ΔIEC , mice exhibited 23.1% lower disease activity index (DAI) and 37% lower diarrheal score than WT mice, with decreased weight loss in days 5-7 of colitis, attenuated tissue damage, reduced colonic expression of S100A9 and STAT3 phosphorylation, and a better overall state. Ki67 immunoreactivity was increased at the crypt base, indicating enhanced epithelial proliferation. Mice administered budesonide (6 μg·day-1 PO) showed modest antiinflammatory effects but increased weight loss, which was prevented in knockout mice. Epithelial deletion of the glucocorticoid receptor also protected mice in a protracted colitis protocol. Conversely, knockout mice presented a worse status compared to the control group at 1 day post DSS. In a separate experiment, colonic corticosterone production was shown to be significantly increased in knockout mice at 7 days of colitis but not at earlier stages. CONCLUSIONS AND IMPLICATIONS The intestinal epithelial glucocorticoid receptor has deleterious effects in experimental colitis induced by DSS, probably related to inhibition of epithelial proliferative responses leading to impaired wound healing and reduced endogenous corticosterone production.
Collapse
Affiliation(s)
- María Arredondo-Amador
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Carlos J Aranda
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Raquel González
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
62
|
Wang Y, Liu J, Huang Z, Li Y, Liang Y, Luo C, Ni C, Xie J, Su Z, Chen J, Li C. Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response. Eur J Pharmacol 2021; 896:173912. [PMID: 33508280 DOI: 10.1016/j.ejphar.2021.173912] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC), as an autoimmune disease, has been troubling human health for many years. Up to now, the available treatments remain unsatisfactory. Rhizoma Coptidis has been widely applied to treat gastrointestinal diseases in China for a long time, and coptisine (COP) is identified as one of its major active components. This study aimed to evaluate the bioactivity of COP on dextran sulfate sodium (DSS)-induced mice colitis and clarify the potential mechanism of action. The results revealed that COP treatment markedly alleviated DSS-induced clinical symptoms by relieving body weight loss and the disease activity index (DAI) score. Specifically, the colon length in the COP (50 and 100 mg/kg) groups were obviously longer than that in the DSS group (7.21 ± 0.34, 8.59 ± 0.45 cm vs. 6.71 ± 0.59 cm, P < 0.01). HE staining analysis revealed that COP treatment significantly protected the integrity of intestinal barrier and alleviated inflammatory cells infiltration. Western blot assay confirmed that COP notably improved the intestinal epithelial barrier function by enhancing the expressions of colonic tight junction proteins and inhibited the expressions of apoptosis-related proteins. In addition, COP treatment remarkably suppressed the levels of colonic myeloperoxidase (MPO), adhesion molecules and pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6 and IL-17), while enhanced IL-10 and TGF-β. The mechanism anti-inflammatory of COP might be related to inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. In summary, the study indicated that COP ameliorated DSS-induced colitis, at least partly through maintaining the integrity of intestinal epithelial barrier, inhibiting apoptosis and inflammatory response.
Collapse
Affiliation(s)
- Yongfu Wang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jingjing Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziwei Huang
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Yucui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuanyuan Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chaodan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530001, PR China
| | - Chen Ni
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China.
| |
Collapse
|
63
|
Dong Y, Lei J, Zhang B. Dietary Quercetin Alleviated DSS-induced Colitis in Mice Through Several Possible Pathways by Transcriptome Analysis. Curr Pharm Biotechnol 2021; 21:1666-1673. [PMID: 32651963 DOI: 10.2174/1389201021666200711152726] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. OBJECTIVE We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. METHODS Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. RESULTS In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. CONCLUSION We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.
Collapse
Affiliation(s)
- Yuanyang Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, China
| |
Collapse
|
64
|
Zhou H, Zeng X, Sun D, Chen Z, Chen W, Fan L, Limpanont Y, Dekumyoy P, Maleewong W, Lv Z. Monosexual Cercariae of Schistosoma japonicum Infection Protects Against DSS-Induced Colitis by Shifting the Th1/Th2 Balance and Modulating the Gut Microbiota. Front Microbiol 2021; 11:606605. [PMID: 33469451 PMCID: PMC7813680 DOI: 10.3389/fmicb.2020.606605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel disease (IBD)-related inflammation is closely associated with the initiation and progression of colorectal cancer. IBD is generally treated with 5-aminosalicylic acid and immune-modulating medication, but side effects and limitations of these therapies are emerging. Thus, the development of novel preventative or therapeutic approaches is imperative. Here, we constructed a dextran sodium sulphate (DSS)-induced IBD mouse model that was infected with monosexual Schistosoma japonicum cercariae (mSjci) at day 1 or administered dexamethasone (DXM) from days 3 to 5 as a positive control. The protective effect of mSjci on IBD mice was evaluated through their assessments of their clinical signs, histopathological lesions and intestinal permeability. To uncover the underlying mechanism, the Th1/Th2 balance and Treg cell population were also examined. Additionally, the alterations in the gut microbiota were assessed to investigate the interaction between the mSjci-modulated immune response and pathogenic microbiome. Mice treated with DSS and mSjci showed fewer IBD clinical signs and less impaired intestinal permeability than DSS-treated mice. Mechanistically, mSjci modulated the Th1/Th2 balance by repressing IFN-γ production, promoting IL-10 expression and enhancing the Treg subset population. Moreover, mSjci notably reshaped the structure, diversity and richness of the gut microbiota community and subsequently exerted immune-modulating effects. Our findings provide evidence showing that mSjci might serve as a novel and effective protective strategy and that the gut microbiota might be a new therapeutic target in IBD.
Collapse
Affiliation(s)
- Hongli Zhou
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Xiaojing Zeng
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Dongchen Sun
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Zhe Chen
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Weixin Chen
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Liwei Fan
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Zhiyue Lv
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
65
|
Zhou L, Hao N, Li X, Chen J, Yang R, Song C, Sun Y, Zhang Q. Nattokinase mitigated dextran sulfate sodium-induced chronic colitis by regulating microbiota and suppressing tryptophan metabolism via inhibiting IDO-1. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
66
|
Saba E, Lee YY, Rhee MH, Kim SD. Alleviation of Ulcerative Colitis Potentially through th1/th2 Cytokine Balance by a Mixture of Rg3-enriched Korean Red Ginseng Extract and Persicaria tinctoria. Molecules 2020; 25:molecules25225230. [PMID: 33182623 PMCID: PMC7696147 DOI: 10.3390/molecules25225230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
Ginseng is a vastly used herbal supplement in Southeast Asian countries. Red ginseng extract enriched with Rg3 (Rg3-RGE) is a formula that has been extensively studied owing to its various biological properties. Persicaria tinctoria (PT), belonging to the Polygonaceae family, has also been reported for its anti-inflammatory properties. Ulcerative colitis (UC) is inflammation of the large intestine, particularly in the colon. This disease is increasingly common and has high probability of relapse. We investigated, separately and in combination, the effects of Rg3-RGE and PT using murine exemplary of UC induced by DSS (Dextran Sulfate Sodium). For in vitro and in vivo experiments, nitric oxide assay, qRT-Polymerase Chain Reaction (PCR), Western blot, ulcerative colitis introduced by DSS, Enzyme Linked Immunosorbent Assay (ELISA), and flow cytometry analysis were performed. The results obtained demonstrate that treatment with Rg3-RGE + PT showed synergism to suppress inflammation (in vitro) in RAW 264.7 cells via mitogen-activated protein kinase and nuclear factor κB pathways. Moreover, in C57BL/6 mice, this mixture exhibits strong anti-inflammatory effects in restoring colon length, histopathological damage, pro-inflammatory mediators, and cytokines amount, and decreasing levels of NLRP3 inflammasome (in vivo). Our results recommend that this mixture can be used for the prevention of UC as a prophylactic/therapeutic supplement.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan;
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (M.H.R.); (S.-D.K.); Tel.: +82-53-950-5967 (M.H.R.); +82-51-720-5179 (S.-D.K.); Fax: +82-53-950-5955(M.H.R.); +82-51-720-5929 (S.-D.K.)
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Korea
- Correspondence: (M.H.R.); (S.-D.K.); Tel.: +82-53-950-5967 (M.H.R.); +82-51-720-5179 (S.-D.K.); Fax: +82-53-950-5955(M.H.R.); +82-51-720-5929 (S.-D.K.)
| |
Collapse
|
67
|
Chen L, Li J, Ye Z, Sun B, Wang L, Chen Y, Han J, Yu M, Wang Y, Zhou Q, Seidler U, Tian D, Xiao F. Anti-High Mobility Group Box 1 Neutralizing-Antibody Ameliorates Dextran Sodium Sulfate Colitis in Mice. Front Immunol 2020; 11:585094. [PMID: 33193406 PMCID: PMC7661783 DOI: 10.3389/fimmu.2020.585094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein in mammals. When released into the extracellular space, it acts as a damage-associated molecular pattern. This study investigates whether increased HMGB1 levels are found in the intestinal mucosa of ulcerative colitis (UC) patients, and whether an anti-HMGB1 neutralizing-antibody (HnAb) can inhibit the intestinal inflammation elicited by dextran sulfate sodium (DSS) in mice. Because toll-like receptor 4 (TLR4) is implicated in HMGB1-mediated immune cell activation, DSS colitis was also elicited in TLR4-deficient mice in the presence and absence of HnAb. The expression of HMGB1 in UC patients was examined. HnAb was administered via intraperitoneal injection to TLR4 deficient mice and their wild-type littermates, both being induced to colitis with DSS. Finally, the protective effect of HnAb and TLR4 deficiency were evaluated. In UC patients, HMGB1 was up-regulated in the inflamed colon. When administered during DSS application, HnAb alleviated the severity of colitis with a lower disease activity index, limited histological damages, and reduced production of proinflammatory cytokines. This antibody also limited colonic barrier loss, decreased colonic lamina propria macrophages and partially reversed the DSS treatment-associated dysbiosis. The protective effect of this antibody was enhanced in TLR4-deficient mice in some aspects, indicating that both additional HMGB1-mediated as well as TLR4-mediated inflammatory signaling pathways were involved in the induction of colitis by DSS. HnAb ameliorated colitis via macrophages inhibition and colonic barrier protection. It may therefore be a novel treatment option in colitis.
Collapse
Affiliation(s)
- Liping Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghao Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghua Sun
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - De'an Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X, Cao H. Inhibitory Effects of the Lactobacillus rhamnosus GG Effector Protein HM0539 on Inflammatory Response Through the TLR4/MyD88/NF-кB Axis. Front Immunol 2020; 11:551449. [PMID: 33123130 PMCID: PMC7573360 DOI: 10.3389/fimmu.2020.551449] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory condition with no effective treatment. Probiotics have gained wide attention because of their outstanding advantages in intestinal health issues. In previous studies, a novel soluble protein, HM0539, which is derived from Lactobacillus rhamnosus GG (LGG), showed significant protective effects against murine colitis, but no clear precise mechanism for this effect was provided. In this study, we hypothesized that the protective function of HM0539 might be derived from its modulation of the TLR4/Myd88/NF-κB axis signaling pathway, which is a critical pathway widely involved in the modulation of inflammatory responses. To test this hypothesis, the underlying anti-inflammatory effects and associated mechanisms of HM0539 were determined both in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in dextran sulfate sodium (DSS)-induced murine colitis. Our results showed that HM0539 inhibited the expression of cyclooxygenase-2 (COX-2) and the expression inducible nitric oxide synthase (iNOS) by down-regulating the activation of their respective promoter, and as a result this inhibited the production of prostaglandin E2 (PGE2) and nitric oxide (NO). Meanwhile, we demonstrated that HM0539 could ultimately modulate the activation of distal NF-κB by reducing the activation of TLR4 and suppressing the transduction of MyD88. However, even though the overexpression of TLR4 or MyD88 obviously reversed the effect of HM0539 on LPS-induced inflammation, HM0539 still retained some anti-inflammatory activity. Consistent with the in vitro findings, we found that HM0539 inhibited to a great extent the production of inflammatory mediators associated with the suppression of the TLR4/Myd88/NF-κB axis activation in colon tissue. In conclusion, HM0539 was shown to be a promising anti-inflammatory agent, at least in part through its down-regulation of the TLR4-MyD88 axis as well as of the downstream MyD88-dependent activated NF-κB signaling, and hence might be considered as a potential therapeutic option for IBD.
Collapse
Affiliation(s)
- Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
69
|
Rotrekl D, Šalamúnová P, Paráková L, Baďo O, Saloň I, Štěpánek F, Hanuš J, Hošek J. Composites of yeast glucan particles and curcumin lead to improvement of dextran sulfate sodium-induced acute bowel inflammation in rats. Carbohydr Polym 2020; 252:117142. [PMID: 33183601 DOI: 10.1016/j.carbpol.2020.117142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The goal of this work was to assess the usability of yeast glucan particles (GPs) as carriers for curcumin and determine the beneficial effect of a pharmacological composite of curcumin in GPs on dextran sulfate sodium induced colitis in rats. The assessment of the anti-inflammatory effect of particular substances was evaluated on the basis of the calculated disease activity index and by assessment of cytokines and enzymes from the gut tissue - tumor necrosis factor α (TNF-α), transforming growth factor β1, interleukin (IL)-1β, IL-6, IL-10, IL-17, catalase, superoxide dismutase 2, myeloperoxidase (MPO), and matrix metalloproteinase 9. Composites of GPs with incorporated curcumin showed promising results with the capability to lower symptoms of colitis and significantly decrease the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and the activity of MPO, as well. The anti-inflammatory effect of the composites was greater than those of pure GPs or curcumin.
Collapse
Affiliation(s)
- Dominik Rotrekl
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Lenka Paráková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Ondrej Baďo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Ivan Saloň
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jaroslav Hanuš
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
70
|
Pan LL, Ren Z, Liu Y, Zhao Y, Li H, Pan X, Fang X, Liang W, Wang Y, Yang J, Sun J. A novel danshensu derivative ameliorates experimental colitis by modulating NADPH oxidase 4-dependent NLRP3 inflammasome activation. J Cell Mol Med 2020; 24:12955-12969. [PMID: 32945118 PMCID: PMC7701520 DOI: 10.1111/jcmm.15890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
We have previously reported a novel compound [4‐(2‐acetoxy‐3‐((R)‐3‐(benzylthio)‐1‐methoxy‐1‐oxopropan‐2‐ylamino)‐3‐oxopropyl)‐1,2‐phenylene diacetate (DSC)], derived from danshensu, exhibits cytoprotective activities in vitro. Here, we investigated the effects and underlying mechanisms of DSC on dextran sodium sulphate (DSS)‐induced experimental colitis. We found that DSC treatment afforded significant protection against the development of colitis, evidencing by suppressed inflammatory responses and enhanced barrier integrity. Intriguingly, DSC specifically down‐regulated DSS‐induced colonic NADPH oxidase 4 (Nox4) expression, accompanied by a balanced redox status, suppressed nuclear factor‐κB (NF‐κB) and NLRP3 inflammasome activation and up‐regulated nuclear factor (erythroid‐derived 2)‐like 2 and haeme oxygenase‐1 expression. In vitro study also demonstrated DSC also markedly decreased Nox4 expression and activity associated with inhibiting reactive oxygen species generation, NF‐κB activation and NLRP3 inflammasome activation in bone marrow‐derived macrophages. Either lentiviral Nox4 shRNA‐mediated Nox4 knockdown or Nox4‐specific small‐interfering RNA mimicked effects of DSC by suppressing NLPR3 inflammasome activation to alleviate experimental colitis or inflammatory macrophage response. Collectively, our results provide the first evidence that DSC ameliorates experimental colitis partly through modulating Nox4‐mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yalei Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongli Li
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Yang
- Department of General Surgery and Public Health Research Center, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, China
| | - Jia Sun
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
71
|
Zhang Q, Xu N, Hu X, Zheng Y. Anti-colitic effects of Physalin B on dextran sodium sulfate-induced BALB/c mice by suppressing multiple inflammatory signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112956. [PMID: 32442587 DOI: 10.1016/j.jep.2020.112956] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalin B is one of the main active withanolide existed in Physalis alkekengi L. var. franchetii (Mast.) Makino, a famous traditional Chinese food and herbal medicine, which has been widely used as heat-clearing and toxin-resolving medicine for the treatment of various inflammatory disease, such as cough, excessive phlegm, pharyngitis, sore throat, pemphigus, eczema, and jaundice. AIM OF THE STUDY We aimed to confirm the therapeutic effects of Physalin B on ulcerative colitis (UC) and enrich the further application of its traditional anti-inflammatory effect. MATERIALS AND METHODS The anti-UC effects of Physalin B were evaluated in Balb/c mice with dextran sulfate sodium (DSS) induction. The body weight, colon length, disease activity index (DAI) and pathological changes of colon tissue were measured. Cytokine levels were detected by ELISA. NF-κB pathway and protein levels of related pathways, such as signal transducer and activator of transcription 3 (STAT3), β-arrestin1 and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome were detected by western blot. RESULTS The dose of Physalin B that is not cytotoxic could dramatically reduce the levels of TNF-α, IL-6 and IL-1β on LPS-stimulated RAW 264.7 cells. Meanwhile, Physalin B dramatically improved clinical signs and symptoms, alleviated body weight loss and colon length shortening in DSS-induced UC mice. Meanwhile, Physalin B also dramatically relieved the pathological damage, reduced in the activity of myeloperoxidase (MPO) and reestablished the balance of pro-inflammatory cytokines. Physalin B could suppress DSS-induced activation of NF-κB. Moreover, Physalin B also markedly suppressed the activation of STAT3, β-arrestin1 and NLRP3 inflammasome. CONCLUSION This study preliminary confirmed the therapeutic effect of Physalin B on experimental acute UC mice and provided robust evidence support for the anti-inflammatory effect of Physalin B, suggesting that Physalin B might be a potential agent for the therapeutic efficacy on UC.
Collapse
Affiliation(s)
- Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - NaNa Xu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China
| | - Yunliang Zheng
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research Center for Clinical Pharmacy, First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
72
|
Zhang S, Cho WJ, Jin AT, Kok LY, Shi Y, Heller DE, Lee YAL, Zhou Y, Xie X, Korzenik JR, Lennerz JK, Traverso G. Heparin-Coated Albumin Nanoparticles for Drug Combination in Targeting Inflamed Intestine. Adv Healthc Mater 2020; 9:e2000536. [PMID: 32597571 PMCID: PMC7482138 DOI: 10.1002/adhm.202000536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Targeting areas of inflammation offers potential therapeutic and diagnostic benefits by maximizing drug and imaging marker on-target effects while minimizing systemic exposure that can be associated with adverse side effects. This strategy is particularly beneficial in the management of inflammatory bowel disease (IBD). Here an inflammation-targeting (IT) approach based on heparin-coated human serum albumin nanoparticles (HEP-HSA NPs) that utilize the increased intestinal permeability and changes in electrostatic interaction at the site of intestinal inflammation is described. Using small-molecule and biologic drugs as a model for drug combination, the HEP-HSA NPs demonstrate the capacity to load both drugs simultaneously; the dual-drug loaded HEP-HSA NPs exhibit a higher anti-inflammatory effect than both of the single-drug loaded NPs in vitro and selectively bind to inflamed intestine after enema administration in vivo in a murine model of colitis. Importantly, analyses of the physicochemical characteristics and targeting capacities of these NPs indicate that HEP coating modulates NP binding to the inflamed intestine, providing a foundation for future IT-NP formulation development.
Collapse
Affiliation(s)
- Sufeng Zhang
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Won Joon Cho
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy T. Jin
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lie Yun Kok
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yunhua Shi
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David E. Heller
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Ah Lucy Lee
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yixuan Zhou
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xi Xie
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua R. Korzenik
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jochen K. Lennerz
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Dr. S. Zhang, A. T. Jin, Prof. J. R. Korzenik, Prof. G. Traverso Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA. Dr. S. Zhang, W. J. Woo, A. T. Jin, L. Y. Kok, Dr. Y. Shi, D. E. Heller, Y.-A. L. Lee, Y. Zhou, Dr. X. Xie Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Dr. S. Zhang, Prof. J. R. Korzenik, Prof. J. K. Lennerz, Prof. G. Traverso Harvard Medical School, Boston, MA 02115, USA. Prof. J. K. Lennerz Center for Integrated Diagnostics, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Prof. G. Traverso Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
73
|
Anti-Inflammatory Effect of a Peptide Derived from the Synbiotics, Fermented Cudrania tricuspidata with Lactobacillus gasseri, on Inflammatory Bowel Disease. Mediators Inflamm 2020; 2020:3572809. [PMID: 32714090 PMCID: PMC7355370 DOI: 10.1155/2020/3572809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of this study was to evaluate the effects of peptides derived from synbiotics on improving inflammatory bowel disease (IBD). Five-week-old male C57BL/6 mice were administered with dextran sulfate sodium (DSS) via drinking water for seven days to induce IBD (IBD group). The mice in the IBD group were orally administered with PBS (IBD-PBS-positive control), Lactobacillus gasseri 505 (IBD-Pro), fermented powder of CT extract with L. gasseri 505 (IBD-Syn), β-casein: LSQSKVLPVPQKAVPYPQRDMP (IBD-Pep 1), or α s2-casein: VYQHQKAMKPWIQPKTKVIPYVRYL (IBD-Pep 2) (both peptides are present in the synbiotics) for four more days while inducing IBD. To confirm IBD induction, the weights of the animals and the disease activity index (DAI) scores were evaluated once every two days. Following treatment of probiotics, synbiotics, or peptides for 11 days, the mice were sacrificed. The length of the small and large intestines was measured. The expression of the proinflammatory cytokines IL-1β, IL-6, TNF-α, and COX-2 in the large intestine was measured. Large intestine tissue was fixed in 10% formalin and stained with hematoxylin and eosin for histopathological analysis. The body weights decreased and DAI scores increased in the IBD group, but the DAI scores were lower in the IBD-Pep 2 group than those in the IBD group treated with PBS, Pro, Syn, or Pep 1. The lengths of the small and large intestines were shorter in the IBD group than in the group without IBD, and the expression levels of the proinflammatory cytokines were lower (p < 0.05) in the IBD-Pep 2 group than those in the IBD-PBS-positive control group. In addition, histopathological analysis showed that IBD was ameliorated in the Pep 2-treated group. These results indicate that Pep 2 derived from α s2-casein was effective in alleviating IBD-associated inflammation. Thus, we showed that these peptides can alleviate inflammation in IBD.
Collapse
|
74
|
Su C, Liu S, Ma X, Yang X, Liu J, Zheng P, Cao Y. Decitabine attenuates dextran sodium sulfate‑induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier. Int J Mol Med 2020; 46:583-594. [PMID: 32468024 PMCID: PMC7307821 DOI: 10.3892/ijmm.2020.4605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
To investigate the effect of decitabine on the regulation of intestinal barrier function in mice with inflammatory bowel disease, an experimental model of colitis was established via drinking water with dextran sulfate sodium (DSS). Hematoxylin and eosin staining was used to observe the pathological changes of the colon. Cytokine production was measured by an ELISA assay. Flow cytometry was used to measure the level of regulatory T cells. Immunofluorescence, immunohistochemistry and western blot analyses detected the protein expression and distribution in colon tissue. Following the administration of decitabine, the symptoms of intestinal inflammation in the mice were significantly relieved; the expression of IL-17 was decreased, and the levels of TGF-β and IL-10 were increased. In addition, the induction of forkhead box P3 (Foxp3) in naive T cells increased the proportion of CD4+ Foxp3+ T cells in CD4+ T cells. Furthermore, decitabine increased the levels of zonular occludens-1 and occludin, and inhibited the phosphorylation of ERK1/2, JNK and p38. In conclusion, the present study suggested that decitabine could alleviate DSS-induced impaired colon barrier and the weight loss, mucus and bloody stools in mice by releasing the inhibitory factor IL-10, reducing the pro-inflammatory factor IL-17, activating CD4+ Foxp3+ T cells and inhibiting the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Shaoqun Liu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
75
|
Lee H, Son YS, Lee MO, Ryu JW, Park K, Kwon O, Jung KB, Kim K, Ryu TY, Baek A, Kim J, Jung CR, Ryu CM, Park YJ, Han TS, Kim DS, Cho HS, Son MY. Low-dose interleukin-2 alleviates dextran sodium sulfate-induced colitis in mice by recovering intestinal integrity and inhibiting AKT-dependent pathways. Theranostics 2020; 10:5048-5063. [PMID: 32308767 PMCID: PMC7163458 DOI: 10.7150/thno.41534] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Several phase 1/2 clinical trials showed that low-dose interleukin-2 (IL-2) treatment is a safe and effective strategy for the treatment of chronic graft-versus-host disease, hepatitis C virus-induced vasculitis, and type 1 diabetes. Ulcerative colitis (UC) is a chronic inflammatory condition of the colon that lacks satisfactory treatment. In this study, we aimed to determine the effects of low-dose IL-2 as a therapeutic for UC on dextran sulfate sodium (DSS)-induced colitis. Methods: Mice with DSS-induced colitis were intraperitoneally injected with low-dose IL-2. Survival, body weight, disease activity index, colon length, histopathological score, myeloperoxidase activity and inflammatory cytokine levels as well as intestinal barrier integrity were examined. Differential gene expression after low-dose IL-2 treatment was analyzed by RNA-sequencing. Results: Low-dose IL-2 significantly improved the symptoms of DSS-induced colitis in mice and attenuated pro-inflammatory cytokine production and immune cell infiltration. The most effective dose range of IL-2 was 16K-32K IU/day. Importantly, low-dose IL-2 was effective in ameliorating the disruption of epithelial barrier integrity in DSS-induced colitis tissues by restoring tight junction proteins and mucin production and suppressing apoptosis. The colon tissue of DSS-induced mice exposed to low-dose IL-2 mimic gene expression patterns in the colons of control mice. Furthermore, we identified the crucial role of the PI3K-AKT pathway in exerting the therapeutic effect of low-dose IL-2. Conclusions: The results of our study suggest that low-dose IL-2 has therapeutic effects on DSS-induced colitis and potential clinical value in treating UC.
Collapse
|
76
|
Saba E, Lee YY, Kim M, Hyun SH, Park CK, Son E, Kim DS, Kim SD, Rhee MH. A novel herbal formulation consisting of red ginseng extract and Epimedium koreanum Nakai-attenuated dextran sulfate sodium-induced colitis in mice. J Ginseng Res 2020; 44:833-842. [PMID: 33192127 PMCID: PMC7655509 DOI: 10.1016/j.jgr.2020.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Background Ulcerative colitis (UC) is a commonly encountered large intestine disease in the contemporary world that terminates into colorectal cancer; therefore, the timely treatment of UC is of major concern. Panax ginseng Meyer is an extensively consumed herbal commodity in South East Asian countries, especially Korea. It exhibits a wide range of biologically beneficial qualities for almost head-to-toe ailments in the body. Epimedium koreanum Nakai (EKN) is also a widely used traditional Korean herbal medicine used for treating infertility, rheumatism, and cardiovascular diseases. Materials and methods Separately the anti-inflammatory activities of both red ginseng extracts (RGEs) and EKNs had been demonstrated in the past in various inflammatory models; however, we sought to unravel the anti-inflammatory activities of the combination of these two extracts in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice model because the allopathic remedies for UC involve more side effects than benefits. Results Our results have shown that the combination of RGE + EKN synergistically alleviated the macroscopic lesions in DSS-induced colitic mice such as colon shortening, hematochezia, and weight loss. Moreover, it restored the histopathological lesions in mice and decreased the levels of pro-inflammatory mediators and cytokines through the repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP-3) expression. In vitro, this combination also reduced the magnitude of nitric acid (NO), pro-inflammatory mediators and cytokine through NF-κB and mitogen-activated protein kinase (MAPK) pathways in RAW 264.7 mouse macrophage cells. Conclusion In the light of these findings, we can endorse this combination extract as a functional food for the prophylactic as well as therapeutic treatment of UC in humans together with allopathic remedies.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| | - Yuan Yee Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Minki Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hee Hyun
- R&D Headquarters, Korean Ginseng Cooperation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- R&D Headquarters, Korean Ginseng Cooperation, Daejeon, Republic of Korea
| | - Eunjung Son
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
77
|
Ramani S, Chauhan N, Khatri V, Vitali C, Kalyanasundaram R. Wuchereria bancrofti macrophage migration inhibitory factor-2 (rWbaMIF-2) ameliorates experimental colitis. Parasite Immunol 2020; 42:e12698. [PMID: 31976564 DOI: 10.1111/pim.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Immunomodulatory molecules produced by helminth parasites are receiving much attention recently as novel therapeutic agents for inflammation and autoimmune diseases. In this study, we show that macrophage migration inhibitory factor (MIF) homologue from the filarial parasite, Wuchereria bancrofti (rWbaMIF-2), can suppress inflammation in a dextran sulphate sodium salt (DSS)-induced colitis model. The disease activity index (DAI) in DSS given mice showed loss of body weight and bloody diarrhoea. At autopsy, colon of these mice showed severe inflammation and reduced length. Administration of rWbaMIF-2 significantly reduced the DAI in DSS-induced colitis mice. rWbaMIF-2-treated mice had no blood in the stools, and their colon length was similar to the normal colon with minimal inflammation and histological changes. Pro-inflammatory cytokine genes (TNF-α, IL-6, IFN-γ, IL-1β, IL-17A and NOS2) were downregulated in the colon tissue and peritoneal macrophages of rWbaMIF-2-treated mice. However, there were significant increases in IL-10-producing Treg and B1 cells in the colon and peritoneal cavity of rWbaMIF-2-treated mice. These findings suggested that rWbaMIF-2 treatment significantly ameliorated the clinical symptoms, inflammation and colon pathology in DSS given mice. This immunomodulatory effect of rWbaMIF-2 appeared to be by promoting the infiltration of Treg cells into the colon.
Collapse
Affiliation(s)
- Shriram Ramani
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Connie Vitali
- Department of Health Sciences Education, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
78
|
Lin Y, Zheng X, Chen J, Luo D, Xie J, Su Z, Huang X, Yi X, Wei L, Cai J, Sun Z. Protective Effect of Bruguiera gymnorrhiza (L.) Lam. Fruit on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice: Role of Keap1/Nrf2 Pathway and Gut Microbiota. Front Pharmacol 2020; 10:1602. [PMID: 32116661 PMCID: PMC7008401 DOI: 10.3389/fphar.2019.01602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Bruguiera gymnorrhiza (BG), a medicinal mangrove, and its fruit (a food material) (BGF), have traditionally been used to treat diarrhea (also known as ulcerative colitis) in folk medicine. However, the mechanism of action against colitis remains ambiguous. This study aimed to investigate the potential efficacy and mechanism of BGF on experimental colitis. Colitis was induced by oral intake of dextran sulfate sodium (DSS) and treated with aqueous extract of BGF (25, 50 and 100 mg/kg) for a week. The Disease Activity Index (DAI), colon length, and histological changes of colon were analyzed. The inflammatory and oxidative stress status was explored. The protein expression of Nrf2 and Keap1 in the colon was detected by Western blotting. The mRNA expression of Nrf2 downstream genes (GCLC, GCLM, HO-1 and NQO1) was determined by RT-PCR. Furthermore, the effect on intestinal flora was analyzed. Results indicated that BGF was rich in pinitol, and showed strong antioxidative activity in vitro. Compared with the DSS model, BGF effectively reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, and decreased the histological scores, which was superior to salicylazosulfapyridine (SASP) with smaller dosage. Moreover, BGF not only abated the levels of MDA and inflammatory mediators (TNF-α, IL-6, IL-1β, and IFN-γ), increased the level of IL-10, but also prevented the depletion of SOD and GSH. BGF upregulated the protein level of nuclear Nrf2 and mRNA levels of GCLC, GCLM, HO-1 and NQO1, while significantly inhibited the protein expression of Keap1 and cytosolic Nrf2. Besides, BGF promoted the growth of probiotics (Bifidobacterium, Anaerotruncus, and Lactobacillus) in the gut, and inhibited the colonization of pathogenic bacteria (Bacteroides and Streptococcus), which contributed to the maintenance of intestinal homeostasis. BGF possessed protective effect against DSS-induced colitis. The potential mechanism of BGF may involve the amelioration of inflammatory and oxidative status, activation of Keap1/Nrf2 signaling pathway, and maintenance of micro-ecological balance of the host. This study provides experimental evidence for the traditional application of BGF in the treatment of diarrhea, and indicates that BGF may be a promising candidate against colitis.
Collapse
Affiliation(s)
- Yinsi Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinghan Zheng
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinfen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dandan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqi Huang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqing Yi
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Jian Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
- Guangdong Academy of Forestry, Guangzhou, China
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
79
|
Wu J, Gan Y, Li M, Chen L, Liang J, Zhuo J, Luo H, Xu N, Wu X, Wu Q, Lin Z, Su Z, Liu Y. Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota. Biomed Pharmacother 2020; 124:109883. [PMID: 32004938 DOI: 10.1016/j.biopha.2020.109883] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Intestinal mucositis causes great suffering to cancer patients who undergo chemotherapy and radiotherapy. Owing to the uncertain side effects of anticancer drugs to attenuate patients' intestinal mucositis, many studies focused on traditional Chinese medicine (TCM). Patchouli alcohol (PA) is an active compound extracted from Pogostemon cablin, and has potent gastrointestinal protective effect. However, whether PA has an effect on intestinal mucositis is still unknown. Therefore, we established a rat model of intestinal mucositis via intraperitoneal injection of 5-fluorouracil, and intragastrically administrated PA (10, 20, and 40 mg/kg) to evaluate the effect of PA on intestinal mucositis. The routine observation (body weight, food intake, and diarrhea) in rats was used to detect whether PA had an effect on intestinal mucositis. Levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-10, and MPO), mucosal barrier proteins (zonula occludens -1 (ZO-1), claudin-1, occludin, myosin light chain (MLC), and mucin-2) and intestinal microbiota were determined to elucidate the underlying mechanism of PA action on intestinal mucositis in rats. The results showed that PA could effectively improve body weight, food intake, and diarrhea in intestinal mucositis rats, preliminary confirming PA efficacy. Further experiments revealed that PA not only decreased the levels of TNF-α, IL-1β, IL-6, and MPO but also increased the level of IL-10 significantly. In addition, the expression of mucosal barrier proteins and microbiota community were also improved after PA treatment in diseased rats. Hence, PA may prevent the development and progression of intestinal mucositis by improving inflammation, protecting mucosal barrier, and regulating intestinal microbiota.
Collapse
Affiliation(s)
- Jiazhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxuan Gan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Muxia Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Jiali Liang
- Faculty of Science and Engineering, Macquarie University, Balaclava Road, Macquarie Park, NSW, Sydney, 2109, Australia
| | - Jianyi Zhuo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Nan Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xue Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiduan Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhixiu Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
80
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
81
|
Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, Wu Z, Sun X. Exosomes Derived From M2b Macrophages Attenuate DSS-Induced Colitis. Front Immunol 2019; 10:2346. [PMID: 31749791 PMCID: PMC6843072 DOI: 10.3389/fimmu.2019.02346] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophages are commonly classified as M1 macrophages or M2 macrophages. The M2 macrophages are further sub-categorized into M2a, M2b, M2c, and M2d subtypes. The M2a, M2b, and M2c subtypes play roles in anti-inflammatory activity, tissue remodeling, type 2 T helper cell (Th2) activation, and immunoregulation. Previous studies have shown that macrophage exosomes can affect some disease processes. Exosomes are 30-150-nm lipid bilayer membrane vesicles derived from most living cells, with important biological functions. The role of exosomes in preventing the development of autoimmune diseases, including inflammatory bowel disease (IBD), has evoked increasing interest. Here, we analyze the roles of exosomes derived from M2a, M2b, and M2c macrophage phenotypes in dextran sulfate sodium (DSS)-induced colitis. Exosomes were isolated from the supernatant of different types of macrophages and identified via transmission electron microscopy (TEM), western blotting, and NanoSight. The results showed that M2b macrophage exosomes significantly attenuated the severity of DSS-induced colitis in mice. The number of regulatory T (Treg) cells in the spleens of mice with colitis and levels of IL-4 both increased following treatment with M2b macrophage exosomes. In addition, key cytokines associated with colitis (IL-1β, IL-6, and IL-17A) were significantly suppressed, following treatment with M2b macrophage exosomes. The M2b macrophage exosomes exerted protective effects on DSS-induced colitis, mainly mediated by the CC chemokine 1 (CCL1)/CCR8 axis. These findings provide a novel approach for the treatment of IBD.
Collapse
Affiliation(s)
- Ruibing Yang
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Ping He
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dongya Yuan
- Medical Department of Xizang Minzu University, Xianyang, China
- Key Laboratory for Basic Research in Life Sciences, Institutions of Higher Learning, Xianyang, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
82
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Beneficial effect of a mixture of vitamin-producing and immune-modulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Appl Microbiol Biotechnol 2019; 103:8937-8945. [PMID: 31520133 DOI: 10.1007/s00253-019-10133-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are chronic and relapsing-remitting disorders that affect the gastrointestinal tract. Previously, the administration of folate and riboflavin-producing lactic acid bacteria (LAB) or an immune-modulating strain showed beneficial effects as they were able to reduce the acute inflammation in mouse models. The aim of this work was to evaluate a mixture of vitamin-producing and immune-modulating LAB administering together with an anti-inflammatory drug during the remission period of a mouse model of recurrent colitis. BALB/c mice were intrarectally instilled with trinitrobenzene sulfonic acid (TNBS) and those who recovered from this acute challenge were given the LAB mixture, mesalazine, or the combination of both (mesalazine + LAB) during 21 days, followed by a second challenge with TNBS. Control mice instilled with ethanol (vehicle of TNBS) and receiving the different treatments were also evaluated in order to study the effect of chronic anti-inflammatory therapy. The combination of mesalazine and LAB mixture was the most effective to decrease the intestinal damage at macroscopic and histological levels and to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in intestinal fluids. In animals instilled with ethanol, mesalazine produced a loss of body weight and intestinal damages with increased IL-6. These side effects were prevented by the co-administration of mesalazine and the LAB mixture. The LAB blend did not affect the primary anti-inflammatory treatment, was able to improve it, and also prevented the side effects of this therapy.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
83
|
Wang H, Vilches-Moure JG, Cherkaoui S, Tardy I, Alleaume C, Bettinger T, Lutz A, Paulmurugan R. Chronic Model of Inflammatory Bowel Disease in IL-10 -/- Transgenic Mice: Evaluation with Ultrasound Molecular Imaging. Am J Cancer Res 2019; 9:6031-6046. [PMID: 31534535 PMCID: PMC6735517 DOI: 10.7150/thno.37397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Acute mouse models of inflammatory bowel disease (IBD) fail to mirror the chronic nature of IBD in patients. We sought to develop a chronic mouse IBD model for assessing long-term anti-inflammatory effects with ultrasound molecular imaging (USMI) by using dual P- and E-selectin targeted microbubbles (MBSelectin). Materials and Methods: Interleukin 10 deficient (IL-10-/- on a C57BL/6 genetic background; n=55) and FVB (n=16) mice were used. In IL-10-/-mice, various experimental regimens including piroxicam, 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS), respectively were used for promoting colitis; colitis was induced with DSS in FVB mice. Using clinical and small animal ultrasound scanners, evolution of inflammation in proximal, middle and distal colon, was monitored with USMI by using MBSelectin at multiple time points. Imaged colon segments were analyzed ex vivo for inflammatory changes on H&E staining and for P-selectin expression on immunofluorescence staining. Results: Sustained colitis was not detected with USMI in IL-10-/- or FVB mice with various experimental regimens. USMI signals either gradually decreased after the colitis enhancing/inducing drug/agents were discontinued, or the mortality rate of mice was high. Inflammation was observed on H&E staining in IL-10-/- mice with piroxicam promotion, while stable overexpression of P-selectin was not found on immunofluorescence staining in the same mice. Conclusion: Sustained colitis in IL-10-/- mice induced with piroxicam, TNBS or DSS, and in FVB mice induced with DSS, was not detected with USMI using MBSelectin, and this was verified by immunofluorescence staining for inflammation marker P-selectin. Thus, these models may not be appropriate for long-term monitoring of chronic colitis and subsequent treatment response with dual-selectin targeted USMI.
Collapse
|
84
|
Reisdorf WC, Xie Q, Zeng X, Xie W, Rajpal N, Hoang B, Burgert ME, Kumar V, Hurle MR, Rajpal DK, O’Donnell S, MacDonald TT, Vossenkämper A, Wang L, Reilly M, Votta BJ, Sanchez Y, Agarwal P. Preclinical evaluation of EPHX2 inhibition as a novel treatment for inflammatory bowel disease. PLoS One 2019; 14:e0215033. [PMID: 31002701 PMCID: PMC6474586 DOI: 10.1371/journal.pone.0215033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by cytochrome P450 epoxygenation of arachidonic acid, which are metabolized by EPHX2 (epoxide hydrolase 2, alias soluble epoxide hydrolase or sEH). EETs have pleiotropic effects, including anti-inflammatory activity. Using a Connectivity Map (CMAP) approach, we identified an inverse-correlation between an exemplar EPHX2 inhibitor (EPHX2i) compound response and an inflammatory bowel disease patient-derived signature. To validate the gene-disease link, we tested a pre-clinical tool EPHX2i (GSK1910364) in a mouse disease model, where it showed improved outcomes comparable to or better than the positive control Cyclosporin A. Up-regulation of cytoprotective genes and down-regulation of proinflammatory cytokine production were observed in colon samples obtained from EPHX2i-treated mice. Follow-up immunohistochemistry analysis verified the presence of EPHX2 protein in infiltrated immune cells from Crohn's patient tissue biopsies. We further demonstrated that GSK2256294, a clinical EPHX2i, reduced the production of IL2, IL12p70, IL10 and TNFα in both ulcerative colitis and Crohn's disease patient-derived explant cultures. Interestingly, GSK2256294 reduced IL4 and IFNγ in ulcerative colitis, and IL1β in Crohn's disease specifically, suggesting potential differential effects of GSK2256294 in these two diseases. Taken together, these findings suggest a novel therapeutic use of EPHX2 inhibition for IBD.
Collapse
Affiliation(s)
- William C. Reisdorf
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- * E-mail:
| | - Qing Xie
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Xin Zeng
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Wensheng Xie
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Neetu Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bao Hoang
- Exploratory Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark E. Burgert
- Research Statistics, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Vinod Kumar
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark R. Hurle
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Deepak K. Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Sarah O’Donnell
- Centre for Digestive Diseases, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Anna Vossenkämper
- Centre for Immunobiology, Blizard Institute, QMUL, London, United Kingdom
| | - Lin Wang
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mike Reilly
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bart J. Votta
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Yolanda Sanchez
- Stress and Repair DPU, Respiratory Therapy Area, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Pankaj Agarwal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| |
Collapse
|
85
|
Secombe KR, Ball IA, Shirren J, Wignall AD, Finnie J, Keefe D, Avogadri-Connors F, Olek E, Martin D, Moran S, Bowen JM. Targeting neratinib-induced diarrhea with budesonide and colesevelam in a rat model. Cancer Chemother Pharmacol 2018; 83:531-543. [PMID: 30535958 DOI: 10.1007/s00280-018-3756-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Neratinib is an irreversible pan-ErbB tyrosine kinase inhibitor used for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Its use is associated with the development of severe diarrhea in up to 40% of patients in the absence of proactive management. We previously developed a rat model of neratinib-induced diarrhea and found inflammation and anatomical disruption in the ileum and colon. Here we tested whether anti-diarrheal interventions, budesonide and colesevelam, can reduce neratinib-induced diarrhea and intestinal pathology. METHODS Rats were treated with 50 mg/kg neratinib via oral gavage for 14 or 28 days (total n = 64). Body weight and diarrhea severity were recorded daily. Apoptosis was measured using immunohistochemistry for caspase-3. Inflammation was measured via a multiplex cytokine/chemokine assay. ErbB levels were measured using PCR and Western Blot. RESULTS Budesonide co-treatment caused rats to gain significantly less weight than neratinib alone from day 4 of treatment (P = 0.0418). Budesonide (P = 0.027) and colesevelam (P = 0.033) each reduced the amount of days with moderate diarrhea compared to neratinib alone. In the proximal colon, rats treated with neratinib had higher levels of apoptosis compared to controls (P = 0.0035). Budesonide reduced histopathological injury in the proximal (P = 0.0401) and distal colon (P = 0.027) and increased anti-inflammatory IL-4 tissue concentration (ileum; P = 0.0026, colon; P = 0.031) compared to rats treated with neratinib alone. In the distal ileum, while budesonide decreased ErbB1 mRNA expression compared to controls (P = 0.018) (PCR), an increase in total ErbB1 protein was detected (P = 0.0021) (Western Blot). CONCLUSION Both budesonide and colesevelam show potential as effective interventions against neratinib-induced diarrhea.
Collapse
Affiliation(s)
- Kate R Secombe
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia.
| | - Imogen A Ball
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - Joseph Shirren
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - Anthony D Wignall
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | - John Finnie
- SA Pathology, Adelaide, South Australia, Australia
| | - Dorothy Keefe
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| | | | | | | | - Susan Moran
- Puma Biotechnology Inc, Los Angeles, CA, USA
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Level 2 Helen Mayo Building South, Frome Rd, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
86
|
Gao Y, Bai D, Zhao Y, Zhu Q, Zhou Y, Li Z, Lu N. LL202 ameliorates colitis against oxidative stress of macrophage by activation of the Nrf2/HO‐1 pathway. J Cell Physiol 2018; 234:10625-10639. [DOI: 10.1002/jcp.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Dongsheng Bai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Qin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Yihui Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| | - Zhiyu Li
- Department of Medicinal Chemistry China Pharmaceutical University Nanjing China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention Department of Basic Medicine School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing China
| |
Collapse
|
87
|
Zhang XJ, Yuan ZW, Qu C, Yu XT, Huang T, Chen PV, Su ZR, Dou YX, Wu JZ, Zeng HF, Xie Y, Chen JN. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacol Res 2018; 137:34-46. [PMID: 30243842 DOI: 10.1016/j.phrs.2018.09.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), majorly include Crohn's disease (CD) and ulcerative colitis (UC), is chronic and relapsing inflammatory disorders of the gastrointestinal tract, which treatment options remain limited. Here we examined the therapeutic effects of an isoquinoline alkaloid, Palmatine (Pal), on mice experimental colitis induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Colitis was induced in BALB/c mice by administering 3% DSS in drinking water for 7 days. Pal (50 and 100 mg kg-1) and the positive drug Sulfasalazine (SASP, 200 mg kg-1) were orally administered for 7 days. Disease activity index (DAI) was evaluated on day 8, and colonic tissues were collected for biochemistry analysis. The fecal microbiota was characterized by high-throughput Illumina MiSeq sequencing. And plasma metabolic changes were detected by UPLC-MS. Our results showed that Pal treatment significantly reduced DAI scores and ameliorated colonic injury in mice with DSS-induced colitis. Mucosal integrity was improved and cell apoptosis was inhibited. Moreover, gut microbiota analysis showed that mice received Pal-treatment have higher relative abundance of Bacteroidetes and Firmicutes, but reduced amount of Proteobacteria. Moreover, Pal not only suppressed tryptophan catabolism in plasma, but also decreased the protein expression of indoleamine 2,3-dioxygenase 1 (IDO-1, the rate-limiting enzyme of tryptophan catabolism) in colon tissue. This is consolidated by molecular docking, which suggested that Pal is a potent IDO-1 inhibitor. Taken together, our findings demonstrate that Pal ameliorated DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis, and regulating tryptophan catabolism, which indicated that Pal has great therapeutic potential for colitis.
Collapse
Affiliation(s)
- Xiao-Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Zhong-Wen Yuan
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Chang Qu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Xiu-Ting Yu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Ping Vicky Chen
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Yao-Xing Dou
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Jia-Zhen Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Hui-Fang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Ying Xie
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
88
|
Zhou Y, Liu H, Song J, Cao L, Tang L, Qi C. Sinomenine alleviates dextran sulfate sodium‑induced colitis via the Nrf2/NQO‑1 signaling pathway. Mol Med Rep 2018; 18:3691-3698. [PMID: 30106158 PMCID: PMC6131615 DOI: 10.3892/mmr.2018.9378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Sinomenine (SIN), a pure alkaloid isolated from Sinomenium acutum, has been widely used in arthritis for its anti‑inflammatory effect, but little is known about the effect of SIN on human ulcerative colitis (UC). In the present study, the effect and mechanism of SIN was examined in a dextran sulfate sodium (DSS)‑induced murine colitis model, which mimics human UC. Oral administration of SIN significantly suppressed the elevated disease activity index and ameliorated colonic histological damage in a DSS‑induced colitis model. Tumor necrosis factor‑α, interleukin‑6 and inducible nitric oxide synthase levels were also reduced as detected by reverse transcription‑quantitative polymerase chain reaction. In addition, SIN reversed the decreased colon length and colonic superoxide dismutase activity. Furthermore, western blot analysis revealed that nuclear factor‑erythroid 2‑related factor 2 (Nrf2) and its downstream genes, heme oxygenase‑1 and NADP(H) quinone oxidoreductase 1 (NQO‑1), were markedly activated by SIN. The current results indicated that SIN alleviated DSS‑induced colitis in mice, which may be due to its antioxidant properties and was at least in part dependent on the Nrf2/NQO‑1 signaling pathway. Therefore, SIN may have potential applications as a protective drug for patients with UC.
Collapse
Affiliation(s)
- Yan Zhou
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Liang Cao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
89
|
Dai Z, Feng S, Liu A, Wang H, Zeng X, Yang CS. Anti-inflammatory effects of newly synthesized α-galacto-oligosaccharides on dextran sulfate sodium-induced colitis in C57BL/6J mice. Food Res Int 2018; 109:350-357. [PMID: 29803460 PMCID: PMC5976246 DOI: 10.1016/j.foodres.2018.04.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022]
Abstract
α-Galacto-oligosaccharides have been reported to have beneficial health effects. The purpose of this study was to investigate the preventive effects of a newly synthesized α-galacto-oligosaccharide mixture (α-GOSg), as well as raffinose family oligosaccharides (RFOs), on dextran sulfate sodium (DSS)-induced colitis in mice. When administered in drinking water at 0.5% for 15 days, both α-GOSg and RFOs significantly decreased fecal hemoglobin content, partially prevented colon length shortening, reduced the severity of colon inflammation, and attenuated DSS-induced upregulation of cyclooxygenase-2. In addition, the activation of the inflammatory regulator nuclear factor-kappa B was slightly inhibited by α-GOSg. The results showed that the newly synthesized α-GOSg preparation has similar anti-inflammatory activities as RFOs in this colitis model. The anti-inflammatory activity of α-GOSg in humans remains to be investigated.
Collapse
Affiliation(s)
- Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Anna Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
90
|
Liu G, Yu L, Fang J, Hu CAA, Yin J, Ni H, Ren W, Duraipandiyan V, Chen S, Al-Dhabi NA, Yin Y. Methionine restriction on oxidative stress and immune response in dss-induced colitis mice. Oncotarget 2018; 8:44511-44520. [PMID: 28562346 PMCID: PMC5546498 DOI: 10.18632/oncotarget.17812] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/14/2017] [Indexed: 01/20/2023] Open
Abstract
A strong correlation exists between inflammatory bowel disease (IBD) and oxidative stress involving alterations of several key signaling pathways. It is known that methionine promotes reactive oxygen species (ROS) production; we therefore hypothesize that a methionine restriction diet would reduce ROS production, inflammatory responses, and the course of IBD. We generated a murine colitis model by dextran sodium sulfate (DSS) treatment and tested the effects of the methionine restriction diet. Forty-eight mice were randomly divided into four groups of equal size, which included a control (CON) group, an MR (methionine restriction diet) group, a DSS treated group and an MR-DSS treated group. Mice in the first two groups had unrestricted access to water for one week. Mice in the two DSS-treated groups had unrestricted access to 5% DSS solution supplied in the drinking water for the same period. Mice in the CON and DSS groups were given a basal diet, whereas mice in the MR-DSS and MR groups were fed a 0.14% MR diet. We found that DSS reduced daily weight gain, suppressed antioxidant enzyme expression, increased histopathology scores and activated NF-κB and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling. We also showed that the MR diet upregulated catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, decreased myeloperoxidase (MPO), TNF-α and IL-1β, and reversed activation of the NF-κB signaling pathway in MR-DSS mice. Taken together, our results imply that the MR diet may be considered as an adjuvant in IBD therapeutics.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lei Yu
- China Animal Disease Control Center, Beijing 102618, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chien-An Andy Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Wenkai Ren
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Veeramuthu Duraipandiyan
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shuai Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Laboratory of Animal Nutrition and Human Health, School of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
91
|
Naeem M, Bae J, Oshi MA, Kim MS, Moon HR, Lee BL, Im E, Jung Y, Yoo JW. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit ® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int J Nanomedicine 2018. [PMID: 29535519 PMCID: PMC5836652 DOI: 10.2147/ijn.s157566] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Colon-targeted oral nanoparticles (NPs) have emerged as an ideal, safe, and effective therapy for ulcerative colitis (UC) owing to their ability to selectively accumulate in inflamed colonic mucosa. Cyclosporine A (CSA), an immunosuppressive agent, has long been used as rescue therapy in severe steroid-refractory UC. In this study, we developed CSA-loaded dual-functional polymeric NPs composed of Eudragit® FS30D as a pH-sensitive polymer for targeted delivery to the inflamed colon, and poly(lactic-co-glycolic acid) (PLGA) as a sustained-release polymer. Methods CSA-loaded Eudragit FS30D nanoparticles (ENPs), PLGA nanoparticles (PNPs), and Eudragit FS30D/PLGA nanoparticles (E/PNPs) were prepared using the oil-in-water emulsion method. Scanning electron microscope images and zeta size data showed successful preparation of CSA-loaded NPs. Results PNPs exhibited a burst drug release of >60% at pH 1.2 (stomach pH) in 0.5 h, which can lead to unwanted systemic absorption and side effects. ENPs effectively inhibited the burst drug release at pH 1.2 and 6.8 (proximal small intestine pH); however, nearly 100% of the CSA in ENPs was released rapidly at pH 7.4 (ileum–colon pH) owing to complete NP dissolution. In contrast to single-functional PNPs and ENPs, the dual-functional E/PNPs minimized burst drug release (only 18%) at pH 1.2 and 6.8, and generated a sustained release at pH 7.4 thereafter. Importantly, in distribution studies in the gastrointestinal tracts of mice, E/PNPs significantly improved CSA distribution to the colon compared with PNPs or ENPs. In a mouse model of colitis, E/PNP treatment improved weight loss and colon length, and decreased rectal bleeding, spleen weight, histological scoring, myeloperoxidase activity, macrophage infiltration, and expression of proinflammatory cytokines compared with PNPs or ENPs. Conclusion Overall, this work confirms the benefits of CSA-loaded E/PNPs for efficiently delivering CSA to the colon, suggesting their potential for UC therapy.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Junhwan Bae
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Murtada A Oshi
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Bok Luel Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
92
|
Hoffmann M, Schwertassek U, Seydel A, Weber K, Falk W, Hauschildt S, Lehmann J. A refined and translationally relevant model of chronic DSS colitis in BALB/c mice. Lab Anim 2017; 52:240-252. [PMID: 29192559 DOI: 10.1177/0023677217742681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing disorders of the gastrointestinal tract. Several mouse models for IBD are available, but the acute dextran sulfate sodium (DSS)-induced colitis model is mostly used for preclinical studies. However, this model lacks chronicity and often leads to significant loss of mice. The aim of this study was to establish a refined and translationally relevant model of DSS chronic colitis in BALB/c mice. In the first part, we compared several standard therapeutic (ST) treatments for IBD in the acute DSS colitis model to identify the optimal treatment control for a DSS colitis model as compared to literature data. In the second part, we tested the two most effective ST treatments in a refined model of chronic DSS colitis. Cyclosporine A (CsA) and 6-thioguanine (6-TG) caused considerable reduction of clinical scores in acute DSS colitis. The clinical outcome was confirmed by the results for colon length and by histopathological evaluation. Moreover, CsA and 6-TG considerably reduced mRNA expression of several pro-inflammatory cytokines in spleen and colon. Both compounds also showed a substantial therapeutic effect in the refined model of chronic DSS colitis with regard to clinical scores and histopathology as well as the expression of inflammatory markers. The refined model of chronic DSS colitis reflects important features of IBD and is well suited to test potential IBD therapeutics.
Collapse
Affiliation(s)
- Maximilian Hoffmann
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulla Schwertassek
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Aleksandra Seydel
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Werner Falk
- 3 Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Sunna Hauschildt
- 4 Faculty of Biological Sciences, Pharmacy, and Psychology, University of Leipzig, Leipzig, Germany
| | - Jörg Lehmann
- 1 Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
93
|
Melero A, Draheim C, Hansen S, Giner E, Carreras JJ, Talens-Visconti R, Garrigues TM, Peris JE, Recio MC, Giner R, Lehr CM. Targeted delivery of Cyclosporine A by polymeric nanocarriers improves the therapy of inflammatory bowel disease in a relevant mouse model. Eur J Pharm Biopharm 2017; 119:361-371. [DOI: 10.1016/j.ejpb.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
|
94
|
Wang L, Yu Z, Wan S, Wu F, Chen W, Zhang B, Lin D, Liu J, Xie H, Sun X, Wu Z. Exosomes Derived from Dendritic Cells Treated with Schistosoma japonicum Soluble Egg Antigen Attenuate DSS-Induced Colitis. Front Pharmacol 2017; 8:651. [PMID: 28959207 PMCID: PMC5603738 DOI: 10.3389/fphar.2017.00651] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Exosomes are 30–150 nm small membrane vesicles that are released into the extracellular medium via cells that function as a mode of intercellular communication. Dendritic cell (DC)-derived exosomes modulate immune responses and prevent the development of autoimmune diseases. Moreover, Schistosoma japonicum eggs show modulatory effects in a mouse model of colitis. Therefore, we hypothesized that exosomes derived from DCs treated with S. japonicum soluble eggs antigen (SEA; SEA-treated DC exosomes) would be useful for treating inflammatory bowel disease (IBD). Exosomes were purified from the supernatant of DCs treated or untreated with SEA and identified via transmission electron microscopy, western blotting and NanoSight. Acute colitis was induced via the administration of dextran sulfate sodium (DSS) in drinking water (5.0%, wt/vol). Treatment with exosomes was conducted via intraperitoneal injection (i.p.; 50 μg per mouse) from day 0 to day 6. Clinical scores were calculated based on weight loss, stool type, and bleeding. Colon length was measured as an indirect marker of inflammation, and colon macroscopic characteristics were determined. Body weight loss and the disease activity index of DSS-induced colitis mice decreased significantly following treatment with SEA-treated DC exosomes. Moreover, the colon lengths of SEA-treated DC exosomes treated colitis mice improved, and their mean colon macroscopic scores decreased. In addition, histologic examinations and histological scores showed that SEA-treated DC exosomes prevented colon damage in acute DSS-induced colitis mice. These results indicate that SEA-treated DC exosomes attenuate the severity of acute DSS-induced colitis mice more effectively than DC exosomes. The current work suggests that SEA-treated DC exosomes may be useful as a new approach to treat IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Zilong Yu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Shuo Wan
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Feng Wu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Wei Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Beibei Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Datao Lin
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Jiahua Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Hui Xie
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhou, China
| |
Collapse
|
95
|
Kangawa Y, Yoshida T, Tanaka T, Kataoka A, Koyama N, Ohsumi T, Hayashi SM, Shibutani M. Expression of A-kinase anchor protein 13 and Rho-associated coiled-coil containing protein kinase in restituted and regenerated mucosal epithelial cells following mucosal injury and colorectal cancer cells in mouse models. ACTA ACUST UNITED AC 2017; 69:443-450. [PMID: 28434818 DOI: 10.1016/j.etp.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
We demonstrate the expression patterns of A-kinase anchor protein 13 (AKAP13), a scaffold protein that acts upstream of Rho signaling, and Rho-associated coiled-coil containing protein kinase (ROCK) 1/2 in mouse colorectal cancer and during the healing stage of mouse colitis. BALB/c mice received an intraperitoneal injection of azoxymethane at 10mg/kg, followed by two 7-day cycles of 3% dextran sulfate sodium (DSS) administered through their drinking water to induce colon cancer, or a 7-day administration of 4% DSS to induce colitis. The colorectal tissue was then analyzed for gene expression, histopathology, and immunohistochemistry. In the colorectal cancer, AKAP13 and ROCK1/2 were highly expressed in adenocarcinoma compared to the control tissue and low-grade dysplasia. In colitis, AKAP13 and ROCK1 were highly expressed in the restituted and regenerated mucosa but were only moderately expressed in the injured mucosal epithelium, compared to the normal epithelium that exhibited weak expression levels. ROCK2 was weakly expressed in these cells, consistent with the expression of AKAP13 and ROCK1. Furthermore, we found several clumps of epithelial cells expressing AKAP13 and ROCK1/2 in the lamina propria during the mucosal healing process, and these cells also expressed interleukin-6, which is a multipotential cytokine for both inflammation and healing. These data suggest that AKAP13 was expressed in relation with ROCK1/2, which probably play an overall role in both mucosal healing and tumorigenesis.
Collapse
Affiliation(s)
- Yumi Kangawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Akira Kataoka
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Naomi Koyama
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Tomoka Ohsumi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301 Gensuke, Fujieda, Shizuoka, 426-8646, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| |
Collapse
|
96
|
Wang L, Xie H, Xu L, Liao Q, Wan S, Yu Z, Lin D, Zhang B, Lv Z, Wu Z, Sun X. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Am J Cancer Res 2017; 7:3446-3460. [PMID: 28912887 PMCID: PMC5596435 DOI: 10.7150/thno.20359] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Epidemiologic studies and animal model experiments have shown that parasites have significant modulatory effects on autoimmune disorders, including inflammatory bowel disease (IBD). Recombinant Sj16 (rSj16), a 16-kDa secreted protein of Schistosoma japonicum (S.japonicum) produced by Escherichia coli (E. coli), has been shown to have immunoregulatory effects in vivo and in vitro. In this study, we aimed to determine the effects of rSj16 on dextran sulfate sodium (DSS)-induced colitis. Methods: DSS-induced colitis mice were treated with rSj16. Body weight loss, disease activity index (DAI), myeloperoxidase (MPO) activity levels, colon lengths, macroscopic scores, histopathology findings, inflammatory cytokine levels and regulatory T cell (Treg) subset levels were examined. Moreover, the differential genes expression after treated with rSj16 were sequenced, analyzed and identified. Results: rSj16 attenuated clinical activity of DSS-induced colitis mice, diminished pro-inflammatory cytokine production, up-regulated immunoregulatory cytokine production and increased Treg percentages in DSS-induced colitis mice. Moreover, DSS-induced colitis mice treated with rSj16 displayed changes in the expression levels of specific genes in the colon and show the crucial role of peroxisome proliferator activated receptor α (PPAR-α) signaling pathway. PPAR-α activation diminished the therapeutic effects of rSj16 in DSS-induced colitis mice, indicating that the PPAR-α signaling pathway plays a crucial role in DSS-induced colitis development. Conclusions: rSj16 has protective effects on DSS-induced colitis, effects mediated mainly by PPAR-α signaling pathway inhibition. The findings of this study suggest that rSj16 may be useful as a therapeutic agent and that PPAR-α may be a new therapeutic target in the treatment of IBD.
Collapse
|
97
|
You BH, Chae HS, Song J, Ko HW, Chin YW, Choi YH. α-Mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int Immunopharmacol 2017; 49:212-221. [PMID: 28601023 DOI: 10.1016/j.intimp.2017.05.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/18/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the colon as a target site. Previous reports regarding the efficacy of α-mangostin (αMG) to inhibit nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) as well as relatively high distribution to the colon suggested the therapeutic potential of this compound in UC model. In dextran sodium sulfate (DSS)-induced colitis mice (DSS mice), the disease activity index scores involving diarrhea, bloody stool, body weight reduction, and myeloperoxidase (MPO) activities of the esophagus and colon increased with the reduced colon length. Also histologic disturbances and changes of NF-κB and MAPK pathways including phosphorylation of IκB kinase, ERK1/2, SAPK/JNK and p38 were observed in the colon of the DSS mice. However, all of these impaired conditions in the DSS mice were restored by αMG treatment, and the intestinal metabolism of αMG decreased, increasing its distribution to the colons in the DSS mice compared with the control mice. All of these results suggest that high distribution of αMG in the colon might attenuate DSS-induced colitis by inhibiting NF-κB and MAPK pathways in the colon.
Collapse
Affiliation(s)
- Byoung Hoon You
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jieun Song
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Young Hee Choi
- College of Pharmacy, Integrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
98
|
Marín M, Gimeno C, Giner RM, Ríos JL, Máñez S, Recio MAC. Influence of Dimerization of Apocynin on Its Effects in Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4083-4091. [PMID: 28485605 DOI: 10.1021/acs.jafc.7b00872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Apocynin has been widely used as an inhibitor of the nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) system and shows promise as an anti-inflammatory drug. Diapocynin, the dimeric product generated by the oxidation of apocynin in the presence of myeloperoxidase (MPO), is supposed to be its active form. In this study, diapocynin has been chemically synthesized and its activity on several inflammatory mediators in LPS-stimulated RAW 264.7 macrophages and its anti-inflammatory effect on ulcerative colitis induced by dextran sodium sulfate (DSS) in mice analyzed. We found that diapocynin showed higher inhibitory activity than apocynin. The dimer reduced ROS production, TNF-α, IL-6, and IL-1β levels and inhibited iNOS and COX-2 expression as well as decreased NO and PGE2 production induced in LPS-stimulated RAW 264.7 cells. The anti-inflammatory molecular mechanism of diapocynin was associated with the suppression of NF-κB activation. However, these results were not paralleled by in vivo studies. Oral administration of apocynin and diapocynin (100 mg/kg) three times a week exhibited similar protections against experimental inflammatory bowel disease induced by DSS; therefore, apocynin should not be considered a prodrug. However, it should be taken into account that the dimer is more potent because its dose (0.3 mmol/kg) is half that of apocynin.
Collapse
Affiliation(s)
- Marta Marín
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Clotilde Gimeno
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Rosa M Giner
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - José L Ríos
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Salvador Máñez
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| | - Marı A C Recio
- Departament de Farmacologia, Facultat de Farmàcia, University of Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot-Valencia, Spain
| |
Collapse
|
99
|
Wang B, Wu C. Dietary soy isoflavones alleviate dextran sulfate sodium-induced inflammation and oxidative stress in mice. Exp Ther Med 2017; 14:276-282. [PMID: 28672925 PMCID: PMC5488499 DOI: 10.3892/etm.2017.4469] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
Abstract
It has been hypothesized that soy isoflavones exhibit anti-oxidative and anti-inflammatory functions, however, the effects of soy isoflavones on inflammatory bowel diseases remain unknown. Therefore, the present study aimed to investigate the effect and underlying mechanism of dietary soy isoflavones on dextran sulfate sodium (DSS)-induced colitis. Mice were administered DSS and soy isoflavones, and histomorphometry, oxidative stress, inflammation and intestinal tight junctions were determined. The current study demonstrated that dietary soy isoflavones alleviated DSS-induced growth suppression, colonic inflammatory response, oxidative stress and colonic barrier dysfunction. DSS treatment was indicated to activate Toll-like receptor 4 (TRL4) and myeloid differentiation protein 88 (MyD88) in mice, whereas dietary soy isoflavones inhibited Myd88 expression in DSS-challenged mice. In conclusion, dietary soy isoflavones alleviate DSS-induced inflammation in mice, which may be associated with enhancing antioxidant function and inhibiting the TLR4/MyD88 signal.
Collapse
Affiliation(s)
- Bin Wang
- Department of Food and Nutritional Engineering, Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223005, P.R. China
| | - Cunbing Wu
- Department of Food Engineering, Jiangsu Polytechnic of Finance and Economics, Huaian, Jiangsu 223005, P.R. China
| |
Collapse
|
100
|
Kangawa Y, Yoshida T, Abe H, Seto Y, Miyashita T, Nakamura M, Kihara T, Hayashi SM, Shibutani M. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice. ACTA ACUST UNITED AC 2017; 69:179-186. [DOI: 10.1016/j.etp.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
|