51
|
Epigallocatechin-3-gallate inhibits inflammation and epithelial‑mesenchymal transition through the PI3K/AKT pathway via upregulation of PTEN in asthma. Int J Mol Med 2017; 41:818-828. [PMID: 29207033 PMCID: PMC5752157 DOI: 10.3892/ijmm.2017.3292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic disease associated with hyper-responsiveness, obstruction and remodeling of the airways. Epithelial-mesenchymal transition (EMT) has an important role in these alterations and may account for the accumulation of subepithelial mesenchymal cells, thus contributing to airway hyperresponsiveness and remodeling. Epigallo-catechin-3-gallate (EGCG), which is a type of polyphenol, is the most potent ingredient in green tea, and exhibits antibacterial, antiviral, antioxidative, anticancer and chemopreventive activities. Recently, numerous studies have investigated the protective effects of EGCG against asthma and other lung diseases. In the present study, the role of EGCG in ovalbumin (OVA)-challenged asthmatic mice was determined. In addition, the inhibitory effects of EGCG against transforming growth factor (TGF)-β1-induced EMT and migration of 16HBE cells, and the underlying mechanisms of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway, were investigated by immunofluorescence, Transwell, wound healing assay and western blot analysis, respectively. The results indicated that EGCG may suppress inflammation and inflammatory cell infiltration into the lungs of OVA-challenged asthmatic mice, and may also inhibit EMT via the PI3K/AKT signaling pathway through upregulating the expression of phosphatase and tensin homolog (PTEN) in vivo and in vitro. The present study also revealed the anti-migratory effects of EGCG in TGF-β1-induced 16HBE cells, thus suggesting it may reduce airway remodeling. The present study provides a novel insight into understanding the protective effects of EGCG on airway remodeling in asthma, and indicates that EGCG may be useful as an adjuvant therapy for bronchial asthma.
Collapse
|
52
|
Wang X, Hassan W, Jabeen Q, Khan GJ, Iqbal F. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine 2017; 103:150-159. [PMID: 29029799 DOI: 10.1016/j.cyto.2017.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/03/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
The novelty of an effective therapeutic targeting for hepatocellular carcinoma (HCC) is based on improved understanding of each component of tumor microenvironment (TME) and its correspondent interactions at biological and molecular levels. In this context, new expansions for the treatment against TME and its communication with HCC are under exploration. Despite of the fact that blockage of growth factor receptors has become a treatment of choice in late phases of HCC in clinical practice, still a precise targeted treatment should address all the components of TME. Targeting one specific element out of cellular (cancer associated fibroblasts, endothelial cells, hepatic stellate cells, Kupffer cells and lymphocytes) or non-cellular (extracellular matrix, growth factors, inflammatory cytokines, proteolytic enzymes) parts of TME may not be a successful remedy for the disease because of well-designed hindrances of each component and their functional alternativeness. Meanwhile there are some elements of TME like epithelial-mesenchymal transition and CAF, which are considerably important and need thorough investigations. Ascertaining the potential role of these elements, and a single or combinational drug therapy targeting these elements of TME simultaneously, may provide the appreciable considerations to eventually improve in clinical practices and may also minimize the chances of reoccurrence of HCC.
Collapse
Affiliation(s)
- Xue Wang
- Jiangnan University, Wuxi Medical School, Wuxi 214122, China; China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Waseem Hassan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; Department of Pharmacy, The University of Lahore, Pakistan.
| | - Qaiser Jabeen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Ghulam Jilany Khan
- China Pharmaceutical University, Department of Pharmacology, Nanjing 210009, China.
| | - Furqan Iqbal
- Department of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
53
|
Chen ZY, Zhou SH, Zhou QF, Tang HB. Inflammation and airway remodeling of the lung in guinea pigs with allergic rhinitis. Exp Ther Med 2017; 14:3485-3490. [PMID: 29042937 PMCID: PMC5639300 DOI: 10.3892/etm.2017.4937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Allergic rhinitis (AR) and asthma belong to the category of type I allergic diseases, whose pathological features are airway remodeling of the lung and allergic inflammation. The aim of the present study was to evaluate inflammation and remodeling of lung tissue in a guinea pig model of AR in order to confirm consistent pathological changes of upper and lower airways in AR. Male guinea pigs were randomly divided into an experimental and a control group (n=10 in each). The AR model was established by sensitization through intraperitoneal injection of ovalbumin for three weeks and bilateral nasal local excitation for twelve weeks. All tissues of nasal mucosa and lung were subjected to hematoxylin and eosin as well as toluidine blue staining, and characteristics of remodeling of lung tissue, including thickness of bronchial wall, epithelial mucosa and smooth muscle were histologically determined. Collagen deposition in lung tissue was observed by Masson's trichrome stain. Severe paroxysmal nose scratching action, frequent sneezing, visible outflow of secretion from the anterior naris and frequent nose friction were observed in the AR model group within 30 min after local excitation. The total symptom scores were significantly increased in the AR model group compared with those in the control group. Obvious inflammatory cell infiltration was observed in the AR model group. Compared with those in the control group, the numbers of eosinophils and mast cells in nasal mucosa and lung tissue were significantly increased. Obvious airway remodeling of the lung was observed in the AR model group. Compared with those in the control group, bronchial wall thickness, epithelial layer thickness and smooth muscle thickness in the airways were significantly increased in the AR model group. Increased collagen deposition was found in the AR model group compared with that in the control group. The results of the present study revealed that inflammation and airway remodeling of lungs arose in guinea pigs with AR, suggesting that pathological changes of upper and lower airways are consistent in this AR model.
Collapse
Affiliation(s)
- Zu-Yao Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shou-Hong Zhou
- Institute of Neuroscience, School of Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiao-Feng Zhou
- Department of Pediatrics, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong-Bo Tang
- Department of Otorhinolaryngology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
54
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
55
|
Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma. Sci Rep 2017; 7:4219. [PMID: 28652606 PMCID: PMC5484710 DOI: 10.1038/s41598-017-03674-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Interleukin 33 (IL-33) represents a potential link between the airway epithelium and induction of Th2-type inflammatory responses associated with the development of asthma. This study investigated the potential of IL-33 to exacerbate antigen driven asthma responses. An ovalbumin (OVA) asthma model was used in which sensitized C57BL/6 mice were exposed to IL-33 before each OVA challenge. IL-33 given to sensitized mice acted synergistically with antigen and aggravated airway inflammation, hyperresponsiveness and remodeling compared with mice that were only OVA sensitized and challenged and mice that were only exposed to IL-33. Elevated levels of local and systemic mast cell protease mMCP-1, as well as antigen-specific IgE production, were observed following IL-33 administration to sensitized mice. Similarly, exposing OVA-sensitized mice to IL-33 increased the Th2 cytokine levels, including IL-4, IL-5 and IL-13. Furthermore, IL-33 and OVA administration to OVA-sensitized mice increased ILC2s in the lung, suggesting a role for ILC2s in IL-33-mediated exacerbation of OVA-induced airway responses. Collectively, these findings show that IL-33 aggravates important features of antigen-driven asthma, which may have implications for asthma exacerbations.
Collapse
|
56
|
Freeman MR, Sathish V, Manlove L, Wang S, Britt RD, Thompson MA, Pabelick CM, Prakash YS. Brain-derived neurotrophic factor and airway fibrosis in asthma. Am J Physiol Lung Cell Mol Physiol 2017; 313:L360-L370. [PMID: 28522569 DOI: 10.1152/ajplung.00580.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/17/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Airway remodeling in asthma driven by inflammation involves proliferation of epithelial cells and airway smooth muscle (ASM), as well as enhanced extracellular matrix (ECM) generation and deposition, i.e., fibrosis. Accordingly, understanding profibrotic mechanisms is important for developing novel therapeutic strategies in asthma. Recent studies, including our own, have suggested a role for locally produced growth factors such as brain-derived neurotrophic factor (BDNF) in mediating and modulating inflammation effects. In this study, we explored the profibrotic influence of BDNF in the context of asthma by examining expression, activity, and deposition of ECM proteins in primary ASM cells isolated from asthmatic vs. nonasthmatic patients. Basal BDNF expression and secretion, and levels of the high-affinity BDNF receptor TrkB, were higher in asthmatic ASM. Exogenous BDNF significantly increased ECM production and deposition, especially of collagen-1 and collagen-3 (less so fibronectin) and the activity of matrix metalloproteinases (MMP-2, MMP-9). Exposure to the proinflammatory cytokine TNFα significantly increased BDNF secretion, particularly in asthmatic ASM, whereas no significant changes were observed with IL-13. Chelation of BDNF using TrkB-Fc reversed TNFα-induced increase in ECM deposition. Conditioned media from asthmatic ASM enhanced ECM generation in nonasthmatic ASM, which was blunted by BDNF chelation. Inflammation-induced changes in MMP-2, MMP-9, and tissue inhibitor metalloproteinases (TIMP-1, TIMP-2) were reversed in the presence of TrkB-Fc. These novel data suggest ASM as an inflammation-sensitive source of BDNF within human airways, with autocrine effects on fibrosis relevant to asthma.
Collapse
Affiliation(s)
- Michelle R Freeman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Venkatachalem Sathish
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shengyu Wang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rodney D Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota; .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
57
|
Poon AH, Choy DF, Chouiali F, Ramakrishnan RK, Mahboub B, Audusseau S, Mogas A, Harris JM, Arron JR, Laprise C, Hamid Q. Increased Autophagy-Related 5 Gene Expression Is Associated with Collagen Expression in the Airways of Refractory Asthmatics. Front Immunol 2017; 8:355. [PMID: 28424691 PMCID: PMC5372794 DOI: 10.3389/fimmu.2017.00355] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fibrosis, particularly excessive collagen deposition, presents a challenge for treating asthmatic individuals. At present, no drugs can remove or reduce excessive collagen in asthmatic airways. Hence, the identification of pathways involved in collagen deposition would help to generate therapeutic targets to interfere with the airway remodeling process. Autophagy, a cellular degradation process, has been shown to be dysregulated in various fibrotic diseases, and genetic association studies in independent human populations have identified autophagy-related 5 (ATG5) to be associated with asthma pathogenesis. Hence, the dysregulation of autophagy may contribute to fibrosis in asthmatic airways. OBJECTIVE This study aimed to determine if (1) collagen deposition in asthmatic airways is associated with ATG5 expression and (2) ATG5 protein expression is associated with asthma per se and severity. METHODS Gene expression of transforming growth factor beta 1, various asthma-related collagen types [collagen, type I, alpha 1; collagen, type II, alpha 1; collagen, type III, alpha 1; collagen, type V, alpha 1 (COL5A1) and collagen, type V, alpha 2], and ATG5 were measured using mRNA isolated from bronchial biopsies of refractory asthmatic subjects and assessed for pairwise associations. Protein expression of ATG5 in the airways was measured and associations were assessed for asthma per se, severity, and lung function. MAIN RESULTS In refractory asthmatic individuals, gene expression of ATG5 was positively associated with COL5A1 in the airways. No association was detected between ATG5 protein expression and asthma per se, severity, and lung function. CONCLUSION AND CLINICAL RELEVANCE Positive correlation between the gene expression patterns of ATG5 and COL5A1 suggests that dysregulated autophagy may contribute to subepithelial fibrosis in the airways of refractory asthmatic individuals. This finding highlights the therapeutic potential of ATG5 in ameliorating airway remodeling in the difficult-to-treat refractory asthmatic individuals.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - David F Choy
- Biomarker Discovery - OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Fazila Chouiali
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Bassam Mahboub
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Severine Audusseau
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Andrea Mogas
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Jeffrey M Harris
- OMNI Early Clinical Development, Genentech Inc., South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Laprise
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, QC, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
58
|
Tao J, Sun LXJ, Le XC. Study of the effects of bisphenol A using human fetal lung fibroblasts. J Environ Sci (China) 2016; 48:6-10. [PMID: 27745673 DOI: 10.1016/j.jes.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lily Xiao Jing Sun
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
59
|
Aravamudan B, Thompson M, Sieck GC, Vassallo R, Pabelick CM, Prakash YS. Functional Effects of Cigarette Smoke-Induced Changes in Airway Smooth Muscle Mitochondrial Morphology. J Cell Physiol 2016; 232:1053-1068. [PMID: 27474898 DOI: 10.1002/jcp.25508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/29/2016] [Indexed: 12/16/2022]
Abstract
Long-term exposure to cigarette smoke (CS) triggers airway hyperreactivity and remodeling, effects that involve airway smooth muscle (ASM). We previously showed that CS destabilizes the networked morphology of mitochondria in human ASM by regulating the expression of mitochondrial fission and fusion proteins via multiple signaling mechanisms. Emerging data link regulation of mitochondrial morphology to cellular structure and function. We hypothesized that CS-induced changes in ASM mitochondrial morphology detrimentally affect mitochondrial function, leading to CS effects on contractility and remodeling. Here, ASM cells were exposed to 1% cigarette smoke extract (CSE) for 48 h to alter mitochondrial fission/fusion, or by inhibiting the fission protein Drp1 or the fusion protein Mfn2. Mitochondrial function was assessed via changes in bioenergetics or altered rates of proliferation and apoptosis. Our results indicate that both exposure to CS and inhibition of mitochondrial fission/fusion proteins affect mitochondrial function (i.e., energy metabolism, proliferation, and apoptosis) in ASM cells. In vivo, the airways in mice chronically exposed to CS are thickened and fibrotic, and the expression of proteins involved in mitochondrial function is dramatically altered in the ASM of these mice. We conclude that CS-induced changes in mitochondrial morphology (fission/fusion balance) correlate with mitochondrial function, and thus may control ASM proliferation, which plays a central role in airway health. J. Cell. Physiol. 232: 1053-1068, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Robert Vassallo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
60
|
Xie X, Xia W, Fei X, Xu Q, Yang X, Qiu D, Wang M. Relaxin Inhibits High Glucose-Induced Matrix Accumulation in Human Mesangial Cells by Interfering with TGF-β1 Production and Mesangial Cells Phenotypic Transition. Biol Pharm Bull 2016; 38:1464-9. [PMID: 26424011 DOI: 10.1248/bpb.b15-00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN is characterized by glomerular extracellular matrix accumulation, mesangial expansion, basement membrane thickening, and renal interstitial fibrosis. To date, mounting evidence has shown that H2 relaxin possesses powerful antifibrosis properties; however, the mechanisms of H2 relaxin on diabetic nephropathy remain unknown. Here, we aimed to explore whether H2 relaxin can reduce production of extracellular matrix (ECM) secreted by human mesangial cells (HMC). HMC were exposed to 5.5 mM glucose (NG) or 30 mM glucose (HG) with or without H2 relaxin. Fibronectin (FN) and collagen type IV levels in the culture supernatants were examined by solid-phase enzyme-linked immunoadsorbent assay (ELISA). Western blot was used to detect the expression of α-smooth muscle actin (α-SMA) protein. Quantitative polymerase chain reaction (qPCR) method was employed to analyze transforming growth factor (TGF)-β1 mRNA expression. Compared with the normal glucose group, the levels of fibronectin and collagen type were markedly increased after being cultured in high glucose medium. Compared with the high glucose group, remarkable decreases of fibronectin, collagen type IV, α-smooth muscle actin, and TGF-β1 mRNA expression were observed in the H2 relaxin-treated group. The mechanism by which H2 relaxin reduced high glucose-induced overproduction of ECM may be associated with inhibition of TGF-β1 mRNA expression and mesangial cells' phenotypic transition. H2 relaxin is a potentially effective modality for the treatment of DN.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Hangzhou First People's Hospital, Affiliated Hangzhou Hospital of Nanjing Medical University
| | | | | | | | | | | | | |
Collapse
|
61
|
Ma Y, Huang W, Liu C, Li Y, Xia Y, Yang X, Sun W, Bai H, Li Q, Peng Z. Immunization against TGF-β1 reduces collagen deposition but increases sustained inflammation in a murine asthma model. Hum Vaccin Immunother 2016; 12:1876-85. [PMID: 26901684 DOI: 10.1080/21645515.2016.1145849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is involved in the processes of airway inflammation and remodeling; however, its reported roles in asthma pathogenesis are controversial. We sought both to investigate the effects of active immunization targeting TGF-β1 on allergen-induced airway inflammatory responses and to evaluate its possible application for asthma treatment. BALB/c mice were immunized with a virus-like-particle (VLP) vaccine presenting a TGF-β1 peptide. For the preventive intervention of acute allergic airway inflammation, immunization was conducted before sensitization and challenges with ovalbumin (OVA), and for the therapeutic treatment of chronic inflammatory responses, immunization was initiated after inflammatory responses were established. Preventive immunization with VLPs led to increased proinflammatory IL-4, IL-13, and IL-33 levels in the bronchoalveolar lavage fluids (BALF) with no significant effects on lung tissue inflammation and airway goblet cell hyperplasia. Therapeutic treatment showed that at 24 h after the fourth 2-day challenge with OVA following 2 intraperitoneal sensitizations, airway subepithelial collagen deposition was significantly ameliorated in vaccinated mice, whereas the lung histology and cytokine profile in the BALF were not changed. In contrast, after a 4-week recovery from the last OVA challenge, the vaccinated mice's collagen deposition remained reduced, but they sustained lung-tissue inflammation and goblet-cell hyperplasia; elevated IL-13, TNF, and IFN-γ levels in the BALF; and increased airway resistance, tissue resistance, and tissue elastance. In a conclusion, the role of TGF-β1 is complicated in allergic airway inflammatory responses. It is important to make a careful assessment in accordance with specific disease conditions when targeting TGF-β1 for a therapeutic purpose.
Collapse
Affiliation(s)
- Yanbing Ma
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Weiwei Huang
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Cunbao Liu
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Yang Li
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Ye Xia
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Xu Yang
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Wenjia Sun
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Hongmei Bai
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Qihan Li
- b Department of Viral Immunology , Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhikang Peng
- c Department of Pediatrics and Child Health , University of Manitoba , Winnipeg , Canada
| |
Collapse
|
62
|
The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacol Sin 2015; 36:1277-87. [PMID: 26388156 DOI: 10.1038/aps.2015.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023] Open
Abstract
β-Arrestins and β-arrestin2 are important adaptor proteins and signal transduction proteins that are mainly involved in the desensitization and internalization of G-protein-coupled receptors. Fibrosis is characterized by accumulation of excess extracellular matrix (ECM) molecules caused by chronic tissue injury. If highly progressive, the fibrotic process leads to organ malfunction and, eventually, death. The incurable lung fibrosis, renal fibrosis and liver fibrosis are among the most common fibrotic diseases. Recent studies show that β-arrestins can activate signaling cascades independent of G-protein activation and scaffold many intracellular signaling networks by diverse types of signaling pathways, including the Hedgehog, Wnt, Notch and transforming growth factor-β pathways, as well as downstream kinases such as MAPK and PI3K. These signaling pathways are involved in the pathological process of fibrosis and fibrotic diseases. This β-arrestin-mediated regulation not only affects cell growth and apoptosis, but also the deposition of ECM, activation of inflammatory response and development of fibrotic diseases. In this review, we survey the involvement of β-arrestins in various signaling pathways and highlight different aspects of their regulation of fibrosis. We also discuss the important roles of β-arrestins in the process of fibrotic diseases by regulating the inflammation and deposit of ECM. It is becoming more evident that targeting β-arrestins may offer therapeutic potential for the treatment of fibrotic diseases.
Collapse
|
63
|
Royce SG, Shen M, Patel KP, Huuskes BM, Ricardo SD, Samuel CS. Mesenchymal stem cells and serelaxin synergistically abrogate established airway fibrosis in an experimental model of chronic allergic airways disease. Stem Cell Res 2015; 15:495-505. [PMID: 26426509 DOI: 10.1016/j.scr.2015.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 09/20/2015] [Indexed: 01/14/2023] Open
Abstract
This study determined if the anti-fibrotic drug, serelaxin (RLN), could augment human bone marrow-derived mesenchymal stem cell (MSC)-mediated reversal of airway remodeling and airway hyperresponsiveness (AHR) associated with chronic allergic airways disease (AAD/asthma). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD were either untreated or treated with MSCs alone, RLN alone or both combined from weeks 9-11. Changes in airway inflammation (AI), epithelial thickness, goblet cell metaplasia, transforming growth factor (TGF)-β1 expression, myofibroblast differentiation, subepithelial and total lung collagen deposition, matrix metalloproteinase (MMP) expression, and AHR were then assessed. MSCs alone modestly reversed OVA-induced subepithelial and total collagen deposition, and increased MMP-9 levels above that induced by OVA alone (all p<0.05 vs OVA group). RLN alone more broadly reversed OVA-induced epithelial thickening, TGF-β1 expression, myofibroblast differentiation, airway fibrosis and AHR (all p<0.05 vs OVA group). Combination treatment further reversed OVA-induced AI and airway/lung fibrosis compared to either treatment alone (all p<0.05 vs either treatment alone), and further increased MMP-9 levels. RLN appeared to enhance the therapeutic effects of MSCs in a chronic disease setting; most likely a consequence of the ability of RLN to limit TGF-β1-induced matrix synthesis complemented by the MMP-promoting effects of MSCs.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| | - Matthew Shen
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Krupesh P Patel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Brooke M Huuskes
- Kidney Regeneration and Stem Cell Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Kidney Regeneration and Stem Cell Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Chrishan S Samuel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
64
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
65
|
Loxham M, Davies DE, Blume C. Epithelial function and dysfunction in asthma. Clin Exp Allergy 2015; 44:1299-313. [PMID: 24661647 DOI: 10.1111/cea.12309] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/06/2014] [Accepted: 03/19/2014] [Indexed: 12/15/2022]
Abstract
Asthma was previously defined as an allergic Th2-mediated inflammatory immune disorder. Recently, this paradigm has been challenged because not all pathological changes observed in the asthmatic airways are adequately explained simply as a result of Th2-mediated processes. Contemporary thought holds that asthma is a complex immune disorder involving innate as well as adaptive immune responses, with the clinical heterogeneity of asthma perhaps a result of the different relative contribution of these two systems to the disease. Epidemiological studies show that exposure to certain environmental substances is strongly associated with the risk of developing asthma. The airway epithelium is first barrier to interact with, and respond to, environmental agents (pollution, viral infection, allergens), suggesting that it is a key player in the pathology of asthma. Epithelial cells play a key role in the regulation of tissue homeostasis by the modulation of numerous molecules, from antioxidants and lipid mediators to growth factors, cytokines, and chemokines. Additionally, the epithelium is also able to suppress mechanisms involved in, for example, inflammation in order to maintain homeostasis. An intrinsic alteration or defect in these regulation mechanisms compromises the epithelial barrier, and therefore, the barrier may be more prone to environmental substances and thus more likely to exhibit an asthmatic phenotype. In support of this, polymorphisms in a number of genes that are expressed in the bronchial epithelium have been linked to asthma susceptibility, while environmental factors may affect epigenetic mechanisms that can alter epithelial function and response to environmental insults. A detailed understanding of the regulatory role of the airway epithelium is required to develop new therapeutic strategies for asthma that not only address the symptoms but also the underlining pathogenic mechanism(s) and prevent airway remodelling.
Collapse
Affiliation(s)
- M Loxham
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, Hampshire, UK
| | | | | |
Collapse
|
66
|
Abstract
Asthma remains a major health problem with significant morbidity, mortality and economic costs. In asthma, airway remodelling, which refers to all the microscopic structural changes seen in the airway tissue, has been recognised for many decades and remains one of the defining characteristics of the disease; however, it is still poorly understood. The detrimental pathophysiological consequences of some features of remodelling, like increased airway smooth muscle mass and subepithelial fibrosis, are well documented. However, whether targeting these by therapy would be beneficial is unknown. Although the prevailing thinking is that remodelling is an abnormal response to persistent airway inflammation, recent evidence, especially from studies of remodelling in asthmatic children, suggests that the two processes occur in parallel. The effects of asthma therapy on airway remodelling have not been studied extensively due to the challenges of obtaining airway tissue in the context of clinical trials. Corticosteroids remain the cornerstone of asthma therapy, and their effects on remodelling have been better studied than other drugs. Bronchial thermoplasty is the only asthma therapy to primarily target remodelling, although how it results in the apparent clinical benefits seen is not exactly clear. In this article we discuss the mechanisms of airway remodelling in asthma and review the effects of conventional and novel asthma therapies on the process.
Collapse
Affiliation(s)
- Rachid Berair
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
67
|
Yao X, Wang W, Li Y, Lv Z, Guo R, Corrigan CJ, Ding G, Huang K, Sun Y, Ying S. Characteristics of IL-25 and allergen-induced airway fibrosis in a murine model of asthma. Respirology 2015; 20:730-8. [PMID: 25929748 DOI: 10.1111/resp.12546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/07/2015] [Accepted: 02/22/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Interleukin (IL)-25 has been implicated in the pathogenesis of human asthma by inducing a Th2 cytokine response, but its possible role in the development of airway remodelling is less clear. METHODS We developed a murine surrogate of chronic airway inflammation induced by intranasal application of IL-25 alone. Comparison was with the 'classical' surrogate of ovalbumin (OVA) intranasal instillation into previously sensitized animals. Airway fibrotic biomarkers were analysed by immunohistochemistry and enzyme-linked immunosorbent assay. Additionally, proliferation assay and real-time polymerase chain reaction analysis were performed to assess IL-25's effects on primary human bronchial fibroblasts in vitro. RESULTS In Balb/c mice, intranasal instillation of IL-25 alone induced florid airway fibrosis, including increased lay down of extracellular matrix proteins such as collagen I, III, V and fibronectin, increased numbers of fibroblasts/myofibroblasts, a profibrotic imbalance in matrix metalloproteinase/tissue inhibitor of metalloproteinase production and increased expression of profibrotic mediators including connective tissue growth factor and transforming growth factor-β1. These changes broadly reproduced those seen with classical intranasal OVA challenge in OVA-sensitized animals. Furthermore, IL-25 induced proliferation and expression of collagen I and III and smooth muscle α-actin in primary human lung fibroblasts. CONCLUSIONS We conclude that chronic exposure of the airways to IL-25 alone is sufficient to cause functionally relevant airway remodelling, with the corollary that targeting of IL-25 may attenuate bronchial remodelling and fibrosis in human asthmatics.
Collapse
Affiliation(s)
- Xiujuan Yao
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Run Guo
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- King's College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, London, UK
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical College, Weifang, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University and Beijing Institute of Respiratory Medicine, Beijing, China
| | - Yongchang Sun
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,King's College London, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Division of Asthma, Allergy and Lung Biology, London, UK
| |
Collapse
|
68
|
Xin J, Sun H, Kong H, Li L, Zheng J, Yin C, Cao Y, Jia Y, Li C. Intercellular adhesion molecule-1 expression in activated eosinophils is associated with mucosal remodeling in nasal polyps. Mol Med Rep 2015; 11:3391-7. [PMID: 25573100 PMCID: PMC4368088 DOI: 10.3892/mmr.2015.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022] Open
Abstract
Nasal polyposis (NP) is characterized by chronic mucosal inflammation with infiltrating eosinophils. Eosinophil-mediated tissue remodeling may be involved in NP pathogenesis; therefore, improved understanding of tissue remodeling may result the identification of novel pathways and therapeutic strategies. The present study aimed to investigate the pathological changes occurring during tissue remodeling in NP, in order to assess the role of intercellular adhesion molecule-1 (ICAM-1) in localized tissue remodeling and the potential association between ICAM-1 expression and markers of eosinophil activation. A total of 28 eligible patients and 10 healthy controls participated in the current study. Nasal mucosal tissues of these subjects were retrospectively evaluated for mucosal remodeling using histopathological staining. ICAM-1 and eosinophil cationic protein (ECP) expression levels were determined by immunohistochemical analysis. Compared with the healthy controls, all the specimens from NP patients presented substantial epithelial damage, skewed cellular distribution with a reduced density of goblet cells, an increased density of subepithelial gland and increased subepithelial collagen deposition. In addition, the NP specimens exhibited significantly higher eosinophil infiltration and ICAM-1 expression compared with the controls. Positive correlations were observed between ICAM-1 and ECP expression levels (P=0.010), as well as between extracellular collagen deposition and ICAM-1 (P=0.010) and ECP (P=0.012) expression levels in the NP specimens, but not in the control specimens. Morphological evidence demonstrated eosinophil-mediated tissue remodeling in NP tissues. ICAM-1 expression in activated eosinophils was associated with NP remodeling, indicating the possibility that ICAM-1 may regulate NP remodeling.
Collapse
Affiliation(s)
- Jingwei Xin
- Department of Otorhinolaryngology‑Head and Neck Surgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hui Sun
- Department of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hong Kong
- Department of Otorhinolaryngology‑Head and Neck Surgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lin Li
- Department of Otorhinolaryngology‑Head and Neck Surgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jun Zheng
- Department of Otorhinolaryngology‑Head and Neck Surgery, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chunxia Yin
- Department of Gynecology and Obstertrics, Changchun Obstetrics‑Gynecology Hospital, Changchun, Jilin 130042, P.R. China
| | - Yang Cao
- Department of Gynecology and Obstertrics, Changchun Obstetrics‑Gynecology Hospital, Changchun, Jilin 130042, P.R. China
| | - Yunxiao Jia
- Department of Gynecology and Obstertrics, Changchun Obstetrics‑Gynecology Hospital, Changchun, Jilin 130042, P.R. China
| | - Chaoxu Li
- Department of Cerebral Surgery, The People's Hospital of Changchun, Changchun, Jilin 130051, P.R. China
| |
Collapse
|
69
|
Brown JN, Brewer HM, Nicora CD, Weitz KK, Morris MJ, Skabelund AJ, Adkins JN, Smith RD, Cho JH, Gelinas R. Protein and microRNA biomarkers from lavage, urine, and serum in military personnel evaluated for dyspnea. BMC Med Genomics 2014; 7:58. [PMID: 25282157 PMCID: PMC4193960 DOI: 10.1186/1755-8794-7-58] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022] Open
Abstract
Background We have identified candidate protein and microRNA (miRNA) biomarkers for dyspnea by studying serum, lavage fluid, and urine from military personnel who reported serious respiratory symptoms after they were deployed to Iraq or Afghanistan. Methods Forty-seven soldiers with the complaint of dyspnea who enrolled in the STudy of Active Duty Military Personnel for Environmental Dust Exposure (STAMPEDE) underwent comprehensive pulmonary evaluations at the San Antonio Military Medical Center. The evaluation included fiber-optic bronchoscopy with bronchoalveolar lavage. The clinical findings from the STAMPEDE subjects pointed to seven general underlying diagnoses or findings including airway hyperreactivity, asthma, low diffusivity of carbon monoxide, and abnormal cell counts. The largest category was undiagnosed. As an exploratory study, not a classification study, we profiled proteins or miRNAs in lavage fluid, serum, or urine in this group to look for any underlying molecular patterns that might lead to biomarkers. Proteins in lavage fluid and urine were identified by accurate mass tag (database-driven) proteomics methods while miRNAs were profiled by a hybridization assay applied to serum, urine, and lavage fluid. Results Over seventy differentially expressed proteins were reliably identified both from lavage and from urine in forty-eight dyspnea subjects compared to fifteen controls with no known lung disorder. Six of these proteins were detected both in urine and lavage. One group of subjects was distinguished from controls by expressing a characteristic group of proteins. A related group of dyspnea subjects expressed a unique group of miRNAs that included one miRNA that was differentially overexpressed in all three fluids studied. The levels of several miRNAs also showed modest but direct associations with several standard clinical measures of lung health such as forced vital capacity or gas exchange efficiency. Conclusions Candidate proteins and miRNAs associated with the general diagnosis of dyspnea have been identified in subjects with differing medical diagnoses. Since these markers can be measured in readily obtained clinical samples, further studies are possible that test the value of these findings in more formal classification or case–control studies in much larger cohorts of subjects with specific lung diseases such as asthma, emphysema, or some other well-defined lung disease.
Collapse
|
70
|
Jaffar J, Unger S, Corte TJ, Keller M, Wolters PJ, Richeldi L, Cerri S, Prêle CM, Hansbro PM, Argraves WS, Oliver RA, Oliver BG, Black JL, Burgess JK. Fibulin-1 predicts disease progression in patients with idiopathic pulmonary fibrosis. Chest 2014; 146:1055-1063. [PMID: 24832167 PMCID: PMC4188142 DOI: 10.1378/chest.13-2688] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/16/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The underlying mechanisms of idiopathic pulmonary fibrosis (IPF) are unknown. This progressive disease has high mortality rates, and current models for prediction of mortality have limited value in identifying which patients will progress. We previously showed that the glycoprotein fibulin-1 is involved in enhanced proliferation and wound repair by mesenchymal cells and, thus, may contribute to lung fibrosis in IPF. METHODS Serum, lung tissue, and lung function values were obtained from four independent locations (Sydney, NSW, and Perth, WA, Australia; San Francisco, CA; and Modena, Italy). Patients with IPF were followed for a minimum of 1 year and progression was defined as a significant decline in lung function or death. Primary parenchymal lung fibroblasts of 15 patients with and without IPF were cultured under nonstimulatory conditions. Fibulin-1 levels in serum, and secreted or deposited by fibroblasts, were measured by western blot and in lung tissue by immunohistochemistry. RESULTS Serum fibulin-1 levels were increased in patients with IPF compared with subjects without lung disease (P = .006). Furthermore, tissue fibulin-1 levels were increased in patients with IPF (P = .02) and correlated negatively with lung function (r = -0.9, P < .05). Primary parenchymal fibroblasts from patients with IPF produced more fibulin-1 than those from subjects without IPF (P < .05). Finally, serum fibulin-1 levels at first blood draw predicted disease progression in IPF within 1 year (area under the curve , 0.71; 95% CI, 0.57-0.86; P = .012). CONCLUSIONS Fibulin-1 is a novel potential biomarker for disease progression in IPF and raises the possibility that it could be used as a target for the development of new treatments.
Collapse
Affiliation(s)
- Jade Jaffar
- The Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, and Royal Prince Alfred Hospital (Sydney Local Health District), Sydney, NSW, Australia.
| | - Sofia Unger
- The Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia
| | - Tamera J Corte
- Sydney Medical School, The University of Sydney, and Royal Prince Alfred Hospital (Sydney Local Health District), Sydney, NSW, Australia
| | - Michael Keller
- Sydney Medical School, The University of Sydney, and Royal Prince Alfred Hospital (Sydney Local Health District), Sydney, NSW, Australia
| | - Paul J Wolters
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Luca Richeldi
- Department of Respiratory Diseases, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy; Department of Interstitial Lung Disease, University of Southampton, Southampton, England
| | - Stefania Cerri
- Department of Respiratory Diseases, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia M Prêle
- Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, The University of Western Australia, Perth, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Western Australian Institute for Medical Research, Perth, WA, Australia
| | - Philip M Hansbro
- Priority Research Centre for Asthma and Respiratory Disease, The University of Newcastle and Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - William Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Rema A Oliver
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, University of New South Wales, Randwick, NSW, Australia
| | - Brian G Oliver
- The Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia; School of Medical and Molecular Biosciences, The University of Technology Sydney, Sydney, NSW, Australia
| | - Judith L Black
- The Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Janette K Burgess
- The Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia; Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, and Royal Prince Alfred Hospital (Sydney Local Health District), Sydney, NSW, Australia
| |
Collapse
|
71
|
Boorsma CE, Dekkers BGJ, van Dijk EM, Kumawat K, Richardson J, Burgess JK, John AE. Beyond TGFβ--novel ways to target airway and parenchymal fibrosis. Pulm Pharmacol Ther 2014; 29:166-80. [PMID: 25197006 DOI: 10.1016/j.pupt.2014.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of the airways. In the past decade, significant advances have been made in understanding the disease behaviour and pathogenesis of parenchymal and airway fibrosis and as a result a variety of novel therapeutic targets for slowing or preventing progression of these fibrotic changes have been identified. This review highlights a number of these targets and discusses the potential for treating parenchymal or airway fibrosis through these mediators/pathways in the future.
Collapse
Affiliation(s)
- C E Boorsma
- Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B G J Dekkers
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E M van Dijk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - K Kumawat
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - J Richardson
- Division of Respiratory Medicine, Nottingham University Hospitals, QMC Campus, Nottingham NG7 2UH, United Kingdom
| | - J K Burgess
- Woolcock Institute of Medical Research, Glebe 2037, Australia; Discipline of Pharmacology, The University of Sydney, Sydney 2006, Australia
| | - A E John
- Division of Respiratory Medicine, Nottingham University Hospitals, City Campus, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
72
|
Philpott H, Nandurkar S, Thien F, Gibson PR, Royce SG. Eosinophilic esophagitis: a clinicopathological review. Pharmacol Ther 2014; 146:12-22. [PMID: 25200122 DOI: 10.1016/j.pharmthera.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is considered to be a chronic antigen-driven disease whereby food and/or aeroallergens induce a chronic inflammatory infiltrate in the esophagus, resulting in pathological hyperplasia of the epithelia and muscular layers, and fibrosis of the lamina propria (referred to collectively as remodelling) and the symptoms of dysphagia and food impaction. EoE shares features with other atopic conditions of asthma and atopic dermatitis, such as a TH2 cytokine milieu and a mixed inflammatory infiltrate of eosinophils, mast cells and lymphocytes. Relatively distinct features include the strong male predominance amongst adult patients, and the expression of the eosinophil chemokine eotaxin 3. Current first line treatments such as strict dietary modification and corticosteroids fail many patients. Looking forward, clarification of distinct genotype/phenotype associations, determining the reversibility of remodelling following treatment, and the development of new pharmacotherapies that target fibrotic pathways (as opposed to eosinophilic inflammation per se) or specifically improve barrier integrity appear relevant.
Collapse
Affiliation(s)
- Hamish Philpott
- Department of Gastroenterology Eastern Health, Monash University Melbourne, Australia.
| | - Sanjay Nandurkar
- Department of Gastroenterology Eastern Health, Monash University Melbourne, Australia
| | - Francis Thien
- Department of Respiratory and Sleep Medicine Eastern Health, Monash University Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology The Alfred Hospital, Monash University Melbourne, Australia
| | - Simon G Royce
- Department of Pharmacology Clayton Campus, Monash University Melbourne, Australia
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW To summarize the new knowledge on tissue remodeling in the context of lung diseases. Tissue remodeling includes changes in cells: differentiation; response to growths factors, hormones, or environmental factors; and composition of the extracellular matrix. So, can one trigger cause them all or are they independently regulated? RECENT FINDINGS New evidence from clinical and experimental studies strengthened the view that a susceptibility to remodeling can be initiated in early life and be re-activated by environmental triggers later in life. Many studies further support the idea that TGF-β plays the central role in the pathogenesis of remodeling and fibrosis. However, the activation pathways and the end-effect of TGF-β activation seems to be distinctive of disease and effecter cell specific patterns. The existing animal models do not properly reflect the human disease and thus have to be further improved. SUMMARY The central role of TGF-β on pathological mechanisms leading to remodeling and fibrosis has been further confirmed. However, the questions of why TGF-β is activated as well as its disease and cell type specific mode of action remain to be answered. Based on clinical data redefining the term 'tissue remodeling' in a disease and cell type specific way should be considered.
Collapse
|
74
|
Hu M, Ou-Yang HF, Wu CG, Qu SY, Xu XT, Wang P. Notch signaling regulates col1α1 and col1α2 expression in airway fibroblasts. Exp Biol Med (Maywood) 2014; 239:1589-96. [PMID: 25107895 DOI: 10.1177/1535370214538919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Subepithelial fibrosis is one of the common pathological features of asthmatic airway remodeling. During subepithelial fibrosis, type I collagen becomes the most abundant extracellular protein component. Studies have shown that Notch signaling participates in the progression of fibrosis; however, whether Notch signaling is involved in regulating type I collagen expression in airway fibroblasts remains unclear. The aim of the present study was to examine whether Notch signaling can regulate type I collagen expression in airway fibroblasts and to explore the underlying molecular mechanisms. Here, the expression of Notch signaling components was examined in mouse L929 cells and human MRC-5 cells. After upregulating or downregulating Notch signaling in these cell lines, col1α1 and col1α2 expression was examined. Using gene reporter assays, site-directed mutagenesis, and ChIP assays, the role of Hes1 binding sites in both the mouse and human COL1A1 and COL1A2 promoters was investigated. This study revealed that Notch signaling-related molecules (including Notch1, Hes1, and others) are expressed in L929 and MRC-5 cells and that Notch signaling regulates the expression of col1α1 and col1α2 in both cell lines. Additionally, over-expression of the Notch intracellular domain resulted in activation of the COL1A1 and COL1A2 promoters, and site-directed mutagenesis reporter assays revealed that Hes1 proteins might augment both mouse and human COL1A1 and COL1A2 promoter activity. Furthermore, ChIP assays confirmed that Hes1 binds to the COL1A1 and COL1A2 promoters in both L929 and MRC-5 cells. Therefore, it is reasonable to assume that Notch signaling can directly upregulate COL1A1 and COL1A2 promoter activity through a Hes1-dependent mechanism, which could serve as a possible target for pharmacotherapy of airway subepithelial fibrosis.
Collapse
Affiliation(s)
- Mei Hu
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xincheng District, Xi'an 710032, China Department of Respiratory Medicine, 306th Hospital of PLA, Chaoyang District, Beijing 100101, China
| | - Hai-Feng Ou-Yang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xincheng District, Xi'an 710032, China
| | - Chang-Gui Wu
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xincheng District, Xi'an 710032, China
| | - Shuo-Yao Qu
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xincheng District, Xi'an 710032, China
| | - Xin-Ting Xu
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xincheng District, Xi'an 710032, China
| | - Ping Wang
- Department of Respiratory Medicine, 306th Hospital of PLA, Chaoyang District, Beijing 100101, China
| |
Collapse
|
75
|
Lin CH, Shen ML, Kao ST, Wu DC. The effect of sesamin on airway fibrosis in vitro and in vivo. Int Immunopharmacol 2014; 22:141-50. [PMID: 24978608 DOI: 10.1016/j.intimp.2014.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 01/28/2023]
Abstract
Airway fibrosis, which is a crucial pathological condition occurring in various types of pulmonary disorders, is characterized by accumulation and activation of fibroblast cells, deposition of extracellular matrix (ECM) proteins, and increase of airway basement membrane. Transforming growth factor beta 1 (TGF-β1) is the principal profibrogenic cytokine that is responsible for fibrotic responses. In the present study, we aimed to investigate the antifibrotic effects of the natural polyphenolic compound, sesamin, on TGF-β1-induced fibroblast proliferation and activation, epithelial-mesenchymal transition (EMT), and ovalbumin (OVA)-induced airway fibrosis in vivo. We found that sesamin attenuated TGF-β1-induced proliferation of cultured lung fibroblasts. Sesamin inhibited TGF-β1-stimulated expression of alpha smooth muscle actin (α-SMA), suggesting that sesamin plays an inhibitory role in fibroblast activation. Sesamin blocked upregulation of the mesenchymal markers (fibronectin and vimentin) and downregulation of the epithelial marker (E-cadherin), indicating an inhibitory effect on TGF-β1-induced EMT in A549 cells. TGF-β1-induced Smad3 phosphorylation was also significantly reduced by sesamin in both cultured fibroblast and A549 cells. In the airway fibrosis induced by OVA in mice, sesamin inhibited the accumulation of α-SMA-positive cells and expression of collagen I in the airway. Histological studies revealed that sesamin protected against subepithelial fibrosis by reducing myofibroblast activation and collagen accumulation in the ECM. OVA-induced thickening of basement membrane was significantly alleviated in animals receiving sesamin treatments. These results suggest a therapeutic potential of sesamin as an antifibrotic agent.
Collapse
Affiliation(s)
- Ching-Huei Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Lin Shen
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shung-Te Kao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Dong Chuan Wu
- Graduate Institute of Clinical Medical Science, China Medicine University, Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
76
|
Lu J, Liu L, Zhu Y, Zhang Y, Wu Y, Wang G, Zhang D, Xu J, Xie X, Ke R, Han D, Li S, Feng W, Xie M, Liu Y, Fang P, Shi H, He P, Liu Y, Sun X, Li M. PPAR-γ inhibits IL-13-induced collagen production in mouse airway fibroblasts. Eur J Pharmacol 2014; 737:133-9. [PMID: 24858619 DOI: 10.1016/j.ejphar.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/15/2023]
Abstract
Interleukin-13 (IL-13) plays an important role in extracellular matrix production of airway remodeling in asthma. Activation of PPAR-γ has been shown to inhibit the occurrence of airway fibrosis in asthma, yet it remains unknown whether the effect of PPAR-γ on suppression of airway fibrosis is associated with the inhibition of IL-13 signaling. In the present study, primary cultured airway fibroblasts were stimulated with IL-13, and JAK inhibitor, PDGF receptor blocker and MEK inhibitor were applied to investigate the involvement of these pathways in IL-13-induced collagen production. Our results demonstrate that IL-13 dose- and time-dependently induced collagen production in primary cultured mouse airway fibroblasts; this effect was blocked by inhibition of JAK/STAT6 signal pathway. IL-13 also stimulated JAK/STAT6-dependent PDGF production, elevation of PDGF in turn activated ERK1/2 MAPK and caused collagen production. Activation of PPAR-γ by rosiglitazone reduced IL-13-induced collagen expression by suppression of STAT6-driven PDGF production. Our results indicate that activation of JAK/STAT6 signal and subsequent PDGF generation and ERK1/2 MAPK activation mediate IL-13-induced collagen production in airway fibroblasts. This study suggests that activation of PPAR-γ might be a novel strategy for the treatment of asthma partially by inhibition of airway fibrosis.
Collapse
Affiliation(s)
- Jiamei Lu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Lu Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yanting Zhu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yonghong Zhang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yuanyuan Wu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Guizuo Wang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Dexin Zhang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Jing Xu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Xinming Xie
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Rui Ke
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Dong Han
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Shaojun Li
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Wei Feng
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Mei Xie
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yun Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Ping Fang
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Hongyang Shi
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Ping He
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Yuan Liu
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Xiuzhen Sun
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China
| | - Manxiang Li
- Respiratory Diseases Research Center, Xi׳an Jiaotong University, Shaanxi, Xi׳an 710004, PR China; Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi׳an Jiaotong University, No. 157, West 5th Road, Shaanxi, Xi׳an 710004, PR China.
| |
Collapse
|
77
|
Abstract
Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.
Collapse
|
78
|
Hong GU, Kim NG, Ro JY. Expression of airway remodeling proteins in mast cell activated by TGF-β released in OVA-induced allergic responses and their inhibition by low-dose irradiation or 8-oxo-dG. Radiat Res 2014; 181:425-38. [PMID: 24720751 DOI: 10.1667/rr13547.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Allergic asthma is characterized by chronic airway remodeling, which is associated with the expression of extracellular matrix proteins (ECM) by TGF-β. However, to date there are no reports demonstrating that structural proteins are directly expressed in mast cells. This study aimed to investigate whether ECM proteins are expressed in mast cells activated with antigen/antibody reaction, and whether the resolution effects of irradiation or 8-oxo-dG may contribute to allergic asthma prevention. Bone marrow-derived mast cells (BMMCs) were activated with DNP-HSA/anti-DNP IgE antibody (act-BMMCs). C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. Mice were treated orally with 8-oxo-dG or exposed to whole body irradiation (using (137)Cs gamma ray at a dose of 0.5 Gy) for three consecutive days 24 h after OVA challenge. Expression of extracellular matrix (ECM) proteins, TGF-β signaling molecules and NF-κB/AP-1 was determined in the BMMCs, bronchoalveolar lavage (BAL) cells or lung tissues using Western blot, polymerase chain reaction (PCR) and electrophoretic mobility shift assay (EMSA), respectively. Act-BMMCs increased expression of ECM proteins, TGF-β/TGF-β receptor I, TGF-β signaling molecules and cytokines; and increased both NF-κB and AP-1 activity. In addition, the population of mast cells; expression of mast cell markers, TGF-β signaling molecules, ECM proteins/amounts; OVA-specific serum IgE level; numbers of goblet cells; airway hyperresponsiveness; cytokines/chemokines were increased in BAL cells and lung tissues of OVA-challenged mice. All of the above end points were reduced by irradiation or 8-oxo-dG in vitro and in vivo, respectively. The data suggest that mast cells induce expression of ECM proteins through TGF-β produced in inflammatory cells of OVA mice and that post treatment of irradiation or 8-oxo-dG after OVA-challenge may reduce airway remodeling through down-regulating mast cell re-activation by TGF-β/Smad signals.
Collapse
Affiliation(s)
- Gwan Ui Hong
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | |
Collapse
|
79
|
Cheng RYS, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, Sham JSK, Mitzner W, Tang WY. Alterations of the lung methylome in allergic airway hyper-responsiveness. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:244-255. [PMID: 24446183 PMCID: PMC4125208 DOI: 10.1002/em.21851] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 12/28/2013] [Indexed: 05/29/2023]
Abstract
Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease.
Collapse
Affiliation(s)
- Robert YS Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yan Shang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
- Department of Respiratory Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Tyna Dao
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sandhya Das
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Richard Rabold
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - James SK Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
80
|
Gong JH, Cho IH, Shin D, Han SY, Park SH, Kang YH. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. J Transl Med 2014; 94:297-308. [PMID: 24378645 DOI: 10.1038/labinvest.2013.137] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 12/22/2022] Open
Abstract
Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.
Collapse
Affiliation(s)
- Ju-Hyun Gong
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - In-Hee Cho
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Daekeun Shin
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Seon-Young Han
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
81
|
Song L, Liu D, Wu C, Wu S, Yang J, Ren F, Li Y. Antibody to mCLCA3 suppresses symptoms in a mouse model of asthma. PLoS One 2013; 8:e82367. [PMID: 24349268 PMCID: PMC3857274 DOI: 10.1371/journal.pone.0082367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Asthma is a complex and heterogeneous chronic inflammatory disorder that is associated with mucous cell metaplasia and mucus hypersecretion. Functional genomic analysis indicates that mucous cell metaplasia and mucus hypersecretion depend on members of the calcium-activated chloride channel (CLCA) gene family. It has been reported that the inhibition of CLCAs could relieve the symptoms of asthma. Thus, the mCLCA3 antibody may be a promising strategy to treat allergic diseases such as asthma. Methods We constructed asthmatic mouse models of OVA-induced chronic airway inflammatory disorder to study the function of the mCLCA3 antibody. Airway inflammation was measured by HE staining; goblet cell hyperplasia and mucus hypersecretion were detected by PAS staining; muc5ac, IL-13, IFN-γ levels in bronchoalveolar lavage fluid (BALF) were examined by ELISA; Goblet cell apoptosis was measured by TUNEL assay and alcian blue staining; mCLCA3, Bcl-2 and Bax expression were detected by RT-PCR, Western blotting and immunohistochemical analysis. Results In our study, mice treated with mCLCA3 antibody developed fewer pathological changes compared with control mice and asthmatic mice, including a remarkable reduction in airway inflammation, the number of goblet cells and mCLCA3 expression in lung tissue. The levels of muc5ac and IL-13 were significantly reduced in BALF. We also found that the rate of goblet cell apoptosis was increased after treatment with mCLCA3 antibody, which was accompanied by an increase in Bax levels and a decrease in Bcl-2 expression in goblet cells. Conclusions Taken together, our results indicate that mCLCA3 antibody may have the potential as an effective pharmacotherapy for asthma.
Collapse
Affiliation(s)
- Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dapeng Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changgui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shouzhen Wu
- Department of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Junlan Yang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangping Ren
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
82
|
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. FIBROGENESIS & TISSUE REPAIR 2013; 6:20. [PMID: 24279676 PMCID: PMC4176485 DOI: 10.1186/1755-1536-6-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Repairing damaged tissues is an essential homeostatic mechanism that enables clearance of dead or damaged cells after injury, and the maintenance of tissue integrity. However, exaggeration of this process in the lung can lead to the development of fibrotic scar tissue. This is characterized by excessive accumulation of extracellular matrix (ECM) components such as fibronectin, proteoglycans, hyaluronic acid, and interstitial collagens. After tissue injury, or a breakdown of tissue integrity, a cascade of events unfolds to maintain normal tissue homeostasis. Inflammatory mediators are released from injured epithelium, leading to both platelet activation and inflammatory cell migration. Inflammatory cells are capable of releasing multiple pro-inflammatory and fibrogenic mediators such as transforming growth factor (TGF)β and interleukin (IL)-13, which can trigger myofibroblast proliferation and recruitment. The myofibroblast population is also expanded as a result of epithelial cells undergoing epithelial-to-mesenchymal transition and of the activation of resident fibroblasts, leading to ECM deposition and tissue remodeling. In the healthy lung, wound healing then proceeds to restore the normal architecture of the lung; however, fibrosis can develop when the wound is severe, the tissue injury persists, or the repair process becomes dysregulated. Understanding the processes regulating aberrant wound healing and the matrix in the chronic fibrotic lung disease idiopathic pulmonary fibrosis (IPF), is key to identifying new treatments for this chronic debilitating disease. This review focuses primarily on the emerging role of enzymes in the lungs of patients with IPF. Elevated expression of a number of enzymes that can directly modulate the ECM has been reported, and recent data indicates that modulating the activity of these enzymes can have a downstream effect on fibrotic tissue remodeling.
Collapse
|
83
|
Bissonnette ÉY, Madore AM, Chakir J, Laviolette M, Boulet LP, Hamid Q, Bergeron C, Maghni K, Laprise C. Fibroblast growth factor-2 is a sputum remodeling biomarker of severe asthma. J Asthma 2013; 51:119-26. [PMID: 24188024 DOI: 10.3109/02770903.2013.860164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Given the large phenotypic diversity of asthma, our aim was to characterize molecular profiles related to asthma severity using selected remodeling biomarkers in induced sputum. METHODS Induced sputum from healthy controls, patients with mild to moderate asthma and severe asthma were collected. Twelve selected biomarkers previously associated to airway remodeling such as connective tissue growth factor (CTGF), fibroblast growth factor (FGF)-2, matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13, procollagen type 1 and tissue inhibitor of metalloproteinase (TIMP)-1 were measured in sputum samples using ELISA or Luminex technology. FGF-2 level was also evaluated in bronchial biopsies using immunohistochemistry. RESULTS Sputum of severe asthma was characterized by reduced percentage of macrophages and increased percentage of neutrophils and eosinophils. FGF-2, MMP-1 and TIMP-1 levels increased with asthma severity. Interestingly, only FGF-2 level inversely correlated with FEV1/FVC ratio. Although percentage of eosinophils correlated with asthma severity, it did not correlate with FGF-2 levels. Increased levels of FGF-2 with asthma severity were confirmed in bronchial biopsies by immunohistochemistry. CONCLUSIONS Level of FGF-2 in induced sputum represents a relevant remodeling biomarker of asthma severity and significantly correlates with pulmonary function. FGF-2 sputum biomarker is proposed to reveal the phenotype of asthma characterized by fixed airflow obstruction.
Collapse
Affiliation(s)
- Élyse Y Bissonnette
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City, QC , Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. Int Immunopharmacol 2013; 17:350-7. [PMID: 23845395 DOI: 10.1016/j.intimp.2013.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/22/2022]
Abstract
Over-expression of WISP1 has been described in multi-organ fibrosis and tissue remodeling. Moreover, it has recently been found that polymorphism of WISP1 gene is related with the change of lung function in asthmatic subjects. Therefore, we hypothesized that WISP1 might be closely linked to occurrence and development of asthmatic airway remodeling. Aim of this study was to examine the roles of WISP1 in an asthmatic model with airway remodeling and assess the specific effects of WISP1 on human lung fibroblast in vitro. Animal models were developed by challenged with ovalbumin. The levels of WISP1 expression in animal models were assessed by real-time PCR and immunohistochemistry. To examine the specific effects of WISP1 on airway remodeling, WISP1 was depleted by neutralizing α-WISP1 antibodies in vivo. Moreover, human lung fibroblast (HFL-1) was challenged with WISP1 in the presence and absence of SH-5 in vitro. Our study showed that OVA exposure increased the levels of WISP1 expression in a rat asthma model. WISP1 depletion could partially inhibit OVA-induced airway remodeling. In vitro, WISP1-treated HFL-1 cells presented abnormal proliferation and over-expression of Col1a1 and Fn1. However, WISP1-induced collagen release from HFL-1 cells could be attenuated by pretreatment with an Akt inhibitor. Moreover, the levels of p-Akt and p-GSK-3β in WISP1-treated HFL-1 cells were also significantly elevated. In summary, WISP1 might initiate and perpetuate the pathological remodeling of asthma by inducing fibroblast proliferation and ECM deposition. The specific effects of WISP1 were likely due to activation of pulmonary Akt/GSK-3β signaling.
Collapse
|
85
|
Esnault S, Kelly EA, Schwantes EA, Liu LY, DeLain LP, Hauer JA, Bochkov YA, Denlinger LC, Malter JS, Mathur SK, Jarjour NN. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One 2013; 8:e67560. [PMID: 23844029 PMCID: PMC3699655 DOI: 10.1371/journal.pone.0067560] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 01/21/2023] Open
Abstract
Background The mechanism for the contribution of eosinophils (EOS) to asthma pathophysiology is not fully understood. Genome-wide expression analysis of airway EOS by microarrays has been limited by the ability to generate high quality RNA from sufficient numbers of airway EOS. Objective To identify, by genome-wide expression analyses, a compendium of expressed genes characteristic of airway EOS following an in vivo allergen challenge. Methods Atopic, mild asthmatic subjects were recruited for these studies. Induced sputum was obtained before and 48h after a whole lung allergen challenge (WLAC). Individuals also received a segmental bronchoprovocation with allergen (SBP-Ag) 1 month before and after administering a single dose of mepolizumab (anti-IL-5 monoclonal antibody) to reduce airway EOS. Bronchoalveolar lavage (BAL) was performed before and 48 h after SBP-Ag. Gene expression of sputum and BAL cells was analyzed by microarrays. The results were validated by qPCR in BAL cells and purified BAL EOS. Results A total of 299 transcripts were up-regulated by more than 2-fold in total BAL cells following SBP-Ag. Mepolizumab treatment resulted in a reduction of airway EOS by 54.5% and decreased expression of 99 of the 299 transcripts. 3 of 6 post-WLAC sputum samples showed increased expression of EOS-specific genes, along with the expression of 361 other genes. Finally, the intersection of the 3 groups of transcripts (increased in BAL post SBP-Ag (299), decreased after mepolizumab (99), and increased in sputum after WLAC (365)) was composed of 57 genes characterizing airway EOS gene expression. Conclusion We identified 57 genes that were highly expressed by BAL EOS compared to unseparated BAL cells after in vivo allergen challenge. 41 of these genes had not been previously described in EOS and are thus potential new candidates to elucidate EOS contribution to airway biology.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Poon AH, Mahboub B, Hamid Q. Vitamin D deficiency and severe asthma. Pharmacol Ther 2013; 140:148-55. [PMID: 23792089 DOI: 10.1016/j.pharmthera.2013.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Vitamin D has received tremendous amount of attention recently due to the ever-increasing reports of association between vitamin D deficiency and a wide range of conditions, from cancer to fertility to longevity. The fascination of disease association with vitamin D deficiency comes from the relatively easy solution to overcome such a risk factor, that is, either by increase in sun exposure and/or diet supplementation. Many reviews have been written on a protective role of vitamin D in asthma and related morbidities; here, we will summarize the epidemiological evidence supporting a role of vitamin D against hallmark features of severe asthma, such as airway remodeling and asthma exacerbations. Furthermore, we discuss data from in vitro and in vivo studies which provide insights on the potential mechanisms of how vitamin D may protect against severe asthma pathogenesis and how vitamin D deficiency may lead to the development of severe asthma. Approximately 5-15% of asthmatic individuals suffer from the more severe forms of disease in spite of aggressive therapies and they are more likely to have irreversible airflow obstruction associated with airway remodeling. At present drugs commonly used to control asthma symptoms, such as corticosteroids, do not significantly reverse or reduce remodeling in the airways. Hence, if vitamin D plays a protective role against the development of severe asthma, then the most effective therapy may simply be a healthy dose of sunshine.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, McGill University, Canada
| | | | | |
Collapse
|
87
|
Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D, Formigli L. Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One 2013; 8:e63896. [PMID: 23704950 PMCID: PMC3660557 DOI: 10.1371/journal.pone.0063896] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/07/2013] [Indexed: 01/12/2023] Open
Abstract
The hormone relaxin (RLX) is produced by the heart and has beneficial actions on the cardiovascular system. We previously demonstrated that RLX stimulates mouse neonatal cardiomyocyte growth, suggesting its involvement in endogenous mechanisms of myocardial histogenesis and regeneration. In the present study, we extended the experimentation by evaluating the effects of RLX on primary cultures of neonatal cardiac stromal cells. RLX inhibited TGF-β1-induced fibroblast-myofibroblast transition, as judged by its ability to down-regulate α-smooth muscle actin and type I collagen expression. We also found that the hormone up-regulated metalloprotease (MMP)-2 and MMP-9 expression and downregulated the tissue inhibitor of metalloproteinases (TIMP)-2 in TGF-β1-stimulated cells. Interestingly, the effects of RLX on cardiac fibroblasts involved the activation of Notch-1 pathway. Indeed, Notch-1 expression was significantly decreased in TGF-β1-stimulatedfibroblasts as compared to the unstimulated controls; this reduction was prevented by the addition of RLX to TGF-β1-stimulated cells. Moreover, pharmacological inhibition of endogenous Notch-1 signaling by N-3,5-difluorophenyl acetyl-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT), a γ-secretase specific inhibitor, as well as the silencing of Notch-1 ligand, Jagged-1, potentiated TGF-β1-induced myofibroblast differentiation and abrogated the inhibitory effects of RLX. Interestingly, RLX and Notch-1 exerted their inhibitory effects by interfering with TGF-β1 signaling, since the addition of RLX to TGF-β1-stimulated cells caused a significant decrease in Smad3 phosphorylation, a typical downstream event of TGF-β1 receptor activation, while the treatment with a prevented this effect. These data suggest that Notch signaling can down-regulate TGF-β1/Smad3-induced fibroblast-myofibroblast transition and that RLX could exert its well known anti-fibrotic action through the up-regulation of this pathway. In conclusion, the results of the present study beside supporting the role of RLX in the field of cardiac fibrosis, provide novel experimental evidence on the molecular mechanisms underlying its effects.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Experimental and Clinical Medicine - Section of Anatomy and Histology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
88
|
Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells. PLoS One 2013; 8:e64281. [PMID: 23700468 PMCID: PMC3660301 DOI: 10.1371/journal.pone.0064281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/12/2013] [Indexed: 02/06/2023] Open
Abstract
Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.
Collapse
|
89
|
Lee YH, Song GG. Association between ADAM33 T1 polymorphism and susceptibility to asthma in Asians. Inflamm Res 2012; 61:1355-62. [PMID: 22851202 DOI: 10.1007/s00011-012-0536-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine whether the ADAM33 (a disintegrin and metalloproteinase domain 33) T1 (rs2280091), T2 (rs2280090), and ST+7 (rs574174) polymorphisms confer susceptibility to asthma. METHODS A meta-analysis stratified by ethnicity and age was conducted on associations between the ADAM33 T1, T2, and ST+7 polymorphisms and asthma. RESULTS Eleven studies, which included 4,124 patients and 7,094 controls, were available for the meta-analysis. Meta-analysis revealed an association between asthma and the ADAM33 T1 GG genotype [odds ratio (OR) = 2.257, 95 % confidence interval (CI) = 1.577-3.228, p = 8.42 × 10(-7)]. Stratification by ethnicity indicated an association between this genotype and asthma in Asians (OR = 2.683, 95 % CI = 1.799-4.001, p = 1.31 × 10(-7)), and stratification by age indicated an association between it and asthma in adults (OR = 1.895, 95 % CI = 1.005-3.573, p = 0.048). However, no association was found between asthma and the ADAM33 T2 and ST+7 polymorphisms. CONCLUSIONS This meta-analysis demonstrates that the ADAM33 T1 polymorphism confers susceptibility to asthma in Asians, but no association was found between the ADAM33 T2 and ST+7 polymorphisms and asthma susceptibility.
Collapse
Affiliation(s)
- Young Ho Lee
- Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-705, Korea.
| | | |
Collapse
|