51
|
Ye Y, Xu L, Ding H, Wang X, Luo J, Zhang Y, Zen K, Fang Y, Dai C, Wang Y, Zhou Y, Jiang L, Yang J. Pyruvate kinase M2 mediates fibroblast proliferation to promote tubular epithelial cell survival in acute kidney injury. FASEB J 2021; 35:e21706. [PMID: 34160104 DOI: 10.1096/fj.202100040r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a devastating condition with high morbidity and mortality rates. The pathological features of AKI are tubular injury, infiltration of inflammatory cells, and impaired vascular integrity. Pyruvate kinase is the final rate-limiting enzyme in the glycolysis pathway. We previously showed that pyruvate kinase M2 (PKM2) plays an important role in regulating the glycolytic reprogramming of fibroblasts in renal interstitial fibrosis. The present study aimed to determine the role of PKM2 in fibroblast activation during the pathogenesis of AKI. We found increased numbers of S100A4 positive cells expressing PKM2 in renal tissues from mice with AKI induced via folic acid or ischemia/reperfusion (I/R). The loss of PKM2 in fibroblasts impaired fibroblast proliferation and promoted tubular epithelial cell death including apoptosis, necroptosis, and ferroptosis. Mechanistically, fibroblasts produced less hepatocyte growth factor (HGF) in response to a loss of PKM2. Moreover, in two AKI mouse models, fibroblast-specific deletion of PKM2 blocked HGF signal activation and aggravated AKI after it was induced in mice via ischemia or folic acid. Fibroblast proliferation mediated by PKM2 elicits pro-survival signals that repress tubular cell death and may help to prevent AKI progression. Fibroblast activation mediated by PKM2 in AKI suggests that targeting PKM2 expression could be a novel strategy for treating AKI.
Collapse
Affiliation(s)
- Yinyin Ye
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lingling Xu
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Ding
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Fang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuwei Wang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
52
|
Wang X, Zhang L, Song Y, Jiang Y, Zhang D, Wang R, Hu T, Han S. MCM8 is regulated by EGFR signaling and promotes the growth of glioma stem cells through its interaction with DNA-replication-initiating factors. Oncogene 2021; 40:4615-4624. [PMID: 34131285 DOI: 10.1038/s41388-021-01888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins are critical components of DNA-replication-licensing factors. MCM8 is an MCM protein that exhibits oncogenic functions in several human malignancies. However, the role of MCM8 in glioblastomas (GBMs) has remained unclear. In the present study, we investigated the biological functions and mechanisms of MCM8 in glioma stem cells (GSCs). The clinical relevance of MCM8 mRNA expression was explored via TCGA and REMBRANDT datasets. The effects of MCM8 on the self-renewal and tumorigenicity of GSCs were examined both in vitro and in vivo. The regulation of MCM8 expression and its interacting proteins were also evaluated. We found that the expression of MCM8 was elevated in high-grade gliomas and classical molecular subtypes and was inversely correlated with patient prognosis. GSCs had a significantly higher expression of MCM8 compared with that in normal glioma cells. Silencing of MCM8 induced G0/G1 arrest and apoptosis, as well as inhibited the proliferation and self-renewal of GSCs. Forced expression of MCM8 enhanced clonogenicity of GSCs both in vitro and in vivo. MCM8 expression was regulated by EGFR signaling, which was mediated by NF-κB (p65). MCM8 interacted with DNA-replication-initiating factors-including EZH2, CDC6, and CDCA2-and influenced these factors to associate with chromatin. In addition, MCM8 knockdown increased the sensitivity of GSCs to radiation and TMZ treatments. Our findings suggest that MCM8, regulated by the EGFR pathway, maintains the clonogenic and tumorigenic potential of GSCs through interaction with DNA-replication-initiating factors; hence, MCM8 may represent a novel therapeutic target in GBMs.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Li Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
53
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
54
|
Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme. Metab Brain Dis 2021; 36:751-765. [PMID: 33651273 DOI: 10.1007/s11011-021-00690-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
| | - Ravi P Cholia
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, Pin Code: 151 401, India.
| |
Collapse
|
55
|
Bonner ER, Waszak SM, Grotzer MA, Mueller S, Nazarian J. Mechanisms of imipridones in targeting mitochondrial metabolism in cancer cells. Neuro Oncol 2021; 23:542-556. [PMID: 33336683 DOI: 10.1093/neuonc/noaa283] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ONC201 is the first member of the imipridone family of anticancer drugs to enter the clinic for the treatment of diverse solid and hematologic cancers. A subset of pediatric and adult patients with highly aggressive brain tumors has shown remarkable clinical responses to ONC201, and recently, the more potent derivative ONC206 entered clinical trials as a single agent for the treatment of central nervous system (CNS) cancers. Despite the emerging clinical interest in the utility of imipridones, their exact molecular mechanisms are not fully described. In fact, the existing literature points to multiple pathways (e.g. tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) signaling, dopamine receptor antagonism, and mitochondrial metabolism) as putative drug targets. We have performed a comprehensive literature review and highlighted mitochondrial metabolism as the major target of imipridones. In support of this, we performed a meta-analysis of an ONC201 screen across 539 human cancer cell lines and showed that the mitochondrial caseinolytic protease proteolytic subunit (ClpP) is the most significant predictive biomarker of response to treatment. Herein, we summarize the main findings on the anticancer mechanisms of this potent class of drugs, provide clarity on their role, and identify clinically relevant predictive biomarkers of response.
Collapse
Affiliation(s)
- Erin R Bonner
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, California
| | - Javad Nazarian
- Center for Genetic Medicine, Children's National Health System, Washington, DC.,Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC.,Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
56
|
Patel S, Das A, Meshram P, Sharma A, Chowdhury A, Jariyal H, Datta A, Sarmah D, Nalla LV, Sahu B, Khairnar A, Bhattacharya P, Srivastava A, Shard A. Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein-protein interactions. Cell Biol Toxicol 2021; 37:653-678. [PMID: 33864549 DOI: 10.1007/s10565-021-09605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer's disease, allergy, asthma, autoimmune diseases, coeliac disease, glomerulonephritis, sepsis, hepatitis, inflammatory bowel disease, reperfusion injury, and transplant rejections. Despite several expansions in our understanding of inflammatory disorders and their mediators, it seems clear that numerous proteins participate in the onset of CI. One crucial protein pyruvate kinase M2 (PKM2) much studied in cancer is also found to be inextricably woven in the onset of several CI's. It has been found that PKM2 plays a significant role in several disorders using a network of proteins that interact in multiple ways. For instance, PKM2 forms a close association with epidermal growth factor receptors (EGFRs) for uncontrolled growth and proliferation of tumor cells. In neurodegeneration, PKM2 interacts with apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) to onset Alzheimer's disease pathogenesis. The cross-talk of protein tyrosine phosphatase 1B (PTP1B) and PKM2 acts as stepping stones for the commencement of diabetes. Perhaps PKM2 stores the potential to unlock the pathophysiology of several diseases. Here we provide an overview of the notoriously convoluted biology of CI's and PKM2. The cross-talk of PKM2 with several proteins involved in stroke, Alzheimer's, cancer, and other diseases has also been discussed. We believe that considering the importance of PKM2 in inflammation-related diseases, new options for treating various disorders with the development of more selective agents targeting PKM2 may appear.
Collapse
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Anwesha Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Payal Meshram
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Ayushi Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Arnab Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
57
|
Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, Shao F, Xu D, Xia Y, Li J, Zheng Y, Qian X, Li X, Kim HR, Xing D, Liu P, Lu Z, Lyu J. β-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med 2021; 217:152055. [PMID: 32860047 PMCID: PMC7596815 DOI: 10.1084/jem.20191115] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/13/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
PD-L1 up-regulation in cancer contributes to immune evasion by tumor cells. Here, we show that Wnt ligand and activated EGFR induce the binding of the β-catenin/TCF/LEF complex to the CD274 gene promoter region to induce PD-L1 expression, in which AKT activation plays an important role. β-Catenin depletion, AKT inhibition, or PTEN expression reduces PD-L1 expression in tumor cells, enhances activation and tumor infiltration of CD8+ T cells, and reduces tumor growth, accompanied by prolonged mouse survival. Combined treatment with a clinically available AKT inhibitor and an anti–PD-1 antibody overcomes tumor immune evasion and greatly inhibits tumor growth. In addition, AKT-mediated β-catenin S552 phosphorylation and nuclear β-catenin are positively correlated with PD-L1 expression and inversely correlated with the tumor infiltration of CD8+ T cells in human glioblastoma specimens, highlighting the clinical significance of β-catenin activation in tumor immune evasion.
Collapse
Affiliation(s)
- Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jong-Ho Lee
- Department of Biological Sciences, Dong-A University, Busan, Republic of Korea
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chengde Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Silu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihong Zheng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Daqian Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinjian Li
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
58
|
Lee SA, Ho C, Troxler M, Lin CY, Chung SH. Non-Metabolic Functions of PKM2 Contribute to Cervical Cancer Cell Proliferation Induced by the HPV16 E7 Oncoprotein. Viruses 2021; 13:433. [PMID: 33800513 PMCID: PMC8001101 DOI: 10.3390/v13030433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) mainly catalyzes glycolysis, but it also exerts non-glycolytic functions in several cancers. While it has been shown to interact with the human papillomavirus 16 (HPV16) E7 oncoprotein, the functional significance of PKM2 in HPV-associated cervical cancer has been elusive. Here, we show that HPV16 E7 increased the expression of PKM2 in cervical cancer cells. TCGA data analyses revealed a higher level of PKM2 in HPV+ than HPV- cervical cancers and a worse prognosis for patients with high PKM2 expression. Functionally, we demonstrate that shRNA-mediated PKM2 knockdown decreased the proliferation of HPV+ SiHa cervical cancer cells. PKM2 knockdown also inhibited the E7-induced proliferation of cervical cancer cells. ML265 activating the pyruvate kinase function of PKM2 inhibited cell cycle progression and colony formation. ML265 treatments decreased phosphorylation of PKM2 at the Y105 position that has been associated with non-glycolytic functions. On the contrary, HPV16 E7 increased the PKM2 phosphorylation. Our results indicate that E7 increases PKM2 expression and activates a non-glycolytic function of PKM2 to promote cervical cancer cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Hyuk Chung
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (S.-A.L.); (C.H.); (M.T.); (C.-Y.L.)
| |
Collapse
|
59
|
Pillai VB, Gupta MP. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab 2021; 320:E399-E414. [PMID: 33308014 PMCID: PMC7988780 DOI: 10.1152/ajpendo.00483.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
The ability to ward off pathogens with minimal damage to the host determines the immune system's robustness. Multiple factors, including pathogen processing, identification, secretion of mediator and effector molecules, and immune cell proliferation and differentiation into various subsets, constitute the success of mounting an effective immune response. Cellular metabolism controls all of these intricate processes. Cells utilize diverse fuel sources and switch back and forth between different metabolic pathways depending on their energy needs. The three most critical metabolic pathways on which immune cells depend to meet their energy needs are oxidative metabolism, glycolysis, and glutaminolysis. Dynamic switching between these metabolic pathways is needed for optimal function of the immune cells. Moreover, switching between these metabolic pathways needs to be tightly regulated to achieve the best results. Immune cells depend on the Warburg effect for their growth, proliferation, secretory, and effector functions. Here, we hypothesize that the sirtuin, SIRT6, could be a negative regulator of the Warburg effect. We also postulate that SIRT6 could act as a master regulator of immune cell metabolism and function by regulating critical signaling pathways.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| | - Mahesh P Gupta
- Department of Surgery (Division of Cardiothoracic Surgery), Pritzker School of Medicine, Basic Science Division, University of Chicago, Chicago, Illinois
| |
Collapse
|
60
|
Metabolic Alteration in Hepatocellular Carcinoma: Mechanism of Lipid Accumulation in Well-Differentiated Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2021; 2021:8813410. [PMID: 33681091 PMCID: PMC7910064 DOI: 10.1155/2021/8813410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Metabolic alteration is widely considered as one of the hallmarks of cancer. Hepatocellular carcinoma (HCC) presents a unique pathological feature in which lipid accumulation is common in well-differentiated HCC and rare in poorly differentiated HCC; however, the underlying mechanism remains unclear. METHODS Tissue samples were obtained from 103 HCC patients who had undergone hepatic resection and 12 living donors of liver transplantation. We evaluated metabolic gene expressions in cancer tissues as well as background noncancer tissues and compared the expressions by the degree of cancer differentiation and by liver disease states. Besides, the metabolomics was evaluated and integrated to gene expressions in nonalcoholic steatohepatitis (NASH)-HCC model mice. RESULTS In cancer tissues, the expression levels of enzymes related to glycolysis, pentose phosphate pathway (PPP), and fatty acid (FA) synthesis were increased and that of tricarboxylic acid (TCA) cycle and β-oxidation were suppressed. Same metabolic alterations were observed in noncancer tissue as the liver disease progresses from healthy liver to chronic hepatitis, cirrhosis, and HCC. Similar alterations of metabolic genes were detected in NASH-HCC mice, which were consistent with the results of metabolomics. As the degree of cancer differentiation decreased, glycolysis and PPP were accelerated; however, FA synthesis and uptake were diminished. CONCLUSIONS The metabolic alterations including glycolysis, PPP, TCA cycle, and β-oxidation became more prominent as liver disease progresses from normal, chronic hepatitis, cirrhosis, well-, moderately, and poorly differentiated HCC. FA synthesis and uptake were highest in well-differentiated HCC, which could explain the lipid accumulation.
Collapse
|
61
|
Cha PH, Hwang JH, Kwak DK, Koh E, Kim KS, Choi KY. APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer 2021; 124:634-644. [PMID: 33071283 PMCID: PMC7851388 DOI: 10.1038/s41416-020-01118-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most cancer cells employ the Warburg effect to support anabolic growth and tumorigenesis. Here, we discovered a key link between Warburg effect and aberrantly activated Wnt/β-catenin signalling, especially by pathologically significant APC loss, in CRC. METHODS Proteomic analyses were performed to evaluate the global effects of KYA1797K, Wnt/β-catenin signalling inhibitor, on cellular proteins in CRC. The effects of APC-loss or Wnt ligand on the identified enzymes, PKM2 and LDHA, as well as Warburg effects were investigated. A linkage between activation of Wnt/β-catenin signalling and cancer metabolism was analysed in tumour of Apcmin/+ mice and CRC patients. The roles of PKM2 in cancer metabolism, which depends on Wnt/β-catenin signalling, were assessed in xenograft-tumours. RESULTS By proteomic analysis, PKM2 and LDHA were identified as key molecules regulated by Wnt/β-catenin signalling. APC-loss caused the increased expression of metabolic genes including PKM2 and LDHA, and increased glucose consumption and lactate secretion. Pathological significance of this linkage was indicated by increased expression of glycolytic genes with Wnt target genes in tumour of Apcmin/+ mice and CRC patients. Warburg effect and growth of xenografted tumours-induced by APC-mutated-CRC cells were suppressed by PKM2-depletion. CONCLUSIONS The β-catenin-PKM2 regulatory axis induced by APC loss activates the Warburg effect in CRC.
Collapse
Affiliation(s)
- Pu-Hyeon Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Ha Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Dong-Kyu Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, College of Medicine, Yonsei University, Seoul, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, College of Medicine, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
- CK Biotechnology Inc., Building 117, 50 Yonsei Ro, Seodaemun-Gu, Seoul, Korea.
| |
Collapse
|
62
|
Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab 2021; 33:33-50. [PMID: 33406403 DOI: 10.1016/j.cmet.2020.12.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Key pathological, including oncogenic, signaling pathways regulate the canonical functions of metabolic enzymes that serve the cellular metabolic needs. Importantly, these signaling pathways also confer a large number of metabolic enzymes to have noncanonical or nonmetabolic functions that are referred to as "moonlighting" functions. In this review, we highlight how aberrantly regulated metabolic enzymes with such activities play critical roles in the governing of a wide spectrum of instrumental cellular activities, including gene expression, cell-cycle progression, DNA repair, cell proliferation, survival, apoptosis, and tumor microenvironment remodeling, thereby promoting the pathologic progression of disease, including cancer.
Collapse
Affiliation(s)
- Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Fei Shao
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Xueli Bian
- The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University Cancer Center, Hangzhou 310029, China.
| |
Collapse
|
63
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
64
|
Cancer Stem Cell-Associated Pathways in the Metabolic Reprogramming of Breast Cancer. Int J Mol Sci 2020; 21:ijms21239125. [PMID: 33266219 PMCID: PMC7730588 DOI: 10.3390/ijms21239125] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming of cancer is now considered a hallmark of many malignant tumors, including breast cancer, which remains the most commonly diagnosed cancer in women all over the world. One of the main challenges for the effective treatment of breast cancer emanates from the existence of a subpopulation of tumor-initiating cells, known as cancer stem cells (CSCs). Over the years, several pathways involved in the regulation of CSCs have been identified and characterized. Recent research has also shown that CSCs are capable of adopting a metabolic flexibility to survive under various stressors, contributing to chemo-resistance, metastasis, and disease relapse. This review summarizes the links between the metabolic adaptations of breast cancer cells and CSC-associated pathways. Identification of the drivers capable of the metabolic rewiring in breast cancer cells and CSCs and the signaling pathways contributing to metabolic flexibility may lead to the development of effective therapeutic strategies. This review also covers the role of these metabolic adaptation in conferring drug resistance and metastasis in breast CSCs.
Collapse
|
65
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
66
|
Niu J, Li W, Liang C, Wang X, Yao X, Yang RH, Zhang ZS, Liu HF, Liu FY, Pei SH, Li WQ, Sun H, Fang D, Xie SQ. EGF promotes
DKK1
transcription in hepatocellular carcinoma by enhancing the phosphorylation and acetylation of histone H3. Sci Signal 2020; 13:13/657/eabb5727. [DOI: 10.1126/scisignal.abb5727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wei Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Han-Fang Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| |
Collapse
|
67
|
Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int 2020; 20:523. [PMID: 33292198 PMCID: PMC7597019 DOI: 10.1186/s12935-020-01612-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pyruvate kinase is a terminal enzyme in the glycolytic pathway, where it catalyzes the conversion of phosphoenolpyruvate to pyruvate and production of ATP via substrate level phosphorylation. PKM2 is one of four isoforms of pyruvate kinase and is widely expressed in many types of tumors and associated with tumorigenesis. In addition to pyruvate kinase activity involving the metabolic pathway, increasing evidence demonstrates that PKM2 exerts a non-metabolic function in cancers. PKM2 has been shown to be translocated into nucleus, where it serves as a protein kinase to phosphorylate various protein targets and contribute to multiple physiopathological processes. We discuss the nuclear localization of PKM2, its protein kinase function and association with cancers, and regulation of PKM2 activity.
Collapse
Affiliation(s)
- Xun Chen
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Dongsheng Yu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
68
|
Orzan F, Pagani F, Cominelli M, Triggiani L, Calza S, De Bacco F, Medicina D, Balzarini P, Panciani PP, Liserre R, Buglione M, Fontanella MM, Medico E, Galli R, Isella C, Boccaccio C, Poliani PL. A simplified integrated molecular and immunohistochemistry-based algorithm allows high accuracy prediction of glioblastoma transcriptional subtypes. J Transl Med 2020; 100:1330-1344. [PMID: 32404931 DOI: 10.1038/s41374-020-0437-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastomas (GBM) can be classified into three major transcriptional subgroups (proneural, mesenchymal, classical), underlying different molecular alterations, prognosis, and response to therapy. However, transcriptional analysis is not routinely feasible and assessment of a simplified method for glioblastoma subclassification is required. We propose an integrated molecular and immunohistochemical approach aimed at identifying GBM subtypes in routine paraffin-embedded material. RNA-sequencing analysis was performed on representative samples (n = 51) by means of a "glioblastoma transcriptional subtypes (GliTS) redux" custom gene signature including a restricted number (n = 90) of upregulated genes validated on the TCGA dataset. With this dataset, immunohistochemical profiles, based on expression of a restricted panel of gene classifiers, were integrated by a machine-learning approach to generate a GliTS based on protein quantification that allowed an efficient GliTS assignment when applied to an extended cohort (n = 197). GliTS redux maintained high levels of correspondence with the original GliTS classification using the TCGA dataset. The machine-learning approach designed an immunohistochemical (IHC)-based classification, whose concordance was 79.5% with the transcriptional- based classification, and reached 90% for the mesenchymal subgroup. Distribution and survival of GliTS were in line with reported data, with the mesenchymal subgroup given the worst prognosis. Notably, the algorithm allowed the identification of cases with comparable probability to be assigned to different GliTS, thus falling within overlapping regions and reflecting an extreme heterogeneous phenotype that mirrors the underlying genetic and biological tumor heterogeneity. Indeed, while mesenchymal and classical subgroups were well segregated, the proneural types frequently showed a mixed proneural/classical phenotype, predicted as proneural by the algorithm, but with comparable probability of being assigned to the classical subtype. These cases, characterized by concomitant high expression of EGFR and proneural biomarkers, showed lower survival. Collectively, these data indicate that a restricted panel of highly sensitive immunohistochemical markers can efficiently predict GliTS with high accuracy and significant association with different clinical outcomes.
Collapse
Affiliation(s)
- Francesca Orzan
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO IRCCS, Torino, Italy
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Biostatistics & Bioinformatics Unit, University of Brescia, Brescia, Italy
| | - Francesca De Bacco
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO IRCCS, Torino, Italy
| | - Daniela Medicina
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Piera Balzarini
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pier Paolo Panciani
- Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Michela Buglione
- Radiation Oncology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Maria Fontanella
- Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Enzo Medico
- Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO IRCCS, Brescia, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Brescia, Italy
| | - Claudio Isella
- Laboratory of Oncogenomics, Candiolo Cancer Institute, FPO IRCCS, Brescia, Italy
| | - Carla Boccaccio
- Laboratory of Cancer Stem Cell Research, Candiolo Cancer Institute, FPO IRCCS, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | | |
Collapse
|
69
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
70
|
Liu B, Song M, Qin H, Zhang B, Liu Y, Sun Y, Ma Y, Shi T. Phosphoribosyl Pyrophosphate Amidotransferase Promotes the Progression of Thyroid Cancer via Regulating Pyruvate Kinase M2. Onco Targets Ther 2020; 13:7629-7639. [PMID: 32801776 PMCID: PMC7413720 DOI: 10.2147/ott.s253137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background Pyruvate kinase is an enzyme that catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis and plays a role in regulating cell metabolism. It is reported that the activity of pyruvate kinase is increased in cancers. Phosphoribosyl amidotransferase (PPAT) is reported to be a crucial regulator for pyruvate kinase activity in lung cancer. However, its role in thyroid cancer remains largely unknown. Materials and Methods Immunohistochemical analysis and qRT-PCR were used to detect the expression of PPAT in thyroid cancer samples. Both gain-of-function and loss-of-function models were constructed in thyroid cancer cell lines and the biological functions of PPAT on cellular phenotypes were studied using CCK-8 assay and transwell assay in vitro, respectively. Then, Western blot was used to evaluate the change of PKM2 and downstream signal pathways after PPAT was overexpressed or knocked down. Results Immunohistochemical analysis showed increased expression of PPAT in thyroid cancer tissues, and it was associated with unfavorable pathological characteristics. Knockdown and overexpression assays suggested that altering PPAT expression modulated cell proliferation, migration, and invasion. In terms of mechanism, PPAT could positively regulate the expression of PKM2 and activate ERK and STAT3 signaling pathways. Conclusion PPAT plays crucial roles in regulating proliferation, migration, and invasion of thyroid cancer cells via activating PKM2, ERK, and STAT3.
Collapse
Affiliation(s)
- Bing Liu
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Meiyue Song
- The Pathology Department, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Huadong Qin
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Bin Zhang
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Yao Liu
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Yu Sun
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Yanfei Ma
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| | - Tiefeng Shi
- The 4th Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin City 150086, Heilongjiang Province, People's Republic of China
| |
Collapse
|
71
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
72
|
Lu J, Liu X, Zheng J, Song J, Liu Y, Ruan X, Shen S, Shao L, Yang C, Wang D, Cai H, Cao S, Xue Y. Lin28A promotes IRF6-regulated aerobic glycolysis in glioma cells by stabilizing SNHG14. Cell Death Dis 2020; 11:447. [PMID: 32527996 PMCID: PMC7289837 DOI: 10.1038/s41419-020-2650-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Warburg effect is a hallmark of cancer cells, wherein glycolysis is preferred over oxidative phosphorylation even in aerobic conditions. Reprogramming of glycometabolism is especially crucial for malignancy in glioma. RNA-binding proteins and long noncoding RNAs are important for aerobic glycolysis during malignant transformation. Thus, we determined the expression and function of RNA-binding protein Lin28A, long noncoding RNA SNHG14, and transcription factor IRF6 in human glioma cells to elucidate the mechanism(s) underlying their role in glycolysis. Quantitative real-time polymerase chain reaction and western blotting showed that Lin28A and SNHG14 were overexpressed and IRF6 was downregulated in glioma. Depleting Lin28A from cells decreased the stability and expression of SNHG14. Furthermore, depleting SNHG14 reduced IRF6 mRNA degradation by targeting its 3' untranslated region and inhibiting STAU1-mediated degradation, thereby increasing the expression of IRF6. PKM2 is an important enzyme in aerobic glycolysis, and GLUT1 is the primary transporter that facilitates glucose uptake. IRF6 inhibited the transcription of PKM2 and GLUT1, thereby impairing glycolysis and cell proliferation and inducing apoptosis in glioma. Notably, depleting Lin28A and SNHG14 and overexpressing IRF6 reduced the growth of xenograft tumors in vivo and prolonged the survival of nude mice. Taken together, our data revealed that the Lin28A/SNHG14/IRF6 axis is crucial for reprogramming glucose metabolism and stimulating tumorigenesis in glioma cells. Thus, targeting this axis might help in the development of a novel therapeutic strategy for glioma metabolism.
Collapse
Affiliation(s)
- Jinjing Lu
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China.
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China.
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China.
| |
Collapse
|
73
|
Liu X, Yue C, Shi L, Liu G, Cao Q, Shan Q, Wang Y, Chen X, Li H, Wang J, Gao S, Niu M, Yu R. MALT1 is a potential therapeutic target in glioblastoma and plays a crucial role in EGFR-induced NF-κB activation. J Cell Mol Med 2020; 24:7550-7562. [PMID: 32452133 PMCID: PMC7339184 DOI: 10.1111/jcmm.15383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF-κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF-κB activation in GBM; however, the correlation between EGFR and the NF-κB pathway remains unclear. In this study, we investigated the role of mucosa-associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti-tumour activity and effectiveness of MI-2, a MALT1 inhibitor in a pre-clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR-induced NF-kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle-associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF-κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR-induced NF-kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Surgical Deparment 9, Xuzhou Children's Hospital, Xuzhou, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guanzheng Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qianqian Shan
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yifeng Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Huan Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jie Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
74
|
Chen Z, Li S, Shen L, Wei X, Zhu H, Wang X, Yang M, Zheng X. NF-kappa B interacting long noncoding RNA enhances the Warburg effect and angiogenesis and is associated with decreased survival of patients with gliomas. Cell Death Dis 2020; 11:323. [PMID: 32382013 PMCID: PMC7206073 DOI: 10.1038/s41419-020-2520-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023]
Abstract
In various malignant tumors, NF-kappa B interacting long noncoding RNA (NKILA) displays antitumor activity by inhibiting the NF-kappa B pathway. However, the role of NKILA in gliomas remains unclear. Surprisingly, this study showed that NKILA is significantly upregulated in gliomas, and the increased levels of NKILA were correlated with a decrease in patient survival time. NKILA increased the expression level of hypoxia-inducible factor-1α, and the activity of the hypoxia pathway in gliomas. Furthermore, we demonstrated that NKILA enhances the Warburg effect and angiogenesis in gliomas both in vitro and in vivo. Therefore, NKILA is a potential therapeutic target in gliomas. In addition, we showed that a 20(S)-Rg3 monomer suppresses NKILA accumulation and reverses its stimulation of the Warburg effect and angiogenesis in gliomas, both in vitro and in vivo. Therefore, this study not only identified NKILA as a potential therapeutic target in gliomas, but also demonstrated a practical approach to treatment.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Shiting Li
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Lin Shen
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xiangyu Wei
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Hanshuo Zhu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China
| | - Xueyi Wang
- The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, 200092, China
| | - Min Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| | - Xuesheng Zheng
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 KongJiang Rd, Shanghai, 200092, China.
| |
Collapse
|
75
|
D’Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int J Mol Sci 2020; 21:ijms21083000. [PMID: 32344511 PMCID: PMC7216149 DOI: 10.3390/ijms21083000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.
Collapse
Affiliation(s)
- Laura D’Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- The Lieber Institute for Brain Development, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - H. Arno Muller
- Developmental Genetics Unit, Institute of Biology, University of Kassel, 34132 Kassel, Germany;
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
76
|
Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol 2020; 10:159. [PMID: 32195169 PMCID: PMC7061896 DOI: 10.3389/fonc.2020.00159] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase plays a pivotal role in regulating cell metabolism. The final and rate-limiting step of glycolysis is the conversion of Phosphoenolpyruvate (PEP) to Pyruvate, which is catalyzed by Pyruvate Kinase. There are four isomeric, tissue-specific forms of Pyruvate Kinase found in mammals: PKL, PKR, PKM1, and PKM2. PKM1 and PKM2 are formed bya single mRNA transcript of the PKM gene by alternative splicing. The oligomers of PKM2 exist in high activity tetramer and low activity dimer forms. The dimer PKM2 regulates the rate-limiting step of glycolysis that shifts the glucose metabolism from the normal respiratory chain to lactate production in tumor cells. Besides its role as a metabolic regulator, it also acts as protein kinase, which contributes to tumorigenesis. This review is focused on the metabolic role of pyruvate kinase M2 in normal cells vs. cancerous cells and its regulation at the transcriptional level. The review also highlights the role of PKM2 as a potential diagnostic marker and as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Kulsoom Zahra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tulika Dey
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Uma Pandey
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
77
|
Kimball TH, Vondriska TM. Metabolism, Epigenetics, and Causal Inference in Heart Failure. Trends Endocrinol Metab 2020; 31:181-191. [PMID: 31866216 PMCID: PMC7035178 DOI: 10.1016/j.tem.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022]
Abstract
Eukaryotes must balance the metabolic and cell death actions of mitochondria via control of gene expression and cell fate by chromatin, thereby functionally binding the metabolome and epigenome. This interaction has far-reaching implications for chronic diseases in humans, the most common of which are those of the cardiovascular system. The most devastating consequence of cardiovascular disease, heart failure, is not a single disease, diagnosis, or endpoint. Human and animal studies have revealed that, regardless of etiology and symptoms, heart failure is universally associated with abnormal metabolism and gene expression - to frame this as cause or consequence, however, may be to wrongfoot the question. This essay aims to challenge current thinking on metabolic-epigenetic crosstalk in heart failure, presenting hypotheses for how chronic diseases arise, take hold, and persist. We unpack assumptions about the order of operations for gene expression and metabolism, exploring recent findings in noncardiac systems that link metabolic intermediates directly to chromatin remodeling. Lastly, we discuss potential mechanisms by which chromatin may serve as a substrate for metabolic memory, and how changes in cellular transcriptomes (and hence in cellular behavior) in response to stress correspond to global changes in chromatin accessibility and structure.
Collapse
Affiliation(s)
- Todd H Kimball
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas M Vondriska
- Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
78
|
Zeng X, Xu C, Cheng J, Sun C, Wang Z, Gong Z, Long H, Zhu B. Poor glycemic control might compromise the efficacy of chemotherapy in non-small cell lung cancer patients with diabetes mellitus. Cancer Med 2019; 9:902-911. [PMID: 31830375 PMCID: PMC6997083 DOI: 10.1002/cam4.2750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies indicated that type 2 diabetes mellitus (T2DM) is related to an increased lung cancer risk, but its role in the prognosis of NSCLC remains conflicting. This study investigated the impact of blood glucose control on the outcomes in NSCLC patients with T2DM treated with platinum‐based doublets. Methods Clinicopathological and survival data from 191 T2DM patients with advanced NSCLC, who received platinum‐based chemotherapy, were retrospectively analyzed. Based on the blood glucose conditions during chemotherapy, patients were classified into poor (n = 84) and good control (n = 107) groups. Progression‐free survival (PFS) was assessed using the Kaplan‐Meier method. Results The median PFS among patients with good glycemic control [197.0 (95% CI: 136.3‐257.7) days] was longer than that among those with poor control [132.0 (95% CI: 112.5‐151.5) days] (P = .0003). Further subgroup analysis of lung squamous carcinoma and adenocarcinoma patients showed that the median PFS of the good control group was also significantly longer than that of the poor control group [179.0 (95% CI: 78.4‐279.6) days vs 125.0 (95% CI: 110.9‐139.1) days, P = .0014; 197.0 (95% CI: 124.3‐269.7) days vs 154.0 (95% CI: 129.9‐178.1) days, P = .0359; respectively]. The incidence rates of side effects were similar among patients with good glycemic control and those with poor glycemic control (all P > .05). Conclusions Satisfactory glycemic control during platinum‐based chemotherapy might provide a survival benefit to T2DM patients with NSCLC. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Xianghua Zeng
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Cheng Xu
- Department of Oncology, General Hospital of the Central Theater Command of the People's Liberation Army, Wuhan, Hubei Province, China
| | - Jianan Cheng
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Chengdu Sun
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Zhihua Gong
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital of The Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital of the Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital of The Third Military Medical University, Chongqing, China
| |
Collapse
|
79
|
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, Ko CJ, Gao T, Hernandez BE, Cheng X, Sun SC. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol 2019; 21:1604-1614. [PMID: 31792381 PMCID: PMC6901116 DOI: 10.1038/s41556-019-0429-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blanca E Hernandez
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
80
|
Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 2019; 19:563-578. [PMID: 29930302 DOI: 10.1038/s41580-018-0029-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly - through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.
Collapse
|
81
|
Wang X, Liu R, Qu X, Yu H, Chu H, Zhang Y, Zhu W, Wu X, Gao H, Tao B, Li W, Liang J, Li G, Yang W. α-Ketoglutarate-Activated NF-κB Signaling Promotes Compensatory Glucose Uptake and Brain Tumor Development. Mol Cell 2019; 76:148-162.e7. [PMID: 31447391 DOI: 10.1016/j.molcel.2019.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The rapid proliferation of cancer cells and dysregulated vasculature within the tumor leads to limited nutrient accessibility. Cancer cells often rewire their metabolic pathways for adaption to nutrient stress, and the underlying mechanism remains largely unknown. Glutamate dehydrogenase 1 (GDH1) is a key enzyme in glutaminolysis that converts glutamate to α-ketoglutarate (α-KG). Here, we show that, under low glucose, GDH1 is phosphorylated at serine (S) 384 and interacts with RelA and IKKβ. GDH1-produced α-KG directly binds to and activates IKKβ and nuclear factor κB (NF-κB) signaling, which promotes glucose uptake and tumor cell survival by upregulating GLUT1, thereby accelerating gliomagenesis. In addition, GDH1 S384 phosphorylation correlates with the malignancy and prognosis of human glioblastoma. Our finding reveals a unique role of α-KG to directly regulate signal pathway, uncovers a distinct mechanism of metabolite-mediated NF-κB activation, and also establishes the critical role of α-KG-activated NF-κB in brain tumor development.
Collapse
Affiliation(s)
- Xiongjun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ruilong Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Hua Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiying Chu
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yajuan Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueyuan Wu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Hong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bangbao Tao
- Department of Neurosurgery, XinHua Hospital School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Ji Liang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Li
- Laboratory of Molecular Modeling, State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
82
|
Effect of pyruvate kinase M2-regulating aerobic glycolysis on chemotherapy resistance of estrogen receptor-positive breast cancer. Anticancer Drugs 2019; 29:616-627. [PMID: 29782350 DOI: 10.1097/cad.0000000000000624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study aims to explore the effect and mechanism of pyruvate kinase M2 (PKM2) on chemotherapy resistance of estrogen receptor-positive breast cancer (ER BC) by regulating aerobic glycolysis. The expression of PKM2 in ER BC MCF-7 cells, T47D cells and MCF-7/ADR cells (which are subject to adriamycin/ADR induction) were determined by quantitative real-time PCR and western blot. MCF-7/ADR (M/A) cells were grouped into blank group (M/A), negative group (M/A+NC), low expression of PKM2 group (M/A+si-PKM2 group), overexpression of PKM2 group (M/A+PKM2 group) and glycolysis inhibition group (M/A+PKM2+2-DG group). Quantitative real-time PCR and western blot were applied to measure the expressions of PKM2, multidrug resistance, and glutathione-S-transferase π. Glucose and lactic acid kit was used to detect the amount of glucose uptake and lactic production. Cell variability, clone formation ability, and cell apoptosis were respectively measured by MTT, clone formation assay, and flow cytometry. Transwell assay and scratch assay were applied for cell invasion and migration ability. By overexpressing PKM2 in MCF-7 and T47D cells and using 2-DG, the effect on sensitivity of adriamycin amycin was explored. MCF-7/ADR cells have both elevated mRNA and protein expressions of PKM2 when compared with MCF-7 cells (both P<0.05). The cell activity of the M/A+si-PKM2+ADR group was notably lower than that in the M/A+ADR group and M/A+NC+ADR group (both P<0.05). In the M/A+si-PKM2 group, expressions of PKM2, multidrug resistance, and glutathione-S-transferase π, along with the amount of glucose uptake and lactic production, as well as cell variability, clone formation ability, and cell invasion and migration ability were inhibited, whereas cell apoptosis was increased in comparison with the M/A group and M/A+NC group (all P<0.05). On comparing with both the M/A group and the M/A+NC group, the M/A+si-PKM2 group displayed contrary tendency with the M/A+PKM2 group. The M/A+PKM2+2-DG group had elevated PKM2 expression compared with the M/A group and the M/A+NC group (all P<0.05). In MCF-7 and T47D cells with overexpression of PKM2, the sensitivity to adriamycin amycin, and cell apoptosis were suppressed, whereas the clone formation, invasion, and migration ability were enhanced. After 2-DG, the sensitivity on MCF-7 and T47D cells was enhanced while clone formation, invasion, migration and cell apoptosis rate were decreased (all P<0.05). PKM2 enhances chemotherapy resistance on ER BC by promoting aerobic glycolysis.
Collapse
|
83
|
Shimada YJ, Hasegawa K, Kochav SM, Mohajer P, Jung J, Maurer MS, Reilly MP, Fifer MA. Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy. J Cardiovasc Transl Res 2019; 12:569-579. [PMID: 31278493 PMCID: PMC7102897 DOI: 10.1007/s12265-019-09896-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
High-throughput proteomics profiling has never been applied to discover biomarkers in patients with hypertrophic cardiomyopathy (HCM). The objective was to identify plasma protein biomarkers that can distinguish HCM from controls. We performed a case-control study of patients with HCM (n = 15) and controls (n = 22). We carried out plasma proteomics profiling of 1129 proteins using the SOMAscan assay. We used the sparse partial least squares discriminant analysis to identify 50 most discriminant proteins. We also determined the area under the curve (AUC) of the receiver operating characteristic curve using the Monte Carlo cross validation with balanced subsampling. The average AUC was 0.94 (95% confidence interval, 0.82-1.00) and the discriminative accuracy was 89%. In HCM, 13 out of the 50 proteins correlated with troponin I and 12 with New York Heart Association class. Proteomics profiling can be used to elucidate protein biomarkers that distinguish HCM from controls.
Collapse
Affiliation(s)
- Yuichi J Shimada
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA.
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie M Kochav
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Pouya Mohajer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
85
|
Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, Kamal MA, Choi I. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol 2019; 56:1-11. [DOI: 10.1016/j.semcancer.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
|
86
|
Suzuki A, Puri S, Leland P, Puri A, Moudgil T, Fox BA, Puri RK, Joshi BH. Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer. PLoS One 2019; 14:e0217131. [PMID: 31120964 PMCID: PMC6532891 DOI: 10.1371/journal.pone.0217131] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/06/2019] [Indexed: 01/09/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo. We examined two established lung cancer cell lines, nine patients derived NSCLC and three normal lung fibroblast cell lines for PKM2 mRNA, protein and enzyme activity by RT-qPCR, immunocytochemistry (ICC), and Western blot analysis. All eleven NSCLC cell lines showed upregulated PKM2 enzymatic activity and protein expression mainly in their cytoplasm. Targeting PKM2 by shRNA or SMI, NSCLC cells showed significantly reduced mRNA, enzyme activity, cell viability, and colony formation, which also downregulated cytosolic PKM2 and upregulated nuclear enzyme activities. Normal lung fibroblast cell lines did not express PKM2, which served as negative controls. PKM2 targeting by SMI slowed tumor growth while gene-silencing significantly reduced growth of human NSCLC xenografts. Tumor sections from responding mice showed >70% reduction in cytoplasmic PKM2 with low or undetectable nuclear staining by immunohistochemistry (IHC). In sharp contrast, non-responding tumors showed a >38% increase in PKM2 nuclear staining with low or undetectable cytoplasmic staining. In conclusion, these results confirmed PKM2 as a target for cancer therapy and an unique function of subcellular PKM2, which may characterize therapeutic response to anti-PKM2 therapy in NSCLC.
Collapse
Affiliation(s)
- Akiko Suzuki
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Sachin Puri
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Pamela Leland
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Ankit Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Tarsem Moudgil
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
| | - Bernard A. Fox
- Molecular & Tumor Immunology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon, United States of America
- Department of Molecular Microbiology and Immunology, OHSU, Portland, Oregon, United States of America
| | - Raj K. Puri
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
| | - Bharat H. Joshi
- Center for Biologics Evaluation & Research, Food Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
87
|
A Role for NF-κB in Organ Specific Cancer and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11050655. [PMID: 31083587 PMCID: PMC6563002 DOI: 10.3390/cancers11050655] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) account for tumor initiation, invasiveness, metastasis, and recurrence in a broad range of human cancers. Although being a key player in cancer development and progression by stimulating proliferation and metastasis and preventing apoptosis, the role of the transcription factor NF-κB in cancer stem cells is still underestimated. In the present review, we will evaluate the role of NF-κB in CSCs of glioblastoma multiforme, ovarian cancer, multiple myeloma, lung cancer, colon cancer, prostate cancer, as well as cancer of the bone. Next to summarizing current knowledge regarding the presence and contribution of CSCs to the respective types of cancer, we will emphasize NF-κB-mediated signaling pathways directly involved in maintaining characteristics of cancer stem cells associated to tumor progression. Here, we will also focus on the status of NF-κB-activity predominantly in CSC populations and the tumor mass. Genetic alterations leading to NF-κB activity in glioblastoma, ependymoma, and multiple myeloma will be discussed.
Collapse
|
88
|
Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun 2019; 10:991. [PMID: 30824700 PMCID: PMC6397164 DOI: 10.1038/s41467-019-08921-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/08/2019] [Indexed: 11/12/2022] Open
Abstract
6-Phosphogluconate dehydrogenase (6PGD) is a key enzyme that converts 6-phosphogluconate into ribulose-5-phosphate with NADP+ as cofactor in the pentose phosphate pathway (PPP). 6PGD is commonly upregulated and plays important roles in many human cancers, while the mechanism underlying such roles of 6PGD remains elusive. Here we show that upon EGFR activation, 6PGD is phosphorylated at tyrosine (Y) 481 by Src family kinase Fyn. This phosphorylation enhances 6PGD activity by increasing its binding affinity to NADP+ and therefore activates the PPP for NADPH and ribose-5-phosphate, which consequently detoxifies intracellular reactive oxygen species (ROS) and accelerates DNA synthesis. Abrogating 6PGD Y481 phosphorylation (pY481) dramatically attenuates EGF-promoted glioma cell proliferation, tumor growth and resistance to ionizing radiation. In addition, 6PGD pY481 is associated with Fyn expression, the malignancy and prognosis of human glioblastoma. These findings establish a critical role of Fyn-dependent 6PGD phosphorylation in EGF-promoted tumor growth and radiation resistance. 6-phosphogluconate dehydrogenase is commonly upregulated in cancers. Here, the authors show that activation of EGFR induces phosphorylation of this enzyme at Y481 to activate the pentose phosphate pathway, which consequently reduces ROS and accelerates DNA synthesis to promote tumor growth and radioresistance.
Collapse
|
89
|
Wang G, Wang JJ, Wang YZ, Feng S, Jing G, Fu XL. Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S180-S191. [PMID: 30691320 DOI: 10.1080/21691401.2018.1489825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As the most aggressive and malignant glioma, glioblastoma multiforme (GBM) abnormally expresses genes that mediate glycolytic metabolism and tumour cell growth. In this study, we investigated myricetin incorporated nanoliposomes and ascertained their prospect in effectively treating cancer via the employment of the GBM cell line DBTRG-05MG. Notably, the myricetin nanoliposomes (MYR-NLs) displayed potent inhibition of proliferation and significantly regulated the levels of proteins related to both glycolytic metabolism and cell survival. Most importantly, SIRT3 and phosphorylated p53 were also down-regulated by MYR-NLs, indicating that the MYR-NLs inhibited GBM cell growth through the SIRT3/p53-mediated PI3K/Akt-ERK and mitochondrial pathways. Our findings thus provide rational evidence that liposomal myricetin targeted at alternative cell death pathways may be a useful adjuvant therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Gang Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Jun-Jie Wang
- a Department of Pharmaceutics , Shanghai Eighth People's Hospital, Jiangsu University , Shanghai , China
| | - Yu-Zhu Wang
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Shi Feng
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Gao Jing
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| | - Xing-Li Fu
- b Department of Medicine, Jiangsu University , Zhenjiang , China
| |
Collapse
|
90
|
Wang Q, Lu D, Fan L, Li Y, Liu Y, Yu H, Wang H, Liu J, Sun G. COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1α/PKM2 pathway. Int J Mol Med 2019; 43:475-488. [PMID: 30365092 DOI: 10.3892/ijmm.2018.3936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/30/2018] [Indexed: 11/09/2022] Open
Abstract
The pyruvate kinase M2 isoform (PKM2) is a key component of aerobic glycolysis and has been reported to regulate apoptosis. However, it is unclear whether PKM2 is involved in cyclooxygenase‑2 (COX‑2) induced apoptosis‑resistance in hepatocellular carcinoma (HCC) cells. In the present study, it was observed that COX‑2 and PKM2 were significantly elevated in hepatocellular carcinoma tissues compared with adjacent liver tissues (P<0.05). Furthermore, their expression was positively associated with worse clinicopathological characteristics, which indicates poor prognosis in patients with HCC. COX‑2 knockdown significantly reduced the expression of PKM2 and hypoxia inducible factor‑1α (HIF‑1α) at the mRNA and protein levels in addition to inhibiting proliferation (P<0.05), whereas apoptosis was notably increased. Furthermore, HIF‑1α and PKM2‑knockdown increased cell apoptosis without inhibiting COX‑2 expression. PKM2 inhibition did not have a marked effect on COX‑2 and HIF‑1α expression. In conclusion, the results of the present study suggested that HIF‑1α/PKM2 pathway‑associated metabolic changes may facilitate COX‑2‑induced apoptosis resistance in HCC cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Donghui Lu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuhuan Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
91
|
Wang G, Fu XL, Wang JJ, Guan R, Sun Y, Tony To SS. Inhibition of glycolytic metabolism in glioblastoma cells by Pt3glc combinated with PI3K inhibitor via SIRT3‐mediated mitochondrial and PI3K/Akt–MAPK pathway. J Cell Physiol 2018; 234:5888-5903. [PMID: 29336479 DOI: 10.1002/jcp.26474] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xing-Li Fu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Rui Guan
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Yan Sun
- Information Central, Hubei University of Medicine, Shiyan, China
| | - Shing-Shun Tony To
- Department of Healthy Technology and Information, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
92
|
Jin MZ, Xia BR, Xu Y, Jin WL. Curaxin CBL0137 Exerts Anticancer Activity via Diverse Mechanisms. Front Oncol 2018; 8:598. [PMID: 30581774 PMCID: PMC6292929 DOI: 10.3389/fonc.2018.00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy with or without radiation remains the first choice for most cancers. However, intolerant side effects and conventional drug resistance restrict actual clinical efficacy. Curaxin CBL0137 is designed to regulate p53 and nuclear factor-κB simultaneously and to prevent the resistance caused by a single target. Functionally, CBL0137 exhibits an antitumor activity in multiple cancers, including glioblastoma, renal cell carcinoma, melanoma, neuroblastoma, and small cell lung cancer (SCLC). Mechanistically, CBL0137 is originally identified to act by facilitates chromatin transcription (FACT) complex. Further investigations reveal that several pathways, such as NOTCH1 and heat shock factor 1 (HSF1), are involved in the process. CBL0137 has been reported to target cancer stem cells (CSCs) and enhance chemotherapy/monotherapy efficacy. The translational advance of CBL0137 into clinical practice is expected to provide a promising future for cancer treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bai-Rong Xia
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Yu Xu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Lin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, China.,Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
93
|
Xu W, Zeng F, Li S, Li G, Lai X, Wang QJ, Deng F. Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Cell Mol Life Sci 2018; 75:4583-4598. [PMID: 30209539 PMCID: PMC11105635 DOI: 10.1007/s00018-018-2914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023]
Abstract
Protein kinase C ε (PKCε) has emerged as an oncogenic protein kinase and plays important roles in cancer cell survival, proliferation, and invasion. It is, however, still unknown whether PKCε affects cell proliferation via glucose metabolism in cancer cells. Here we report a novel function of PKCε that provides growth advantages for cancer cells by enhancing tumor cells glycolysis. We found that either PKCε or Smad2/3 promoted aerobic glycolysis, expression of the glycolytic genes encoding HIF-1α, HKII, PFKP and MCT4, and tumor cell proliferation, while overexpression of PKCε or Smad3 enhanced aerobic glycolysis and cell proliferation in a protein kinase D- or TGF-β-independent manner in PC-3M and DU145 prostate cancer cells. The effects of PKCε silencing were reversed by ectopic expression of Smad3. PKCε or Smad3 ectopic expression-induced increase in cell growth was antagonized by inhibition of lactate transportation. Furthermore, interaction of endogenous PKCε with Smad2/3 was primarily responsible for phosphorylation of Ser213 in the Samd3 linker region, and resulted in Smad3 binding to the promoter of the glycolytic genes, thereby promoting cell proliferation. Forced expression of mutant Smad3 (S213A) attenuated PKCε-stimulated protein overexpression of the glycolytic genes. Thus, our results demonstrate a novel PKCε function that promotes cell growth in prostate cancer cells by increasing aerobic glycolysis through crosstalk between PKCε and Smad2/3.
Collapse
Affiliation(s)
- Wanfu Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| | - Songyu Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
94
|
Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem 2018; 120:2919-2928. [PMID: 30443958 DOI: 10.1002/jcb.26838] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
The cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell-cycle phases during normal cell division, and in the case of DNA damage, they are key targets of the checkpoint machinery that ensure genetic stability. Little is known about the mechanisms underlying dysregulation and downstream targets of CDC25. To understand these mechanisms, we silenced the CDC25A gene in breast cancer cell line MDA-MB-231 and studied downstream targets of CDC25A gene. MDA-MB-231 breast cancer cells were transfected and silenced by CDC25A small interfering RNA. Total messenger RNA (mRNA) was extracted and analyzed by quantitative real-time polymerase chain reaction. CDC25A phosphatase level was visualized by Western blot analysis and was analyzed by 2D electrophoresis and LC-ESI-MS/MS. After CDC25A silencing, cell proliferation reduced, and the expression of 12 proteins changed. These proteins are involved in cell-cycle regulation, programmed cell death, cell differentiation, regulation of gene expression, mRNA editing, protein folding, and cell signaling pathways. Five of these proteins, including ribosomal protein lateral stalk subunit P0, growth factor receptor bound protein 2, pyruvate kinase muscle 2, eukaryotic translation elongation factor 2, and calpain small subunit 1 increase the activity of cyclin D1. Our results suggest that CDC25A controls the cell proliferation and tumorigenesis by a change in expression of proteins involved in cyclin D1 regulation and G1/S transition.
Collapse
Affiliation(s)
- Hossein Sadeghi
- Department of Genetics, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Golalipour
- Department of Genetics, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Golestan University, Gorgan, Iran
| | - Touraj Farazmandfar
- Department of Genetics, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Shahbazi
- Department of Genetics, Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
95
|
Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, Huang BJ, Fang J, Qian CN, Jiang T, Zeng YX, Lu Z. Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Mol Cell 2018; 72:650-660.e8. [PMID: 30392930 DOI: 10.1016/j.molcel.2018.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.
Collapse
Affiliation(s)
- Xinjian Li
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Qian
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongfei Jiang
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xia
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Li
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, China; Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Tao Jiang
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yi-Xin Zeng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhimin Lu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, The University of TX, Houston, Texas 77030, USA.
| |
Collapse
|
96
|
Lu S, Wang Y. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Commun (Lond) 2018; 38:63. [PMID: 30367676 PMCID: PMC6235390 DOI: 10.1186/s40880-018-0336-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Metabolism is a fundamental biological process composed of a series of reactions catalyzed by metabolic enzymes. Emerging evidence demonstrates that the aberrant signaling in cancer cells induces nonmetabolic functions of metabolic enzymes in many instrumental cellular activities, which involve metabolic enzyme-mediated protein post-translational modifications, such as phosphorylation, acetylation, and succinylation. In the most well-researched literatures, metabolic enzymes phosphorylate proteins rather than their metabolites as substrates. Some metabolic enzymes have altered subcellular localization, which allows their metabolic products to directly participate in nonmetabolic activities. This review discusses how these findings have deepened our understanding on enzymes originally classified as metabolic enzymes, by highlighting the nonmetabolic functions of several metabolic enzymes responsible for the development of cancer, and evaluates the potential for targeting these functions in cancer treatment.
Collapse
Affiliation(s)
- Sean Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
97
|
Meoli L, Gupta NK, Saeidi N, Panciotti CA, Biddinger SB, Corey KE, Stylopoulos N. Nonalcoholic fatty liver disease and gastric bypass surgery regulate serum and hepatic levels of pyruvate kinase isoenzyme M2. Am J Physiol Endocrinol Metab 2018; 315:E613-E621. [PMID: 29462566 PMCID: PMC6230703 DOI: 10.1152/ajpendo.00296.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022]
Abstract
Treatment of nonalcoholic fatty liver disease (NAFLD) focuses on the underlying metabolic syndrome, and Roux-en-Y gastric bypass surgery (RYGB) remains one of the most effective options. In rodents and human patients, RYGB induces an increase in the gene and protein expression levels of the M2 isoenzyme of pyruvate kinase (PKM2) in the jejunum. Since PKM2 can be secreted in the circulation, our hypothesis was that the circulating levels of PKM2 increase after RYGB. Our data, however, revealed an unexpected finding and a potential new role of PKM2 for the natural history of metabolic syndrome and NAFLD. Contrary to our initial hypothesis, RYGB-treated patients had decreased PKM2 blood levels compared with a well-matched group of patients with severe obesity before RYGB. Interestingly, PKM2 serum concentration correlated with body mass index before but not after the surgery. This prompted us to evaluate other potential mechanisms and sites of PKM2 regulation by the metabolic syndrome and RYGB. We found that in patients with NAFLD and nonalcoholic steatohepatitis (NASH), the liver had increased PKM2 expression levels, and the enzyme appears to be specifically localized in Kupffer cells. The study of murine models of metabolic syndrome and NASH replicated this pattern of expression, further suggesting a metabolic link between hepatic PKM2 and NAFLD. Therefore, we conclude that PKM2 serum and hepatic levels increase in both metabolic syndrome and NAFLD and decrease after RYGB. Thus, PKM2 may represent a new target for monitoring and treatment of NAFLD.
Collapse
Affiliation(s)
- Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nitin K Gupta
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Nima Saeidi
- Massachusetts General Hospital and Shriners Hospital for Children , Boston, Massachusetts
| | - Courtney A Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Kathleen E Corey
- MGH Fatty Liver Clinic, MGH Gastrointestinal Unit, Massachusetts General Hospital , Boston, Massachusetts
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
98
|
Dong Z, Cui H. Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol 2018; 57:45-51. [PMID: 30205139 DOI: 10.1016/j.semcancer.2018.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic and metabolic alterations incancer cells are highly associated. Glioblastoma multiforme (GBM) is a complicated pathological process with dysregulated methylation and histone modifications. Metabolic modulation of epigenetics in gliomas was previously summarized. However, epigenetic modulation is also important in metabolic decision. Recently, there has been a tremendous increase in understanding of DNA methylation, chromatin modulation, and non-coding RNAs in the regulation of cell metabolism, especially glycolytic metabolism in GBM. In this review, we summarize DNA methylation, histone alteration, and non-coding RNA mediated epigenetic modulation of metabolism in GBM and discuss the future research directions in this area and its applications in GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
99
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
100
|
Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11:11/8/dmm033365. [PMID: 29991493 PMCID: PMC6124551 DOI: 10.1242/dmm.033365] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment. Summary: This Review summarizes recent findings about multifaceted metabolic enzymes with non-canonical activities outside their core biochemical functions, and how they may provide new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Departments of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|