51
|
Low-Cost Carbon Nanoparticles for Removing Hazardous Organic Pollutants from Water: Complete Remediation Study and Multi-Use Investigation. INORGANICS 2022. [DOI: 10.3390/inorganics10090136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Continuous waste discharge into natural water resources in many countries is a severe global issue, and seeking an effective solution is a researcher’s concern. Herein, toilet paper waste was a low-cost precursor for preparing carbon nanoparticles (TPCNPs). The characterization of TPCNPs revealed a 30 nm to 50 nm particle size, a 264 m2 g−1 surface area, and a cubical graphite lattice XRD pattern. The TPCNPs were tested for removing malachite green (MG), indigo carmine (IC), rhodamine B (RB), and methylene blue (MB) dyes from water. The solution parameters were examined for the sorption process, and a pH of 5.0 suited the MB removal, while a pH of 6.0 was suitable for MG, IC, and RB. The effect of concentration investigation showed an adsorption capacity of 110.9, 64.8, 73.5, and 98 mg g−1 for MG, IC, RB, and MB, respectively. The sorption of the four dyes fitted the Langmuir isotherm model; it was exothermic and spontaneous. The water remediation was tested using groundwater and seawater samples (GW and SW) spiked with pollutants. It is worth mentioning that one treatment sufficed for the remediation of GW and SW contaminated by 5 mg L−1 concentration, while a double treatment was required for 10 mg L−1 pollution in both samples.
Collapse
|
52
|
Insight into the adsorption of dyes onto chitin in aqueous solution: An experimental and computational study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
53
|
Tang J, Ren Y, Zhu L, Chen Y, Liu S, Zhu L, Yang R. Magnetic molecularly imprinted polymer combined with solid-phase extraction for detection of kojic acid in cosmetic products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Jamaleddin Peighambardoust S, Camilla Boffito D, Foroutan R, Ramavandi B. Sono-photocatalytic activity of sea sediment@400/ZnO catalyst to remove cationic dyes from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
López-Rodríguez D, Micó-Vicent B, Bonet-Aracil M, Cases F, Bou-Belda E. The Optimal Concentration of Nanoclay Hydrotalcite for Recovery of Reactive and Direct Textile Colorants. Int J Mol Sci 2022; 23:ijms23179671. [PMID: 36077071 PMCID: PMC9456399 DOI: 10.3390/ijms23179671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Concerns about the health of the planet have grown dramatically, and the dyeing sector of the textile industry is one of the most polluting of all industries. Nanoclays can clean dyeing wastewater using their adsorption capacities. In this study, as a new finding, it was possible to analyze and quantify the amount of metal ions substituted by anionic dyes when adsorbed, and to determine the optimal amount of nanoclay to be used to adsorb all the dye. The tests demonstrated the specific amount of nanoclay that must be used and how to optimize the subsequent processes of separation and processing of the nanoclay. Hydrotalcite was used as the adsorbent material. Direct dyes were used in this research. X-ray diffraction (XRD) patterns allowed the shape recovery of the hydrotalcite to be checked and confirmed the adsorption of the dyes. An FTIR analysis was used to check the presence of characteristic groups of the dyes in the resulting hybrids. The thermogravimetric (TGA) tests corroborated the dye adsorption and the thermal fastness improvement. Total solar reflectance (TSR) showed increased radiation protection for UV-VIS-NIR. Through the work carried out, it has been possible to establish the maximum adsorption point of hydrotalcite.
Collapse
Affiliation(s)
- Daniel López-Rodríguez
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
- Correspondence:
| | - Bàrbara Micó-Vicent
- Departamento de Ingeniería Gráfica, Universitat Politècnica de València Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Marilés Bonet-Aracil
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Francisco Cases
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| | - Eva Bou-Belda
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n, CP 03801 Alcoy, Spain
| |
Collapse
|
56
|
Selvam K, Albasher G, Alamri O, Sudhakar C, Selvankumar T, Vijayalakshmi S, Vennila L. Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. ENVIRONMENTAL RESEARCH 2022; 211:113046. [PMID: 35300965 DOI: 10.1016/j.envres.2022.113046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The present study focused to synthesize the copper oxide nanoparticles (CuONPs) using novel Canthium coromandelicum leaves in a cost-effective, easy, and sustainable approach. The obtained Canthium coromandelicum-copper oxide nanoparticles (CC-CuONPs) were characterized using UV-Visible spectroscopy, FT-IR analysis, FESEM, HR-TEM imaging, and XRD study. The XRD pattern verified the development of crystalline CC-CuONPs with an average size of 33 nm. The biosynthesized CC-CuONPs were roughly spherical, according to HR-TEM and FESEM analyses. FT-IR research verified the existence of functional groups involved in CC-CuONPs production. Cu and O2 have high-energy signals of 78.32% and 12.78%, respectively, according to data from EDX. The photocatalytic evaluation showed that synthesized CC-CuONPs have the efficiency of degrading methylene blue (MB) and methyl orange (MO) by 91.32%, 89.35% respectively. The findings showed that biosynthesized CC-CuONPs might effectively remove contaminants in an environmentally acceptable manner.
Collapse
Affiliation(s)
- Kandasamy Selvam
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India.
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ohoud Alamri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chinnappan Sudhakar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India
| | - Thangaswamy Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, 637 501, Tamil Nadu, India
| | - Selvakumar Vijayalakshmi
- Food Science and Biotechnology, School of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Lakshmanan Vennila
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
57
|
El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Fernine Y, Lacherai A, Jada A. Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00395-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Abstract
Nowadays, biochar is being studied to a great degree because of its potential for carbon sequestration, soil improvement, climate change mitigation, catalysis, wastewater treatment, energy storage, and waste management. The present review emphasizes on the utilization of biochar and biochar-based nanocomposites to play a key role in decontaminating dyes from wastewater. Numerous trials are underway to synthesize functionalized, surface engineered biochar-based nanocomposites that can sufficiently remove dye-contaminated wastewater. The removal of dyes from wastewater via natural and modified biochar follows numerous mechanisms such as precipitation, surface complexation, ion exchange, cation–π interactions, and electrostatic attraction. Further, biochar production and modification promote good adsorption capacity for dye removal owing to the properties tailored from the production stage and linked with specific adsorption mechanisms such as hydrophobic and electrostatic interactions. Meanwhile, a framework for artificial neural networking and machine learning to model the dye removal efficiency of biochar from wastewater is proposed even though such studies are still in their infancy stage. The present review article recommends that smart technologies for modelling and forecasting the potential of such modification of biochar should be included for their proper applications.
Collapse
|
59
|
Almufarij RS, Abdulkhair BY, Salih M, Aldosari H, Aldayel NW. Optimization, Nature, and Mechanism Investigations for the Adsorption of Ciprofloxacin and Malachite Green onto Carbon Nanoparticles Derived from Low-Cost Precursor via a Green Route. Molecules 2022; 27:molecules27144577. [PMID: 35889452 PMCID: PMC9318547 DOI: 10.3390/molecules27144577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
The spread of organic pollutants in water spoils the environment, and among the best-known sorbents for removing organic compounds are carbonaceous materials. Sunflower seed waste (SFSW) was employed as a green and low-cost precursor to prepare carbon nanoparticles (CNPs) via pyrolysis, followed by a ball-milling process. The CNPs were treated with a nitric–sulfuric acid mixture (1:1) at 100 °C. The scanning electron microscopy (SEM) showed a particle size range of 38 to 45 nm, and the Brunauer–Emmett–Teller (BET) surface area was 162.9 m2 g−1. The elemental analysis was performed using energy-dispersive X-ray spectroscopy, and the functional groups on the CNPs were examined with Fourier transform infrared spectroscopy. Additionally, an X-ray diffractometer was employed to test the phase crystallinity of the prepared CNPs. The fabricated CNPs were used to adsorb ciprofloxacin (CFXN) and malachite green (MLG) from water. The experimentally obtained adsorption capacities for CFXN and MLG were 103.6 and 182.4 mg g−1, respectively. The kinetic investigation implied that the adsorption of both pollutants fitted the pseudo-first-order model, and the intraparticle diffusion step controlled the process. The equilibrium findings for CFXN and MLG sorption on the CNPs followed the Langmuir and the Fredulich isotherm models, respectively. It was concluded that both pollutants spontaneously adsorbed on the CNPs, with physisorption being the likely mechanism. Additionally, the FTIR analysis of the adsorbed CFXN showed the disappearance of some functional groups, suggesting a chemisorption contribution. The CNPs showed an excellent performance in removing CFXN and MLG from groundwater and seawater samples and possessed consistent efficiency during the recycle–reuse study. The application of CNPs to treat synthetically contaminated natural water samples indicated the complete remediation of polluted water using the ball-mill-fabricated CNPs.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.S.A.); (N.W.A.)
| | - Babiker Y. Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Correspondence: or
| | - Mutaz Salih
- Department of Chemistry-Hurrymilla, College of Science and Humanities, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Hurrymilla 11432, Saudi Arabia;
| | - Haia Aldosari
- Department of Physics, College of Science, Shaqra University, P.O. Box 5701, Shaqra 11961, Saudi Arabia;
| | - Najla W. Aldayel
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.S.A.); (N.W.A.)
| |
Collapse
|
60
|
Tran HV, Le TD. Graphene Oxide‐Based Adsorbents for Organic Dyes Removal from Contaminated Water: A Review. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hoang Vinh Tran
- Hanoi University of Science and Technology Inorganic Chemistry 1st Dai Co Viet Road 100000 Hanoi VIET NAM
| | - Thu D. Le
- Hanoi University of Science and Technology School of Chemical Engineering VIET NAM
| |
Collapse
|
61
|
Liu CH, Wang Q, Xu Z, Li D, Zheng Y. 5,5’-Indigodisulfonic acid as an efficient catalyst for the synthesis of 2,3-dihydroquinazolinone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2098045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cheng-Hang Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Qiong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Zenglai Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Dongling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| |
Collapse
|
62
|
Nagababu A, Reddy DS, Mohan GK. Toxic chrome removal from industrial effluents using marine algae: Modeling and optimization. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
63
|
Li Z, Ren D, Wang Z, Jiang S, Zhang S, Zhang X, Chen W. Adsorption and removal of direct red 31 by Cu-MOF: optimization by response surface. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:80-94. [PMID: 35838284 DOI: 10.2166/wst.2022.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cu(PABA) is a Cu-based MOF material assembled from Cu2+ and the organic ligand p-aminobenzoic acid (PABA). Cu (PABA) was synthesized by a solvothermal method, characterized and applied to the adsorption of direct red 31 dye (DR-31). The effects of pH, DR-31 concentration and temperature on the adsorption performance of Cu(PABA) were investigated. The adsorption kinetics were analyzed by pseudo-first-order, pseudo-second-order and intra-particle diffusion models, and the adsorption equilibrium data was fitted by Langmuir and Freundlich isotherm models. The pseudo-first-order kinetics and Langmuir model satisfactorily described the adsorption kinetics and adsorption equilibrium, respectively. The maximum adsorption capacity of Cu(PABA) for DR-31 dye at room temperature was 1,244.8 mg/g, as calculated using the Langmuir adsorption isotherm model. By response surface methodology (RSM), the optimal adsorption was found at pH value of 10.9, DR-31 dye concentration of 216.6 mg/L, and temperature of 27 °C, and the removal rate was as high as 99.4%. Therefore, Cu(PABA) can be used as an efficient adsorbent for removing DR-31 dye from aqueous solution.
Collapse
Affiliation(s)
- Zihang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail: ; Hubei Key Laboratory for Efficient Utilization and Agglomeration of metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
64
|
Lin J, Zhao S, Cheng S. Microwave-assisted preparation of cotton stem-derived activated carbon for dye removal from synthetic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48839-48850. [PMID: 35211853 DOI: 10.1007/s11356-022-19334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Cotton stem is used to produce the high-efficient adsorbent (CSA) for Rhodamine B (RB) dye removal from wastewater, and hydrogen rich fuel gas via on-pot method using microwave heating. The adsorption data indicate that RB adsorption behavior follows the Langmuir model with the maximum adsorption capacity of 265.96 mg/g, whereas the adsorption kinetics follows the pseudo-second-order model. Thermodynamic calculations indicate that RB adsorption on CSA is spontaneous and endothermic process. The adsorption data are fitted to the Thomas and Yoon-Nelson model to predict the breakthrough curve in the column experiment. The RB removal could still be maintained at 71.22% of the original value after five cycles, demonstrating the reusability of CSA. The chemical functional groups, electrostatic interaction, and pore filling of CSA are found to be responsible for high RB adsorption capability. CSA exhibits excellent RB removal efficiency in treating actual water. The major components of byproduct gases collected from activation process are H2 and CO.
Collapse
Affiliation(s)
- Jin Lin
- Engineering Training Center, Kunming University of Science and Technology, Kunming Yunnan, 650093, China
| | - Saidan Zhao
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry an Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan, China
| | - Song Cheng
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry an Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan, China.
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454003, China.
| |
Collapse
|
65
|
Ahmaruzzaman M. MXene-based novel nanomaterials for remediation of aqueous environmental pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Liu Z, Khan TA, Islam MA, Tabrez U. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon. BIORESOURCE TECHNOLOGY 2022; 354:127168. [PMID: 35436542 DOI: 10.1016/j.biortech.2022.127168] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Printing and dyeing wastewater (PDW) has characteristics of large amount of water, elevated content of residual dyes, poor biodegradability, high alkalinity and large change of water quality, making its treatment difficult. Development of efficient and economic PDW treatment technology has gained considerable interest in the field of environmental protection. Use of plant biomass carbon (PBC) for the adsorption of dyes is a feasible and economical technology. This review summarizes current literature discussing the preparation method and physicochemical characteristics of PBC prepared from different plant species, the effect of PBC on the removal of dyes, influencing factors affecting the removal, and relevant adsorption models. The shortcomings of current research and the direction of future research are also pointed out in the review.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, No. 16, Juxian Avenue, Fuling District, Chongqing, China
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Unsha Tabrez
- Chegg India Pvt. Ltd., 401, Baani Corporate One, Jasola, New Delhi 110 025, India
| |
Collapse
|
67
|
Haghgir A, Hosseini SH, Tanzifi M, Yaraki MT, Bayati B, Saemian T, Koohi M. Synthesis of polythiophene/zeolite/iron nanocomposite for adsorptive remediation of azo dye: Optimized by Taguchi method. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
68
|
Exploring the applicability of a geopolymer and a biopolymer as an environmentally benign treatment option for heavy metals contaminated water. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
69
|
Zhang J, Li J, Huang G, Yan L. Chromatin extracted from common carp testis as an economical and easily available adsorbent for ethidium bromide decontamination. Heliyon 2022; 8:e09565. [PMID: 35677409 PMCID: PMC9167975 DOI: 10.1016/j.heliyon.2022.e09565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
The waste of ethidium bromide (EtBr) used in the laboratory will bring a great burden to the environment, which need to be solved urgently. In the present paper, an efficient and inexpensive method for EtBr removal using chromatin extracted from common carp testis was investigated. The observation of fluorescence microscopy showed that chromatin had similar property to DNA for selective adsorption of EtBr. The results of batch adsorption showed that the removal efficiency of EtBr by chromatin exceeded 99% at pH 7.4 and 30 °C for 3 min with the EtBr concentration of 2 mg L−1 and the chromatin dosage of 0.5 g L−1, and the maximum adsorption amount of chromatin was 45.73 mg g−1. Further, the analysis of kinetic and isotherm suggested that the adsorption followed Pseudo-second-order kinetics and Langmuir isotherm model, and the calculated maximum theoretical adsorption amount of chromatin to EtBr was 48.08 mg g−1. According to thermodynamic analysis, chromatin adsorption of EtBr was a spontaneous process dominated by hydrogen bonding and van der Waals forces. This work will not only offer an adsorbent for EtBr decontamination, also provide a possibility for EtBr analogs removal. The inexpensive bio-adsorbent was prepared from common carp testis by-production. The bio-adsorbent was applied in EtBr decontamination. The maximum adsorption amount of EtBr by chromatin was up to 45.73 mg g−1, while the maximum adsorption amount of EtBr by activated carbon was only 0.46 mg g−1. The adsorption of EtBr by chromatin followed Pseudo-second-order kinetics and Langmuir isotherm model.
Collapse
Affiliation(s)
- Jie Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou, 545006, Guangxi, PR China
| | - Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou, 545006, Guangxi, PR China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou, 545006, Guangxi, PR China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Donghuan Road 268, Liuzhou, 545006, Guangxi, PR China
| |
Collapse
|
70
|
Kang S, Liu W, Wang Y, Wang Y, Wu S, Chen S, Yan B, Lan X. Starch-derived flocculant with hyperbranched brush architecture for effectively flocculating organic dyes, heavy metals and antibiotics. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
71
|
Hizal J, Yilmazoglu M, Kanmaz N, Ercag E. Efficient removal of indigo dye by using sulfonated poly (ether ether ketone) (sPEEK), montmorillonite (MMT) and sPEEK-MMT composites as novel adsorbent. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Lipin VA, Evdokimov AN, Alekseev VG, Sustavova TA, Petrova YA. Sorption of Anionic Dyes by Polyampholyte Hydrogels Based on Hydrolized Polyacrylamide Modified with Aliphatic Diamines. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Adam AMA, Saad HA, Atta A, Alsawat M, Hegab MS, Refat MS, Altalhi TA, Alosaimi E, Younes AA. Usefulness of charge-transfer interaction between urea and vacant orbital acceptors to generate novel adsorbent material for the adsorption of pesticides from irrigation water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Kamran U, Bhatti HN, Noreen S, Tahir MA, Park SJ. Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: Kinetics, isotherms, thermodynamics, and desorption studies. CHEMOSPHERE 2022; 291:132796. [PMID: 34774614 DOI: 10.1016/j.chemosphere.2021.132796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/07/2023]
Abstract
Novel eco-friendly and economically favourable chemically modified biosorbents and biosomposites from sugarcane bagasse (SB) has been investigated for the first time for efficient removal of Acid red 1 dye from wastewater. As fabricated biosorbents and biocomposites were characterized analytically. Batch adsorption experiments has been performed to optimize operating parameters and the determined optimum conditions are; pH: 2, dose: 0.05 g, contact time: between 60 and 75 min, initial dye concentration: 400 mg L-1, and temperature: 30 °C, at which maximum Acid red 1 dye removal capacities were found (within range of 143.4-205.1 mg g-1) by as-designed SB-derived chemically modified biosorbents and biocomposites. This high adsorption capacity was accompanied due to its large specific surface area (30.19 m2 g-1) and excessive functional active binding sites. In terms of the nature of adsorption process, kinetic and isothermal studies demonstrated that experimental data shows greater fitness with pseudo 2nd order and Langmuir model. Thermodynamics analysis revealed that the adsorption process is spontaneous, feasible, and exothermic in nature. Adsorption selective studies signifies that lower concentration of co-existing metallic ions were not interfered during the removal of Acid red 1 dye, which confirms that under optimized adsorption conditions the biosorbents and biocomposites exhibited greater affinity for dye molecules. The excessive quantity (82%) of loaded dye molecules within the adsorbents were extracted within the NaOH eluting media which predicts that as designed biocomposites could have capability of reusability. Hence, it is anticipated that this type of novel SB-derived biocomposites could be considered as greener potential candidate material for commercial scale dye removal applications from industrial wastewater.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Asif Tahir
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
75
|
Faisal AAH, Ramadhan ZK, Al-Ansari N, Sharma G, Naushad M, Bathula C. Precipitation of (Mg/Fe-CTAB) - Layered double hydroxide nanoparticles onto sewage sludge for producing novel sorbent to remove Congo red and methylene blue dyes from aqueous environment. CHEMOSPHERE 2022; 291:132693. [PMID: 34715111 DOI: 10.1016/j.chemosphere.2021.132693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Preparation of new sorbent from precipitation of nano-sized (Mg/Fe-CTAB)- layered double hydroxide (LDH) on the surfaces of sewage sludge byproduct to remove the anionic and cationic dyes was the focal point of this work. The presence of nanoparticles and enlarged of interlayers by CTAB intercalation have increased the sludge surface area from 5.34 to 10.32 m2/g. The CTAB mass 0.03 g/50 mL, sludge dosage 1 g/50 mL and (Mg/Fe) molar ratio 2 were the best preparation conditions required to obtain effective sorbent with efficiencies exceeded 93% for MB and CR dyes. These efficiencies were obtained under operational conditions for batch study of 0.5 g coated sludge per 50 mL colored dye solution, initial pH 3 (for CR) and 12 (for MB), and time 3 h for 10 mg/L dyes at 200 rpm. Models of Langmuir and pseudo second-order have a high capability in the representation of sorption records with maximum capacities of adsorption 163.6 and 132.6 mg/g for CR and MB dye, respectively. The X-ray diffraction analysis proved that the calcite occurred mainly at 2θ = 29.8° while quartz corresponded to the 21, 26.6, 36.4, 36.9, 50.1, 60.01 and 68.4°. Characterization tests showed that nano-sized particles of magnesium/iron were precipitated on the sludge due to the formation of hydrotalcite-like compounds with an increase in the percentages of Mg and Fe from 0.87 and 1.36 to 4.25 and 3.03%, respectively. The results showed that the electrostatic attraction, intra-particle diffusion and hydrogen bonding were predominant mechanisms for removal of CR and MB onto coated sludge.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq.
| | - Zahraa Khalid Ramadhan
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Science & Technology, Glocal University, Saharanpur, India
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| |
Collapse
|
76
|
Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:111963. [PMID: 34450157 DOI: 10.1016/j.envres.2021.111963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
Collapse
Affiliation(s)
- Surya Sudheer
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia.
| | - Renu Geetha Bai
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Center for Nanotechnology & Advanced Materials, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia.
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
77
|
Wang F, Li L, Iqbal J, Yang Z, Du Y. Preparation of magnetic chitosan corn straw biochar and its application in adsorption of amaranth dye in aqueous solution. Int J Biol Macromol 2022; 199:234-242. [PMID: 34998888 DOI: 10.1016/j.ijbiomac.2021.12.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022]
Abstract
In this study, the magnetic chitosan biochar (MCB) was magnetized by chemical coprecipitation after loading chitosan with Schiff base reaction. The prepared MCB was used to remove amaranth dye in solution. The synthesized MCB was characterized to define its surface morphology and specific elements. The amaranth dye adsorption system was optimized by varying the contact time, pH, and initial concentration. The adsorption of MCB on amaranth dye was measured in a wide pH range. According to Zeta potential, the surface of MCB was positively charged in the acidic pH region, which was more conducive to the adsorption of anionic amaranth dye. In addition, the adsorption data was fitted with the pseudo-first-order model and Langmuir adsorption model and the maximum adsorption capacity reached 404.18 mg/g. The adsorption efficiency of MCB was still above 95% after three cycles of adsorption and desorption. The removal percentage in the real sample of amaranth dye by MCB was within 94.5-98.6% and the RSD was within 0.14-1.08%. The MCB adsorbent with advantages of being easy to prepare, easy to separate from solution after adsorption, has good adsorption performance for amaranth dye and is effective potential adsorbent to remove organic anionic dye in wastewater.
Collapse
Affiliation(s)
- Fang Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Long Li
- Henan Academy of Science, China
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Zhuoran Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiping Du
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
78
|
Pipíška M, Krajčíková EK, Hvostik M, Frišták V, Ďuriška L, Černičková I, Kaňuchová M, Conte P, Soja G. Biochar from Wood Chips and Corn Cobs for Adsorption of Thioflavin T and Erythrosine B. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1492. [PMID: 35208031 PMCID: PMC8876677 DOI: 10.3390/ma15041492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022]
Abstract
Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The kinetics studies revealed that adsorption on external surfaces was the rate-limiting step for the removal of TT on both WC and CC biochar, while intraparticle diffusion was the rate-limiting step for the adsorption of EB. Maximal experimental adsorption capacities Qmaxexp of TT reached 182 ± 5 (WC) and 45 ± 2 mg g-1 (CC), and EB 12.7 ± 0.9 (WC) and 1.5 ± 0.4 mg g-1 (CC), respectively, thereby indicating a higher affinity of biochars for TT. The adsorption mechanism was found to be associated with π-π interaction, hydrogen bonding, and pore filling. Application of the innovative dynamic approach based on fast-field-cycling NMR relaxometry indicates that variations in the retention of water-soluble dyes could be explained by distinct water dynamics in the porous structures of WC and CC. The obtained results suggest that studied biochars will be more effective in adsorbing of cationic than anionic dyes from contaminated effluents.
Collapse
Affiliation(s)
- Martin Pipíška
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O. Box 9, SK-918 43 Trnava, Slovakia; (E.K.K.); (M.H.); (V.F.)
| | - Eva Klára Krajčíková
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O. Box 9, SK-918 43 Trnava, Slovakia; (E.K.K.); (M.H.); (V.F.)
| | - Milan Hvostik
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O. Box 9, SK-918 43 Trnava, Slovakia; (E.K.K.); (M.H.); (V.F.)
| | - Vladimír Frišták
- Department of Chemistry, Faculty of Education, Trnava University in Trnava, Priemyselná 4, P.O. Box 9, SK-918 43 Trnava, Slovakia; (E.K.K.); (M.H.); (V.F.)
| | - Libor Ďuriška
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, J. Bottu 25, SK-917 24 Trnava, Slovakia; (L.Ď.); (I.Č.)
| | - Ivona Černičková
- Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, J. Bottu 25, SK-917 24 Trnava, Slovakia; (L.Ď.); (I.Č.)
| | - Mária Kaňuchová
- Institute of Earth Resources, Faculty of Mining, Ecology, Process Control and Geotechnologies, Technical University of Košice, Park Komenského 19, SK-042 00 Košice, Slovakia;
| | - Pellegrino Conte
- Department of Agricultural, Food and Forestry Science, University of Palermo, 90128 Palermo, Italy;
| | - Gerhard Soja
- Energy Department, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria;
- Institute for Chemical and Energy Engineering, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|
79
|
Aminated magnetic polymeric resin for removal of anthraquinone and azo dyes from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
80
|
Sridhar A, Ponnuchamy M, Kapoor A, Prabhakar S. Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127432. [PMID: 34688000 DOI: 10.1016/j.jhazmat.2021.127432] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/02/2021] [Indexed: 05/07/2023]
Abstract
Industrial contaminants such as dyes and intermediates are released into water bodies, making the water unfit for human use. At the same time large amounts of food wastes accumulate near the work places, residential complexes etc. polluting the air due to putrefaction. The need of the hour lies in finding innovative solutions for dye removal from wastewater streams. In this context, the article emphasizes adoption or conversion of food waste materials, an ecological nuisance, as adsorbents for the removal of dyes from wastewaters. Adsorption, being a well-established technique, the review critically examines the specific potential of food waste constituents as dye adsorbents. The efficacy of food waste-based adsorbents is examined, besides addressing the possible adsorption mechanisms and the factors affecting phenomenon such as pH, temperature, contact time, adsorbent dosage, particle size, and ionic strength. Integration of information and communication technology approaches with adsorption isotherms and kinetic models are emphasized to bring out their role in improving overall modeling performance. Additionally, the reusability of adsorbents has been highlighted for effective substrate utilization. The review makes an attempt to stress the valorization of food waste materials to remove dyes from contaminated waters thereby ensuring long-term sustainability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
81
|
Kabir MM, Akter MM, Khandaker S, Gilroyed BH, Didar-ul-Alam M, Hakim M, Awual MR. Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
83
|
Subaihi A, Naglah AM. Facile synthesis and characterization of Fe2O3 nanoparticles using L-lysine and L-serine for efficient photocatalytic degradation of methylene blue dye. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
84
|
Zhang F, Xiao X, Xiao Y. In situ synthesis of novel type Ⅱ BiOCl/CAU-17 2D/2D heterostructures with enhanced photocatalytic activity. Dalton Trans 2022; 51:10992-11004. [DOI: 10.1039/d2dt01489k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type Ⅱ BiOCl/CAU-17 2D/2D heterostructures photocatalyst was synthesized by in-situ growth of ultrathin BiOCl on the surface of CAU-17 nanorods through a solvothermal process. The 2D/2D heterostructures endow...
Collapse
|
85
|
Islam A, Roy S, Teo SH, Khandaker S, Taufiq-Yap YH, Aziz AA, Monir MU, Rashid U, Vo DVN, Ibrahim ML, Znad H, Awual MR. Functional novel ligand based palladium(II) separation and recovery from e-waste using solvent-ligand approach. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
86
|
Wang C, Yang G, Zhang Y, Lu Z, Wang Y. Ionic liquid-assisted electrodeposition synthesis of CuO films. NEW J CHEM 2022. [DOI: 10.1039/d1nj03969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO films were prepared by ionic liquid assisted electrodeposition to be used as photocatalysts to degrade organic dyes.
Collapse
Affiliation(s)
- Chen Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan, 430074, P. R. China
| | - Gang Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan, 430074, P. R. China
| | - Yubo Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan, 430074, P. R. China
| | - Zicheng Lu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan, 430074, P. R. China
| | - Yongqian Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388# Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
87
|
Incebay H, Kilic A. Electrochemical determination of indigo carmine in food and water samples using a novel platform based on chiral amine-bis(phenolate) boron complex. DYES AND PIGMENTS 2022; 197:109921. [DOI: 10.1016/j.dyepig.2021.109921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
88
|
Khan J, Ali G, Samreen A, Ahmad S, Ahmad S, Egilmez M, Amin S, Khan N. Quantum-dot sensitized hierarchical NiO p–n heterojunction for effective photocatalytic performance. RSC Adv 2022; 12:32459-32470. [DOI: 10.1039/d2ra05657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
A facile and low-cost pseudo successive ionic layer adsorption and reaction technique was used to deposit cadmium sulfide quantum dots (CdS QDs) on hierarchical nanoflower NiO to form effective and intimate NiO/CdS, p–n heterojunctions.
Collapse
Affiliation(s)
- Junaid Khan
- Department of Physics, University of Peshawar, Peshawar, Pakistan
| | - Gohar Ali
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ayesha Samreen
- Department of Physics, University of Peshawar, Peshawar, Pakistan
| | - Shahbaz Ahmad
- Department of Physics, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
| | - Sarfraz Ahmad
- Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, 22500, Pakistan
| | - Mehmet Egilmez
- Department of Physics, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah, POBOX: 26666, United Arab Emirates
| | - Sadiq Amin
- Material Research Laboratory, Department of Physics, University of Peshawar 25120, Pakistan
| | - Nadia Khan
- Department of Physics, Khushal Khan Khattak University, Karak 27200, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
89
|
Khandaker S, Hossain MT, Saha PK, Rayhan U, Islam A, Choudhury TR, Awual MR. Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113782. [PMID: 34560463 DOI: 10.1016/j.jenvman.2021.113782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, naturally abundant and inexpensive bamboo was used to make cheaper activated charcoal for efficient encapsulation of toxic copper (Cu(II)) ion from wastewater. The functionalized bamboo charcoal-Layered double hydroxides (BC-LDHs) composite bio-adsorbent was prepared using co-precipitation method. The composite bio-adsorbent was exploited to eliminate Cu(II) ion with high sensitivity and selectivity from contaminated water. The adsorption parameters including the effect of pH, contact time, adsorbent dose, and effect of initial concentration were optimized in systematic way and the adsorption kinetics and isotherms were investigated for potential use in real sample treatment. The physicochemical properties and morphological structure of the adsorbent were examined using X-ray Diffraction, Scanning Electronic Microscopy, Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis to understand the Cu(II) ion adsorption mechanism. The adsorption results revealed that the BC-LDH could remove almost 100% of Cu(II) ion from aqueous solution at pH range between 3.0 and 6.0 within 30 min. The maximum monolayer adsorption capacity was determined to be 85.47 mg/g based on the Langmuir isotherm. The adsorption equilibrium data were well-fitted by the Langmuir isotherm model (R2 = 0.998) and the experimental kinetic data were supported by the pseudo-second order model (R2 = 0.999). The BC-LDH could be reused without losing its adsorption performance in several cycles after successful regeneration with 0.10 M HCl. The Cu(II) ion removal mechanism was postulated with intercalated ion exchange, surface precipitation and interaction between BC-LDH and surface functionalities. Therefore, the highly functional BC-LDH composite could be a promising adsorbent for efficient Cu(II) ion removal from wastewater.
Collapse
Affiliation(s)
- Shahjalal Khandaker
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Tofazzal Hossain
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh
| | - Palash Kumar Saha
- Department of Textile Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh
| | - Ummey Rayhan
- Department of Chemistry, Dhaka University of Engineering &Technology, Gazipur, 1707, Bangladesh
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Md Rabiul Awual
- Department of Chemical Engineering, Curtin University, GPO BoxU 1987, Perth, WA, 6845, Australia; Materials Science and Research Center, Japan Atomic Energy Agency (JAEA), Hyogo, 679-5148, Japan.
| |
Collapse
|
90
|
Wang C, Yuan Z, Sun Y, Yao X, Li R, Li S. Effect of Chronic Exposure to Textile Wastewater Treatment Plant Effluents on Growth Performance, Oxidative Stress, and Intestinal Microbiota in Adult Zebrafish ( Danio rerio). Front Microbiol 2021; 12:782611. [PMID: 34899664 PMCID: PMC8656261 DOI: 10.3389/fmicb.2021.782611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 01/30/2023] Open
Abstract
The ever-increasing production and processing of textiles will lead to greater risks of releasing pollutants into the environment. Textile wastewater treatment plants (TWTPs) effluent are an important source of persistent toxic pollutants in receiving water bodies. The effects of specific pollutants on organisms are usually studied under laboratory conditions, and therefore, comprehensive results are not obtained regarding the chronic combined effects of pollutants under aquatic environmental conditions. Thus, this study aimed to determine the combined effects of TWTP effluents on the growth performance, oxidative stress, inflammatory response, and intestinal microbiota of adult zebrafish (Danio rerio). Exposure to TWTP effluents significantly inhibited growth, exacerbated the condition factor, and increased the mortality of adult zebrafish. Moreover, markedly decreases were observed in the activities of antioxidant enzymes, such as CAT, GSH, GSH-Px, MDA, SOD, and T-AOC, mostly in the intestine and muscle tissues of zebrafish after 1 and 4 months of exposure. In addition, the results demonstrated that TWTP effluent exposure affected the intestinal microbial community composition and decreased community diversity. Slight changes were found in the relative abundance of probiotic Lactobacillus, Akkermansia, and Lactococcus in zebrafish guts after chronic TWTP effluent exposure. The chronic toxic effects of slight increases in opportunistic pathogens, such as Mycoplasma, Stenotrophomonas, and Vibrio, deserve further attention. Our results reveal that TWTP effluent exposure poses potential health risks to aquatic organisms through growth inhibition, oxidative stress impairment of the intestine and muscles, and intestinal microbial community alterations.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
91
|
Davies G, McGregor J. Hydrothermal Synthesis of Biomass-Derived Magnetic Carbon Composites for Adsorption and Catalysis. ACS OMEGA 2021; 6:33000-33009. [PMID: 34901651 PMCID: PMC8655907 DOI: 10.1021/acsomega.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of magnetic iron-carbon composites (Fe/C) from waste avocado seeds via hydrothermal carbonization (HTC) has been demonstrated for the first time. These materials are shown to be effective in adsorption and catalytic applications, with performances comparable to or higher than materials produced through conventional processing routes. Avocado seeds have been processed in high-temperature water (230 °C) at elevated pressure (30 bar at room temperature) in the presence of iron nitrate and iron sulfate, in a process mimicking natural coalification. Characterization of the synthesized material has been carried out by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), Fourier-transform infrared spectroscopy (FT-IR), magnetometry, and through surface area measurements. The supported iron particles are observed to be predominately magnetite, with an oxidized hematite surface region. The presence of iron catalyzes the formation of an extended, ordered polymeric structure in the avocado seed-derived carbon. The magnetic Fe/C has been demonstrated as an adsorbent for environmental wastewater treatment using methylene blue and indigo carmine. Kinetic analysis suggests that the adsorbates are chemisorbed, with the positive surface charge of Fe/C being preferential for indigo carmine adsorption (49 mg g-1). Additionally, Fe/C has been evaluated as a heterogeneous catalyst for the hydroalkoxylation of phenylacetylene with ethylene glycol to 2-benzyl-1,3-dioxolane. Product yields of 45% are obtained, with 100% regioselectivity to the formed isomer. The solid catalyst has the advantages of being prepared from a waste material and of easy removal after reaction via magnetic separation. These developments provide opportunities to produce carbon-based materials for a variety of high-value applications, potentially also including energy storage and biopharmaceuticals, from a wide range of lignocellulosic biomass feedstocks.
Collapse
Affiliation(s)
- Gareth Davies
- Department of Chemical and
Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - James McGregor
- Department of Chemical and
Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| |
Collapse
|
92
|
Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117795] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
93
|
Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides. NANOMATERIALS 2021; 11:nano11113051. [PMID: 34835815 PMCID: PMC8623791 DOI: 10.3390/nano11113051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
The development of new materials for performing photocatalytic processes to remove contaminants is an interesting and important research line due to the ever-increasing number of contaminants on our planet. In this sense, we developed a layered double hydroxide material based on Zn and Cr, which was transformed into the corresponding oxide by heat treatment at 500 °C. Both materials were widely characterized for their elemental composition, and structural, morphological, optical and textural properties using several experimental techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, UV-vis spectroscopy and physisorption techniques. In addition, the photocatalytic activity of both materials was analysed. The calcined one showed interesting photocatalytic activity in photodegradation tests using crystal violet dye. The operational parameters for the photocatalytic process using the calcined material were optimised, considering the pH, the initial concentration of the dye, the catalyst load, and the regeneration of the catalyst. The catalyst showed good photocatalytic activity, reaching a degradation of 100% in the optimised conditions and showing good performance after five photodegradation cycles.
Collapse
|
94
|
Hoa NV, Minh NC, Cuong HN, Dat PA, Nam PV, Viet PHT, Phuong PTD, Trung TS. Highly Porous Hydroxyapatite/Graphene Oxide/Chitosan Beads as an Efficient Adsorbent for Dyes and Heavy Metal Ions Removal. Molecules 2021; 26:molecules26206127. [PMID: 34684704 PMCID: PMC8538019 DOI: 10.3390/molecules26206127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively.
Collapse
Affiliation(s)
- Nguyen Van Hoa
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
- Correspondence:
| | - Nguyen Cong Minh
- Institute for Biotechnology and Environment, Nha Trang University, Nha Trang 650000, Vietnam;
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot 55000, Vietnam;
| | - Pham Anh Dat
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| | - Pham Viet Nam
- Faculty of Fishery, Ho Chi Minh City University of Food Industry, Ho Chi Minh City 70000, Vietnam;
| | | | - Pham Thi Dan Phuong
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| | - Trang Si Trung
- Faculty of Food Technology, Nha Trang University, Nha Trang 650000, Vietnam; (P.A.D.); (P.T.D.P.); (T.S.T.)
| |
Collapse
|
95
|
Enhanced Visible Light Photocatalytic Degradation of Methylene Blue by CdS-ZnS-BiPO4 Nanocomposites Prepared by a Solvent-Assisted Heating Method. Catalysts 2021. [DOI: 10.3390/catal11091095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, a ternary CdS-ZnS-BiPO4 nanocomposite, synthesized by a solvent-assisted heating method, demonstrated the highest visible light-induced photocatalysis towards the degradation of methylene blue (MB) when comparing with BiPO4, CdS-BiPO4, and ZnS-BiPO4. Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) were used to characterize the prepared nanocomposites. From UV-DRS results, the energy band gap of the prepared BiPO4 structures was 4.51 eV. When CdS nanoparticles were deposited on BiPO4 surface by a solvent-assisted heating method, the prepared nanocomposites exhibited visible light-responsive photocatalytic degradation toward MB (20 ppm). At a molar ratio of Cd to Zn as 1:7, the prepared CdS-ZnS-BiPO4 nanocomposites exhibited the best photocatalytic activity in degrading 95% of MB dyes, out-performing pure BiPO4, CdS-BiPO4, and ZnS-BiPO4 due to its enhanced charge separation efficiency and the lowered carrier recombination from the efficient p-n junction of unprecedented ternary composites. The investigations on mechanism conclude that the major reactive species responsible for MB degradation are holes and oxygen radicals. For practicality, the degradation efficiency for different dyestuff (Fast Green FCF, Rhodamine 6G, Acid Blue 1, methyl orange, and methyl red) degradation in the different water matrix samples (pond water, seawater, and lake water) by the prepared CdS-ZnS-BiPO4 nanocomposites was evaluated.
Collapse
|
96
|
Ghodsi J, Rafati AA, Joghani RA. Highly Efficient Degradation of Linear Alkylbenzene Sulfonate Surfactant by MIL‐53 (Fe) Metal Organic Framework Derived Electro‐Fenton Applicable in Water Treatments. ChemistrySelect 2021. [DOI: 10.1002/slct.202101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javad Ghodsi
- Department of Physical Chemistry Faculty of Chemistry Bu-Ali Sina University, P.O.Box 65174 Hamedan Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry Faculty of Chemistry Bu-Ali Sina University, P.O.Box 65174 Hamedan Iran
| | - Roghaiyeh Asadpour Joghani
- Department of Physical Chemistry Faculty of Chemistry Bu-Ali Sina University, P.O.Box 65174 Hamedan Iran
| |
Collapse
|
97
|
Preparation and Characterization of New CrFeO3-Carbon Composite Using Environmentally Friendly Methods to Remove Organic Dye Pollutants from Aqueous Solutions. CRYSTALS 2021. [DOI: 10.3390/cryst11080960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Globally, environmental pollution is an important issue. Various pollutants present in water resources, such as bacteria, heavy-metal ions, and organic pollutants, cause serious problems to the environment, animals, plants, and human health. Among the water resources, pollutants, dyestuff, which is discharged from dyeing, textile, and other industrial processes, is an important class of pollutants. Removing these dye pollutants from water resources and wastewater is vital and important due to their toxicity. In this work, a CrFeO3-carbon nanotube (CNT) adsorbent was synthesized using environmentally friendly methods. The synthesized CrFeO3-CNT adsorbent was characterized stoichiometrically, spectroscopically, and morphologically. The synthesized CrFeO3-CNT adsorbent was tested for the removal of two dyes: Methyl violet 2B (MV) and Azocarmine G2 (AC) from an aqueous solution. Crushing CrFeO3 composite with multi-walled fullerene CNT to prepare CrFeO3-CNT adsorbent improved the adsorption performance of free multi-walled fullerene CNT towards MV dye by 30% and towards AC dye by 33.3%.
Collapse
|
98
|
An Environmentally Friendly Method for Removing Hg(II), Pb(II), Cd(II) and Sn(II) Heavy Metals from Wastewater Using Novel Metal–Carbon-Based Composites. CRYSTALS 2021. [DOI: 10.3390/cryst11080882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid economic and industrial development and population growth have made water contamination a serious environmental problem and a major threat to public health worldwide. Heavy metals are extensively used in numerous industrial applications and are some of the most important environmental contaminants. The impacts of heavy metals on the health of humans, animals, and plants make their removal from wastewater and water resources an important and vital issue. In this study, a simple and environmentally friendly method is proposed for the synthesis of a ZnFe2O4-carbon nanotube (CNT) adsorbent material. SEM/EDX analysis and Fourier-transform infrared spectrophotometry (FTIR) are used to characterize the synthesized adsorbent material. We test the synthesized adsorbent material’s ability to recover four heavy metals (Hg(II), Pb(II), Cd(II) and Sn(II) ions) from an aqueous solution. We show that crushing fullerene CNTs with the ZnFe2O4 composite improves the adsorption properties of free fullerene CNTs towards the investigated heavy metal ions by 25%.
Collapse
|
99
|
Vadivel VK, Cikurel H, Mamane H. Removal of Indigo Dye by CaCO 3/Ca(OH) 2 Composites and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vinod Kumar Vadivel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Cikurel
- Environmental Engineering Services, 24 Shapira Street, Bat-Yam 5932107, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
100
|
Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146255] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural dyes have been used from ancient times for multiple purposes, most importantly in the field of textile dying. The increasing demand and excessive costs of natural dye extraction engendered the discovery of synthetic dyes from petrochemical compounds. Nowadays, they are dominating the textile market, with nearly 8 × 105 tons produced per year due to their wide range of color pigments and consistent coloration. Textile industries consume huge amounts of water in the dyeing processes, making it hard to treat the enormous quantities of this hazardous wastewater. Thus, they have harmful impacts when discharged in non-treated or partially treated forms in the environment (air, soil, plants and water), causing several human diseases. In the present work we focused on synthetic dyes. We started by studying their classification which depended on the nature of the manufactured fiber (cellulose, protein and synthetic fiber dyes). Then, we mentioned the characteristics of synthetic dyes, however, we focused more on their negative impacts on the ecosystem (soil, plants, water and air) and on humans. Lastly, we discussed the applied physical, chemical and biological strategies solely or in combination for textile dye wastewater treatments. Additionally, we described the newly established nanotechnology which achieves complete discharge decontamination.
Collapse
|