51
|
Mirocki A, Lopresti M, Palin L, Conterosito E, Sikorski A, Milanesio M. Exploring the molecular landscape of multicomponent crystals formed by naproxen drug and acridines. CrystEngComm 2022. [DOI: 10.1039/d2ce00890d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three cocrystals were obtained by naproxen and acridines, optimizing the yield to more than 99% with LAG. The two structures by solution show a host-guest structure, while that by LAG a layered one, with no interconversion between parent structures.
Collapse
Affiliation(s)
- Artur Mirocki
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Mattia Lopresti
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Luca Palin
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
- Nova Res s.r.l., Via D. Bello 3, 28100 Novara, Italy
| | - Eleonora Conterosito
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Artur Sikorski
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marco Milanesio
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
52
|
Copper(II) complexes derived from furfurylamine and thiophenyl ligands: cytotoxicity, antioxidant properties, and molecular docking assessments. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021; 14:53. [PMID: 35056949 PMCID: PMC8781941 DOI: 10.3390/pharmaceutics14010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has emerged as a promising treatment strategy in gene therapy, especially against diseases such as cancer. Gold nanoparticles (AuNPs) are regarded as favorable gene delivery vehicles due to their low toxicity, ease of synthesis and ability to be functionalized. This study aimed to prepare functionalized AuNPs (FAuNPs) and evaluate their folate-targeted and nontargeted pCMV-Luc-DNA delivery in breast cancer cells in vitro. CS was added to induce stability and positive charges to the AuNPs (Au-CS), histidine (Au-CS-His) to enhance endosomal escape and folic acid for folate-receptor targeting (Au-CS-FA-His). The FAuNP:pDNA nanocomplexes possessed favorable sizes (<135 nm) and zeta potentials (<-20 mV), strong compaction efficiency and were capable of pDNA protection against nuclease degradation. These nanocomplexes showed minimal cytotoxicity (>73% cell viability) and enhanced transgene activity. The influence of His was notable in the HER2 overexpressing SKBR3 cells, which produced higher gene expression. Furthermore, the FA-targeted nanocomplexes enhanced receptor-mediated endocytosis, especially in MCF-7 cells, as confirmed by the receptor competition assay. While the role of His may need further optimization, the results achieved suggest that these FAuNPs may be suitable gene delivery vehicles for breast cancer therapeutics.
Collapse
Affiliation(s)
- Calrin Joseph
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Sooboo Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| |
Collapse
|
54
|
Çeşme M, Muslu H, Tumer M, Güngör Ö, Altunbek M, Culha M, Golcu A. New metal-based drugs: spectral, electrochemical, DNA-binding and anticancer activity properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2015385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Harun Muslu
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Afsin Vocational High School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Tumer
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Aysegul Golcu
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul
| |
Collapse
|
55
|
Sochacka J, Pacholczyk M, Jeleń M, Morak-Młodawska B, Pluta K. Interaction of new tri-, tetra-, and pentacyclic azaphenothiazine derivatives with calf thymus DNA: Spectroscopic and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120105. [PMID: 34245970 DOI: 10.1016/j.saa.2021.120105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Azaphenothiazines (AZA), modified phenothiazine derivatives, have been reported to exhibit a wide spectrum of biological activities, including anticancer activities, but the mechanisms of their interactions with biomolecules are not fully recognized. In this work, the mode of interaction of selected AZA with calf thymus DNA was investigated using UV-Vis absorption, fluorescence spectroscopy (competition experiment with ethidium bromide, quenching of fluorescence) and molecular docking. The investigated AZA represent dipyrido[3,4-b;3'4'-e][1,4]thiazine, quino[3,2-b]benzo[1,4]thiazine and diquino[3,2-b;2',3'-e][1,4]thiazine possessing tricyclic, tetracyclic and pentacyclic ring system with the additional N,N-dimethylaminopropyl group at the nitrogen atom in the 1,4 thiazine ring. The results obtained from spectroscopic studies showed that AZA bind to DNA by insertion of a fragment of the fused rings system between the base pair stack in the double helix of DNA. In addition, the number of rings in the AZA structures seemed to be related to the strength of the interaction, because pentacyclic AZA (binding constant Kb = 6.31 × 106 L/mol) demonstrated 10-fold higher affinity towards DNA than the tetracyclic AZA and about 100-fold higher affinity than that of tricyclic AZA. The molecular docking results showed that the binding mode of AZA to DNA helix was an intercalation mode with the partial insertion of one planar part of the AZA structure (the pyridine or quinoline ring) into the neighboring bases of one of the DNA chains with additional hydrogen bonding with the minor groove through the positively charged N,N-dimethylaminopropyl group. Chemical potential (μ), chemical hardness (ƞ), electronegativity (χ) and the value of electrons transferred from one system to another (ΔN) calculated from the HOMO and LUMO energies by the density functional theory method indicated that AZA acted as the electron acceptors to the DNA bases.
Collapse
Affiliation(s)
- Jolanta Sochacka
- Department of General and Inorganic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Marcin Pacholczyk
- Silesian University of Technology, Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Beata Morak-Młodawska
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
56
|
Copper (II) complexes derived from pyridoxal: Structural correlations, cytotoxic activities, and molecular docking. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
57
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
58
|
Nemati L, Keypour H, Shahabadi N, Hadidi S, William Gable R. Synthesis, characterization and DNA interaction of a novel Pt(II) macroacyclic Schiff base complex containing the piperazine moiety and its cytotoxicity and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Pickens RN, Judd GL, White JK. Photo-uncaging a Ru(II) intercalator via photodecomposition of a bridged Mn(I) photoCORM. Chem Commun (Camb) 2021; 57:7713-7716. [PMID: 34259683 DOI: 10.1039/d1cc02371c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(ii) intercalating complex capped with a Mn(i) photoCORM allows for a new mode of DNA intercalator delivery. The steric bulk of the Mn(i) photoCORM inhibits intercalation in the dark, and visible light irradiation (470 nm) dissociates the photoCORM, allowing for DNA intercalation of the Ru(ii) complex.
Collapse
Affiliation(s)
- Rachael N Pickens
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Grace L Judd
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Jessica K White
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
60
|
Fu L, Liu G, Zhao D, Yuan L, Lu K. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119673. [PMID: 33751958 DOI: 10.1016/j.saa.2021.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.
Collapse
Affiliation(s)
- Linna Fu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Guangbin Liu
- Chemical College, Zhengzhou University, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
61
|
Ganguly S, Murugan NA, Ghosh D, Narayanaswamy N, Govindaraju T, Basu G. DNA Minor Groove-Induced cis- trans Isomerization of a Near-Infrared Fluorescent Probe. Biochemistry 2021; 60:2084-2097. [PMID: 34142803 DOI: 10.1021/acs.biochem.1c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of small molecules that exhibit turn-on far-red or near-infrared (NIR) fluorescence upon DNA binding and understanding how they bind DNA are important for imaging and bioanalytical applications. Here we report the DNA-bound structure and the DNA binding mechanism of quinone cyanine dithiazole (QCy-DT), a recently reported AT-specific turn-on NIR fluorescent probe for double-stranded DNA. The nuclear magnetic resonance (NMR)-derived structure showed minor groove binding but no specific ligand-DNA interactions, consistent with an endothermic and entropy-driven binding mechanism deduced from isothermal titration calorimetry. Minor groove binding is typically fast because it minimally perturbs the DNA structure. However, QCy-DT exhibited unusually slow DNA binding. The cyanine-based probe is capable of cis-trans isomerization due to overlapping methine bridges, with 16 possible slowly interconverting cis/trans isomers. Using NMR, density functional theory, and free energy calculations, we show that the DNA-free and DNA-bound environments of QCy-DT prefer distinctly different isomers, indicating that the origin of the slow kinetics is a cis-trans isomerization and that the minor groove preferentially selects an otherwise unstable cis/trans isomer of QCy-DT. Flux analysis showed the conformational selection pathway to be the dominating DNA binding mechanism at low DNA concentrations, which switches to the induced fit pathway at high DNA concentrations. This report of cis/trans isomerization of a ligand, upon binding the DNA minor groove, expands the prevailing understanding of unique discriminatory powers of the minor groove and has an important bearing on using polymethine cyanine dyes to probe the kinetics of molecular interactions.
Collapse
Affiliation(s)
- Sudakshina Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| |
Collapse
|
62
|
Arylamine Analogs of Methylene Blue: Substituent Effect on Aggregation Behavior and DNA Binding. Int J Mol Sci 2021; 22:ijms22115847. [PMID: 34072560 PMCID: PMC8198855 DOI: 10.3390/ijms22115847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
The synthesis of new phenothiazine derivatives, analogs of Methylene Blue, is of particular interest in the design of new drugs, as well as in the development of a new generation of agents for photodynamic therapy. In this study, two new derivatives of phenothiazine, i.e., 3,7-bis(4-aminophenylamino)phenothiazin-5-ium chloride dihydrochloride (PTZ1) and 3,7-bis(4-sulfophenylamino)phenothiazin-5-ium chloride (PTZ2), are synthesized for the first time and characterized by NMR, IR spectroscopy, HRMS and elemental analysis. The interaction of the obtained compounds PTZ1 and PTZ2 with salmon sperm DNA is investigated. It is shown by UV-Vis spectroscopy and DFT calculations that substituents in arylamine fragments play a crucial role in dimer formation and interaction with DNA. In the case of PTZ1, two amine groups promote H-aggregate formation and DNA interactions through groove binding and intercalation. In the case of PTZ2, sulfanilic acid fragments prevent any dimer formation and DNA binding due to electrostatic repulsion. DNA interaction mechanisms are studied and confirmed by UV-vis and fluorescence spectroscopy in comparison with Methylene Blue. The obtained results open significant opportunities for the development of new drugs and photodynamic agents.
Collapse
|
63
|
Sonkar C, Malviya N, Sinha N, Mukherjee A, Pakhira S, Mukhopadhyay S. Selective anticancer activities of ruthenium(II)-tetrazole complexes and their mechanistic insights. Biometals 2021; 34:795-812. [PMID: 33900532 DOI: 10.1007/s10534-021-00308-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Ruthenium-based metallotherapeutics is an interesting alternative for platinum complexes acting as anticancer agents after the entry of KP1019, NAMI-A, and TLD1339 in clinical trials. Herein, we have synthesized three new arene ruthenium(II)-tetrazole complexes viz. [Ru2(η6-p-cymene)2(2-pytz)2Cl2] (1), [Ru2(η6-p-cymene)2(3-pytz)Cl3] (2), [Ru2(η6-p-cymene)2(4-pytz)Cl3] (3) [2-pytzH = 2-pyridyl tetrazole; 3-pytzH = 3-pyridyl tetrazole; 4-pytzH = 4-pyridyl tetrazole] which have been characterized by different analytical techniques. To aid the understanding of the complex formation, reactions of the arene ruthenium(II) dimer with tetrazoles were investigated using the first principles-based Density Functional Theory (DFT) B3LYP method. Electronic structures, equilibrium geometries of the reactants and products with the first-order saddle points, reactions mechanism, the changes of enthalpy (∆H) and free energy (∆G), chemical stability, and reaction barriers of the complexes were computed using the B3LYP DFT approach. The in vitro cytotoxicity of these complexes was investigated by MTT assay on different cancer cell lines which reveal complex 2 as the most significant cytotoxic agent toward the HeLa cell line. The complexes have also shown a strong binding affinity towards CT-DNA and albumin proteins (HSA and BSA) as analyzed through spectroscopic techniques. Investigation of the mechanism of cell death by complex 2 was further performed by various staining techniques, flow cytometry, and gene expression analysis by RT-PCR. Inhibition of cell migration study has been also revealed the possibility of complex 2 to act as a prospective anti-metastatic agent.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Novina Malviya
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India
| | - Nilima Sinha
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India
| | - Attreyee Mukherjee
- Department of Chemistry, Ananda Mohan College, Kolkata, WB, 700 009, India
| | - Srimanta Pakhira
- Department of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Indore, MP, 453552, India.
- Department of Physics, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
- Centre for Advanced Electronics, Indian Institute of Technology Indore (IITI), Simrol, Khandwa Road, Indore, MP, 453552, India.
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
64
|
Vardevanyan PO, Antonyan AP, Parsadanyan MA, Shahinyan MA, Petrosyan NH. Study of interaction of methylene blue with DNA and albumin. J Biomol Struct Dyn 2021; 40:7779-7785. [PMID: 33729082 DOI: 10.1080/07391102.2021.1902397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interaction of thiazine dye methylene blue (MB) with Calf thymus DNA and human blood serum albumin (HSA) has been studied. MB was revealed to stabilize the native structure of DNA and HSA, since the melting temperature of the complexes is shifted to higher values in relation to that of both macromolecules in pure state. It was also revealed that the absorption and fluorescence spectra of the MB-DNA complexes change significantly, while those of MB-albumin complexes do not change noticeably. Analysis of the obtained data allows to conclude that MB binds to DNA by two modes, including intercalation and electrostatic mechanisms. In the case of HSA, the main binding mode of MB, conditioning the stabilization of the protein native structure, is the electrostatic mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Poghos O Vardevanyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Ara P Antonyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Marine A Parsadanyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Mariam A Shahinyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| | - Nara H Petrosyan
- Faculty of Biology, Department of Biophysics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
65
|
Gamov GA. Processing of the spectrofluorimetric data using the graphical methods and the maximum likelihood approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119334. [PMID: 33360207 DOI: 10.1016/j.saa.2020.119334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The present work describes the calculation of the binding constants from spectrofluorimetric data using simple graphical methods and specialized software implementing the maximum likelihood approach. The following popular cases are analyzed: 1) protein-small molecule; 2) protein-metal complex; 3) DNA-small molecule; 4) DNA-metal complex interactions. The inability of graphical plots to return the correct results except for the simplest situation (single reaction with a non-fluorescent product) is demonstrated. The possibility of determining the most probable stoichiometric model using the maximum likelihood estimation (LSQ as its special case) is discussed as well as the limitations.
Collapse
Affiliation(s)
- G A Gamov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia.
| |
Collapse
|
66
|
Kolomeitseva GL, Babosha AV, Ryabchenko AS, Tsavkelova EA. Megasporogenesis, megagametogenesis, and embryogenesis in Dendrobium nobile (Orchidaceae). PROTOPLASMA 2021; 258:301-317. [PMID: 33070242 DOI: 10.1007/s00709-020-01573-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The orchid reproductive strategy, including the formation of numerous tiny seeds, is achieved by the elimination of some stages in the early plant embryogenesis. In this study, we documented in detail the formation of the maternal tissues (the nucellus and integuments), the structures of female gametophyte (megaspores, chalazal nuclei, synergids, polar nuclei), and embryonic structures in Dendrobium nobile. The ovary is unilocular, and the ovule primordia are formed in the placenta before the pollination. The ovule is medionucellate: the two-cell postament and two rows of nucellar cells persist until the death of the inner integument. A monosporic eight-nucleated embryo sac is developed. After the fertilization, the most common central cell nucleus consisted of two joined but not fused polar nuclei. The embryogenesis of D. nobile is similar to the Caryophyllad-type, and it is characterized by the formation of all embryo cells from the apical cell (ca) of a two-celled proembryo. The only exception is that there is no formation of the radicle and/or cotyledons. The basal cell (cb) does not divide during the embryogenesis, gradually transforming into the uninuclear suspensor. Then the suspensor goes through three main stages: it starts with an unbranched cell within the embryo sac, followed by a branched stage growing into the integuments, and it ends with the cell death. The stage-specific development of the female gametophyte and embryo of D. nobile is discussed.
Collapse
Affiliation(s)
- Galina L Kolomeitseva
- N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Botanicheskaya 4, Moscow, Russia, 127276
| | - Alexander V Babosha
- N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Botanicheskaya 4, Moscow, Russia, 127276
| | - Andrey S Ryabchenko
- N.V. Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Botanicheskaya 4, Moscow, Russia, 127276
| | - Elena A Tsavkelova
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 1-12 Lenin's Hills, Moscow, Russia, 119234.
| |
Collapse
|
67
|
Mohammad M, Al Rasid Gazi H, Pandav K, Pandya P, Islam MM. Evidence for Dual Site Binding of Nile Blue A toward DNA: Spectroscopic, Thermodynamic, and Molecular Modeling Studies. ACS OMEGA 2021; 6:2613-2625. [PMID: 33553879 PMCID: PMC7859944 DOI: 10.1021/acsomega.0c04775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 05/31/2023]
Abstract
Binding of Nile Blue (NB) with calf thymus DNA has been studied using molecular modeling, spectroscopic, and thermodynamic techniques. Our study revealed that NB binds to the DNA helix by two types of modes (groove binding and intercalation) simultaneously. The thermodynamic study showed that the overall binding free energy is a combination of several negative and positive free energy changes. The binding was favored by negative enthalpy and positive entropy changes (due to the release of water from the DNA helix). The docking study validated all experimental evidence and showed that NB binds to a DNA minor groove at low concentrations and switches to intercalation mode at higher concentrations.
Collapse
Affiliation(s)
- Mukti Mohammad
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| | - Harun Al Rasid Gazi
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| | - Kumud Pandav
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Prateek Pandya
- Amity
Institute of Forensic Sciences, Amity University, Noida 201313, Uttar Pradesh, India
| | - Md. Maidul Islam
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| |
Collapse
|
68
|
Karami K, Jamshidian N, Zakariazadeh M, Momtazi-Borojeni AA, Abdollahi E, Amirghofran Z, Shahpiri A, Nasab AK. Experimental and theoretical studies of Palladium-hydrazide complexes' interaction with DNA and BSA, in vitro cytotoxicity activity and plasmid cleavage ability. Comput Biol Chem 2021; 91:107435. [PMID: 33493981 DOI: 10.1016/j.compbiolchem.2021.107435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
New palladium complexes with general formula trans-[Pd(L)2(OAc)2] (1,2), (L = Benzhydrazide and 2-Furoic hydrazide) have been synthesized and characterized with various methods including elemental analysis, FT-IR, 1HNMR and mass spectroscopy. Afterward their interactions with bovine serum albumin and calf thymus deoxyribonucleic acid have been investigated by UV-vis absorption, fluorescence emission and circular dichroism spectroscopy. Also, site-selective replacement experiments with site probes have been carried out. Analysis of fluorescence spectrum indicated static quenching mechanism. Spectroscopic measurements for DNA binding showed the groove binding to DNA for both complexes. Furthermore, cytotoxicity studies of complexes and cis-platin have been done against colon carcinoma (CT26) and breast cancer (4T1) cell lines. Evaluation of complexes (1) and (2) on induction of apoptosis in CT26 cells has been done. Finally, plasmid cleavage ability of (1) and (2) was investigated by gel electrophoresis that indicate the more activity of (1) than (2).
Collapse
Affiliation(s)
- Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/ 83111, Iran.
| | - Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/ 83111, Iran.
| | - Mostafa Zakariazadeh
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Amirghofran
- Immunology Department and Autoimmune Diseases Research Center. Shiraz University of Medical Sciences, Shiraz. Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Akram Kazemi Nasab
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
69
|
Tahara H, Nemoto S, Yamagiwa Y, Haranosono Y, Kurata M. Investigation of in vivo unscheduled DNA synthesis in rabbit corneas following instillation of genotoxic agents. Cutan Ocul Toxicol 2021; 40:26-36. [PMID: 33461361 DOI: 10.1080/15569527.2021.1874006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE An unscheduled DNA synthesis (UDS) test is used for in vitro or in vivo genotoxicity evaluation. The UDS test with hepatocytes is well established; however, drug exposure levels at the application site for topically administered drugs (e.g. ophthalmic drugs) often exceed the exposure levels for systemic administration. To establish in vivo genotoxicity on the ocular surface, we performed the UDS test using rabbit corneas from eyes subjected to instillation of genotoxic agents. MATERIALS AND METHODS Five genotoxic agents - 1,1'-dimethyl-4,4'-bipyridinium dichloride (paraquat); acridine orange; ethidium bromide; acrylamide; and 4-nitroquinoline 1-oxide (4-NQO) - were instilled once onto both eyes of male Japanese white rabbits. Physiological saline or a general vehicle for ophthalmic solution were instilled as the negative controls. Dimethyl sulfoxide was instilled as the vehicle control. Isolated corneas were incubated with tritium-labelled thymidine and the number of sparsely labelled cells (SLCs, cells undergoing UDS) was counted by autoradiography. RESULTS Statistically significant increases in the mean appearance rates of SLCs in the corneal epithelium were noted in paraquat-, acridine orange-, ethidium bromide-, and 4-NQO-treated eyes compared with those of the controls. These increases generally appeared in a dose-dependent manner. Acrylamide did not induce an increase in the mean appearance rates of SLCs, presumably because it caused the generation of fewer metabolites in the cornea. CONCLUSIONS UDS tests revealed DNA damage in the cornea epitheliums treated with well-known genotoxic agents. These results suggest that the UDS test is one of the useful tools for the assessment of in vivo genotoxicity on the ocular surface in the development of ophthalmic drugs.
Collapse
Affiliation(s)
- Haruna Tahara
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Shingo Nemoto
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Yoshinori Yamagiwa
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Yu Haranosono
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| | - Masaaki Kurata
- Research & Development Division, Senju Pharmaceutical Co. Ltd., Kobe, Hyogo, Japan
| |
Collapse
|
70
|
Galassi R, Luciani L, Gambini V, Vincenzetti S, Lupidi G, Amici A, Marchini C, Wang J, Pucciarelli S. Multi-Targeted Anticancer Activity of Imidazolate Phosphane Gold(I) Compounds by Inhibition of DHFR and TrxR in Breast Cancer Cells. Front Chem 2021; 8:602845. [PMID: 33490036 PMCID: PMC7821381 DOI: 10.3389/fchem.2020.602845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022] Open
Abstract
A class of phosphane gold(I) compounds, made of azoles and phosphane ligands, was evaluated for a screening on the regards of Breast Cancer cell panels (BC). The compounds possess N-Au-P or Cl-Au-P bonds around the central metal, and they differ for the presence of aprotic or protic polar groups in the azoles and/or the phosphane moieties to tune their hydrophilicity. Among the six candidates, only the compounds having the P-Au-N environment and not displaying neither the hydroxyl nor carboxyl groups in the ligands were found active. The compounds were screened by MTT tests in SKBR3, A17, and MDA-MB231 cancer cells, and two compounds (namely the 4,5-dicyano-imidazolate-1yl-gold(I)-(triphenylphosphane, 5, and 4,5-dichloro-imidazolate-1yl-gold(I)-triphenylphosphane, 6) were found very cytotoxic, with the most active with an IC50 value of 3.46 μM in MDA-MB231 cells. By performing enzymatic assays in the treated cells lysates, the residual enzymatic activity of dihydrofolate reductase (DHFR) has been measured after cell treatment for 4 or 12 h in comparison with control cells. Upon 12 h of treatment, the activity of DHFR was significantly reduced in both SKBR3 and A17 cells by compounds 5 and 6, but not in human MDA-MB231 cells; interestingly, it was found remarkably high after 4 h of treatment, revealing a time dependence for the DHFR enzymatic assays. The DHFR inhibition data have been compared to those for the thioredoxin reductase (TrxR), the most recognized molecular target for gold compounds. For this latter, similar residual activities (i.e., 37 and 49% for the match of SKBR3 cells and compound 5 or 6, respectively) were found. Binding studies on the regards of ct-DNA (calf-thymus-DNA) and of plasma transporters proteins, such as BSA (bovine serum albumin) and ATF (apo transferrin), were performed. As expected for gold compounds, the data support strong binding to proteins (Ksv values range: 1.51 ÷ 2.46 × 104 M−1) and a weaker interaction with ct-DNA's minor groove (Ksv values range: 1.55 ÷ 6.12 × 103 M−1).
Collapse
Affiliation(s)
- Rossana Galassi
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Lorenzo Luciani
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Valentina Gambini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giulio Lupidi
- School of Drugs and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
71
|
Alves JEF, de Oliveira JF, de Lima Souza TRC, de Moura RO, de Carvalho Júnior LB, Alves de Lima MDC, de Almeida SMV. Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. Int J Biol Macromol 2021; 170:622-635. [PMID: 33359805 DOI: 10.1016/j.ijbiomac.2020.12.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
In this study, we report the synthesis of eight novel indole-thiazole and indole-thiazolidinone derivatives, as well as their ability to interact with DNA, analysed through the UV-vis absorption, fluorescence, circular dichroism (CD), viscosity techniques and molecular docking. The ctDNA interaction analysis demonstrated different spectroscopic effects and the affinity constants (Kb) calculated by the UV-vis absorption method were between 2.08 × 105 and 6.99 × 106 M-1, whereas in the fluorescence suppression constants (Ksv) ranged between 0.38 and 0.77 × 104 M-1 and 0.60-7.59 × 104 M-1 using Ethidium Bromide (EB) and 4',6-Diamidino-2-phenylindole (DAPI) as fluorescent probes, respectively. Most derivatives did not alter significantly the secondary structure of the ctDNA according to the CD results. None of the compounds was able to change the relative viscosity of the ctDNA. These results prove that compounds interact with ctDNA via groove binding, which was confirmed by A-T rich oligonucleotide sequence assay with compound JF-252, suggesting the importance of both the phenyl ring coupled to C-4 thiazole ring and the bromo-unsubstituted indole nucleus.
Collapse
Affiliation(s)
| | | | | | - Ricardo Olímpio de Moura
- Departamento de Ciências Farmacêuticas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba e Bodocongo, Campina Grande, PB 58429-500, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-901, Brazil
| | - Sinara Mônica Vitalino de Almeida
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, 50670-901, Brazil; Laboratório de Biologia Molecular, Universidade de Pernambuco (UPE), Multicampi Garanhuns, Garanhuns, PE 55290-000, Brazil.
| |
Collapse
|
72
|
Kitchner E, Chavez J, Ceresa L, Bus MM, Budowle B, Gryczynski Z. A novel approach for visualization and localization of small amounts of DNA on swabs to improve DNA collection and recovery process. Analyst 2021; 146:1198-1206. [PMID: 33393553 DOI: 10.1039/d0an02043e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, a simple and practical procedure is proposed for DNA localization on a solid matrix e.g., a collection swab. The approach is straightforward and employs spectrum decomposition using a model DNA intercalator Ethidium Bromide (EtBr). The proposed approach can detect picograms of DNA in solution and nanograms of DNA on solid surfaces (swabs) without the need for PCR amplification. The proposed technology offers the possibility for developing an inexpensive, sensitive, rapid, and practical method for localizing and recovering DNA deposited on collection swabs during routine DNA screening. Improved detection of low DNA concentrations is needed and, if feasible, will allow for better decision making in clinical medicine, biological and environmental research, and human identification in forensic investigations.
Collapse
Affiliation(s)
- Emma Kitchner
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129, USA.
| | | | | | | | | | | |
Collapse
|
73
|
Shumyantseva VV, Bulko TV, Tikhonova EG, Sanzhakov MA, Kuzikov AV, Masamrekh RA, Pergushov DV, Schacher FH, Sigolaeva LV. Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry 2020; 140:107736. [PMID: 33494014 DOI: 10.1016/j.bioelechem.2020.107736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
The interactions of dsDNA with rifampicin (RF) or with rifampicin after encapsulation in phospholipid micelles (nanosome/rifampicin) (NRF) were studied electrochemically. Screen-printed electrodes (SPEs) modified by stable dispersions of multi-wolled carbon nanotubes (MWCNTs) in aqueous solution of poly(1,2-butadiene)-block-poly(2-(dimethylamino)ethyl methacrylate) (PB290-b-PDMAEMA240) diblock copolymer were used for quantitative electrochemical investigation of direct electrochemical oxidation of guanine at E = 0.591 V (vs. Ag/AgCl) and adenine at E = 0.874 V (vs. Ag/AgCl) of dsDNA and its change in the presence of RF or NRF. Due to RF or NRF interaction with dsDNA, the differential pulse voltammetry (DPV) peak currents of guanine and adenine decreased and the peak potentials shifted to more positive values with increasing drug concentration (RF or NRF). Binding constants (Kb) of complexes RF-dsDNA and NRF-dsDNA were calculated based on adenine and guanine oxidation signals. The Kb values for RF-dsDNA were 1.48 × 104 M-1/8.56 × 104 M-1, while for NRF-dsDNA were 2.51 × 104 M-1/1.78 × 103 M-1 (based on adenine or guanine oxidation signals, respectively). The values of Kb revealed intercalation mode of interaction with dsDNA for RF and mixed type of interaction (intercalation and electrostatic mode) for NRF. The estimated values of ΔG (Gibbs free energy) of the complex formation confirmed that drug-dsDNA interactions are spontaneous and favourable reactions.
Collapse
Affiliation(s)
- Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia.
| | - Tatiana V Bulko
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena G Tikhonova
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia
| | - Maxim A Sanzhakov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov Street 1, 117997 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Dmitry V Pergushov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, D-07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, D-07743 Jena, Germany
| | - Larisa V Sigolaeva
- Institute of Biomedical Chemistry, Pogodinskaya Street 10, 119121 Moscow, Russia; Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
74
|
Biolayer interferometry provides a robust method for detecting DNA binding small molecules in microbial extracts. Anal Bioanal Chem 2020; 413:1159-1171. [PMID: 33236226 DOI: 10.1007/s00216-020-03079-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
DNA replication is an exceptional point of therapeutic intervention for many cancer types and several small molecules targeting DNA have been developed into clinically used antitumor agents. Many of these molecules are naturally occurring metabolites from plants and microorganisms, such as the widely used chemotherapeutic doxorubicin. While natural product sources contain a vast number of DNA binding small molecules, isolating and identifying these molecules is challenging. Typical screening campaigns utilize time-consuming bioactivity-guided fractionation approaches, which use sequential rounds of cell-based assays to guide the isolation of active compounds. In this study, we explore the use of biolayer interferometry (BLI) as a tool for rapidly screening natural product sources for DNA targeting small molecules. We first verified that BLI robustly detected DNA binding using designed GC- and AT-rich DNA oligonucleotides with known DNA intercalating, groove binding, and covalent binding agents including actinomycin D (1), doxorubicin (2), ethidium bromide (3), propidium iodide (4), Hoechst 33342 (5), and netropsin (6). Although binding varied with the properties of the oligonucleotides, measured binding affinities agreed with previously reported values. We next utilized BLI to screen over 100 bacterial extracts from our microbial library for DNA binding activity and found three highly active extracts. Binding-guided isolation was used to isolate the active principle component from each extract, which were identified as echinomycin (8), actinomycin V (9), and chartreusin (10). This biosensor-based DNA binding screen is a novel, low-cost, easy to use, and sensitive approach for medium-throughput screening of complex chemical libraries. Graphical abstract.
Collapse
|
75
|
Wu Y, Xia L, Zhang G, Wu H, Qu Y, Zhao K, Wang C. Zinc(II) and manganese(II) complexes with 1,3-bis(1-allylbenzimidazol-2-yl)-2-oxapropane: synthesis, crystal structures, antioxidant activities and DNA-binding properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1843641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yancong Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Lixian Xia
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Geng Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Yao Qu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, P.R. China
| |
Collapse
|
76
|
Sharifinia S, Hajibabaei F, Salehzadeh S, Hosseinpour Moghadam N, Khazalpour S. Probing the Strength and Mechanism of Binding Between Amifampridine and Calf Thymus DNA. DNA Cell Biol 2020; 39:2134-2142. [PMID: 33090906 DOI: 10.1089/dna.2020.5618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this work, we have investigated the strength and mechanism of amifampridine (3,4-Diaminopyridine/3,4-DAP) interaction with calf thymus DNA (ct-DNA). The existence and the strength of interaction are evaluated using circular dichroism (CD), UV-vis absorption, and differential pulse voltammogram studies. Results from UV-vis absorption technique indicate that amifampridine can significantly interact with DNA through a binding constant of Kb = 1.66 × 105 M-1 at 298 K. The mechanism of the interaction between amifampridine and DNA is also studied using ionic effect investigations, competitive fluorescence experiments, viscosity measurements, and molecular docking studies. The viscosity results indicate that amifampridine can bind to DNA via intercalation binding mode. Competitive fluorescence experiments using Acridine Orange (AO) and Hoechst 33258 (HO) probes also reveal that amifampridine binds to DNA via an intercalation mode of binding. Finally, the molecular docking studies also suggest that amifampridine tends to bind with the G-C rich region of DNA.
Collapse
|
77
|
Rupar J, Aleksić MM, Dobričić V, Brborić J, Čudina O. An electrochemical study of 9-chloroacridine redox behavior and its interaction with double-stranded DNA. Bioelectrochemistry 2020; 135:107579. [DOI: 10.1016/j.bioelechem.2020.107579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022]
|
78
|
Do 1,8-naphthyridine sulfonamides possess an inhibitory action against Tet(K) and MsrA efflux pumps in multiresistant Staphylococcus aureus strains? Microb Pathog 2020; 147:104268. [DOI: 10.1016/j.micpath.2020.104268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
|
79
|
Kye M, Zhang Z, Lim Y. Self‐assembling cyclic peptide‐oligonucleotide conjugates: Synthetic strategies and the effect of cyclic topology on self‐assembly and base pairing. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mahnseok Kye
- Department of Materials Science & Engineering Yonsei University Seoul South Korea
| | - Zhihao Zhang
- Department of Materials Science & Engineering Yonsei University Seoul South Korea
| | - Yong‐beom Lim
- Department of Materials Science & Engineering Yonsei University Seoul South Korea
| |
Collapse
|
80
|
Mokhtari Z, Khajehsharifi H, Hashemnia S, Shahrokhian S. Predicting the Cardiac Troponin I (cTnl) Aptamer/Methylene Blue Configuration Using Computational Modeling Studies: A Screening Search Method for Constructing Aptasensors. ChemistrySelect 2020. [DOI: 10.1002/slct.202001780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zaynab Mokhtari
- Department of Chemistry Yasouj University, Under Hill Yasouj 75918-74934 Iran
| | | | - Sedigheh Hashemnia
- Department of Chemistry, Faculty of Sciences Persian Gulf University Bushehr 75169 Iran
| | - Saeed Shahrokhian
- Department of Chemistry Sharif University of Technology Tehran 11155-9516 Iran
| |
Collapse
|
81
|
Ganguly S, Ghosh D, Narayanaswamy N, Govindaraju T, Basu G. Dual DNA binding mode of a turn-on red fluorescent probe thiazole coumarin. PLoS One 2020; 15:e0239145. [PMID: 32941495 PMCID: PMC7497988 DOI: 10.1371/journal.pone.0239145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022] Open
Abstract
Turn-on fluorescent probes show enhanced emission upon DNA binding, advocating their importance in imaging cellular DNA. We have probed the DNA binding mode of thiazole-coumarin (TC) conjugate, a recently reported hemicyanine-based turn-on red fluorescent probe, using a number of biophysical techniques and a series of short oligonucleotides. TC exhibited increased fluorescence anisotropy and decreased absorbance (~50%) at low [DNA]/[TC] ratio. Although the observed hypochromicity and the saturating value of [DNA base pair]:[TC] ratio is consistent with a previous study that suggested intercalation to be the DNA binding mode of TC, a distinctly different and previously unreported binding mode was observed at higher ratios of [DNA]:[TC]. With further addition of DNA, only oligonucleotides containing AnTn or (AT)n stretches showed further change-decreased hypochromicity, red shifted absorption peaks and concomitant fluorescence enhancement, saturating at about 1:1 [DNA]: [TC]. 1H-NMR chemical shift perturbation patterns and H1'-H6/H8 NOE cross-peaks of the 1:1 complex indicated minor groove binding by TC. ITC showed the 1:1 DNA binding event to be endothermic (ΔH° ~ 2 kcal/mol) and entropy driven (ΔS° ~ 32 cal/mol/K). Taken together, the experimental data suggest a dual DNA binding mode by TC. At low [DNA]/[TC] ratio, the dominant mode is intercalation. This switches to minor groove binding at higher [DNA]/[TC], only for sequences containing AnTn or (AT)n stretches. Turn-on fluorescence results only in the previously unreported minor groove bound state. Our results allow a better understanding of DNA-ligand interaction for the newly reported turn-on probe TC.
Collapse
Affiliation(s)
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, Kolkata, India
- * E-mail: ,
| |
Collapse
|
82
|
Rosa WC, Rocha IO, Rodrigues MB, Coelho HS, Denardi LB, Ledur PC, Zanatta N, Acunha TV, Iglesias BA, Bonacorso HG. Novel Alkyl(aryl)-Substituted 2,2-Difluoro-6-(trichloromethyl)-2 H-1,3,2-oxazaborinin-3-ium-2-uides: Synthesis, Antimicrobial Activity, and CT-DNA Binding Evaluations. Front Pharmacol 2020; 11:1328. [PMID: 33013370 PMCID: PMC7493717 DOI: 10.3389/fphar.2020.01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
The synthesis, antimicrobial activity evaluations, biomolecule-binding properties (DNA), and absorption and emission properties of a new series of (Z)-1,1,1-trichloro-4-alkyl(aryl)amino-4-arylbut-3-en-2-ones (4, 5) and 2,2-difluoro-3-alkyl(aryl)amino-4-aryl-6-(trichloromethyl)-2H-1,3,2-oxazaborinin-3-ium-2-uides (6, 7) in which 3(4)-alkyl(aryl) = H, Me, iso-propyl, n-butyl, C6H5, 4-CH3C6H4, 4-CH3OC6H4, 4-NO2C6H4, 4-FC6H4, 4-BrC6H4, 2-naphthyl, is reported. A series of β-enaminoketones (4, 5) is synthesized from the O,N-exchange reaction of some amines (3) with (Z)-1,1,1-trichloro-4-methoxy-4-aryl-but-3-en-2-ones (1, 2) at 61-90% yields. Subsequently, reactions of the resulting β-enaminoketones with an appropriate source of boron (BF3.OEt2) gave the corresponding oxazaborinine derivatives (6, 7) at 50-91% yields. UV-Vis and emission properties of biomolecule-binding properties for the DNA of these new BF2-β-enamino containing CCl3 units were also evaluated. Some compounds from the present series also exhibited potent antimicrobial effects on various pathogenic microorganisms at concentrations below those that showed cytotoxic effects. Compounds 4d, 4e, 6e, and 6f showed the best results and are very significant against P. zopfii, which causes diseases in humans and animals.
Collapse
Affiliation(s)
- Wilian C Rosa
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Inaiá O Rocha
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Melissa B Rodrigues
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Helena S Coelho
- Laboratório de Pesquisas Micológicas (LAPEMI), Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santa Maria, Brazil
| | - Laura B Denardi
- Laboratório de Pesquisas Micológicas (LAPEMI), Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Pauline C Ledur
- Laboratório de Pesquisas Micológicas (LAPEMI), Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thiago V Acunha
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
83
|
Bayraktepe DE. A voltammetric study on drug-DNA interactions: Kinetic and thermodynamic aspects of the relations between the anticancer agent dasatinib and ds-DNA using a pencil lead graphite electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
84
|
Arif A, Ahmad A, Ahmad M. Toxicity assessment of carmine and its interaction with calf thymus DNA. J Biomol Struct Dyn 2020; 39:5861-5871. [DOI: 10.1080/07391102.2020.1794962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Amin Arif
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Ajaz Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of life sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
85
|
Aunkor MTH, Raihan T, Prodhan SH, Metselaar HSC, Malik SUF, Azad AK. Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200640. [PMID: 32874659 PMCID: PMC7428267 DOI: 10.1098/rsos.200640] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 05/19/2023]
Abstract
Graphene oxide (GO) is a derivative of graphene nanosheet which is the most promising material of the decade in biomedical research. In particular, it has been known as an antimicrobial nanomaterial with good biocompatibility. In this study, we have synthesized and characterize GO and checked its antimicrobial property against different Gram-negative and Gram-positive multidrug drug resistant (MDR) hospital superbugs grown in solid agar-based nutrient plates with and without human serum through the utilization of agar well diffusion method, live/dead fluorescent staining and genotoxicity analysis. No significant changes in antibacterial activity were found in these two different conditions. We also compare the bactericidal capability of GO with some commonly administered antibiotics and in all cases the degree of inhibition is found to be higher. The data presented here are novel and show that GO is an effective bactericidal agent against different superbugs and can be used as a future antibacterial agent.
Collapse
Affiliation(s)
- Md. Toasin Hossain Aunkor
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shamsul H. Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - H. S. C. Metselaar
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, W. Persekutuan Kuala Lumpur, Malaysia
| | - Syeda Umme Fahmida Malik
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
- Department of Biochemistry, North East Medical College and Hospital, South Surma, Sylhet, Bangladesh
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
86
|
Isika D, Çeşme M, Osonga FJ, Sadik OA. Novel quercetin and apigenin-acetamide derivatives: design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Adv 2020; 10:25046-25058. [PMID: 35517443 PMCID: PMC9055277 DOI: 10.1039/d0ra04559d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Flavonoids exhibit essential but limited biological properties which can be enhanced through chemical modifications. In this study, we designed, synthesized, and characterized two novel flavonoid derivatives, quercetin penta-acetamide (1S3) and apigenin tri-acetamide (2S3). These compounds were confirmed using (1H, 13C) NMR, UV-Vis, and FT-IR characterizations. Their interaction with fish sperm DNA (FS-DNA) at physiological pH was investigated by UV-Vis and fluorescence spectrophotometry. The binding constant (K b) for the UV-Vis experiment was found to be 1.43 ± 0.3 × 104 M-1 for 1S3 and 2.08 ± 0.2 × 104 M-1 for 2S3. The binding constants (K SV) for the fluorescence quenching experiment were 1.83 × 104 M-1 and 1.96 × 104 M-1 for 1S3 and 2S3, respectively. Based on molecular modeling and docking studies, the binding affinities were found to be -7.9 and -9.1 kcal mol-1, for 1S3 and 2S3, respectively. The compound-DNA docked model correlated with our experimental results, and they are groove binders. Furthermore, mutagenicity potential was examined. 1S3 and its metabolites showed no mutagenic activity for both TA98 and TA100 strains. 2S3 did not show any mutagenic activity for the strain TA 98, while its metabolites were only active at high doses. Both 2S3 and its metabolites showed mutagenic activity in the TA100 strain.
Collapse
Affiliation(s)
- Daniel Isika
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University Kahramanmaras 46040 Turkey
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| |
Collapse
|
87
|
Mbaba M, Dingle LMK, Swart T, Cash D, Laming D, de la Mare JA, Taylor D, Hoppe HC, Biot C, Edkins AL, Khanye SD. The in Vitro Antiplasmodial and Antiproliferative Activity of New Ferrocene-Based α-Aminocresols Targeting Hemozoin Inhibition and DNA Interaction. Chembiochem 2020; 21:2643-2658. [PMID: 32307798 DOI: 10.1002/cbic.202000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 01/30/2023]
Abstract
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Faculty of Medicine, Division of Clinical Pharmacology, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576 UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
88
|
Burns JR, Wood JW, Stulz E. A Porphyrin-DNA Chiroptical Molecular Ruler With Base Pair Resolution. Front Chem 2020; 8:113. [PMID: 32175308 PMCID: PMC7054460 DOI: 10.3389/fchem.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 11/13/2022] Open
Abstract
DNA-based molecular rulers enable scientists to determine important parameters across biology, from the measurement of protein binding interactions, to the study of membrane dynamics in cells. However, existing rulers can suffer from poor nanometre resolution due to the flexible nature of linkers used to tether to the DNA framework. We aimed to overcome this problem using zinc and free-base porphyrin chromophores attached via short and rigid acetylene linkers. This connectivity enables the distance and angle between the porphyrins to be fine-tuned along the DNA scaffold. The porphyrins undergo favorable energy transfer and chiral exciton coupling interactions to act as highly sensitive molecular ruler probes. To validate the system, we monitored the detection of small changes in DNA structure upon intercalation of ethidium bromide. CD spectroscopy showed the porphyrins undergo highly sensitive changes in excitation coupling to facilitate base pair resolution of the novel system.
Collapse
Affiliation(s)
- Jonathan R Burns
- Department of Chemistry, University College London, London, United Kingdom
| | - James W Wood
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Eugen Stulz
- School of Chemistry & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
89
|
Gan C, Huang X, Zhan J, Liu X, Huang Y, Cui J. Study on the interactions between B-norcholesteryl benzimidazole compounds with ct-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117525. [PMID: 31703992 DOI: 10.1016/j.saa.2019.117525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The study of molecule-DNA interaction is very important for designing an improved therapeutic agent. In previous studies, we synthesized some B-norcholesteryl benzimidazole compounds, and the tests on cancer cells showed that these compounds had good in vitro anti-cancer activities. In order to further investigate mechanism of their actions, three different B-norcholesteryl benzimidazole compounds were selected and interaction of these compounds with the calf thymus DNA (ct-DNA) was monitored by using various methods including UV-Vis and fluorescence spectroscopic techniques, viscosity measurement, and circular dichroism (CD). The results proved a hypochromic effect accompanied with a slight red-shift due to the interaction of the molecules with ct-DNA. According to the UV-Vis and fluorescence spectra, the mentioned compounds were bound to DNA, preferentially through partial intercalation into the DNA helix. Moreover, the ethidium bromide (EB) and Hoechst 33258 competitive binding experiments were also used to confirm the interaction mode of the compounds with ct-DNA. In the Hoechst 33258 displacement experiment, no significant change in the fluorescence intensity was observed. Additional assays such as iodide quenching, viscosity, and CD spectroscopy further confirmed that intercalation should be the major binding mode of the selected compounds with DNA. The cytotoxicity of these three compounds was also evaluated by MTT method, and the results confirmed that binding ability of these compounds to DNA was consistent with their cytotoxicity behavior. The experimental results indicated a higher binding affinity for compound 3 compared to the other compounds. This research provided a better understanding on the molecular mechanism of the interaction between B-norcholesteryl benzimidazole compounds and tumor cells, and offered a beneficial perspective to the designation of novel B-norsteroidal anticancer compounds.
Collapse
Affiliation(s)
- Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China.
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Junyan Zhan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Xiaolan Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China; Guangxi Colleges and University Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibuwan University, Qinzhou, 535099, PR China.
| |
Collapse
|
90
|
Zhao W, Xiong M, Liu M, Wang S, Xian X, Lin B, Li H. Evaluation of the effect of Tb(IV)-NR complex on herring sperm DNA genetic information by mean of spectroscopic. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:964-978. [PMID: 32043411 DOI: 10.1080/15257770.2020.1725042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The interaction between Tb(IV)-NR complex and herring sperm DNA in buffer solution of Tris-HCl was investigated with the use of acridine orange(AO) as a spectral probe. The binding modes and other information were provided by the UV-spectrophotometry and fluorescence spectroscopy. The thermodynamic functions expressed that the binding constants of Tb(IV)-NR complex with DNA was Kθ298.15K = 4.03 × 105 L·mol-1, Kθ310.15K =1.30 × 107 L·mol-1, and the ΔrGθ m 298.15 K=-3.20 × 104 J·mol-1. The scatchard equation suggested that the interaction mode between Tb(IV)-NR complex and herring sperm DNA is electrostatic and weak intercalation bindings. FTIR spectroscopy results also indicate that there is a specific interaction between the Tb(IV)-NR complex and the A and G bases of DNA.
Collapse
Affiliation(s)
- Weihua Zhao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Mei Xiong
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Mingbin Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Suqin Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Xiao Xian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Baoping Lin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Hongbo Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| |
Collapse
|
91
|
Bi S, Sun X, Li X, Zhao R, Shao D. Depicting the binding of furazolidone/furacilin with DNA by multiple spectroscopies, voltammetric as well as molecular docking. LUMINESCENCE 2019; 35:493-502. [DOI: 10.1002/bio.3754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shuyun Bi
- College of ChemistryChangchun Normal University Changchun China
| | - Xiaoyue Sun
- College of ChemistryChangchun Normal University Changchun China
| | - Xu Li
- College of ChemistryChangchun Normal University Changchun China
| | - Rui Zhao
- College of ChemistryChangchun Normal University Changchun China
| | - Di Shao
- College of ChemistryChangchun Normal University Changchun China
| |
Collapse
|
92
|
Jeong H, Oh K. Uracil-doped DNA thin solid films: a new way to control optical dispersion of DNA film using a RNA constituent. OPTICS EXPRESS 2019; 27:36075-36087. [PMID: 31873394 DOI: 10.1364/oe.27.036075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Among five nucleobases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U), uracil is a key distinctive constituent existing only in ribonucleic acid (RNA). RNA shares the common A, G, and C with deoxyribonucleic acid (DNA) made of A-T, G-C hydrogen bonding. We explored a new attempt to combine uracil (U) with DNA, successfully realizing U-doped DNA thin solid films for the first time. Impacts of uracil on optical properties of the films were thoroughly investigated. The method was based on optimal spin-coating of an aqueous solution of DNA and uracil over silicon or silica substrates. Optical absorption of both aqueous solution and U-doped DNA thin solid films was characterized in a wide spectral range covering UV-visible-IR. Immobilization of uracil within DNA thin solid films was experimentally confirmed by FTIR spectroscopy studies. By using an ellipsometer, we measured the refractive indices of the films and discovered that U-doping was a very effective means to control optical dispersion DNA thin solid film. We further investigated thermo-optic behavior to find impacts of U-doping in DNA films. Detailed thin film processes and optical characterizations are discussed.
Collapse
|
93
|
Ji H, Johnson NP, von Hippel PH, Marcus AH. Local DNA Base Conformations and Ligand Intercalation in DNA Constructs Containing Optical Probes. Biophys J 2019; 117:1101-1115. [PMID: 31474304 PMCID: PMC6818173 DOI: 10.1016/j.bpj.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding local conformations of DNA at the level of individual nucleic acid bases and base pairs is important for elucidating molecular processes that depend on DNA sequence. Here, we apply linear absorption and circular dichroism measurements to the study of local DNA conformations, using the guanine base analog 6-methyl isoxanthopterin (6-MI) as a structural probe. We show that the spectroscopic properties of this probe can provide detailed information about the average local base and basepair conformations as a function of the surrounding DNA sequence. Based on these results we apply a simple theoretical model to calculate the circular dichroism spectra of 6-MI-substituted DNA constructs and show that our model can be used to extract information about how the local conformations of the 6-MI probe are influenced by the local base or basepair environment. We also use this probe to examine the pathway for the insertion (intercalation) of a tethered acridine ligand (9-amino-6-chloro methoxyacridine) into duplex DNA. We show that this model intercalator interacts with duplex DNA by a "displacement insertion intercalation" mechanism, whereby the acridine moiety is inserted into the DNA structure and displaces the base located opposite its attachment site. These findings suggest that site-specifically positioned base analog probes can be used to characterize the molecular and structural details of binding ligand effects on local base stacking and unstacking reactions in single- and double-stranded DNA and thus may help to define the molecular mechanisms of DNA-protein interactions that involve the site-specific intercalation of aromatic amino acid side chains into genomic DNA.
Collapse
Affiliation(s)
- Huiying Ji
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon
| | - Neil P Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Peter H von Hippel
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon; Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
94
|
Electrocatalysis of ferricyanide reduction mediated by electron transfer through the DNA duplex: Kinetic analysis by thin layer voltammetry. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
95
|
Białobrzeska W, Niedziałkowski P, Malinowska N, Cebula Z, Ossowski T. Analysis of interactions between calf thymus DNA and 1,5-di(piperazin-1-yl)anthracene-9,10-dione using spectroscopic and electrochemical methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
96
|
Veselinovic J, Almashtoub S, Seker E. Anomalous Trends in Nucleic Acid-Based Electrochemical Biosensors with Nanoporous Gold Electrodes. Anal Chem 2019; 91:11923-11931. [PMID: 31429540 DOI: 10.1021/acs.analchem.9b02686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular diagnostics have significantly advanced the early detection of diseases, where electrochemical sensing of biomarkers has shown considerable promise. For a nucleic acid-based electrochemical sensor with signal-off behavior, the performance is evaluated by percent signal suppression (% ss), which indicates the change in current after hybridization. The % ss is generally due to more redox molecules (e.g., methylene blue) associating with the probe DNA bases in the single-strand form than the double-strand form upon hybridization with the target nucleic acid. Nanostructured electrodes generally enhance electrochemical sensor performance via several mechanisms, including increased number of capture probes per electrode volume and unique nanoscale transport phenomena. Here, we employ nanoporous gold (np-Au) as a model electrode material to study the influence of probe immobilization solution concentration on sensor performance and the underlying mechanisms. Unlike planar gold (pl-Au) electrodes, where % ss reaches a steady state with increasing concentration of the grafting solution, the % ss displays peak performance at certain grafting solution concentrations followed by rapid deterioration and reversal of the % ss polarity, suggesting an unexpected case of increased charge transfer upon hybridization. Fluorometric assessments of electrochemically desorbed nucleic acids for different electrode morphologies reveal that a significant amount of DNA molecules (unhybridized and hybridized) remain within the nanopores posthybridization. Analysis of electrochemical signals (e.g., square wave voltammogram shape) suggests that the large unbound nucleic acid concentration may be altering the modes of methylene blue interaction with the nucleic acids and charge transfer to the electrode surfaces.
Collapse
Affiliation(s)
- Jovana Veselinovic
- Department of Chemical Engineering , University of California, Davis , Davis , California 95616 , United States
| | - Suzan Almashtoub
- Department of Chemical Engineering , University of California, Davis , Davis , California 95616 , United States
| | - Erkin Seker
- Department of Electrical and Computer Engineering , University of California, Davis , Davis , California 95616 , United States
| |
Collapse
|
97
|
Topkaya SN, Cetin AE. Determination of Electrochemical Interaction between 2‐(1H‐benzimidazol‐2‐yl) Phenol and DNA Sequences. ELECTROANAL 2019. [DOI: 10.1002/elan.201900199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of PharmacyIzmir Katip Celebi University 35620, Cigli Izmir TURKEY
| | | |
Collapse
|
98
|
Tahara H, Sadamoto K, Yamagiwa Y, Nemoto S, Kurata M. Investigation of comet assays under conditions mimicking ocular instillation administration in a three-dimensional reconstructed human corneal epithelial model. Cutan Ocul Toxicol 2019; 38:375-383. [PMID: 31223032 DOI: 10.1080/15569527.2019.1634580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: A comet assay is one of the genotoxicity methods for evaluating the potential of chemicals to induce DNA strand breaks. To investigate the usefulness of comet assays for evaluating the genotoxic potential of ophthalmic solutions, a three-dimensional (3D) reconstructed human corneal epithelial model (3D corneal model) was exposed to conditions mimicking topical ocular instillation administration. Methods: The 3D corneal model was exposed to acridine orange, ethidium bromide, hydrogen peroxide, 1,1'-dimethyl-4,4'-bipyridinium dichloride (paraquat), 4-nitroquinoline 1-oxide (4-NQO), acrylamide and methyl methanesulfonate (MMS). To mimic the ocular surface condition to which ophthalmic solutions are administered, the exposure time was set to 1 minute. Likewise, human corneal epithelial (HCE-T) cells, as monolayer cultured cells, were exposed to the same chemicals, for comparison. Results: In the 3D corneal model, the amount of DNA fragments was statistically significantly increased in cells treated with each of the test chemicals except acrylamide. In HCE-T cells, the amount of DNA fragments was statistically significantly increased in acridine orange-, ethidium bromide-, hydrogen peroxide-, 4-NQO- and MMS-treated cells but not in paraquat- or acrylamide-treated cells. In the 3D corneal model, the lowest concentrations at which we observed DNA damage were about 100 times higher than the concentrations in HCE-T cells. Since the 3D corneal model is morphologically similar to human corneal tissue, form a multilayer and having tight junctions, it may be that the test chemicals only permeated about 1% into the 3D corneal model. Conclusion: These results suggest that the comet assay using 3D cell culture models may reflect in vivo conditions better than do monolayer cultured cells, and that the comet assay may be useful for the evaluation of genotoxic potential of topical ophthalmic solution.
Collapse
Affiliation(s)
- Haruna Tahara
- Research and Development Division, Senju Pharmaceutical Co., Ltd , Kobe , Hyogo , Japan
| | - Kazuyo Sadamoto
- Research and Development Division, Senju Pharmaceutical Co., Ltd , Kobe , Hyogo , Japan
| | - Yoshinori Yamagiwa
- Research and Development Division, Senju Pharmaceutical Co., Ltd , Kobe , Hyogo , Japan
| | - Shingo Nemoto
- Research and Development Division, Senju Pharmaceutical Co., Ltd , Kobe , Hyogo , Japan
| | - Masaaki Kurata
- Research and Development Division, Senju Pharmaceutical Co., Ltd , Kobe , Hyogo , Japan
| |
Collapse
|
99
|
Trieu PT, Lee NY. Paper-Based All-in-One Origami Microdevice for Nucleic Acid Amplification Testing for Rapid Colorimetric Identification of Live Cells for Point-of-Care Testing. Anal Chem 2019; 91:11013-11022. [DOI: 10.1021/acs.analchem.9b01263] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Phuoc Tung Trieu
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|
100
|
Sochr J, Nemčeková K, Černicová M, Campbell K, Milata V, Farkašová D, Labuda J. DNA Interaction with 17α‐Ethinylestradiol Studied Using Electrochemical Biosensors and Biosensing in Solution. ELECTROANAL 2019. [DOI: 10.1002/elan.201900091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jozef Sochr
- Slovak University of TechnologyFaculty of Chemical and Food Technology, Institute of Analytical Chemistry Radlinského 9 812 37 Bratislava Slovak Republic
| | - Katarína Nemčeková
- Slovak University of TechnologyFaculty of Chemical and Food Technology, Institute of Analytical Chemistry Radlinského 9 812 37 Bratislava Slovak Republic
| | - Monika Černicová
- Slovak University of TechnologyFaculty of Chemical and Food Technology, Institute of Analytical Chemistry Radlinského 9 812 37 Bratislava Slovak Republic
| | - Kirsty Campbell
- University of DundeeSchool of Life Science Dow St Dundee DD1 5EH United Kingdom
| | - Viktor Milata
- Slovak University of TechnologyFaculty of Chemical and Food Technology, Institute of Organic Chemistry, Catalysis and Petrochemistry Radlinského 9 812 37 Bratislava Slovak Republic
| | - Dana Farkašová
- Slovak Medical University in Bratislava Limbová 12 833 03 Bratislava Slovak Republic
| | - Ján Labuda
- Slovak University of TechnologyFaculty of Chemical and Food Technology, Institute of Analytical Chemistry Radlinského 9 812 37 Bratislava Slovak Republic
| |
Collapse
|