51
|
Elman I, Borsook D. The failing cascade: Comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 2019; 103:374-383. [DOI: 10.1016/j.neubiorev.2019.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
|
52
|
Lu YG, Wang L, Chen JL, Zhu J, Meng XY, You ZD, Yu WF. Projections from lateral habenular to tail of ventral tegmental area contribute to inhibitory effect of stress on morphine-induced conditioned place preference. Brain Res 2019; 1717:35-43. [DOI: 10.1016/j.brainres.2019.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
|
53
|
Koczy B, Stołtny T, Pasek J, Leksowska–Pawliczek M, Czech S, Ostałowska A, Kasperczyk S, Białkowska M, Cieślar G. Evaluation of β-endorphin concentration, mood, and pain intensity in men with idiopathic hip osteoarthritis treated with variable magnetic field. Medicine (Baltimore) 2019; 98:e16431. [PMID: 31348243 PMCID: PMC6708614 DOI: 10.1097/md.0000000000016431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Osteoarthritis is the most frequently diagnosed disease of the musculoskeletal system. Growing number of patients waiting for surgical treatment and the possible negative consequences resulting from long-term pharmacological therapy lead to the search for non-pharmacological methods aimed at alleviating pain and reducing doses of analgesics, among them physical therapy with use of magnetic fields.The study involved 30 men aged 49 to 76 (mean age, 61.7 years) treated for idiopathic osteoarthritis of the hip joint. The subjects were divided into 2 groups (15 patients each) and underwent a cycle of magnetostimulation and magnetoledtherapy procedures, respectively. During the exposure cycle concentrations of β-endorphin were assessed 3 times and the mood was assessed 2 times. In addition, the assessment of pain intensity and the dose of analgesic drugs was performed before and after the end of therapy.Statistically significant increase in plasma β-endorphins concentration was observed in both groups of patients (magnetostimulation-P < .01 vs magnetoledtherapy-P < .001). In the assessment of mood of respondents, no statistically significant differences were found. Significant reduction in intensity of perceived pain was observed in both groups of patients (P < .05). In the group of patients who underwent magnetoledtherapy cycle, the analgesic drug use was significantly lower by 13% (P < .05) as compared with initial values, which was not noted in group of patients who underwent magnetostimulation procedures.The use of magnetic field therapy in the treatment of men with idiopathic osteoarthritis of hip joints causes a statistically significant increase in the concentration of plasma β-endorphins resulting in statistically significant analgesic effect in both magnetostimulation and magnetoledtherapy treated groups of patients, with accompanying decrease of need for analgetic drugs in magnetoledtherapy group, but without any significant changes regarding the patient's mood.
Collapse
Affiliation(s)
- Bogdan Koczy
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Piekary Śląskie
| | - Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Piekary Śląskie
| | - Jarosław Pasek
- Institute of Physical Education, Tourism and Physiotherapy, Jan Długosz University in Częstochowa, Częstochowa
| | | | - Szymon Czech
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Piekary Śląskie
| | - Alina Ostałowska
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Zabrze
| | - Sławomir Kasperczyk
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Zabrze
| | - Monika Białkowska
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Piekary Śląskie
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Bytom, Poland
| |
Collapse
|
54
|
Calvo F, Almada RC, Dos Anjos-Garcia T, Falconi-Sobrinho LL, Paschoalin-Maurin T, Bazaglia-de-Sousa G, Medeiros P, Silva JAD, Lobão-Soares B, Coimbra NC. Panicolytic-like effect of µ 1-opioid receptor blockade in the inferior colliculus of prey threatened by Crotalus durissus terrificus pit vipers. J Psychopharmacol 2019; 33:577-588. [PMID: 30663473 DOI: 10.1177/0269881118822078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The endogenous opioid peptide system has been implicated in the neural modulation of fear and anxiety organised by the dorsal midbrain. Furthermore, previous results indicate a fundamental role played by inferior colliculus (IC) opioid mechanisms during the expression of defensive behaviours, but the involvement of the IC µ1-opioid receptor in the modulation of anxiety- and panic attack-related behaviours remains unclear. Using a prey-versus-snake confrontation paradigm, we sought to investigate the effects of µ1-opioid receptor blockade in the IC on the defensive behaviour displayed by rats in a dangerous situation. METHODS Specific pathogen-free Wistar rats were treated with microinjection of the selective µ1-opioid receptor antagonist naloxonazine into the IC at different concentrations (1.0, 3.0 and 5.0 µg/0.2 µL) and then confronted with rattlesnakes ( Crotalus durissus terrificus). The defensive behavioural repertoire, such as defensive attention, flat back approach (FBA), startle, defensive immobility, escape or active avoidance, displayed by rats either during the confrontations with wild snakes or during re-exposure to the experimental context without the predator was analysed. RESULTS The blockade of µ1-opioid receptors in the IC decreased the expression of both anxiety-related behaviours (defensive attention, FBA) and panic attack-related responses (startle, defensive immobility and escape) during the confrontation with rattlesnakes. A significant decrease in defensive attention was also recorded during re-exposure of the prey to the experimental apparatus context without the predator. CONCLUSION Taken together, these results suggest that a decrease in µ1-opioid receptor signalling activity within the IC modulates anxiety- and panic attack-related behaviours in dangerous environments.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,2 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,3 Aparício Carvalho Integrative College (FIMCA), Porto Velho (RO), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil
| | - Rafael Carvalho Almada
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Luiz Luciano Falconi-Sobrinho
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Guilherme Bazaglia-de-Sousa
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,7 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil
| | - Norberto Cysne Coimbra
- 1 Department of Pharmacology, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,4 Ophidiarium LNN-FMRP-USP/INeC, University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brasil.,5 Behavioural Neurosciences Institute (INeC), Ribeirão Preto (SP), Brazil.,6 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
55
|
Reich B, Zhou Y, Goldstein E, Srivats SS, Contoreggi NH, Kogan JF, McEwen BS, Kreek MJ, Milner TA, Gray JD. Chronic immobilization stress primes the hippocampal opioid system for oxycodone-associated learning in female but not male rats. Synapse 2019; 73:e22088. [PMID: 30632204 PMCID: PMC11548942 DOI: 10.1002/syn.22088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
Abstract
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu-Enkephalin levels and redistributes delta- and mu-opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS "primes" the hippocampal opioid system in females for oxycodone-associated learning. In CA3b, oxycodone-injected (Oxy) CIS females relative to saline-injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal- and Oxy-CIS males. Consistent with our earlier studies, Sal- and Oxy-CIS females but not CIS males had elevated DOR densities in MF-CA3 dendritic spines, which we have previously shown are important for opioid-mediated long-term potentiation. In the dentate gyrus, Oxy-CIS females had more DOR-labeled interneurons than Sal-CIS females. Moreover, Sal- and Oxy-CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid-mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin-containing dendrites of Oxy-CIS males compared to Sal-CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF-CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Conditioning, Classical
- Dendrites/metabolism
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Female
- Interneurons/metabolism
- Male
- Oxycodone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Repetition Priming
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Sudarshan S. Srivats
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 - Doha, Qatar
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Joshua F. Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
56
|
Barkus E, Badcock JC. A Transdiagnostic Perspective on Social Anhedonia. Front Psychiatry 2019; 10:216. [PMID: 31105596 PMCID: PMC6491888 DOI: 10.3389/fpsyt.2019.00216] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Humans are highly social beings, yet people with social anhedonia experience reduced interest in or reward from social situations. Social anhedonia is a key facet of schizotypal personality, an important symptom of schizophrenia, and increasingly recognized as an important feature in a range of other psychological disorders. However, to date, there has been little examination of the similarities and differences in social anhedonia across diagnostic borders. Here, our goal was to conduct a selective review of social anhedonia in different psychological and life course contexts, including the psychosis continuum, depressive disorder, posttraumatic stress disorder, eating disorders, and autism spectrum disorders, along with developmental and neurobiological factors. Current evidence suggests that the nature and expression of social anhedonia vary across psychological disorders with some groups showing deficient learning about, enjoyment from, and anticipation of the pleasurable aspects of social interactions, while for others, some of these components appear to remain intact. However, study designs and methodologies are diverse, the roles of developmental and neurobiological factors are not routinely considered, and direct comparisons between diagnostic groups are rare-which prevents a more nuanced understanding of the underlying mechanisms involved. Future studies, parsing the wanting, liking, and learning components of social reward, will help to fill gaps in the current knowledge base. Consistent across disorders is diminished pleasure from social situations, subsequent withdrawal, and poorer social functioning in those who express social anhedonia. Nonetheless, feelings of loneliness often remain, which suggests the need for social connection is not entirely absent. Adolescence is a particularly important period of social and neural development and may provide a valuable window on the developmental origins of social anhedonia. Adaptive social functioning is key to recovery from mental health disorders; therefore, understanding the intricacies of social anhedonia will help to inform treatment and prevention strategies for a range of diagnostic categories.
Collapse
Affiliation(s)
- Emma Barkus
- Cognitive Basis of Atypical Behaviour Initiative (CBABi), School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Johanna C. Badcock
- Centre for Clinical Research in Neuropsychiatry (CCRN), Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
57
|
Huang CC, Kuo SC, Yeh TC, Yeh YW, Chen CY, Liang CS, Tsou CC, Lin CL, Ho PS, Huang SY. OPRD1 gene affects disease vulnerability and environmental stress in patients with heroin dependence in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:109-116. [PMID: 30171993 DOI: 10.1016/j.pnpbp.2018.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/24/2022]
Abstract
Exposure to stress not only increases the vulnerability to heroin dependence (HD) but also provokes relapse. The etiology of HD and the role of life stress remain unclear, but prior studies suggested that both genetic and environmental factors are important. Opioid related genes, including OPRM1, OPRD1, OPRK1, and POMC, are obvious candidates for HD. Therefore, this study was conducted to explore whether the genetic polymorphisms of the candidates could affect vulnerability to HD and response to life stress in patients with HD. Ten polymorphisms of the opioid related genes were analyzed in 801 patients and 530 controls. The Life Event Questionnaire was used to assess the perspective and response to life stress in the past year. The genotype distribution and allelic frequency analyses showed that the minor C allele of rs2234918 in OPRD1 is over-represented in the HD group (P = .006 and P = .002, respectively). This finding was further confirmed by logistic regression analysis, showing that C allele carriers have a 1.42 times greater risk for HD compared to T/T homozygotes. A subgroup of 421 patients and 135 controls were eligible for life stress assessment. Patients with HD have a higher occurrence of negative events (No), negative events score (Ns), and average negative event score (Na) than those of controls (all P < .001), but there was no difference regarding positive recent events between the two groups. Gene-stress assessment in the HD group showed that T/T homozygotes of OPRD1 rs2236857 have more severe stress than C allele carriers (Ns, P = .004 and Na, P = .047). Our results indicate that the OPRD1 gene may not only play a role in the pathogenesis of HD but also affect the response to life stress among patients with HD in our Han Chinese population. Patients with the risk genotype may need additional psychosocial intervention for relapse prevention.
Collapse
Affiliation(s)
- Chang-Chih Huang
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Chang Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Wei Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Yen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chih-Sung Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - Chang-Chih Tsou
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan
| | - Chun-Long Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Pei-Shen Ho
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan
| | - San-Yuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan.
| |
Collapse
|
58
|
Fan KM, Qiu LJ, Ma N, Du YN, Qian ZQ, Wei CL, Han J, Ren W, Shi MM, Liu ZQ. Acute Stress Facilitates LTD Induction at Glutamatergic Synapses in the Hippocampal CA1 Region by Activating μ-Opioid Receptors on GABAergic Neurons. Front Neurosci 2019; 13:71. [PMID: 30800053 PMCID: PMC6375894 DOI: 10.3389/fnins.2019.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Acute stress impairs recall memory through the facilitation of long-term depression (LTD) of hippocampal synaptic transmission. The endogenous opioid system (EOS) plays essential roles in stress-related emotional and physiological responses. Specifically, behavioral studies have shown that the impairment of memory retrieval induced by stressful events involves the activation of opioid receptors. However, it is unclear whether signaling mediated by μ-opioid receptors (μRs), one of the three major opioid receptors, participates in acute stress-related hippocampal LTD facilitation. Here, we examined the effects of a single elevated platform (EP) stress exposure on excitatory synaptic transmission and plasticity at the Schaffer collateral-commissural (SC) to CA1 synapses by recording electrically evoked field excitatory postsynaptic potentials and population spikes of hippocampal pyramidal neurons in anesthetized adult mice. EP stress exposure attenuated GABAergic feedforward and feedback inhibition of CA1 pyramidal neurons and facilitated low-frequency stimulation (LFS)-induced long-term depression (LTD) at SC-CA1 glutamatergic synapses. These effects were reproduced by exogenously activating μRs in unstressed mice. The specific deletion of μRs on GABAergic neurons (μRGABA) not only prevented the EP stress-induced memory impairment but also reversed the EP stress-induced attenuation of GABAergic inhibition and facilitation of LFS-LTD. Our results suggest that acute stress endogenously activates μRGABA to attenuate hippocampal GABAergic signaling, thereby facilitating LTD induction at excitatory synapses and eliciting memory impairments.
Collapse
Affiliation(s)
- Ka-Min Fan
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Li-Juan Qiu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Ning Ma
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Yi-Nan Du
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Zhao-Qiang Qian
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Chun-Ling Wei
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Jing Han
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Wei Ren
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Mei-Mei Shi
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| | - Zhi-Qiang Liu
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
59
|
Kroll SL, Williams DP, Thoma M, Staib M, Binz TM, Baumgartner MR, Kirschbaum C, Thayer JF, Quednow BB. Non-medical prescription opioid users exhibit dysfunctional physiological stress responses to social rejection. Psychoneuroendocrinology 2019; 100:264-275. [PMID: 30594739 DOI: 10.1016/j.psyneuen.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
Non-medical prescription opioid use (NMPOU) recently increased dramatically, especially in the U.S. Although chronic opioid use is commonly accompanied by deficits in social functioning and dysregulation of the hypothalamic-pituitary adrenergic (HPA) stress axis, little is known about the impact of NMPOU on psychosocial stress responses. Therefore, we measured physiological responses of the autonomic nervous system and the HPA axis to social rejection using the Cyberball paradigm. We compared 23 individuals with NMPOU, objectively confirmed by hair and urine analyses, with 29 opioid-naïve, healthy controls. As expected, heart rate variability (HRV), an index of parasympathetic activity, increased significantly during exclusion within controls, while in the NMPOU group only a trend in the same direction was found. However, increased HRV was robustly moderated by opioid craving indicating worse emotion regulation to social exclusion specifically in individuals with high opioid craving. Greater levels of the adrenocorticotropic hormone and cortisol responses to social rejection were found in the NMPOU group indicating hyperreactivity of the HPA axis to social exclusion. Self-ratings suggest that opioid users were aware of rejection, but less emotionally affected by exclusion. Furthermore, controls showed greater negative mood after the Cyberball confirming the task's validity. Moreover, NMPOU individuals reported a smaller social network size compared to controls. Present findings suggest that chronic NMPOU is associated with dysfunctional physiological responses to psychosocial stressors such as social rejection. In sum, NMPOU was associated with poorer regulation of the parasympathetic nervous system, especially under opioid craving highlighting its potential importance in relapse prevention.
Collapse
Affiliation(s)
- Sara L Kroll
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - DeWayne P Williams
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Martina Thoma
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| | - Matthias Staib
- Psychological Institute, University of Zurich, Binzmühlestrasse 14, 8050 Zurich, Switzerland
| | - Tina M Binz
- Center for Forensic Hair Analysis, Institute of Forensic Medicine, University of Zurich, Kurvenstrasse 17, 8006 Zurich, Switzerland
| | - Markus R Baumgartner
- Center for Forensic Hair Analysis, Institute of Forensic Medicine, University of Zurich, Kurvenstrasse 17, 8006 Zurich, Switzerland
| | - Clemens Kirschbaum
- Institute of Biological Psychology, Technical University of Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
60
|
Torres-Berrio A, Nava-Mesa MO. The opioid system in stress-induced memory disorders: From basic mechanisms to clinical implications in post-traumatic stress disorder and Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:327-338. [PMID: 30118823 DOI: 10.1016/j.pnpbp.2018.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Cognitive and emotional impairment are a serious consequence of stress exposure and are core features of neurological and psychiatric conditions that involve memory disorders. Indeed, acute and chronic stress are high-risk factors for the onset of post-traumatic stress disorder (PTSD) and Alzheimer's disease (AD), two devastating brain disorders associated with memory dysfunction. Besides the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis, stress response also involves the activation of the opioid system in brain regions associated with stress regulation and memory processing. In this context, it is possible that stress-induced memory disorders may be attributed to alterations in the interaction between the neuroendocrine stress system and the opioid system. In this review, we: (1) describe the effects of acute and chronic stress on memory, and the modulatory role of the opioid system, (2) discuss the contribution of the opioid system to the pathophysiology of PTSD and AD, and (3) present evidence of current and potential therapies that target the opioid receptors to treat PTSD- and AD-associated symptoms.
Collapse
Affiliation(s)
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
61
|
Bali A, Kaur R, Jaggi A. To investigate the role of Withania somnifera in a mouse model of posttraumatic stress disorder. HEART AND MIND 2019. [DOI: 10.4103/hm.hm_14_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
62
|
|
63
|
Endogenous opioid signalling in the brain during pregnancy and lactation. Cell Tissue Res 2018; 375:69-83. [DOI: 10.1007/s00441-018-2948-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
|
64
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
65
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|
66
|
Wenger S, Drott J, Fillipo R, Findlay A, Genung A, Heiden J, Bradt J. Reducing Opioid Use for Patients With Chronic Pain: An Evidence-Based Perspective. Phys Ther 2018; 98:424-433. [PMID: 29669085 DOI: 10.1093/ptj/pzy025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/09/2018] [Indexed: 02/09/2023]
Abstract
The implementation of recent Centers for Disease Control and Prevention recommendations to move away from opioids and toward nonpharmacological therapies for the treatment of chronic pain could involve a difficult transition period for patients and practitioners. The focus of treatment should shift from eliminating pain completely to minimizing the impact of pain on quality of life. Many patients with chronic pain take opioids either because opioids were previously prescribed as a first-line treatment for chronic pain, on the basis of old standards of care, or because opioids were initially prescribed for acute pain. Patients currently taking opioids will need a tapering period during which they transition their pain management to interdisciplinary care and nonpharmacological treatments. To provide useful treatment options, physical therapists need to have a good understanding of the neuroscientific mechanisms of chronic pain, biopsychosocial components of chronic pain management, issues related to opioid use, and pain management strategies used by other health care professionals. Armed with knowledge and good communication skills, physical therapists can work within an interdisciplinary team to adapt care to each patient's needs and abilities. This perspective article provides guidance for physical therapists to effectively treat patients with chronic pain during the opioid tapering process. A framework has been created to help health care providers structure their reasoning as they collaborate to develop a unique approach for each patient.
Collapse
Affiliation(s)
- Sarah Wenger
- Department of Physical Therapy and Rehabilitation, Drexel University, 1601 Cherry Street, Room 758, MS 7-502, Philadelphia, PA 19102 (USA). Dr Wenger is a board-certified orthopaedic clinical specialist
| | - Jason Drott
- Department of Physical Therapy and Rehabilitation, Drexel University
| | - Rebecca Fillipo
- Department of Physical Therapy and Rehabilitation, Drexel University
| | - Alyssa Findlay
- Department of Physical Therapy and Rehabilitation, Drexel University
| | - Amanda Genung
- Department of Physical Therapy and Rehabilitation, Drexel University
| | - Jessica Heiden
- Department of Physical Therapy and Rehabilitation, Drexel University
| | - Joke Bradt
- Department of Creative Arts Therapies, Drexel University. Dr Bradt is a board-certified music therapist
| |
Collapse
|
67
|
Henry MS, Bisht K, Vernoux N, Gendron L, Torres-Berrio A, Drolet G, Tremblay MÈ. Delta Opioid Receptor Signaling Promotes Resilience to Stress Under the Repeated Social Defeat Paradigm in Mice. Front Mol Neurosci 2018; 11:100. [PMID: 29681795 PMCID: PMC5897549 DOI: 10.3389/fnmol.2018.00100] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The adaptation to chronic stress is highly variable across individuals. Resilience to stress is a complex process recruiting various brain regions and neurotransmitter systems. The aim of this study was to investigate the involvement of endogenous opioid enkephalin (ENK) signaling in the development of stress resilience in mice. The translational model of repeated social defeat (RSD) stress was selected to mimic the unpredictable disruptions of daily life and induce resilience or vulnerability to stress. As in humans, adult C57BL/6J mice demonstrated a great variability in their response to stress under this paradigm. A social interaction (SI) test was used to discriminate between the phenotypes of resilience or vulnerability to stress. After social defeat, the expression levels of ENK mRNA and their delta opioid receptors (DOPr) were quantified in the basolateral amygdala (BLA) and BLA-target areas by in situ hybridization. In this manner, ENK mRNA levels were found to decrease in the BLA and those of DOPr in the ventral hippocampus (HPC) CA1 of vulnerable mice only. Stimulating the DOPr pathway during social defeat by pharmacological treatment with the nonpeptide, selective DOPr agonist SNC80 further induced a resilient phenotype in a majority of stressed animals, with the proportion of resilient ones increasing from 33% to 58% of the total population. Ultrastructural analyses additionally revealed a reduction of oxidative stress markers in the pyramidal cells and interneurons of the ventral HPC CA1 upon SNC80 treatment, thus proposing a mechanism by which ENK-DOPr signaling may prevent the deleterious effects of chronic social stress.
Collapse
Affiliation(s)
- Mathilde S Henry
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Louis Gendron
- Centre de Recherche du CHU de Sherbrooke and Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, Sherbrooke, QC, Canada
| | | | - Guy Drolet
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
68
|
m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice. Mol Neurobiol 2018; 55:8991-9000. [PMID: 29623611 DOI: 10.1007/s12035-018-1024-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.
Collapse
|
69
|
Collins D, Randesi M, da Rosa JC, Zhang Y, Kreek MJ. Oprm1 A112G, a single nucleotide polymorphism, alters expression of stress-responsive genes in multiple brain regions in male and female mice. Psychopharmacology (Berl) 2018; 235:2703-2711. [PMID: 30027498 PMCID: PMC6132675 DOI: 10.1007/s00213-018-4965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND OPRM1 A118G, a functional human mu-opioid receptor (MOR) polymorphism, is associated with drug dependence and altered stress responsivity in humans as well as altered MOR signaling. MOR signaling can regulate many cellular processes, including gene expression, and many of the long-term, stable effects of drugs and stress may stem from changes in gene expression in diverse brain regions. A mouse model bearing an equivalent polymorphism (Oprm1 A112G) was previously generated and studied. Mice homozygous for the G112 allele show differences in opioid- and stress-related phenotypes. APPROACH The current study examines the expression of 24 genes related to drug and stress responsivity in the caudoputamen, nucleus accumbens, hypothalamus, hippocampus, and amygdala of drug-naïve, stress-minimized, male and female mice homozygous for either the G112 variant allele or the wild-type A112 allele. RESULTS We detected nominal genotype-dependent changes in gene expression of multiple genes. We also detected nominal sex-dependent as well as sex-by-genotype interaction effects on gene expression. Of these, four genotype-dependent differences survived correction for multiple testing: Avp and Gal in the hypothalamus and Oprl1 and Cnr1 in the hippocampus. CONCLUSIONS Changes in the regulation of these genes by mu-opioid receptors encoded by the G112 allele may be involved in some of the behavioral and molecular consequences of this polymorphism observed in mice.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Matthew Randesi
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Joel Correa da Rosa
- 0000 0001 2166 1519grid.134907.8Laboratory of Investigative Dermatology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yong Zhang
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Mary Jeanne Kreek
- 0000 0001 2166 1519grid.134907.8The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
70
|
Hobson NM, Schroeder J, Risen JL, Xygalatas D, Inzlicht M. The Psychology of Rituals: An Integrative Review and Process-Based Framework. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2017; 22:260-284. [PMID: 29130838 DOI: 10.1177/1088868317734944] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditionally, ritual has been studied from broad sociocultural perspectives, with little consideration of the psychological processes at play. Recently, however, psychologists have begun turning their attention to the study of ritual, uncovering the causal mechanisms driving this universal aspect of human behavior. With growing interest in the psychology of ritual, this article provides an organizing framework to understand recent empirical work from social psychology, cognitive science, anthropology, behavioral economics, and neuroscience. Our framework focuses on three primary regulatory functions of rituals: regulation of (a) emotions, (b) performance goal states, and (c) social connection. We examine the possible mechanisms underlying each function by considering the bottom-up processes that emerge from the physical features of rituals and top-down processes that emerge from the psychological meaning of rituals. Our framework, by appreciating the value of psychological theory, generates novel predictions and enriches our understanding of ritual and human behavior more broadly.
Collapse
|
71
|
Shahzadi A, Uskur T, Akkan AG, Çevreli B, Uzbay T. Effects of propofol on conditioned place preference in male rats: Involvement of nitrergic system. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:167-174. [PMID: 28750179 DOI: 10.1080/00952990.2017.1344681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drug-induced conditioned place preference (CPP) is linked to the addictive properties of the drug used. The number of studies that have investigated the effects of propofol on CPP is limited. Research findings suggest that nitric oxide (NO) might play an important role in substance use disorders. OBJECTIVES The present study sought to investigate the role of the nitrergic system on the rewarding effects of propofol by using the CPP protocol in rats. METHODS The experiment followed habituation, pre-conditioning, conditioning, and post conditioning sessions. Male Wistar albino rats weighing 240-290 g were divided into eight groups: control (saline), propofol (10, 20, and 40 mg/kg), the NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) alone (30 and 60 mg/kg), and in combination with propofol (30 and 60 mg/kg L-NAME plus 40 mg/kg propofol) (n = 8 for each group). The CPP effects of propofol, L-NAME, saline, and their combinations were evaluated. All the drug and saline administrations were performed by intraperitoneal (ip) injections. RESULTS Propofol (10-40 mg/kg) produced CPP that was statistically significant relative to saline. Propofol-induced CPP was significantly reversed by pretreatment with L-NAME. When administered alone, L-NAME did not produce CPP and also did not produce any significant change on locomotor activity of naïve rats. CONCLUSION Our results suggest that propofol produces CPP effects in rats and that NO-related mechanisms may be responsible for propofol-induced CPP. Thus, propofol might have the potential to be addictive, and this possibility should be considered during clinical applications of this drug.
Collapse
Affiliation(s)
- Andleeb Shahzadi
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Tuğçe Uskur
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - A Gökhan Akkan
- a Institute of Health Science, Department of Medical Pharmacology, Cerrahpasa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Burcu Çevreli
- b Neuropsychopharmacology Application and Research Center (NPARC) , Üsküdar University , Istanbul , Turkey
| | - Tayfun Uzbay
- b Neuropsychopharmacology Application and Research Center (NPARC) , Üsküdar University , Istanbul , Turkey
| |
Collapse
|
72
|
Vernigora AN, Volkova NV, Saldaev DA. The effects of sex steroid hormones on the activities of basic carboxypeptidases in the hypothalamo–pituitary–adrenal system of male and female mice after stress. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Song J, Kim OY. Galanin's implications for post-stroke improvement. Anat Cell Biol 2016; 49:223-230. [PMID: 28127496 PMCID: PMC5266107 DOI: 10.5115/acb.2016.49.4.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/16/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Stroke leads to a variety of pathophysiological conditions such as ischemic infarct, cerebral inflammation, neuronal damage, cognitive decline, and depression. Many endeavors have been tried to find the therapeutic solutions to attenuate severe neuropathogenesis after stroke. Several studies have reported that a decrease in the neuropeptide regulator ‘galanin’ is associated with neuronal loss, learning and memory dysfunctions, and depression following a stroke. The present review summarized recent evidences on the function and the therapeutic potential of galanin in post-ischemic stroke to provide a further understanding of galanin's role. Hence, we suggest that galanin needs to be considered as a therapeutic factor in the alleviation of post-stroke pathologies.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea.; Human Life Research Center, Dong-A University, Busan, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan, Korea.; Department of Food Science and Nutrition, Dong-A University, Brain Busan 21, Busan, Korea
| |
Collapse
|
74
|
Hughes PA, Costello SP, Bryant RV, Andrews JM. Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 2016; 311:G501-13. [PMID: 27469369 DOI: 10.1152/ajpgi.00442.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/21/2016] [Indexed: 01/31/2023]
Abstract
Opioids are one of the most prescribed drug classes for treating acute pain. However, chronic use is often associated with tolerance as well as debilitating side effects, including nausea and dependence, which are mediated by the central nervous system, as well as constipation emerging from effects on the enteric nervous system. These gastrointestinal (GI) side effects limit the usefulness of opioids in treating pain in many patients. Understanding the mechanism(s) of action of opioids on the nervous system that shows clinical benefit as well as those that have unwanted effects is critical for the improvement of opioid drugs. The opioidergic system comprises three classical receptors (μ, δ, κ) and a nonclassical receptor (nociceptin), and each of these receptors is expressed to varying extents by the enteric and intestinal extrinsic sensory afferent nerves. The purpose of this review is to discuss the role that the opioidergic system has on enteric and extrinsic afferent nerves in the lower GI tract in health and diseases of the lower GI tract, particularly inflammatory bowel disease and irritable bowel syndrome, and the implications of opioid treatment on clinical outcomes. Consideration is also given to emerging developments in our understanding of the immune system as a novel source of endogenous opioids and the mechanisms underlying opioid tolerance, including the potential influence of opioid receptor splice variants and heteromeric complexes.
Collapse
Affiliation(s)
- Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Department of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia;
| | - Samuel P Costello
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Robert V Bryant
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| | - Jane M Andrews
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia; and
| |
Collapse
|
75
|
Morrison I. Keep Calm and Cuddle on: Social Touch as a Stress Buffer. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2016. [DOI: 10.1007/s40750-016-0052-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Oxytocin is involved in the proconvulsant effects of Sildenafil: Possible role of CREB. Toxicol Lett 2016; 256:44-52. [DOI: 10.1016/j.toxlet.2016.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 01/24/2023]
|
77
|
Abstract
Opioid drugs are potent modulators of many physiological and psychological processes. When given acutely, they can elicit the signature responses of euphoria and analgesia that societies have coveted for centuries. Repeated, or chronic, use of opioids induces adaptive or allostatic changes that modify neuronal circuitry and create an altered normality — the “drug-dependent” state. This state, at least that exhibited by those maintained continuously on long-acting opioid drugs such as methadone or buprenorphine, is generally indistinguishable from the drug-naïve state for most overt behaviors. The consequences of the allostatic changes (cellular, circuit, and system adaptations) that accompany the drug-dependent state are revealed during drug withdrawal. Drug cessation triggers a temporally orchestrated allostatic re-establishment of neuronal systems, which is manifested as opposing physiological and psychological effects to those exhibited by acute drug intoxication. Some withdrawal symptoms, such as physical symptoms (sweating, shaking, and diarrhea) resolve within days, whilst others, such as dysphoria, insomnia, and anxiety, can linger for months, and some adaptations, such as learned associations, may be established for life. We will briefly discuss the cellular mechanisms and neural circuitry that contribute to the opioid drug-dependent state, inferring an emerging role for neuroinflammation. We will argue that opioid addictive behaviors result from a learned relationship between opioids and relief from an existing or withdrawal-induced anxiogenic and/or dysphoric state. Furthermore, a future stressful life event can recall the memory that opioid drugs alleviate negative affect (despair, sadness, and anxiety) and thereby precipitate craving, resulting in relapse. A learned association of relief of aversive states would fuel drug craving in vulnerable people living in an increasingly stressful society. We suggest that this route to addiction is contributive to the current opioid epidemic in the USA.
Collapse
Affiliation(s)
- Christopher J Evans
- Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- Departments of Anesthesiology & Perioperative Care and Pharmacology, University of California, Irvine, CA, 90095, USA; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
78
|
Mazarati A, Sankar R. Common Mechanisms Underlying Epileptogenesis and the Comorbidities of Epilepsy. Cold Spring Harb Perspect Med 2016; 6:6/7/a022798. [PMID: 27371669 DOI: 10.1101/cshperspect.a022798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of comorbidities in determining the quality of life of individuals with epilepsy and their families has received increasing attention in the past decade. Along with it has come a recognition that in some individuals, certain comorbidities may have preexisted, and may have contributed to their developing epilepsy. Many mechanisms are capable of interconnecting different dysfunctions that manifest as distinct disorders, often diagnosed and managed by different specialists. We review the human data from the perspective of epidemiology as well as insights gathered from neurodiagnostic and endocrine studies. Animal studies are reviewed to refine our mechanistic understanding of the connections, because they permit the narrowing of variables, which is not possible when studying humans.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| | - Raman Sankar
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752 Department of Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| |
Collapse
|
79
|
Abstract
Personal social network size exhibits considerable variation in the human population and is associated with both physical and mental health status. Much of this inter-individual variation in human sociality remains unexplained from a biological perspective. According to the brain opioid theory of social attachment, binding of the neuropeptide β-endorphin to μ-opioid receptors in the central nervous system (CNS) is a key neurochemical mechanism involved in social bonding, particularly amongst primates. We hypothesise that a positive association exists between activity of the μ-opioid system and the number of social relationships that an individual maintains. Given the powerful analgesic properties of β-endorphin, we tested this hypothesis using pain tolerance as an assay for activation of the endogenous μ-opioid system. We show that a simple measure of pain tolerance correlates with social network size in humans. Our results are in line with previous studies suggesting that μ-opioid receptor signalling has been elaborated beyond its basic function of pain modulation to play an important role in managing our social encounters. The neuroplasticity of the μ-opioid system is of future research interest, especially with respect to psychiatric disorders associated with symptoms of social withdrawal and anhedonia, both of which are strongly modulated by endogenous opioids.
Collapse
|
80
|
Daniels S, Marshall P, Leri F. Alterations of naltrexone-induced conditioned place avoidance by pre-exposure to high fructose corn syrup or heroin in Sprague-Dawley rats. Psychopharmacology (Berl) 2016; 233:425-33. [PMID: 26514556 DOI: 10.1007/s00213-015-4121-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
RATIONALE It has been suggested that withdrawal from sugar produces a set of symptoms that resemble those observed following withdrawal from opiate drugs. OBJECTIVES This study explored naltrexone-induced withdrawal in animals pre-exposed to acute, chronic, and intermittent high fructose corn syrup (HFCS) or acute and chronic heroin administration. METHODS Experiment 1 examined conditioned place avoidance (CPA) induced by different doses of naltrexone (0.01-1 mg/kg) in naïve male Sprague-Dawley rats. In experiment 2, rats received continuous or intermittent home cage HFCS access (0 or 50 %) prior to conditioning with 1 mg/kg naltrexone. In experiment 3, HFCS ingestion was increased by food restriction and rats were conditioned with 3 mg/kg naltrexone. In experiment 4, the timing and quantity of HFCS ingestion (0, 0.5, 1, 2 g/kg) was controlled by intragastric administration, and rats were conditioned with 1 mg/kg naltrexone. In experiment 5, rats received acute (2 mg/kg) or chronic heroin (3.5 mg/kg/day) prior to conditioning with 1 mg/kg naltrexone. RESULTS Administration of naltrexone produced moderate conditioned place avoidance in naïve rats. Importantly, acute, continuous, and intermittent HFCS pre-exposure did not significantly amplify this effect, but acute and chronic heroin pre-exposure did. CONCLUSIONS As assessed by CPA, these results in rats fail to support the hypothesis that an opioid antagonist can precipitate similar affective withdrawal states following pre-exposure to sugars and opiates.
Collapse
Affiliation(s)
- Stephen Daniels
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul Marshall
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
81
|
|
82
|
Uskur T, Barlas MA, Akkan AG, Shahzadi A, Uzbay T. Dexmedetomidine induces conditioned place preference in rats: Involvement of opioid receptors. Behav Brain Res 2016; 296:163-168. [DOI: 10.1016/j.bbr.2015.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/10/2015] [Indexed: 01/22/2023]
|
83
|
Liu T, Zheng Q, Qian Z, Wang H, Liu Z, Ren W, Zhang X, Han J. Cannabinoid-Elicited Conditioned Place Preference in a Modified Behavioral Paradigm. Biol Pharm Bull 2016; 39:747-53. [DOI: 10.1248/bpb.b15-00834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tao Liu
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
- College of Life Sciences, Shaanxi Normal University
| | - Qiaohua Zheng
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Zhaoqiang Qian
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Haoquan Wang
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Zhiqiang Liu
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Wei Ren
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Xia Zhang
- University of Ottawa Institute of Mental Health Research
| | - Jing Han
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| |
Collapse
|
84
|
Interaction of prenatal stress and morphine alters prolactin and seizure in rat pups. Physiol Behav 2015; 149:181-6. [DOI: 10.1016/j.physbeh.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 11/17/2022]
|
85
|
Chauhan E, Bali A, Singh N, Jaggi AS. Cross stress adaptation: Phenomenon of interactions between homotypic and heterotypic stressors. Life Sci 2015. [PMID: 26209870 DOI: 10.1016/j.lfs.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Individuals have an inherent capacity to cope with stressors in the form of stress adaptation. Apart from stress adaptation there is another well documented phenomenon known as cross stress adaptation. In this, there is a reduction in stress responsiveness to a novel stressor (in which the adapted organism had never encountered previously) in previously exposed organisms with another stressor given in either continuous or intermittent. However, regarding the existence of cross stress adaptation, there are mixed reports revealing that the positive cross stress adaptation exists between altitude and heat stress; swim and inescapable shock stress, hypoxia and cold stress, psychosocial stressor and exercise. However, there are other reports which reveal the non-existence of cross adaptation between forced swim and noise stress and cold and immobilized stress. The exact mechanisms responsible for cross stress adaptation are not defined and need to be investigated.
Collapse
Affiliation(s)
- Eitika Chauhan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
86
|
Chen C, Takahashi T, Nakagawa S, Inoue T, Kusumi I. Reinforcement learning in depression: A review of computational research. Neurosci Biobehav Rev 2015; 55:247-67. [PMID: 25979140 DOI: 10.1016/j.neubiorev.2015.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/05/2023]
Abstract
Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Taiki Takahashi
- Department of Behavioral Science/Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|