51
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
52
|
Sritharan SY, Contreras-Hernández E, Richardson AG, Lucas TH. Primate somatosensory cortical neurons are entrained to both spontaneous and peripherally evoked spindle oscillations. J Neurophysiol 2019; 123:300-307. [PMID: 31800329 DOI: 10.1152/jn.00471.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recurrent thalamocortical circuits produce a number of rhythms critical to brain function. In slow-wave sleep, spindles (7-16 Hz) are a prominent spontaneous oscillation generated by thalamic circuits and triggered by cortical slow waves. In wakefulness and under anesthesia, brief peripheral sensory stimuli can evoke 10-Hz reverberations due potentially to similar thalamic mechanisms. Functionally, sleep spindles and peripherally evoked spindles may play a role in memory consolidation and perception, respectively. Yet, rarely have the circuits involved in these two rhythms been compared in the same animals and never in primates. Here, we investigated the entrainment of primary somatosensory cortex (S1) neurons to both rhythms in ketamine-sedated macaques. First, we compared spontaneous spindles in sedation and natural sleep to validate the model. Then, we quantified entrainment with spike-field coherence and phase-locking statistics. We found that S1 neurons entrained to spontaneous sleep spindles were also entrained to the evoked spindles, although entrainment strength and phase systematically differed. Our results indicate that the spindle oscillations triggered by top-down spontaneous cortical activity and bottom-up peripheral input share a common cortical substrate.NEW & NOTEWORTHY Brief sensory stimuli evoke 10-Hz oscillations in thalamocortical neuronal activity and in perceptual thresholds. The mechanisms underlying this evoked rhythm are not well understood but are thought to be similar to those generating sleep spindles. We directly compared the entrainment of cortical neurons to both spontaneous spindles and peripherally evoked oscillations in sedated monkeys. We found that the entrainment strengths to each rhythm were positively correlated, although with differing entrainment phases, implying involvement of similar networks.
Collapse
Affiliation(s)
- Srihari Y Sritharan
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrique Contreras-Hernández
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew G Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
53
|
Closed-Loop Acoustic Stimulation Enhances Sleep Oscillations But Not Memory Performance. eNeuro 2019; 6:ENEURO.0306-19.2019. [PMID: 31604814 PMCID: PMC6831893 DOI: 10.1523/eneuro.0306-19.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations and spindle activity during non-rapid eye movement sleep have been implicated in memory consolidation. Closed-loop acoustic stimulation has previously been shown to enhance slow oscillations and spindle activity during sleep and improve verbal associative memory. We assessed the effect of closed-loop acoustic stimulation during a daytime nap on a virtual reality spatial navigation task in 12 healthy human subjects in a randomized within-subject crossover design. We show robust enhancement of slow oscillation and spindle activity during sleep. However, no effects on behavioral performance were observed when comparing real versus sham stimulation. To explore whether memory enhancement effects were task specific and dependent on nocturnal sleep, in a second experiment with 19 healthy subjects, we aimed to replicate a previous study that used closed-loop acoustic stimulation to enhance memory for word pairs. The methods used were as close as possible to those used in the original study, except that we used a double-blind protocol, in which both subject and experimenter were unaware of the test condition. Again, we successfully enhanced slow oscillation and spindle power, but again did not strengthen associative memory performance with stimulation. We conclude that enhancement of sleep oscillations may be insufficient to enhance memory performance in spatial navigation or verbal association tasks, and provide possible explanations for lack of behavioral replication.
Collapse
|
54
|
Fang Z, Ray LB, Houldin E, Smith D, Owen AM, Fogel SM. Sleep Spindle-dependent Functional Connectivity Correlates with Cognitive Abilities. J Cogn Neurosci 2019; 32:446-466. [PMID: 31659927 DOI: 10.1162/jocn_a_01488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
EEG studies have shown that interindividual differences in the electrophysiological properties of sleep spindles (e.g., density, amplitude, duration) are highly correlated with trait-like "reasoning" abilities (i.e., "fluid intelligence"; problem-solving skills; the ability to employ logic or identify complex patterns), but not interindividual differences in STM or "verbal" intellectual abilities. Previous simultaneous EEG-fMRI studies revealed brain activations time-locked to spindles. Our group has recently demonstrated that the extent of activation in a subset of these regions was related to interindividual differences in reasoning intellectual abilities, specifically. However, spindles reflect communication between spatially distant and functionally distinct brain areas. The functional communication among brain regions related to spindles and their relationship to reasoning abilities have yet to be investigated. Using simultaneous EEG-fMRI sleep recordings and psychophysiological interaction analysis, we identified spindle-related functional communication among brain regions in the thalamo-cortical-BG system, the salience network, and the default mode network. Furthermore, the extent of the functional connectivity of the cortical-striatal circuitry and the thalamo-cortical circuitry was specifically related to reasoning abilities but was unrelated to STM or verbal abilities, thus suggesting that individuals with higher fluid intelligence have stronger functional coupling among these brain areas during spontaneous spindle events. This may serve as a first step in further understanding the function of sleep spindles and the brain network functional communication, which support the capacity for fluid intelligence.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain & Mind Institute, Western University, London, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western University, London, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Evan Houldin
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Dylan Smith
- University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western University, London, Canada.,Western University, London, Canada.,University of Ottawa, Ottawa, Canada.,Sleep Unit, the Royal's Institute for Mental Health Research, University of Ottawa, Ottawa, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
| |
Collapse
|
55
|
Brockmann PE, Bruni O, Kheirandish-Gozal L, Gozal D. Reduced sleep spindle activity in children with primary snoring. Sleep Med 2019; 65:142-146. [PMID: 31869690 DOI: 10.1016/j.sleep.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Habitually snoring children are at risk of manifesting disease-related problems even if their sleep studies are overall within normal limits. STUDY OBJECTIVES To compare sleep spindle activity in children with primary snoring and healthy controls. METHODS Sleep spindle activity including analysis of fast and slow spindles (ie, >13 Hz and <13 Hz, respectively) was evaluated in polysomnographic (PSG) recordings of 20 randomly selected children with primary snoring (PS; normal PSG recordings except for objective presence of snoring; 12 boys, mean age 6.5 ± 2.1 years), and 20 age- and gender-matched PSG-confirmed non-snoring controls. RESULTS PS children showed significantly lower spindle indices in all non-rapid eye movement (NREM) sleep stages (p < 0.05). In contrast, fast spindles were found in 40% (n = 8) children with PS and in 25% (n = 5) controls. Sleep spindle activity was particularly higher in NREM sleep stage 2 in controls compared PS (76% versus 43% of all marked sleep spindles events in NREM sleep stage 2, p < 0.001). CONCLUSIONS Children with PS exhibit significantly reduced spindle activity when compared to matched controls. Reduced sleep spindle activity may be an indicator of sleep disruption and, therefore, could be involved in the development of disease-related consequences in snoring children.
Collapse
Affiliation(s)
- Pablo E Brockmann
- Department of Pediatric Cardiology and Pulmonology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Pediatric Sleep Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| | - Leila Kheirandish-Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| |
Collapse
|
56
|
Choi J, Han S, Won K, Jun SC. The Neurophysiological Effect of Acoustic Stimulation with Real-time Sleep Spindle Detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:470-473. [PMID: 30440436 DOI: 10.1109/embc.2018.8512323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sleep spindle is a salient brain activity found in the sigma frequency range (11-16 Hz) during sleep stage 2. It has been demonstrated that sleep spindle is related to memory consolidation, neurodegenerative disease, and mental disorders. Slow wave activity (0.5-4 Hz) is the most prominent EEG activity during sleep and appears as a large, spontaneous synchronization of cortical neurons. The role of slow wave activity has been proposed to regulate synaptic strength and memory consolidation. Many studies have investigated the effect of acoustic stimuli during the sleep slow wave. However, there have been few studies which investigated an effect of acoustic stimulation during sleep spindle activity. In this study, we examined the neurophysiological effect of acoustic stimulation during sleep spindle activity. We delivered pink noise after the detection of sleep spindle, and surmised that acoustic stimulation after sleep spindle detection may preserve delta activity during ongoing sleep. Further, we observed suppression of the sleep spindle activity around the times of acoustic stimulation and evoked slow wave activity and theta band activity immediately after tone onset.
Collapse
|
57
|
Abstract
It has long been known that sleep supports memory consolidation. Two recent studies now shed light on how sleep spindles, characteristic 11-16 Hz activity bursts, contribute critically to memory processing during the night.
Collapse
|
58
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
59
|
How Targeted Memory Reactivation Promotes the Selective Strengthening of Memories in Sleep. Curr Biol 2019; 29:R906-R912. [DOI: 10.1016/j.cub.2019.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci 2019; 22:1598-1610. [PMID: 31451802 DOI: 10.1038/s41593-019-0467-3] [Citation(s) in RCA: 481] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.
Collapse
Affiliation(s)
- Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany. .,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
61
|
Tambini A, Davachi L. Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition. Trends Cogn Sci 2019; 23:876-890. [PMID: 31445780 DOI: 10.1016/j.tics.2019.07.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023]
Abstract
After experiences are encoded into memory, post-encoding reactivation mechanisms have been proposed to mediate long-term memory stabilization and transformation. Spontaneous reactivation of hippocampal representations, together with hippocampal-cortical interactions, are leading candidate mechanisms for promoting systems-level memory strengthening and reorganization. While the replay of spatial representations has been extensively studied in rodents, here we review recent fMRI work that provides evidence for spontaneous reactivation of nonspatial, episodic event representations in the human hippocampus and cortex, as well as for experience-dependent alterations in systems-level hippocampal connectivity. We focus on reactivation during awake post-encoding periods, relationships between reactivation and subsequent behavior, how reactivation is modulated by factors that influence consolidation, and the implications of persistent reactivation for biasing ongoing perception and cognition.
Collapse
Affiliation(s)
- Arielle Tambini
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
62
|
Geva-Sagiv M, Nir Y. Local Sleep Oscillations: Implications for Memory Consolidation. Front Neurosci 2019; 13:813. [PMID: 31481865 PMCID: PMC6710395 DOI: 10.3389/fnins.2019.00813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maya Geva-Sagiv
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Functional Neurophysiology and Sleep Research Lab, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
63
|
Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, Sterpenich V, Phillips C, Maquet P, Grova C, Dang-Vu TT. Cortical reactivations during sleep spindles following declarative learning. Neuroimage 2019; 195:104-112. [DOI: 10.1016/j.neuroimage.2019.03.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/21/2019] [Accepted: 03/23/2019] [Indexed: 01/10/2023] Open
|
64
|
Schuck NW, Niv Y. Sequential replay of nonspatial task states in the human hippocampus. Science 2019; 364:eaaw5181. [PMID: 31249030 PMCID: PMC7241311 DOI: 10.1126/science.aaw5181] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022]
Abstract
Sequential neural activity patterns related to spatial experiences are "replayed" in the hippocampus of rodents during rest. We investigated whether replay of nonspatial sequences can be detected noninvasively in the human hippocampus. Participants underwent functional magnetic resonance imaging (fMRI) while resting after performing a decision-making task with sequential structure. Hippocampal fMRI patterns recorded at rest reflected sequentiality of previously experienced task states, with consecutive patterns corresponding to nearby states. Hippocampal sequentiality correlated with the fidelity of task representations recorded in the orbitofrontal cortex during decision-making, which were themselves related to better task performance. Our findings suggest that hippocampal replay may be important for building representations of complex, abstract tasks elsewhere in the brain and establish feasibility of investigating fast replay signals with fMRI.
Collapse
Affiliation(s)
- Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
- Max Planck University College London (UCL) Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Yael Niv
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
65
|
Targeted Memory Reactivation during Sleep Elicits Neural Signals Related to Learning Content. J Neurosci 2019; 39:6728-6736. [PMID: 31235649 DOI: 10.1523/jneurosci.2798-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
Retrieval of learning-related neural activity patterns is thought to drive memory stabilization. However, finding reliable, noninvasive, content-specific indicators of memory retrieval remains a central challenge. Here, we attempted to decode the content of retrieved memories in the EEG during sleep. During encoding, male and female human subjects learned to associate spatial locations of visual objects with left- or right-hand movements, and each object was accompanied by an inherently related sound. During subsequent slow-wave sleep within an afternoon nap, we presented half of the sound cues that were associated (during wake) with left- and right-hand movements before bringing subjects back for a final postnap test. We trained a classifier on sleep EEG data (focusing on lateralized EEG features that discriminated left- vs right-sided trials during wake) to predict learning content when we cued the memories during sleep. Discrimination performance was significantly above chance and predicted subsequent memory, supporting the idea that retrieval leads to memory stabilization. Moreover, these lateralized signals increased with postcue sleep spindle power, demonstrating that retrieval has a strong relationship with spindles. These results show that lateralized activity related to individual memories can be decoded from sleep EEG, providing an effective indicator of offline retrieval.SIGNIFICANCE STATEMENT Memories are thought to be retrieved during sleep, leading to their long-term stabilization. However, there has been relatively little work in humans linking neural measures of retrieval of individual memories during sleep to subsequent memory performance. This work leverages the prominent electrophysiological signal triggered by lateralized movements to robustly demonstrate the retrieval of specific cued memories during sleep. Moreover, these signals predict subsequent memory and are correlated with sleep spindles, neural oscillations that have previously been implicated in memory stabilization. Together, these findings link memory retrieval to stabilization and provide a powerful tool for investigating memory in a wide range of learning contexts and human populations.
Collapse
|
66
|
Vantomme G, Osorio-Forero A, Lüthi A, Fernandez LMJ. Regulation of Local Sleep by the Thalamic Reticular Nucleus. Front Neurosci 2019; 13:576. [PMID: 31231186 PMCID: PMC6560175 DOI: 10.3389/fnins.2019.00576] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
In spite of the uniform appearance of sleep as a behavior, the sleeping brain does not produce electrical activities in unison. Different types of brain rhythms arise during sleep and vary between layers, areas, or from one functional system to another. Local heterogeneity of such activities, here referred to as local sleep, overturns fundamental tenets of sleep as a globally regulated state. However, little is still known about the neuronal circuits involved and how they can generate their own specifically-tuned sleep patterns. NREM sleep patterns emerge in the brain from interplay of activity between thalamic and cortical networks. Within this fundamental circuitry, it now turns out that the thalamic reticular nucleus (TRN) acts as a key player in local sleep control. This is based on a marked heterogeneity of the TRN in terms of its cellular and synaptic architecture, which leads to a regional diversity of NREM sleep hallmarks, such as sleep spindles, delta waves and slow oscillations. This provides first evidence for a subcortical circuit as a determinant of cortical local sleep features. Here, we review novel cellular and functional insights supporting TRN heterogeneity and how these elements come together to account for local NREM sleep. We also discuss open questions arising from these studies, focusing on mechanisms of sleep regulation and the role of local sleep in brain plasticity and cognitive functions.
Collapse
Affiliation(s)
- Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
67
|
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 2019; 20:364-375. [PMID: 30872808 PMCID: PMC7233541 DOI: 10.1038/s41583-019-0150-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Episodic memory reflects the ability to recollect the temporal and spatial context of past experiences. Episodic memories depend on the hippocampus but have been proposed to undergo rapid forgetting unless consolidated during offline periods such as sleep to neocortical areas for long-term storage. Here, we propose an alternative to this standard systems consolidation theory (SSCT) - a contextual binding account - in which the hippocampus binds item-related and context-related information. We compare these accounts in light of behavioural, lesion, neuroimaging and sleep studies of episodic memory and contend that forgetting is largely due to contextual interference, episodic memory remains dependent on the hippocampus across time, contextual drift produces post-encoding activity and sleep benefits memory by reducing contextual interference.
Collapse
Affiliation(s)
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Brian J Wiltgen
- Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
68
|
Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. Neuroimage 2019; 189:734-744. [DOI: 10.1016/j.neuroimage.2019.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 01/20/2019] [Indexed: 01/29/2023] Open
|
69
|
Moehlman TM, de Zwart JA, Chappel-Farley MG, Liu X, McClain IB, Chang C, Mandelkow H, Özbay PS, Johnson NL, Bieber RE, Fernandez KA, King KA, Zalewski CK, Brewer CC, van Gelderen P, Duyn JH, Picchioni D. All-night functional magnetic resonance imaging sleep studies. J Neurosci Methods 2019; 316:83-98. [PMID: 30243817 PMCID: PMC6524535 DOI: 10.1016/j.jneumeth.2018.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/08/2018] [Accepted: 09/17/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging (fMRI) sleep studies have been hampered by the difficulty of obtaining extended amounts of sleep in the sleep-adverse environment of the scanner and often have resorted to manipulations such as sleep depriving subjects before scanning. These manipulations limit the generalizability of the results. NEW METHOD The current study is a methodological validation of procedures aimed at obtaining all-night fMRI data in sleeping subjects with minimal exposure to experimentally induced sleep deprivation. Specifically, subjects slept in the scanner on two consecutive nights, allowing the first night to serve as an adaptation night. RESULTS/COMPARISON WITH EXISTING METHOD(S) Sleep scoring results from simultaneously acquired electroencephalography data on Night 2 indicate that subjects (n = 12) reached the full spectrum of sleep stages including slow-wave (M = 52.1 min, SD = 26.5 min) and rapid eye movement (REM, M = 45.2 min, SD = 27.9 min) sleep and exhibited a mean of 2.1 (SD = 1.1) nonREM-REM sleep cycles. CONCLUSIONS It was found that by diligently applying fundamental principles and methodologies of sleep and neuroimaging science, performing all-night fMRI sleep studies is feasible. However, because the two nights of the study were performed consecutively, some sleep deprivation from Night 1 as a cause of the Night 2 results is likely, so consideration should be given to replicating the current study with a washout period. It is envisioned that other laboratories can adopt the core features of this protocol to obtain similar results.
Collapse
Affiliation(s)
- Thomas M Moehlman
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jacco A de Zwart
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Miranda G Chappel-Farley
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Xiao Liu
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA; Department of Biomedical Engineering, Pennsylvania State University, USA
| | - Irene B McClain
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, USA
| | - Catie Chang
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, USA
| | - Hendrik Mandelkow
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Pinar S Özbay
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Nicholas L Johnson
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Rebecca E Bieber
- Audiology Unit, National Institute on Deafness and Other Communication Disorders, USA
| | - Katharine A Fernandez
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, USA
| | - Kelly A King
- Audiology Unit, National Institute on Deafness and Other Communication Disorders, USA
| | | | - Carmen C Brewer
- Audiology Unit, National Institute on Deafness and Other Communication Disorders, USA
| | - Peter van Gelderen
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA
| | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, USA; Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, USA.
| |
Collapse
|
70
|
Taillard J, Sagaspe P, Berthomier C, Brandewinder M, Amieva H, Dartigues JF, Rainfray M, Harston S, Micoulaud-Franchi JA, Philip P. Non-REM Sleep Characteristics Predict Early Cognitive Impairment in an Aging Population. Front Neurol 2019; 10:197. [PMID: 30918496 PMCID: PMC6424890 DOI: 10.3389/fneur.2019.00197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Recent research suggests that sleep disorders or changes in sleep stages or EEG waveform precede over time the onset of the clinical signs of pathological cognitive impairment (e.g., Alzheimer's disease). The aim of this study was to identify biomarkers based on EEG power values and spindle characteristics during sleep that occur in the early stages of mild cognitive impairment (MCI) in older adults. Methods: This study was a case-control cross-sectional study with 1-year follow-up of cases. Patients with isolated subjective cognitive complaints (SCC) or MCI were recruited in the Bordeaux Memory Clinic (MEMENTO cohort). Cognitively normal controls were recruited. All participants were recorded with two successive polysomnography 1 year apart. Delta, theta, and sigma absolute spectral power and spindle characteristics (frequency, density, and amplitude) were analyzed from purified EEG during NREM and REM sleep periods during the entire second night. Results: Twenty-nine patients (8 males, age = 71 ± 7 years) and 29 controls were recruited at T0. Logistic regression analyses demonstrated that age-related cognitive impairment were associated with a reduced delta power (odds ratio (OR) 0.072, P < 0.05), theta power (OR 0.018, P < 0.01), sigma power (OR 0.033, P < 0.05), and spindle maximal amplitude (OR 0.002, P < 0.05) during NREM sleep. Variables were adjusted on age, gender, body mass index, educational level, and medication use. Seventeen patients were evaluated at 1-year follow-up. Correlations showed that changes in self-reported sleep complaints, sleep consolidation, and spindle characteristics (spectral power, maximal amplitude, duration, and frequency) were associated with cognitive impairment (P < 0.05). Conclusion: A reduction in slow-wave, theta and sigma activities, and a modification in spindle characteristics during NREM sleep are associated very early with a greater risk of the occurrence of cognitive impairment. Poor sleep consolidation, lower amplitude, and faster frequency of spindles may be early sleep biomarkers of worsening cognitive decline in older adults.
Collapse
Affiliation(s)
- Jacques Taillard
- USR CNRS 3413 SANPSY Sommeil, Addiction et NeuroPSYchiatrie, Bordeaux, France.,SANPSY, USR 3413, Université Bordeaux, Bordeaux, France
| | - Patricia Sagaspe
- USR CNRS 3413 SANPSY Sommeil, Addiction et NeuroPSYchiatrie, Bordeaux, France.,SANPSY, USR 3413, Université Bordeaux, Bordeaux, France.,CHU de Bordeaux, Pôle Neurosciences Cliniques, Bordeaux, France
| | | | | | - Hélène Amieva
- CMRR, CHU Bordeaux, Bordeaux, France.,Bordeaux Population Health Center, INSERM U1219, Université de Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- CMRR, CHU Bordeaux, Bordeaux, France.,Bordeaux Population Health Center, INSERM U1219, Université de Bordeaux, Bordeaux, France
| | | | | | - Jean-Arthur Micoulaud-Franchi
- USR CNRS 3413 SANPSY Sommeil, Addiction et NeuroPSYchiatrie, Bordeaux, France.,SANPSY, USR 3413, Université Bordeaux, Bordeaux, France.,CHU de Bordeaux, Pôle Neurosciences Cliniques, Bordeaux, France
| | - Pierre Philip
- USR CNRS 3413 SANPSY Sommeil, Addiction et NeuroPSYchiatrie, Bordeaux, France.,SANPSY, USR 3413, Université Bordeaux, Bordeaux, France.,CHU de Bordeaux, Pôle Neurosciences Cliniques, Bordeaux, France
| |
Collapse
|
71
|
Langille JJ. Remembering to Forget: A Dual Role for Sleep Oscillations in Memory Consolidation and Forgetting. Front Cell Neurosci 2019; 13:71. [PMID: 30930746 PMCID: PMC6425990 DOI: 10.3389/fncel.2019.00071] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
It has been known since the time of patient H. M. and Karl Lashley's equipotentiality studies that the hippocampus and cortex serve mnestic functions. Current memory models maintain that these two brain structures accomplish unique, but interactive, memory functions. Specifically, most modeling suggests that memories are rapidly acquired during waking experience by the hippocampus, before being later consolidated into the cortex for long-term storage. Sleep has been shown to be critical for the transfer and consolidation of memories in the cortex. Like memory consolidation, a role for sleep in adaptive forgetting has both historical precedent, as Francis Crick suggested in 1983 that sleep was for "reverse-learning," and recent empirical support. In this article I review the evidence indicating that the same brain activity involved in sleep replay associated memory consolidation is responsible for sleep-dependent forgetting. In reviewing the literature, it became clear that both a cellular mechanism for systems consolidation and an agreed upon general, as well as cellular, mechanism for sleep-dependent forgetting is seldom discussed or is lacking. I advocate here for a candidate cellular systems consolidation mechanism wherein changes in calcium kinetics and the activation of consolidative signaling cascades arise from the triple phase locking of non-rapid eye movement sleep (NREMS) slow oscillation, sleep spindle and sharp-wave ripple rhythms. I go on to speculatively consider several sleep stage specific forgetting mechanisms and conclude by discussing a notional function of NREM-rapid eye movement sleep (REMS) cycling. The discussed model argues that the cyclical organization of sleep functions to first lay down and edit and then stabilize and integrate engrams. All things considered, it is increasingly clear that hallmark sleep stage rhythms, including several NREMS oscillations and the REMS hippocampal theta rhythm, serve the dual function of enabling simultaneous memory consolidation and adaptive forgetting. Specifically, the same sleep rhythms that consolidate new memories, in the cortex and hippocampus, simultaneously organize the adaptive forgetting of older memories in these brain regions.
Collapse
Affiliation(s)
- Jesse J Langille
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
72
|
Friedrich M, Mölle M, Friederici AD, Born J. The reciprocal relation between sleep and memory in infancy: Memory-dependent adjustment of sleep spindles and spindle-dependent improvement of memories. Dev Sci 2019; 22:e12743. [PMID: 30160012 PMCID: PMC6585722 DOI: 10.1111/desc.12743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/24/2018] [Indexed: 11/27/2022]
Abstract
Sleep spindle activity in infants supports their formation of generalized memories during sleep, indicating that specific sleep processes affect the consolidation of memories early in life. Characteristics of sleep spindles depend on the infant's developmental state and are known to be associated with trait-like factors such as intelligence. It is, however, largely unknown which state-like factors affect sleep spindles in infancy. By varying infants' wake experience in a within-subject design, here we provide evidence for a learning- and memory-dependent modulation of infant spindle activity. In a lexical-semantic learning session before a nap, 14- to 16-month-old infants were exposed to unknown words as labels for exemplars of unknown object categories. In a memory test on the next day, generalization to novel category exemplars was tested. In a nonlearning control session preceding a nap on another day, the same infants heard known words as labels for exemplars of already known categories. Central-parietal fast sleep spindles increased after the encoding of unknown object-word pairings compared to known pairings, evidencing that an infant's spindle activity varies depending on its prior knowledge for newly encoded information. Correlations suggest that enhanced spindle activity was particularly triggered, when similar unknown pairings were not generalized immediately during encoding. The spindle increase triggered by previously not generalized object-word pairings, moreover, boosted the formation of generalized memories for these pairings. Overall, the results provide first evidence for a fine-tuned regulation of infant sleep quality according to current consolidation requirements, which improves the infant long-term memory for new experiences.
Collapse
Affiliation(s)
- Manuela Friedrich
- Institute of PsychologyHumboldt‐University BerlinBerlinGermany
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM)University of LübeckLubeckGermany
| | - Angela D. Friederici
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative NeuroscienceUniversity of TübingenTubingenGermany
| |
Collapse
|
73
|
Fang Z, Ray LB, Owen AM, Fogel SM. Brain Activation Time-Locked to Sleep Spindles Associated With Human Cognitive Abilities. Front Neurosci 2019; 13:46. [PMID: 30787863 PMCID: PMC6372948 DOI: 10.3389/fnins.2019.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Simultaneous electroencephalography and functional magnetic resonance imaging (EEG–fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with “Reasoning” abilities (i.e., “fluid intelligence”; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG–fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Laura B Ray
- Brain and Mind Institute, Western University, London, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Stuart M Fogel
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
74
|
Seibt J, Frank MG. Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Front Syst Neurosci 2019; 13:2. [PMID: 30774586 PMCID: PMC6367653 DOI: 10.3389/fnsys.2019.00002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
It is commonly accepted that brain plasticity occurs in wakefulness and sleep. However, how these different brain states work in concert to create long-lasting changes in brain circuitry is unclear. Considering that wakefulness and sleep are profoundly different brain states on multiple levels (e.g., cellular, molecular and network activation), it is unlikely that they operate exactly the same way. Rather it is probable that they engage different, but coordinated, mechanisms. In this article we discuss how plasticity may be divided across the sleep-wake cycle, and how synaptic changes in each brain state are linked. Our working model proposes that waking experience triggers short-lived synaptic events that are necessary for transient plastic changes and mark (i.e., 'prime') circuits and synapses for further processing in sleep. During sleep, synaptic protein synthesis at primed synapses leads to structural changes necessary for long-term information storage.
Collapse
Affiliation(s)
- Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Marcos G. Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, United States
| |
Collapse
|
75
|
Bothe K, Hirschauer F, Wiesinger HP, Edfelder J, Gruber G, Birklbauer J, Hoedlmoser K. The impact of sleep on complex gross-motor adaptation in adolescents. J Sleep Res 2018; 28:e12797. [PMID: 30565337 PMCID: PMC6766860 DOI: 10.1111/jsr.12797] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022]
Abstract
Sleep has been shown to facilitate the consolidation of newly acquired motor memories in adults. However, the role of sleep in motor memory consolidation is less clear in children and adolescents, especially concerning real‐life gross‐motor skills. Therefore, we investigated the effects of sleep and wakefulness on a complex gross‐motor adaptation task by using a bicycle with an inverse steering device. A total of 29 healthy adolescents aged between 11 and 14 years (five female) were either trained to ride an inverse steering bicycle (learning condition) or a stationary bicycle (control condition). Training took place in the morning (wake, n = 14) or in the evening (sleep, n = 15) followed by a 9‐hr retention interval and a subsequent re‐test session. Slalom cycling performance was assessed by speed (riding time) and accuracy (standard deviation of steering angle) measures. Behavioural results showed no evidence for sleep‐dependent memory consolidation. However, overnight gains in accuracy were associated with an increase in left hemispheric N2 slow sleep spindle activity from control to learning night. Furthermore, decreases in REM and tonic REM duration were related to higher overnight improvements in accuracy. Regarding speed, an increase in REM and tonic REM duration was favourable for higher overnight gains in riding time. Thus, although not yet detectable on a behavioural level, sleep seemed to play a role in the acquisition of gross‐motor skills. A promising direction for future research is to focus on the possibility of delayed performance gains in adolescent populations.
Collapse
Affiliation(s)
- Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Franziska Hirschauer
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Hans-Peter Wiesinger
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Janina Edfelder
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Juergen Birklbauer
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
76
|
Shanahan LK, Gjorgieva E, Paller KA, Kahnt T, Gottfried JA. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife 2018; 7:e39681. [PMID: 30560782 PMCID: PMC6298770 DOI: 10.7554/elife.39681] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 01/08/2023] Open
Abstract
Slow-wave sleep is an optimal opportunity for memory consolidation: when encoding occurs in the presence of a sensory cue, delivery of that cue during sleep enhances retrieval of associated memories. Recent studies suggest that cues might promote consolidation by inducing neural reinstatement of cue-associated content during sleep, but direct evidence for such mechanisms is scant, and the relevant brain areas supporting these processes are poorly understood. Here, we address these gaps by combining a novel olfactory cueing paradigm with an object-location memory task and simultaneous EEG-fMRI recording in human subjects. Using pattern analysis of fMRI ensemble activity, we find that presentation of odor cues during sleep promotes reactivation of category-level information in ventromedial prefrontal cortex that significantly correlates with post-sleep memory performance. In identifying the potential mechanisms by which odor cues selectively modulate memory in the sleeping brain, these findings bring unique insights into elucidating how and what we remember.
Collapse
Affiliation(s)
- Laura K Shanahan
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Eva Gjorgieva
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
| | - Ken A Paller
- Department of Psychology, Weinberg College of Arts and SciencesNorthwestern UniversityEvanstonUnited States
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Psychology, Weinberg College of Arts and SciencesNorthwestern UniversityEvanstonUnited States
| | - Jay A Gottfried
- Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUnited States
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUnited States
- Department of Psychology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
77
|
Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory stabilization. Sci Rep 2018; 8:16958. [PMID: 30446718 PMCID: PMC6240046 DOI: 10.1038/s41598-018-35287-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/01/2018] [Indexed: 11/08/2022] Open
Abstract
Memory reprocessing following acquisition enhances memory consolidation. Specifically, neural activity during encoding is thought to be 'replayed' during subsequent slow-wave sleep. Such memory replay is thought to contribute to the functional reorganization of neural memory traces. In particular, memory replay may facilitate the exchange of information across brain regions by inducing a reconfiguration of connectivity across the brain. Memory reactivation can be induced by external cues through a procedure known as "targeted memory reactivation". Here, we analysed data from a published study with auditory cues used to reactivate visual object-location memories during slow-wave sleep. We characterized effects of memory reactivation on brain network connectivity using graph-theory. We found that cue presentation during slow-wave sleep increased global network integration of occipital cortex, a visual region that was also active during retrieval of object locations. Although cueing did not have an overall beneficial effect on the retention of cued versus uncued associations, individual differences in overnight memory stabilization were related to enhanced network integration of occipital cortex. Furthermore, occipital cortex displayed enhanced connectivity with mnemonic regions, namely the hippocampus, parahippocampal gyrus, thalamus and medial prefrontal cortex during cue sound presentation. Together, these results suggest a neural mechanism where cue-induced replay during sleep increases integration of task-relevant perceptual regions with mnemonic regions. This cross-regional integration may be instrumental for the consolidation and long-term storage of enduring memories.
Collapse
|
78
|
The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 2018; 564:109-113. [PMID: 30429612 DOI: 10.1038/s41586-018-0716-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
There is a long-standing division in memory research between hippocampus-dependent memory and non-hippocampus-dependent memory, as only the latter can be acquired and retrieved in the absence of normal hippocampal function1,2. Consolidation of hippocampus-dependent memory, in particular, is strongly supported by sleep3-5. Here we show that the formation of long-term representations in a rat model of non-hippocampus-dependent memory depends not only on sleep but also on activation of a hippocampus-dependent mechanism during sleep. Rats encoded non-hippocampus-dependent (novel-object recognition6-8) and hippocampus-dependent (object-place recognition) memories before a two-hour period of sleep or wakefulness. Memory was tested either immediately thereafter or remotely (after one or three weeks). Whereas object-place recognition memory was stronger for rats that had slept after encoding (rather than being awake) at both immediate and remote testing, novel-object recognition memory profited from sleep only three weeks after encoding, at which point it was preserved in rats that had slept after encoding but not in those that had been awake. Notably, inactivation of the hippocampus during post-encoding sleep by intrahippocampal injection of muscimol abolished the sleep-induced enhancement of remote novel-object recognition memory. By contrast, muscimol injection before remote retrieval or memory encoding had no effect on test performance, confirming that the encoding and retrieval of novel-object recognition memory are hippocampus-independent. Remote novel-object recognition memory was associated with spindle activity during post-encoding slow-wave sleep, consistent with the view that neuronal memory replay during slow-wave sleep contributes to long-term memory formation. Our results indicate that the hippocampus has an important role in long-term consolidation during sleep even for memories that have previously been considered hippocampus-independent.
Collapse
|
79
|
Affiliation(s)
- Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Deutsches Resilienz Zentrum, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
80
|
Antony JW, Schönauer M, Staresina BP, Cairney SA. Sleep Spindles and Memory Reprocessing. Trends Neurosci 2018; 42:1-3. [PMID: 30340875 DOI: 10.1016/j.tins.2018.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
Abstract
We propose a framework for the memory function of spindle oscillations during sleep. In this framework, memories are reinstated by spindle events and further reprocessed during subsequent spindle refractory periods. We posit that spindle refractoriness is crucial for protecting memory reprocessing from interference. We further argue that temporally-coordinated spindle refractory periods across local networks facilitate the consolidation of rich, multimodal representations, and that localized spindle refractoriness optimizes oscillatory interactions that support systems consolidation in the sleeping brain.
Collapse
Affiliation(s)
- James W Antony
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Monika Schönauer
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
81
|
Cortical circuit activity underlying sleep slow oscillations and spindles. Proc Natl Acad Sci U S A 2018; 115:E9220-E9229. [PMID: 30209214 DOI: 10.1073/pnas.1805517115] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Slow oscillations and sleep spindles are hallmarks of the EEG during slow-wave sleep (SWS). Both oscillatory events, especially when co-occurring in the constellation of spindles nesting in the slow oscillation upstate, are considered to support memory formation and underlying synaptic plasticity. The regulatory mechanisms of this function at the circuit level are poorly understood. Here, using two-photon imaging in mice, we relate EEG-recorded slow oscillations and spindles to calcium signals recorded from the soma of cortical putative pyramidal-like (Pyr) cells and neighboring parvalbumin-positive interneurons (PV-Ins) or somatostatin-positive interneurons (SOM-Ins). Pyr calcium activity was increased more than threefold when spindles co-occurred with slow oscillation upstates compared with slow oscillations or spindles occurring in isolation. Independent of whether or not a spindle was nested in the slow oscillation upstate, the slow oscillation downstate was preceded by enhanced calcium signal in SOM-Ins that vanished during the upstate, whereas spindles were associated with strongly increased PV-In calcium activity. Additional wide-field calcium imaging of Pyr cells confirmed the enhanced calcium activity and its widespread topography associated with spindles nested in slow oscillation upstates. In conclusion, when spindles are nested in slow oscillation upstates, maximum Pyr activity appears to concur with strong perisomatic inhibition of Pyr cells via PV-Ins and low dendritic inhibition via SOM-Ins (i.e., conditions that might optimize synaptic plasticity within local cortical circuits).
Collapse
|
82
|
Pu Y, Cornwell BR, Cheyne D, Johnson BW. High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task. Neuroimage 2018; 178:92-103. [DOI: 10.1016/j.neuroimage.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
|
83
|
Antony JW, Cheng LY, Brooks PP, Paller KA, Norman KA. Competitive learning modulates memory consolidation during sleep. Neurobiol Learn Mem 2018; 155:216-230. [PMID: 30092311 DOI: 10.1016/j.nlm.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/04/2018] [Indexed: 11/29/2022]
Abstract
Competition between memories can cause weakening of those memories. Here we investigated memory competition during sleep in human participants by presenting auditory cues that had been linked to two distinct picture-location pairs during wake. We manipulated competition during learning by requiring participants to rehearse picture-location pairs associated with the same sound either competitively (choosing to rehearse one over the other, leading to greater competition) or separately; we hypothesized that greater competition during learning would lead to greater competition when memories were cued during sleep. With separate-pair learning, we found that cueing benefited spatial retention. With competitive-pair learning, no benefit of cueing was observed on retention, but cueing impaired retention of well-learned pairs (where we expected strong competition). During sleep, post-cue beta power (16-30 Hz) indexed competition and predicted forgetting, whereas sigma power (11-16 Hz) predicted subsequent retention. Taken together, these findings show that competition between memories during learning can modulate how they are consolidated during sleep.
Collapse
Affiliation(s)
- James W Antony
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Larry Y Cheng
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Paula P Brooks
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
84
|
Fogel SM, Ray LB, Sergeeva V, De Koninck J, Owen AM. A Novel Approach to Dream Content Analysis Reveals Links Between Learning-Related Dream Incorporation and Cognitive Abilities. Front Psychol 2018; 9:1398. [PMID: 30127760 PMCID: PMC6088287 DOI: 10.3389/fpsyg.2018.01398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Can dreams reveal insight into our cognitive abilities and aptitudes (i.e., "human intelligence")? The relationship between dream production and trait-like cognitive abilities is the foundation of several long-standing theories on the neurocognitive and cognitive-psychological basis of dreaming. However, direct experimental evidence is sparse and remains contentious. On the other hand, recent research has provided compelling evidence demonstrating a link between dream content and new learning, suggesting that dreams reflect memory processing during sleep. It remains to be investigated whether the extent of learning-related dream incorporation (i.e., the semantic similarity between waking experiences and dream content) is related to inter-individual differences in cognitive abilities. The relationship between pre-post sleep memory performance improvements and learning-related dream incorporation was investigated (N = 24) to determine if this relationship could be explained by inter-individual differences in intellectual abilities (e.g., reasoning, short term memory (STM), and verbal abilities). The extent of dream incorporation using a novel and objective method of dream content analysis, employed a computational linguistic approach to measure the semantic relatedness between verbal reports describing the experience on a spatial (e.g., maze navigation) or a motor memory task (e.g., tennis simulator) with subsequent hypnagogic reverie dream reports and waking "daydream" reports, obtained during a daytime nap opportunity. Consistent with previous studies, the extent to which something new was learned was related (r = 0.47) to how richly these novel experiences were incorporated into the content of dreams. This was significant for early (the first 4 dream reports) but not late dreams (the last 4 dream reports). Notably, here, we show for the first time that the extent of this incorporation for early dreams was related (r = 0.41) to inter-individual differences in reasoning abilities. On the other hand, late dream incorporation was related (r = 0.46) to inter-individual differences in verbal abilities. There was no relationship between performance improvements and intellectual abilities, and thus, inter-individual differences in cognitive abilities did not mediate the relationship between performance improvements and dream incorporation; suggesting a direct relationship between reasoning abilities and dream incorporation. This study provides the first evidence that learning-related dream production is related to inter-individual differences in cognitive abilities.
Collapse
Affiliation(s)
- Stuart M. Fogel
- The Brain and Mind Institute, Western University, London, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- The Royal’s Institute of Mental Health Research, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Laura B. Ray
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Valya Sergeeva
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- The Royal’s Institute of Mental Health Research, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Adrian M. Owen
- The Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
85
|
Sleep spindle activity in children with obstructive sleep apnea as a marker of neurocognitive performance: A pilot study. Eur J Paediatr Neurol 2018; 22:434-439. [PMID: 29477593 DOI: 10.1016/j.ejpn.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVES To assess spindle activity as possible markers for neurocognitive consequences in children with mild obstructive sleep apnea. METHODS Children aged 6-11 years diagnosed with mild OSA (i.e., an apnea hypopnea index <5.0) were recruited and compared with age and gender-matched healthy controls. Polysomnographic recordings were analyzed for sleep microstructure and spindle activity. All children completed also an intelligence test battery (i.e., the Wechsler intelligence test for children, 4th version). RESULTS Nineteen children with OSA (13 boys, mean age 7.1 ± 1.4 y), and 14 controls (7 boys, mean age 8.1 ± 1.9 y) were included. Mean IQ was 110 ± 12 for the complete sample, in children with OSA 111 ± 13, and in controls 108 ± 12 (p = 0.602). Controls showed a higher spindle index in N2 stage than children with OSA: 143.0 ± 42.5 vs 89.5 ± 56.9, respectively (p = 0.003). Spindle index in NREM was strongly and significantly correlated with Verbal Comprehension Index (VCI), Working Memory Index (WMI), Processing Speed Index (PSI), and total IQ in children with OSA. CONCLUSIONS Children with mild OSA demonstrate a different pattern of sleep spindle activity that seems to be linked with neurocognitive performance, especially concerning memory. Sleep spindle activity seems to be involved with mechanisms related with neurocognitive consequences in children with OSA.
Collapse
|
86
|
Baker FC, Sattari N, de Zambotti M, Goldstone A, Alaynick WA, Mednick SC. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women. Neurobiol Learn Mem 2018; 160:118-131. [PMID: 29574082 DOI: 10.1016/j.nlm.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Age and sex are two of the three major risk factors for Alzheimer's disease (ApoE-e4 allele is the third), with women having a twofold greater risk for Alzheimer's disease after the age of 75 years. Sex differences have been shown across a wide range of cognitive skills in young and older adults, and evidence supports a role for sex steroids, especially estradiol, in protecting against the development of cognitive decline in women. Sleep may also be a protective factor against age-related cognitive decline, since specific electrophysiological sleep events (e.g. sleep spindle/slow oscillation coupling) are critical for offline memory consolidation. Furthermore, studies in young women have shown fluctuations in sleep events and sleep-dependent memory consolidation during different phases of the menstrual cycle that are associated with the levels of sex steroids. An under-appreciated possibility is that there may be an important interaction between these two protective factors (sex steroids and sleep) that may play a role in daily fluctuations in cognitive processing, in particular memory, across a woman's lifespan. Here, we summarize the current knowledge of sex steroid-dependent influences on sleep and cognition across the lifespan in women, with special emphasis on sleep-dependent memory processing. We further indicate gaps in knowledge that require further experimental examination in order to fully appreciate the complex and changing landscape of sex steroids and cognition. Lastly, we propose a series of testable predictions for how sex steroids impact sleep events and sleep-dependent cognition across the three major reproductive stages in women (reproductive years, menopause transition, and post-menopause).
Collapse
Affiliation(s)
- Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Negin Sattari
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA
| | | | - Aimee Goldstone
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | | | - Sara C Mednick
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
87
|
Cairney SA, Guttesen AÁV, El Marj N, Staresina BP. Memory Consolidation Is Linked to Spindle-Mediated Information Processing during Sleep. Curr Biol 2018. [PMID: 29526594 PMCID: PMC5863764 DOI: 10.1016/j.cub.2018.01.087] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
How are brief encounters transformed into lasting memories? Previous research has established the role of non-rapid eye movement (NREM) sleep, along with its electrophysiological signatures of slow oscillations (SOs) and spindles, for memory consolidation [1, 2, 3, 4]. In related work, experimental manipulations have demonstrated that NREM sleep provides a window of opportunity to selectively strengthen particular memory traces via the delivery of auditory cues [5, 6, 7, 8, 9, 10], a procedure known as targeted memory reactivation (TMR). It has remained unclear, however, whether TMR triggers the brain’s endogenous consolidation mechanisms (linked to SOs and/or spindles) and whether those mechanisms in turn mediate effective processing of mnemonic information. We devised a novel paradigm in which associative memories (adjective-object and adjective-scene pairs) were selectively cued during a post-learning nap, successfully stabilizing next-day retention relative to non-cued memories. First, we found that, compared to novel control adjectives, memory cues evoked an increase in fast spindles. Critically, during the time window of cue-induced spindle activity, the memory category linked to the verbal cue (object or scene) could be reliably decoded, with the fidelity of this decoding predicting the behavioral consolidation benefits of TMR. These results provide correlative evidence for an information processing role of sleep spindles in service of memory consolidation. We cued memory reactivation in sleep to investigate the functional role of spindles Memory cueing bolstered retrieval performance the following day Relative to control stimuli, memory cues evoked a surge in fast spindle activity Memory content could be reliably decoded during this spindle increase
Collapse
Affiliation(s)
- Scott A Cairney
- Department of Psychology, University of York, York, Y010 5DD, UK
| | | | - Nicole El Marj
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
88
|
Ohki T, Takei Y. Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations. Eur J Neurosci 2018; 48:2416-2430. [PMID: 29405470 DOI: 10.1111/ejn.13844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
Abstract
Schemas are higher-level knowledge structures that integrate and organise lower-level representations. As internal templates, schemas are formed according to how events are perceived, interpreted and remembered. Although these higher-level units are assumed to play a fundamental role in our daily life from an early age, the neuronal basis and mechanisms of schema formation and use remain largely unknown. It is important to elucidate how the brain constructs and maintains these higher-level units. In order to examine the possible neural underpinnings of schema, we recapitulate previous work and discuss their findings related to schemas as the brain template. We specifically focused on low beta/spindle oscillations, which are assumed to be the key components of schemas, and propose that the brain template is implemented with a triplet of neural oscillations, that is delta, low beta/spindle and ripple oscillations.
Collapse
Affiliation(s)
- Takefumi Ohki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan.,Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
89
|
Boutin A, Pinsard B, Boré A, Carrier J, Fogel SM, Doyon J. Transient synchronization of hippocampo-striato-thalamo-cortical networks during sleep spindle oscillations induces motor memory consolidation. Neuroimage 2017; 169:419-430. [PMID: 29277652 DOI: 10.1016/j.neuroimage.2017.12.066] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions.
Collapse
Affiliation(s)
- Arnaud Boutin
- Unité de Neuroimagerie Fonctionnelle, C.R.I.U.G.M., Montréal, QC, Canada; Université de Montréal, Montréal, QC, Canada.
| | - Basile Pinsard
- Unité de Neuroimagerie Fonctionnelle, C.R.I.U.G.M., Montréal, QC, Canada; Université de Montréal, Montréal, QC, Canada; Sorbonne Universités, UPMC Université Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France
| | - Arnaud Boré
- Unité de Neuroimagerie Fonctionnelle, C.R.I.U.G.M., Montréal, QC, Canada
| | - Julie Carrier
- Unité de Neuroimagerie Fonctionnelle, C.R.I.U.G.M., Montréal, QC, Canada; Université de Montréal, Montréal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada
| | - Julien Doyon
- Unité de Neuroimagerie Fonctionnelle, C.R.I.U.G.M., Montréal, QC, Canada; Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
90
|
Jiang X, Shamie I, K Doyle W, Friedman D, Dugan P, Devinsky O, Eskandar E, Cash SS, Thesen T, Halgren E. Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex. Sci Rep 2017; 7:17380. [PMID: 29234075 PMCID: PMC5727134 DOI: 10.1038/s41598-017-17469-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023] Open
Abstract
Animal studies support the hypothesis that in slow-wave sleep, replay of waking neocortical activity under hippocampal guidance leads to memory consolidation. However, no intracranial electrophysiological evidence for replay exists in humans. We identified consistent sequences of population firing peaks across widespread cortical regions during complete waking periods. The occurrence of these “Motifs” were compared between sleeps preceding the waking period (“Sleep-Pre”) when the Motifs were identified, and those following (“Sleep-Post”). In all subjects, the majority of waking Motifs (most of which were novel) had more matches in Sleep-Post than in Sleep-Pre. In rodents, hippocampal replay occurs during local sharp-wave ripples, and the associated neocortical replay tends to occur during local sleep spindles and down-to-up transitions. These waves may facilitate consolidation by sequencing cell-firing and encouraging plasticity. Similarly, we found that Motifs were coupled to neocortical spindles, down-to-up transitions, theta bursts, and hippocampal sharp-wave ripples. While Motifs occurring during cognitive task performance were more likely to have more matches in subsequent sleep, our studies provide no direct demonstration that the replay of Motifs contributes to consolidation. Nonetheless, these results confirm a core prediction of the dominant neurobiological theory of human memory consolidation.
Collapse
Affiliation(s)
- Xi Jiang
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Isaac Shamie
- Department of Radiology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Werner K Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Patricia Dugan
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA.,Department of Physiology & Neuroscience, St. George's University, West Indies, Grenada
| | - Eric Halgren
- Department of Radiology, University of California at San Diego, La Jolla, CA, 92093, USA. .,Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
91
|
Sergeeva V, Viczko J, Ray LB, Owen AM, Fogel SM. Sleep-dependent motor sequence memory consolidation in individuals with periodic limb movements. Sleep Med 2017; 40:23-32. [DOI: 10.1016/j.sleep.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
92
|
Sleep in Humans Stabilizes Pattern Separation Performance. J Neurosci 2017; 37:12238-12246. [PMID: 29118106 DOI: 10.1523/jneurosci.1189-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/20/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Replay of hippocampal neural representations during sleep is thought to promote systems consolidation of declarative memory. How this reprocessing of memory during sleep affects the hippocampal representation itself, is unclear. Here we tested hippocampal stimulus processing (i.e., pattern separation) before and after periods of sleep and wakefulness in humans (female and male participants). Pattern separation deteriorated across the wake period but remained stable across sleep (p = 0.013) with this sleep-wake difference being most pronounced for stimuli with low similarity to targets (p = 0.006). Stimuli with the highest similarity showed a reversed pattern with reduced pattern separation performance after sleep (p = 0.038). Pattern separation performance was positively correlated with sleep spindle density, slow oscillation density, and theta power phase-locked to slow oscillations. Sleep, presumably by neural memory replay, shapes hippocampal representations and enhances computations of pattern separation to subsequent presentation of similar stimuli.SIGNIFICANCE STATEMENT The consolidation of hippocampus-dependent memories is causally related to reactivation during sleep of previously encoded representations. Here, we show that reactivation-based consolidation processes during sleep shape the hippocampal representation itself. We studied the effect of sleep and wakefulness on pattern separation (i.e., orthogonalization of similar representations) and completion performance (i.e., recall of a memory in light of noisy input) that are essential cognitive elements of encoding and retrieval of information by the hippocampus. Our results demonstrate that pattern separation was stabilized after sleep but diminished after wakefulness. We further showed that pattern separation was related to EEG oscillatory parameters of non-REM sleep serving as markers of sleep-dependent memory consolidation and hippocampal reactivation.
Collapse
|
93
|
Leminen MM, Virkkala J, Saure E, Paajanen T, Zee PC, Santostasi G, Hublin C, Müller K, Porkka-Heiskanen T, Huotilainen M, Paunio T. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep. Sleep 2017; 40:2965202. [PMID: 28364428 PMCID: PMC5806588 DOI: 10.1093/sleep/zsx003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction: Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Aims: Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Methods: Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results: Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. Conclusions: We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future.
Collapse
Affiliation(s)
- Miika M Leminen
- Finnish Institute of Occupational Health, Helsinki, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jussi Virkkala
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Emma Saure
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Phyllis C Zee
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Giovanni Santostasi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | | | - Kiti Müller
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Minna Huotilainen
- Finnish Institute of Occupational Health, Helsinki, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Cicero Learning Network, University of Helsinki, Helsinki, Finland
| | - Tiina Paunio
- Finnish Institute of Occupational Health, Helsinki, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.,Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
94
|
Abstract
Introduction EEG oscillations known as sleep spindles have been linked with various aspects of cognition, but the specific functions they signal remain controversial. Two types of EEG sleep spindles have been distinguished: slow spindles at 11-13.5 Hz and fast spindles at 13.5-16 Hz. Slow spindles exhibit a frontal scalp topography, whereas fast spindles exhibit a posterior scalp topography and have been preferentially linked with memory consolidation during sleep. To advance understanding beyond that provided from correlative studies of spindles, we aimed to develop a new method to systematically manipulate spindles. Aims and Methods We presented repeating bursts of oscillating white noise to people during a 90-min afternoon nap. During stage 2 and slow-wave sleep, oscillations were embedded within contiguous 10-s stimulation intervals, each comprising 2 s of white noise amplitude modulated at 12 Hz (targeting slow spindles), 15 Hz (targeting fast spindles), or 50 Hz followed by 8 s of constant white noise. Results During oscillating stimulation compared to constant stimulation, parietal EEG recordings showed more slow spindles in the 12-Hz condition, more fast spindles in the 15-Hz condition, and no change in the 50-Hz control condition. These effects were topographically selective, and were absent in frontopolar EEG recordings, where slow spindle density was highest. Spindles during stimulation were similar to spontaneous spindles in standard physiological features, including duration and scalp distribution. Conclusions These results define a new method to selectively and noninvasively manipulate spindles through acoustic resonance, while also providing new evidence for functional distinctions between the 2 types of EEG spindles.
Collapse
Affiliation(s)
- James W Antony
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Ken A Paller
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208.,Department of Psychology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
95
|
Mei N, Grossberg MD, Ng K, Navarro KT, Ellmore TM. Identifying sleep spindles with multichannel EEG and classification optimization. Comput Biol Med 2017; 89:441-453. [PMID: 28886481 PMCID: PMC5650544 DOI: 10.1016/j.compbiomed.2017.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022]
Abstract
Researchers classify critical neural events during sleep called spindles that are related to memory consolidation using the method of scalp electroencephalography (EEG). Manual classification is time consuming and is susceptible to low inter-rater agreement. This could be improved using an automated approach. This study presents an optimized filter based and thresholding (FBT) model to set up a baseline for comparison to evaluate machine learning models using naïve features, such as raw signals, peak frequency, and dominant power. The FBT model allows us to formally define sleep spindles using signal processing but may miss examples most human scorers would agree are spindles. Machine learning methods in theory should be able to approach performance of human raters but they require a large quantity of scored data, proper feature representation, intensive feature engineering, and model selection. We evaluate both the FBT model and machine learning models with naïve features. We show that the machine learning models derived from the FBT model improve classification performance. An automated approach designed for the current data was applied to the DREAMS dataset [1]. With one of the expert's annotation as a gold standard, our pipeline yields an excellent sensitivity that is close to a second expert's scores and with the advantage that it can classify spindles based on multiple channels if more channels are available. More importantly, our pipeline could be modified as a guide to aid manual annotation of sleep spindles based on multiple channels quickly (6-10 s for processing a 40-min EEG recording), making spindle detection faster and more objective.
Collapse
Affiliation(s)
- Ning Mei
- Department of Psychology, The City College of the City University of New York, USA
| | - Michael D Grossberg
- Department of Computer Science, The City College of the City University of New York, USA
| | - Kenneth Ng
- Department of Psychology, The City College of the City University of New York, USA
| | - Karen T Navarro
- Department of Psychology, The City College of the City University of New York, USA
| | - Timothy M Ellmore
- Department of Psychology, The City College of the City University of New York, USA.
| |
Collapse
|
96
|
Oyarzún JP, Morís J, Luque D, de Diego-Balaguer R, Fuentemilla L. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories. J Neurosci 2017; 37:7748-7758. [PMID: 28694337 PMCID: PMC6596642 DOI: 10.1523/jneurosci.3537-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022] Open
Abstract
System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength.SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks.
Collapse
Affiliation(s)
- Javiera P Oyarzún
- Department of Cognition, Development and Educational Psychology, University of Barcelona, 08035 Barcelona, Spain,
- Cognition and Brain Plasticity Group, IDIBELL, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097 Barcelona, Spain
| | - Joaquín Morís
- Department of Psychology, University of Oviedo, 33003 Oviedo, Spain
| | - David Luque
- Instituto de Investigación Biomédica de Málaga, University of Málaga, 29071 Málaga, Spain
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Ruth de Diego-Balaguer
- Department of Cognition, Development and Educational Psychology, University of Barcelona, 08035 Barcelona, Spain
- Cognition and Brain Plasticity Group, IDIBELL, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097 Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain, and
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, 08035 Barcelona, Spain
- Cognition and Brain Plasticity Group, IDIBELL, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08097 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
97
|
Wang JY, Weber FD, Zinke K, Inostroza M, Born J. More Effective Consolidation of Episodic Long-Term Memory in Children Than Adults-Unrelated to Sleep. Child Dev 2017; 89:1720-1734. [PMID: 28594100 DOI: 10.1111/cdev.12839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abilities to encode and remember events in their spatiotemporal context (episodic memory) rely on brain regions that mature late during childhood and are supported by sleep. We compared the temporal dynamics of episodic memory formation and the role of sleep in this process between 62 children (8-12 years) and 57 adults (18-37 years). Subjects recalled "what-where-when" memories after a short 1-hr retention interval or after a long 10.5-hr interval containing either nocturnal sleep or daytime wakefulness. Although children showed diminished recall of episodes after 1 hr, possibly resulting from inferior encoding, unlike adults, they showed no further decrease in recall after 10.5 hr. In both age groups, episodic memory benefitted from sleep. However, children's more effective offline retention was unrelated to sleep.
Collapse
|
98
|
Liu MY, Huang A, Huang NE. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms. Front Hum Neurosci 2017; 11:261. [PMID: 28572762 PMCID: PMC5435763 DOI: 10.3389/fnhum.2017.00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1) the lack of common benchmark databases, and (2) the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA), the Strength Pareto Evolutionary Algorithm (SPEA2), to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT), and two Hilbert-Huang transform (HHT) based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.
Collapse
Affiliation(s)
- Min-Yin Liu
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central UniversityTaoyuan, Taiwan
| | - Adam Huang
- Research Center for Adaptive Data Analysis, National Central UniversityTaoyuan, Taiwan
| | - Norden E Huang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central UniversityTaoyuan, Taiwan.,Research Center for Adaptive Data Analysis, National Central UniversityTaoyuan, Taiwan
| |
Collapse
|
99
|
Schönauer M, Alizadeh S, Jamalabadi H, Abraham A, Pawlizki A, Gais S. Decoding material-specific memory reprocessing during sleep in humans. Nat Commun 2017; 8:15404. [PMID: 28513589 PMCID: PMC5442370 DOI: 10.1038/ncomms15404] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Neuronal learning activity is reactivated during sleep but the dynamics of this reactivation in humans are still poorly understood. Here we use multivariate pattern classification to decode electrical brain activity during sleep and determine what type of images participants had viewed in a preceding learning session. We find significant patterns of learning-related processing during rapid eye movement (REM) and non-REM (NREM) sleep, which are generalizable across subjects. This processing occurs in a cyclic fashion during time windows congruous to critical periods of synaptic plasticity. Its spatial distribution over the scalp and relevant frequencies differ between NREM and REM sleep. Moreover, only the strength of reprocessing in slow-wave sleep influenced later memory performance, speaking for at least two distinct underlying mechanisms between these states. We thus show that memory reprocessing occurs in both NREM and REM sleep in humans and that it pertains to different aspects of the consolidation process.
Collapse
Affiliation(s)
- M. Schönauer
- Medical Psychology and Behavioral Neurobiology, Eberhard Karls Universität Tübingen, Silcherstr. 5, Tübingen 72076, Germany
- Bernstein Center for Computational Neuroscience, LMU München, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
- Department of Psychology, LMU München, Leopoldstr. 13, München 80802, Germany
| | - S. Alizadeh
- Medical Psychology and Behavioral Neurobiology, Eberhard Karls Universität Tübingen, Silcherstr. 5, Tübingen 72076, Germany
- Bernstein Center for Computational Neuroscience, LMU München, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - H. Jamalabadi
- Medical Psychology and Behavioral Neurobiology, Eberhard Karls Universität Tübingen, Silcherstr. 5, Tübingen 72076, Germany
- Bernstein Center for Computational Neuroscience, LMU München, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - A. Abraham
- Department of Psychology, LMU München, Leopoldstr. 13, München 80802, Germany
| | - A. Pawlizki
- Department of Psychology, LMU München, Leopoldstr. 13, München 80802, Germany
| | - S. Gais
- Medical Psychology and Behavioral Neurobiology, Eberhard Karls Universität Tübingen, Silcherstr. 5, Tübingen 72076, Germany
- Bernstein Center for Computational Neuroscience, LMU München, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
- Department of Psychology, LMU München, Leopoldstr. 13, München 80802, Germany
| |
Collapse
|
100
|
Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, Pinsard B, Benali H, Carrier J, Doyon J. Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PLoS One 2017; 12:e0174755. [PMID: 28422976 PMCID: PMC5396873 DOI: 10.1371/journal.pone.0174755] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 01/03/2023] Open
Abstract
Motor memory consolidation is thought to depend on sleep-dependent reactivation of brain areas recruited during learning. However, up to this point, there has been no direct evidence to support this assertion in humans, and the physiological processes supporting such reactivation are unknown. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were conducted during post-learning sleep to directly investigate the spindle-related reactivation of a memory trace formed during motor sequence learning (MSL), and its relationship to overnight enhancement in performance (reflecting consolidation). We show that brain regions within the striato-cerebello-cortical network recruited during training on the MSL task, and in particular the striatum, were also activated during sleep, time-locked to spindles. Interestingly, the consolidated trace in the striatum was not simply strengthened, but was transformed/reorganized from rostrodorsal (associative) to caudoventral (sensorimotor) subregions. Moreover, the degree of the reactivation was correlated with overnight improvements in performance. Altogether, the present findings demonstrate that striatal reactivation linked to sleep spindles in the post-learning night, is related to motor memory consolidation.
Collapse
Affiliation(s)
- Stuart Fogel
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain & Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Genevieve Albouy
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Catherine Vien
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Arnaud Bore
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Habib Benali
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Functional Neuroimaging Laboratory, INSERM, Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Centre D’études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, Quebec, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|