51
|
Gabitov E, Lungu O, Albouy G, Doyon J. Weaker Inter-hemispheric and Local Functional Connectivity of the Somatomotor Cortex During a Motor Skill Acquisition Is Associated With Better Learning. Front Neurol 2019; 10:1242. [PMID: 31827459 PMCID: PMC6890719 DOI: 10.3389/fneur.2019.01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, an increasing interest in investigating interactions between brain regions using functional connectivity (FC) methods has shifted the initial focus of cognitive neuroimaging research from localizing functional circuits based on task activation to mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages of the latter approach, it has been shown that despite primarily invariant intrinsic organization of the large-scale functional networks, interactions between and within these networks significantly differ between various behavioral and cognitive states. These differences presumably indicate transient reconfiguration of functional connections-an instantaneous process that flexibly mediates and calibrates human behavior according to momentary demands of the environment. Nevertheless, the specificity of these reconfigured FC patterns to the task at hand and their relevance to adaptive processes during learning remain elusive. To address this knowledge gap, we investigated (1) to what extent FC within the somatomotor network is reconfigured during motor skill practice, and (2) how these changes are related to learning. We applied a seed-driven FC approach to data collected during a continuous task-free condition, so-called resting state, and during a motor sequence learning task using functional magnetic resonance imaging. During the task, participants repeatedly performed a short five-element sequence with their non-dominant (left) hand. As predicted, such unimanual sequence production was associated with lateralized activation of the right somatomotor cortex (SMC). Using this "active" region as a seed, here we show that unimanual performance of the motor sequence relies on functional segregation between the two SMC and selective integration between the "active" SMC and supplementary motor area. Whereas, greater segregation between the two SMC was associated with gains in performance rate, greater segregation within the "active" SMC itself was associated with more consistent performance by the end of training. Nether the resting-state FC patterns within the somatomotor network nor their relative modulation by the task state predicted these behavioral benefits of learning. Our results suggest that task-induced FC changes reflect reconfiguration of the connectivity patterns within the somatomotor network rather than a simple amplification or silencing of its intrinsic dynamics. Such reconfiguration not only supports motor behavior but may also predict learning.
Collapse
Affiliation(s)
- Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
52
|
Betzel RF, Bertolero MA, Gordon EM, Gratton C, Dosenbach NUF, Bassett DS. The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability. Neuroimage 2019; 202:115990. [PMID: 31291606 PMCID: PMC7734597 DOI: 10.1016/j.neuroimage.2019.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
The network organization of the human brain varies across individuals, changes with development and aging, and differs in disease. Discovering the major dimensions along which this variability is displayed remains a central goal of both neuroscience and clinical medicine. Such efforts can be usefully framed within the context of the brain's modular network organization, which can be assessed quantitatively using computational techniques and extended for the purposes of multi-scale analysis, dimensionality reduction, and biomarker generation. Although the concept of modularity and its utility in describing brain network organization is clear, principled methods for comparing multi-scale communities across individuals and time are surprisingly lacking. Here, we present a method that uses multi-layer networks to simultaneously discover the modular structure of many subjects at once. This method builds upon the well-known multi-layer modularity maximization technique, and provides a viable and principled tool for studying differences in network communities across individuals and within individuals across time. We test this method on two datasets and identify consistent patterns of inter-subject community variability, demonstrating that this variability - which would be undetectable using past approaches - is associated with measures of cognitive performance. In general, the multi-layer, multi-subject framework proposed here represents an advance over current approaches by straighforwardly mapping community assignments across subjects and holds promise for future investigations of inter-subject community variation in clinical populations or as a result of task constraints.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47401, USA; Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maxwell A Bertolero
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Caterina Gratton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA.
| |
Collapse
|
53
|
McIntosh AR, Jirsa VK. The hidden repertoire of brain dynamics and dysfunction. Netw Neurosci 2019; 3:994-1008. [PMID: 31637335 PMCID: PMC6777946 DOI: 10.1162/netn_a_00107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 11/04/2022] Open
Abstract
The purpose of this paper is to describe a framework for the understanding of rules that govern how neural system dynamics are coordinated to produce behavior. The framework, structured flows on manifolds (SFM), posits that neural processes are flows depicting system interactions that occur on relatively low-dimension manifolds, which constrain possible functional configurations. Although this is a general framework, we focus on the application to brain disorders. We first explain the Epileptor, a phenomenological computational model showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to refractory status epilepticus. We suggest that epilepsy represents an innate brain state whose potential may be realized only under certain circumstances. Conversely, deficits from damage or disease processes, such as stroke or dementia, may reflect both the disease process per se and the adaptation of the brain. SFM uniquely captures both scenarios. Finally, we link neuromodulation effects and switches in functional network configurations to fast and slow dynamics that coordinate the expression of SFM in the context of cognition. The tools to measure and model SFM already exist, giving researchers access to the dynamics of neural processes that support the concomitant dynamics of the cognitive and behavioral processes.
Collapse
Affiliation(s)
- Anthony R McIntosh
- Rotman Research Institute, Baycrest, University of Toronto, Toronto, Canada
| | - Viktor K Jirsa
- Institut de Neurosciences des Systemes, INSERM, Aix-Marseille Universite, Marseille, France
| |
Collapse
|
54
|
Gilson M, Kouvaris NE, Deco G, Mangin JF, Poupon C, Lefranc S, Rivière D, Zamora-López G. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability. Neuroimage 2019; 201:116007. [PMID: 31306771 DOI: 10.1016/j.neuroimage.2019.116007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging techniques such as MRI have been widely used to explore the associations between brain areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional connectivity (FC) measures the correlation between the activity of brain regions. These connectivity measures have been much studied using network theory in order to uncover the distributed organization of brain structures, in particular FC for task-specific brain communication. However, the application of network theory to study FC matrices is often "static" despite the dynamic nature of time series obtained from fMRI. The present study aims to overcome this limitation by introducing a network-oriented analysis applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics. Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-EC as well as input properties (similar to local excitabilities). The network analysis is then based on the Green function (or network impulse response) that describes the interactions between nodes across time for the estimated dynamics. This model-based approach provides time-dependent graph-like descriptor, named communicability, that characterize the roles that either nodes or connections play in the propagation of activity within the network. They can be used at both global and local levels, and also enables the comparison of estimates from real data with surrogates (e.g. random network or ring lattice). In contrast to classical graph approaches to study SC or FC, our framework stresses the importance of taking the temporal aspect of fMRI signals into account. Our results show a merging of functional communities over time, moving from segregated to global integration of the network activity. Our formalism sets a solid ground for the analysis and interpretation of fMRI data, including task-evoked activity.
Collapse
Affiliation(s)
- Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain.
| | - Nikos E Kouvaris
- Namur Institute for Complex Systems (naXys), Department of Mathematics, University of Namur, Rempart de la Vierge 8, B 5000, Namur, Belgium; DRIBIA Data Research S.L., Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | | | - Cyril Poupon
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Sandrine Lefranc
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Denis Rivière
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Gorka Zamora-López
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain
| |
Collapse
|
55
|
Valsasina P, Hidalgo de la Cruz M, Filippi M, Rocca MA. Characterizing Rapid Fluctuations of Resting State Functional Connectivity in Demyelinating, Neurodegenerative, and Psychiatric Conditions: From Static to Time-Varying Analysis. Front Neurosci 2019; 13:618. [PMID: 31354402 PMCID: PMC6636554 DOI: 10.3389/fnins.2019.00618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) at resting state (RS) has been widely used to characterize the main brain networks. Functional connectivity (FC) has been mostly assessed assuming that FC is static across the whole fMRI examination. However, FC is highly variable at a very fast time-scale, as demonstrated by neurophysiological techniques. Time-varying functional connectivity (TVC) is a novel approach that allows capturing reoccurring patterns of interaction among functional brain networks. Aim of this review is to provide a description of the methods currently used to assess TVC on RS fMRI data, and to summarize the main results of studies applying TVC in healthy controls and patients with multiple sclerosis (MS). An overview of the main results obtained in neurodegenerative and psychiatric conditions is also provided. The most popular TVC approach is based on the so-called “sliding windows,” in which the RS fMRI acquisition is divided in small temporal segments (windows). A window of fixed length is shifted over RS fMRI time courses, and data within each window are used to calculate FC and its variability over time. Sliding windows can be combined with clustering techniques to identify recurring FC states or used to assess global TVC properties of large-scale functional networks or specific brain regions. TVC studies have used heterogeneous methodologies so far. Despite this, similar results have been obtained across investigations. In healthy subjects, the default-mode network (DMN) exhibited the highest degree of connectivity dynamism. In MS patients, abnormal global TVC properties and TVC strengths were found mainly in sensorimotor, DMN and salience networks, and were associated with more severe structural MRI damage and with more severe physical and cognitive disability. Conversely, abnormal TVC measures of the temporal network were correlated with better cognitive performances and less severe fatigue. In patients with neurodegenerative and psychiatric conditions, TVC abnormalities of the DMN, attention and executive networks were associated to more severe clinical manifestations. TVC helps to provide novel insights into fundamental properties of functional networks, and improves the understanding of brain reorganization mechanisms. Future technical advances might help to clarify TVC association with disease prognosis and response to treatment.
Collapse
Affiliation(s)
- Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milagros Hidalgo de la Cruz
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
56
|
Geniesse C, Sporns O, Petri G, Saggar M. Generating dynamical neuroimaging spatiotemporal representations (DyNeuSR) using topological data analysis. Netw Neurosci 2019; 3:763-778. [PMID: 31410378 PMCID: PMC6663215 DOI: 10.1162/netn_a_00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
In this article, we present an open source neuroinformatics platform for exploring, analyzing, and validating distilled graphical representations of high-dimensional neuroimaging data extracted using topological data analysis (TDA). TDA techniques like Mapper have been recently applied to examine the brain's dynamical organization during ongoing cognition without averaging data in space, in time, or across participants at the outset. Such TDA-based approaches mark an important deviation from standard neuroimaging analyses by distilling complex high-dimensional neuroimaging data into simple-yet neurophysiologically valid and behaviorally relevant-representations that can be interactively explored at the single-participant level. To facilitate wider use of such techniques within neuroimaging and general neuroscience communities, our work provides several tools for visualizing, interacting with, and grounding TDA-generated graphical representations in neurophysiology. Through Python-based Jupyter notebooks and open datasets, we provide a platform to assess and visualize different intermittent stages of Mapper and examine the influence of Mapper parameters on the generated representations. We hope this platform could enable researchers and clinicians alike to explore topological representations of neuroimaging data and generate biological insights underlying complex mental disorders.
Collapse
Affiliation(s)
- Caleb Geniesse
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Giovanni Petri
- ISI Foundation, Turin, Italy
- ISI Global Science Foundation, New York, NY, USA
| | - Manish Saggar
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
57
|
Duman AN, Tatar AE, Pirim H. Uncovering Dynamic Brain Reconfiguration in MEG Working Memory n-Back Task Using Topological Data Analysis. Brain Sci 2019; 9:E144. [PMID: 31248185 PMCID: PMC6628086 DOI: 10.3390/brainsci9060144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/31/2019] [Accepted: 06/15/2019] [Indexed: 11/17/2022] Open
Abstract
The increasing availability of high temporal resolution neuroimaging data has increased the efforts to understand the dynamics of neural functions. Until recently, there are few studies on generative models supporting classification and prediction of neural systems compared to the description of the architecture. However, the requirement of collapsing data spatially and temporally in the state-of-the art methods to analyze functional magnetic resonance imaging (fMRI), electroencephalogram (EEG) and magnetoencephalography (MEG) data cause loss of important information. In this study, we addressed this issue using a topological data analysis (TDA) method, called Mapper, which visualizes evolving patterns of brain activity as a mathematical graph. Accordingly, we analyzed preprocessed MEG data of 83 subjects from Human Connectome Project (HCP) collected during working memory n-back task. We examined variation in the dynamics of the brain states with the Mapper graphs, and to determine how this variation relates to measures such as response time and performance. The application of the Mapper method to MEG data detected a novel neuroimaging marker that explained the performance of the participants along with the ground truth of response time. In addition, TDA enabled us to distinguish two task-positive brain activations during 0-back and 2-back tasks, which is hard to detect with the other pipelines that require collapsing the data in the spatial and temporal domain. Further, the Mapper graphs of the individuals also revealed one large group in the middle of the stimulus detecting the high engagement in the brain with fine temporal resolution, which could contribute to increase spatiotemporal resolution by merging different imaging modalities. Hence, our work provides another evidence to the effectiveness of the TDA methods for extracting subtle dynamic properties of high temporal resolution MEG data without the temporal and spatial collapse.
Collapse
Affiliation(s)
- Ali Nabi Duman
- Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Ahmet Emin Tatar
- Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Harun Pirim
- Department of Systems Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
58
|
Zhu H, Huang J, Deng L, He N, Cheng L, Shu P, Yan F, Tong S, Sun J, Ling H. Abnormal Dynamic Functional Connectivity Associated With Subcortical Networks in Parkinson's Disease: A Temporal Variability Perspective. Front Neurosci 2019; 13:80. [PMID: 30837825 PMCID: PMC6389716 DOI: 10.3389/fnins.2019.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/25/2019] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by dysfunction in distributed functional brain networks. Previous studies have reported abnormal changes in static functional connectivity using resting-state functional magnetic resonance imaging (fMRI). However, the dynamic characteristics of brain networks in PD is still poorly understood. This study aimed to quantify the characteristics of dynamic functional connectivity in PD patients at nodal, intra- and inter-subnetwork levels. Resting-state fMRI data of a total of 42 PD patients and 40 normal controls (NCs) were investigated from the perspective of the temporal variability on the connectivity profiles across sliding windows. The results revealed that PD patients had greater nodal variability in precentral and postcentral area (in sensorimotor network, SMN), middle occipital gyrus (in visual network), putamen (in subcortical network) and cerebellum, compared with NCs. Furthermore, at the subnetwork level, PD patients had greater intra-network variability for the subcortical network, salience network and visual network, and distributed changes of inter-network variability across several subnetwork pairs. Specifically, the temporal variability within and between subcortical network and other cortical subnetworks involving SMN, visual, ventral and dorsal attention networks as well as cerebellum was positively associated with the severity of clinical symptoms in PD patients. Additionally, the increased inter-network variability of cerebellum-auditory pair was also correlated with clinical severity of symptoms in PD patients. These observations indicate that temporal variability can detect the distributed abnormalities of dynamic functional network of PD patients at nodal, intra- and inter-subnetwork scales, and may provide new insights into understanding PD.
Collapse
Affiliation(s)
- Hong Zhu
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Deng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Shu
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huawei Ling
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
59
|
Lydon-Staley DM, Ciric R, Satterthwaite TD, Bassett DS. Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting-state functional connectivity and multilayer network modularity. Netw Neurosci 2019; 3:427-454. [PMID: 30793090 PMCID: PMC6370491 DOI: 10.1162/netn_a_00071] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/19/2018] [Indexed: 01/13/2023] Open
Abstract
Dynamic functional connectivity reflects the spatiotemporal organization of spontaneous brain activity in health and disease. Dynamic functional connectivity may be susceptible to artifacts induced by participant motion. This report provides a systematic evaluation of 12 commonly used participant-level confound regression strategies designed to mitigate the effects of micromovements in a sample of 393 youths (ages 8-22 years). Each strategy was evaluated according to a number of benchmarks, including (a) the residual association between participant motion and edge dispersion, (b) distance-dependent effects of motion on edge dispersion, (c) the degree to which functional subnetworks could be identified by multilayer modularity maximization, and (d) measures of module reconfiguration, including node flexibility and node promiscuity. Results indicate variability in the effectiveness of the evaluated pipelines across benchmarks. Methods that included global signal regression were the most consistently effective de-noising strategies.
Collapse
Affiliation(s)
| | - Rastko Ciric
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
60
|
Cabeza R, Stanley ML, Moscovitch M. Process-Specific Alliances (PSAs) in Cognitive Neuroscience. Trends Cogn Sci 2018; 22:996-1010. [PMID: 30224232 PMCID: PMC6657801 DOI: 10.1016/j.tics.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/19/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
Most cognitive neuroscience theories have focused on the functions of individual brain regions, but cognitive abilities depend also on functional interactions among multiple regions. Many recent studies on these interactions have examined large-scale, resting-state networks, but these networks are difficult to link to theories about specific cognitive processes. Cognitive theories are easier to link to the mini-networks we call process specific alliances (PSAs). A PSA is a small team of brain regions that rapidly assemble to mediate a cognitive process in response to task demands but quickly disassemble when the process is no longer needed. We compare PSAs to resting-state networks and to other connectivity-based, task-related networks, and we characterize the advantages and disadvantages of each type of network.
Collapse
Affiliation(s)
- Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | - Matthew L Stanley
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Centre for Geriatric Care, North York, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
61
|
Guo X, Duan X, Suckling J, Chen H, Liao W, Cui Q, Chen H. Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder. Hum Brain Mapp 2018; 40:1264-1275. [PMID: 30367744 DOI: 10.1002/hbm.24447] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023] Open
Abstract
Time-invariant resting-state functional connectivity studies have illuminated the crucial role of the right anterior insula (rAI) in prominent social impairments of autism spectrum disorder (ASD). However, a recent dynamic connectivity study demonstrated that rather than being stationary, functional connectivity patterns of the rAI vary significantly across time. The present study aimed to explore the differences in functional connectivity in dynamic states of the rAI between individuals with ASD and typically developing controls (TD). Resting-state functional magnetic resonance imaging data obtained from a publicly available database were analyzed in 209 individuals with ASD and 298 demographically matched controls. A k-means clustering algorithm was utilized to obtain five dynamic states of functional connectivity of the rAI. The temporal properties, frequency properties, and meta-analytic decoding were first identified in TD group to obtain the characteristics of each rAI dynamic state. Multivariate analysis of variance was then performed to compare the functional connectivity patterns of the rAI between ASD and TD groups in obtained states. Significantly impaired connectivity was observed in ASD in the ventral medial prefrontal cortex and posterior cingulate cortex, which are two critical hubs of the default mode network (DMN). States in which ASD showed decreased connectivity between the rAI and these regions were those more relevant to socio-cognitive processing. From a dynamic perspective, these findings demonstrate partially impaired resting-state functional connectivity patterns between the rAI and DMN across states in ASD, and provide novel insights into the neural mechanisms underlying social impairments in individuals with ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - John Suckling
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge; Cambridge and Peterborough NHS Trust, Cambridge, United Kingdom
| | - Heng Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
62
|
Ryyppö E, Glerean E, Brattico E, Saramäki J, Korhonen O. Regions of Interest as nodes of dynamic functional brain networks. Netw Neurosci 2018; 2:513-535. [PMID: 30294707 PMCID: PMC6147715 DOI: 10.1162/netn_a_00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/06/2018] [Indexed: 11/04/2022] Open
Abstract
The properties of functional brain networks strongly depend on how their nodes are chosen. Commonly, nodes are defined by Regions of Interest (ROIs), predetermined groupings of fMRI measurement voxels. Earlier, we demonstrated that the functional homogeneity of ROIs, captured by their spatial consistency, varies widely across ROIs in commonly used brain atlases. Here, we ask how ROIs behave as nodes of dynamic brain networks. To this end, we use two measures: spatiotemporal consistency measures changes in spatial consistency across time and network turnover quantifies the changes in the local network structure around an ROI. We find that spatial consistency varies non-uniformly in space and time, which is reflected in the variation of spatiotemporal consistency across ROIs. Furthermore, we see time-dependent changes in the network neighborhoods of the ROIs, reflected in high network turnover. Network turnover is nonuniformly distributed across ROIs: ROIs with high spatiotemporal consistency have low network turnover. Finally, we reveal that there is rich voxel-level correlation structure inside ROIs. Because the internal structure and the connectivity of ROIs vary in time, the common approach of using static node definitions may be surprisingly inaccurate. Therefore, network neuroscience would greatly benefit from node definition strategies tailored for dynamical networks.
Collapse
Affiliation(s)
- Elisa Ryyppö
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Enrico Glerean
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, and The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Jari Saramäki
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
| | - Onerva Korhonen
- Department of Computer Science, School of Science, Aalto University, Espoo, Finland
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| |
Collapse
|
63
|
Bassett DS, Xia CH, Satterthwaite TD. Understanding the Emergence of Neuropsychiatric Disorders With Network Neuroscience. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:742-753. [PMID: 29729890 PMCID: PMC6119485 DOI: 10.1016/j.bpsc.2018.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/23/2022]
Abstract
Major neuropsychiatric disorders such as psychosis are increasingly acknowledged to be disorders of brain connectivity. Yet tools to map, model, predict, and change connectivity are difficult to develop, largely because of the complex, dynamic, and multivariate nature of interactions between brain regions. Network neuroscience (NN) provides a theoretical framework and mathematical toolset to address these difficulties. Building on areas of mathematics such as graph theory, NN in its simplest form summarizes neuroimaging data by treating brain regions as nodes in a graph and by treating interactions or connections between nodes as edges in the graph. Network metrics can then be used to quantitatively describe the architecture of the graph, which in turn reflects the network's function. We review evidence supporting the utility of NN in understanding psychiatric disorders, with a focus on normative brain network development and abnormalities associated with psychosis. We also emphasize relevant methodological challenges, such as motion artifact correction, which are particularly important to consider when applying network tools to developmental neuroimaging data. We close with a discussion of several emerging frontiers of NN in psychiatry, including generative network modeling and network control theory. We aim to offer an accessible introduction to this emerging field and motivate further work that uses NN to better understand the normative development of brain networks and alterations in that development that accompany or foreshadow psychiatric disease.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cedric Huchuan Xia
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
64
|
Tompson SH, Falk EB, Vettel JM, Bassett DS. Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience. PERSONALITY NEUROSCIENCE 2018; 1:e5. [PMID: 30221246 PMCID: PMC6133307 DOI: 10.1017/pen.2018.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 12/11/2022]
Abstract
Over the past decade, advances in the interdisciplinary field of network science have provided a framework for understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this work has focused on patterns of functional connectivity derived from non-invasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important subset of these efforts has bridged the computational approaches of network science with the rich empirical data and biological hypotheses of neuroscience, and this research has begun to identify features of brain networks that explain individual differences in social, emotional, and cognitive functioning. The most common approach estimates connections assuming a single configuration of edges that is stable across the experimental session. In the literature, this is referred to as a static network approach, and researchers measure static brain networks while a subject is either at rest or performing a cognitively demanding task. Research on social and emotional functioning has primarily focused on linking static brain networks with individual differences, but recent advances have extended this work to examine temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and flexibility of time-evolving brain networks influence individual differences in executive function, attention, working memory, and learning. In this review, we first examine the current evidence for brain networks involved in cognitive functioning. Then we review some preliminary evidence linking static network properties to individual differences in social and emotional functioning. We then discuss the applicability of emerging dynamic network methods for examining individual differences in social and emotional functioning. We close with an outline of important frontiers at the intersection between network science and neuroscience that will enhance our understanding of the neurobiological underpinnings of social behavior.
Collapse
Affiliation(s)
- Steven H. Tompson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Emily B. Falk
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean M. Vettel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
65
|
Heitmann S, Breakspear M. Putting the "dynamic" back into dynamic functional connectivity. Netw Neurosci 2018; 2:150-174. [PMID: 30215031 PMCID: PMC6130444 DOI: 10.1162/netn_a_00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/30/2017] [Indexed: 01/17/2023] Open
Abstract
The study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term "dynamic functional connectivity" implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional) connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability), and multistability. Each of these scenarios arises under different configurations of local dynamics and intersystem coupling: We show how they generate time series data with nonlinear and/or nonstationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear) stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity, and flexibility. The code for simulating these dynamics is available in a freeware software platform, the Brain Dynamics Toolbox.
Collapse
|
66
|
Yu Q, Du Y, Chen J, Sui J, Adali T, Pearlson G, Calhoun VD. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2018; 106:886-906. [PMID: 30364630 PMCID: PMC6197492 DOI: 10.1109/jproc.2018.2825200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human brain connectivity is complex. Graph theory based analysis has become a powerful and popular approach for analyzing brain imaging data, largely because of its potential to quantitatively illuminate the networks, the static architecture in structure and function, the organization of dynamic behavior over time, and disease related brain changes. The first step in creating brain graphs is to define the nodes and edges connecting them. We review a number of approaches for defining brain nodes including fixed versus data-driven nodes. Expanding the narrow view of most studies which focus on static and/or single modality brain connectivity, we also survey advanced approaches and their performances in building dynamic and multi-modal brain graphs. We show results from both simulated and real data from healthy controls and patients with mental illnesse. We outline the advantages and challenges of these various techniques. By summarizing and inspecting recent studies which analyzed brain imaging data based on graph theory, this article provides a guide for developing new powerful tools to explore complex brain networks.
Collapse
Affiliation(s)
- Qingbao Yu
- Mind Research Network, Albuquerque NM 87106 USA
| | - Yuhui Du
- Mind Research Network, Albuquerque NM 87106 USA. And also with School of Computer & Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Jiayu Chen
- Mind Research Network, Albuquerque NM 87106 USA
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049 China. And also with CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Science (CAS), University of CAS, Beijing 100190 China
| | - Tulay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT 06106, USA. And also with Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque NM 87106 USA. And also with Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
67
|
|
68
|
Betzel RF, Bassett DS. Generative models for network neuroscience: prospects and promise. J R Soc Interface 2017; 14:20170623. [PMID: 29187640 PMCID: PMC5721166 DOI: 10.1098/rsif.2017.0623] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Network neuroscience is the emerging discipline concerned with investigating the complex patterns of interconnections found in neural systems, and identifying principles with which to understand them. Within this discipline, one particularly powerful approach is network generative modelling, in which wiring rules are algorithmically implemented to produce synthetic network architectures with the same properties as observed in empirical network data. Successful models can highlight the principles by which a network is organized and potentially uncover the mechanisms by which it grows and develops. Here, we review the prospects and promise of generative models for network neuroscience. We begin with a primer on network generative models, with a discussion of compressibility and predictability, and utility in intuiting mechanisms, followed by a short history on their use in network science, broadly. We then discuss generative models in practice and application, paying particular attention to the critical need for cross-validation. Next, we review generative models of biological neural networks, both at the cellular and large-scale level, and across a variety of species including Caenorhabditis elegans, Drosophila, mouse, rat, cat, macaque and human. We offer a careful treatment of a few relevant distinctions, including differences between generative models and null models, sufficiency and redundancy, inferring and claiming mechanism, and functional and structural connectivity. We close with a discussion of future directions, outlining exciting frontiers both in empirical data collection efforts as well as in method and theory development that, together, further the utility of the generative network modelling approach for network neuroscience.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
69
|
Cohen JR. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage 2017; 180:515-525. [PMID: 28942061 DOI: 10.1016/j.neuroimage.2017.09.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022] Open
Abstract
Recent advances in neuroimaging methods and analysis have led to an expanding body of research that investigates how large-scale brain network organization dynamically adapts to changes in one's environment, including both internal state changes and external stimulation. It is now possible to detect changes in functional connectivity that occur on the order of seconds, both during an unconstrained resting state and during the performance of constrained cognitive tasks. It is thought that these dynamic, time-varying changes in functional connectivity, often referred to as dynamic functional connectivity (dFC), include features that are relevant to behavior and cognition. This review summarizes four aspects of the nascent literature directly testing that assumption: 1) how changes in functional network organization on the order of task blocks relate to differences in task demands and to cognitive ability; 2) how differences in dFC variability between different contexts relate to cognitive demands and behavioral performance; 3) how ongoing fluctuations in dFC impact perception and attention; and 4) how different patterns of dFC correspond to individual differences in cognition. The review ends by discussing promising directions for future research in this field. First, it comments on how dFC analyses can help to elucidate the mechanisms of healthy cognition. Next, it describes how dFC processes may be disrupted in disease, and how probing such dysfunction can increase understanding of neural etiology, as well as behavioral and cognitive impairments, observed in psychiatric and neurologic populations. Last, it considers the potential for computational models to uncover neuronal mechanisms of dFC, and how both healthy cognition and disease emerge from network dynamics.
Collapse
Affiliation(s)
- Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Ave., CB#3270, Chapel Hill, NC 27599, USA.
| |
Collapse
|
70
|
Dynamics of large-scale fMRI networks: Deconstruct brain activity to build better models of brain function. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|