51
|
Dizon MLV, deRegnier RAO, Weiner SJ, Varner MW, Rouse DJ, Costantine MM, Wapner RJ, Thorp JM, Blackwell SC, Ayala NK, Saad AF, Caritis SN. Differential Gene Expression in Cord Blood of Infants Diagnosed with Cerebral Palsy: A Pilot Analysis of the Beneficial Effects of Antenatal Magnesium Cohort. Dev Neurosci 2022; 44:412-425. [PMID: 35705018 PMCID: PMC9474611 DOI: 10.1159/000525483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
The Beneficial Effects of Antenatal Magnesium clinical trial was conducted between 1997 and 2007, and demonstrated a significant reduction in cerebral palsy (CP) in preterm infants who were exposed to peripartum magnesium sulfate (MgSO4). However, the mechanism by which MgSO4 confers neuroprotection remains incompletely understood. Cord blood samples from this study were interrogated during an era when next-generation sequencing was not widely accessible and few gene expression differences or biomarkers were identified between treatment groups. Our goal was to use bulk RNA deep sequencing to identify differentially expressed genes comparing the following four groups: newborns who ultimately developed CP treated with MgSO4 or placebo, and controls (newborns who ultimately did not develop CP) treated with MgSO4 or placebo. Those who died after birth were excluded. We found that MgSO4 upregulated expression of SCN5A only in the control group, with no change in gene expression in cord blood of newborns who ultimately developed CP. Regardless of MgSO4 exposure, expression of NPBWR1 and FTO was upregulated in cord blood of newborns who ultimately developed CP compared with controls. These data support that MgSO4 may not exert its neuroprotective effect through changes in gene expression. Moreover, NPBWR1 and FTO may be useful as biomarkers and may suggest new mechanistic pathways to pursue in understanding the pathogenesis of CP. The small number of cases ultimately available for this secondary analysis, with male predominance and mild CP phenotype, is a limitation of the study. In addition, differentially expressed genes were not validated by qRT-PCR.
Collapse
Affiliation(s)
- Maria L V Dizon
- The Department of Pediatrics, Northwestern University, Chicago, Illinois, USA
| | | | - Steven J Weiner
- The George Washington University Biostatistics Center, Washington, District of Columbia, USA
| | - Michael W Varner
- The Departments of Obstetrics and Gynecology of the University of Utah, Salt Lake City, Utah, USA
| | - Dwight J Rouse
- The Department of Obstetrics and Gynecology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maged M Costantine
- The Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Ronald J Wapner
- The Department of Obstetrics and Gynecology, Thomas Jefferson University and Drexel University, Philadelphia, Pennsylvania, USA
- The Department of Obstetrics and Gynecology, Columbia University, New York, New York, USA
| | - John M Thorp
- The Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean C Blackwell
- University of Texas Health Science Center at Houston-Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Nina K Ayala
- The Department of Obstetrics and Gynecology, Brown University, Providence, Rhode Island, USA
| | - Antonio F Saad
- The Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Steve N Caritis
- The Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
52
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
53
|
Zheng Z, Chen J, Chopp M. Mechanisms of Plasticity Remodeling and Recovery. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
55
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
56
|
Qian Z, Li H, Yang H, Yang Q, Lu Z, Wang L, Chen Y, Li X. Osteocalcin attenuates oligodendrocyte differentiation and myelination via GPR37 signaling in the mouse brain. SCIENCE ADVANCES 2021; 7:eabi5811. [PMID: 34678058 PMCID: PMC8535816 DOI: 10.1126/sciadv.abi5811] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/01/2021] [Indexed: 05/24/2023]
Abstract
The bone-derived hormone osteocalcin (OCN) is crucial for brain development and neural cognitive functions, yet the exact roles of OCN in central nervous system (CNS) remain elusive. Here, we find that genetic deletion of OCN facilitates oligodendrocyte (OL) differentiation and hypermyelination in the CNS. Although dispensable for the proliferation of oligodendrocyte precursor cells (OPCs), OCN is critical for the myelination of OLs, which affects myelin production and remyelination after demyelinating injury. Genome-wide RNA sequencing analyses reveal that OCN regulates a number of G protein–coupled receptors and myelination-associated transcription factors, of which Myrf might be a key downstream effector in OLs. GPR37 is identified as a previously unknown receptor for OCN, thus regulating OL differentiation and CNS myelination. Overall, these findings suggest that OCN orchestrates the transition between OPCs and myelinating OLs via GPR37 signaling, and hence, the OCN/GPR37 pathway regulates myelin homeostasis in the CNS.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchao Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Haiyang Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
57
|
Cardona HJ, Somasundaram A, Crabtree DM, Gadd SL, Becher OJ. Prenatal overexpression of platelet-derived growth factor receptor A results in central nervous system hypomyelination. Brain Behav 2021; 11:e2332. [PMID: 34480532 PMCID: PMC8553322 DOI: 10.1002/brb3.2332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signaling, through the ligand PDGF-A and its receptor PDGFRA, is important for the growth and maintenance of oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). PDGFRA signaling is downregulated prior to OPC differentiation into mature myelinating oligodendrocytes. By contrast, PDGFRA is often genetically amplified or mutated in many types of gliomas, including diffuse midline glioma (DMG) where OPCs are considered the most likely cell-of-origin. The cellular and molecular changes that occur in OPCs in response to unregulated PDGFRA expression, however, are not known. METHODS Here, we created a conditional knock-in (KI) mouse that overexpresses wild type (WT) human PDGFRA (hPDGFRA) in prenatal Olig2-expressing progenitors, and examined in vivo cellular and molecular consequences. RESULTS The KI mice exhibited stunted growth, ataxia, and a severe loss of myelination in the brain and spinal cord. When combined with the loss of p53, a tumor suppressor gene whose activity is decreased in DMG, the KI mice failed to develop tumors but still exhibited hypomyelination. RNA-sequencing analysis revealed decreased myelination gene signatures, indicating a defect in oligodendroglial development. Mice overexpressing PDGFRA in prenatal GFAP-expressing progenitors, which give rise to a broader lineage of cells than Olig2-progenitors, also developed myelination defects. CONCLUSION Our results suggest that embryonic overexpression of hPDGFRA in Olig2- or GFAP-progenitors is deleterious to OPC development and leads to CNS hypomyelination.
Collapse
Affiliation(s)
- Herminio Joey Cardona
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Agila Somasundaram
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Donna M Crabtree
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA.,Office of Clinical Research, Duke University Medical Center, Durham, NC, USA
| | - Samantha L Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Oren J Becher
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
58
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
59
|
Wu J, Yu H, Huang H, Shu P, Peng X. Functions of noncoding RNAs in glial development. Dev Neurobiol 2021; 81:877-891. [PMID: 34402590 DOI: 10.1002/dneu.22848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Glia are widely distributed in the central nervous system and are closely related to cell metabolism, signal transduction, support, cell migration, and other nervous system development processes and functions. Glial development is complex and essential, including the processes of proliferation, differentiation, and migration, and requires precise regulatory networks. Noncoding RNAs (ncRNAs) can be deeply involved in glial development through gene regulation. Here, we review the regulatory roles of ncRNAs in glial development. We briefly describe the classification and functions of noncoding RNAs and focus on microRNAs (miRNAs) and long ncRNAs (lncRNAs), which have been reported to participate extensively during glial formation. The highlight of this summary is that miRNAs and lncRNAs can participate in and regulate the signaling pathways of glial development. The review not only describes how noncoding RNAs participate in nervous system development but also explains the processes of glial development, providing a foundation for subsequent studies on glial development and new insights into the pathogeneses of related neurological diseases.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
60
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
61
|
Pusic KM, Kraig RP, Pusic AD. IFNγ-stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes. PLoS One 2021; 16:e0255778. [PMID: 34388189 PMCID: PMC8363003 DOI: 10.1371/journal.pone.0255778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles secreted from IFNγ-stimulated rat dendritic cells (referred to here as IFNγ-DC-EVs) contain miRNAs which promote myelination (including but not limited to miR-219), and preferentially enter oligodendrocytes in brain slice cultures. IFNγ-DC-EVs also increase myelination when nasally administered to naïve rats. While we can infer that these extracellular vesicles enter the CNS from functional studies, here we demonstrate biodistribution throughout the brain after nasal delivery by way of imaging studies. After nasal administration, Xenolight DiR-labelled IFNγ-DC-EVs were detected 30 minutes later throughout the brain and the cervical spinal cord. We next examined cellular uptake of IFNγ-DC-EVs by transfecting IFNγ-DC-EVs with mCherry mRNA prior to nasal administration. mCherry-positive cells were found along the rostrocaudal axis of the brain to the brainstem. These cells morphologically resembled oligodendrocytes, and indeed cell-specific co-staining for neurons, astrocytes, microglia and oligodendrocytes showed that mcherry positive cells were predominantly oligodendrocytes. This is in keeping with our prior in vitro results showing that IFNγ-DC-EVs are preferentially taken up by oligodendrocytes, and to a lesser extent, microglia. To confirm that IFNγ-DC-EVs delivered cargo to oligodendrocytes, we quantified protein levels of miR-219 mRNA targets expressed in oligodendrocyte lineage cells, and found significantly reduced expression. Finally, we compared intranasal versus intravenous delivery of Xenolight DiR-labelled IFNγ-DC-EVs. Though labelled IFNγ-DC-EVs entered the CNS via both routes, we found that nasal delivery more specifically targeted the CNS with less accumulation in the liver. Taken together, these data show that intranasal administration is an effective route for delivery of IFNγ-DC-EVs to the CNS, and provides additional support for their development as an EV-based neurotherapeutic that, for the first time, targets oligodendrocytes.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
62
|
Zhang A, Bai Z, Yi W, Hu Z, Hao J. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci Lett 2021; 761:136124. [PMID: 34302891 DOI: 10.1016/j.neulet.2021.136124] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/18/2023]
Abstract
Growing evidence has shown that microRNAs (miRNAs) play crucial roles in the physiopathology of spinal cord injury (SCI). Recent studies have confirmed that miR-338-5p regulates myelination, suggesting a potential role in the treatment of SCI. However, the molecular mechanism of miR-338-5p on SCI is still unknown. Recently, exosomes have emerged as an ideal vector to deliver therapeutic molecules such as miRNAs. Here, we explored the effects of miR-338-5p-overexpressing exosomes derived from bone marrow-derived mesenchymal stromal cells (BMSCs) on SCI. In vivo, a model of contusion SCI in rats was established, and we observed that overexpression of miR-338-5p in exosomes profoundly increased the expression levels of neurofilament protein-M and growth-associated protein-43 and decreased those of myelin-associated glycoprotein and glial fibrillary acidic protein, which provided neuroprotective effects after acute SCI. In an in vitro study, we found that overexpression of miR-338-5p in exosomes repressed cell apoptosis following H2O2-induced oxidative stress injury in PC12 cells. Additionally, we confirmed that cannabinoid receptor 1 (Cnr1) was the target gene of miR-338-5p by dual-luciferase reporter assays and that Rap1 was the downstream gene by the KEGG pathway analysis. We found that miR-338-5p increased cAMP accumulation as a consequence of downregulated expression of the target gene Cnr1, and then, Rap1 was activated by cAMP. Eventually, the activation of the PI3K/Akt pathway attenuated cell apoptosis and promoted neuronal survival by cAMP-mediated Rap1 activation. In brief, these findings showed that exosomes overexpressing miR-338-5p were a promising treatment strategy for SCI.
Collapse
Affiliation(s)
- Anwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, PR China
| | - Weiwei Yi
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China.
| |
Collapse
|
63
|
Simankova A, Bizen N, Saitoh S, Shibata S, Ohno N, Abe M, Sakimura K, Takebayashi H. Ddx20, DEAD box helicase 20, is essential for the differentiation of oligodendrocyte and maintenance of myelin gene expression. Glia 2021; 69:2559-2574. [PMID: 34231259 DOI: 10.1002/glia.24058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation. Although defects in each of these processes result in abnormal oligodendrocyte differentiation and myelination, the involvement of Ddx20 in oligodendrocyte terminal differentiation remains unknown. To address this question, we used Mbp-Cre mice to generate Ddx20 conditional knockout (cKO) mice to allow for the deletion of Ddx20 from mature oligodendrocytes. Mbp-Cre;Ddx20 cKO mice demonstrated small body sizes, behavioral abnormalities, muscle weakness, and short lifespans, with mortality by the age of 2 months old. Histological analyses demonstrated significant reductions in the number of mature oligodendrocytes and drastic reductions in the expression levels of myelin-associated mRNAs, such as Mbp and Plp at postnatal day 42. The number of OPCs did not change. A thin myelin layer was observed for large-diameter axons in Ddx20 cKO mice, based on electron microscopic analysis. A bromodeoxyuridine (BrdU) labeling experiment demonstrated that terminal differentiation was perturbed from ages 2 weeks to 7 weeks in the CNS of Mbp-Cre;Ddx20 cKO mice. The activation of mitogen-activated protein (MAP) kinase, which promotes myelination, was downregulated in the Ddx20 cKO mice based on immunohistochemical detection. These results indicate that Ddx20 is an essential factor for terminal differentiation of oligodendrocytes and maintenance of myelin gene expression.
Collapse
Affiliation(s)
- Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
64
|
Brum CB, Paixão-Côrtes VR, Carvalho AM, Martins-Silva T, Carpena MX, Ulguim KF, Luquez KYS, Salatino-Oliveira A, Tovo-Rodrigues L. Genetic variants in miRNAs differentially expressed during brain development and their relevance to psychiatric disorders susceptibility. World J Biol Psychiatry 2021; 22:456-467. [PMID: 33040684 DOI: 10.1080/15622975.2020.1834618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) play an important regulatory role in the expression of genes involved in brain functions during development. Genetic variants in miRNA genes may impact their regulatory function and lead to psychiatric disorders. To evaluate the role of genetic variants in genes of miRNAs differentially expressed during neurodevelopment on autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ), and major depressive disorder (MDD). METHODS The miRNAs were identified in the literature. Summary statistics from the most recent genome-wide association studies to date were used to evaluate the association between the selected polymorphisms and each disorder in a look-up approach. In a global analysis, we compared the standardised risk effect of variants in neurodevelopment-related miRNAs with those in the remaining miRNAs from miRBase. RESULTS The global analysis showed that variants in neurodevelopment-related miRNAs had higher risk effects compared to the other miRNAs for SCZ (p = 0.010) and ADHD (p = 0.001). MIR33B, MIR29B2, MIR29C, MIR137, and MIR135A1 were significantly associated with SCZ, while 55.9% of the miRNAs were at least nominally associated with one or more psychiatric disorders (p < 0.05). CONCLUSIONS Genetic variants in neurodevelopment-related miRNAs play an important role in the genetic susceptibility of psychiatric disorders, mainly SCZ and ADHD.
Collapse
Affiliation(s)
- Clarice Brinck Brum
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Thais Martins-Silva
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | - Angélica Salatino-Oliveira
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.,Human Development and Violence Research Centre, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
65
|
Suster I, Feng Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int J Mol Sci 2021; 22:ijms22136765. [PMID: 34201807 PMCID: PMC8269442 DOI: 10.3390/ijms22136765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.
Collapse
Affiliation(s)
| | - Yue Feng
- Correspondence: ; Tel.: +1-404-727-0351
| |
Collapse
|
66
|
Velasco B, Mohamed E, Sato-Bigbee C. Endogenous and exogenous opioid effects on oligodendrocyte biology and developmental brain myelination. Neurotoxicol Teratol 2021; 86:107002. [PMID: 34126203 DOI: 10.1016/j.ntt.2021.107002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
The elevated presence of opioid receptors and their ligands throughout the developing brain points to the existence of maturational functions of the endogenous opioid system that still remain poorly understood. The alarmingly increasing rates of opioid use and abuse underscore the urgent need for clear identification of those functions and the cellular bases and molecular mechanisms underlying their physiological roles under normal and pathological conditions. This review is focused on current knowledge on the direct and indirect regulatory roles that opioids may have on oligodendrocyte development and their generation of myelin, a complex insulating membrane that not only facilitates rapid impulse conduction but also participates in mechanisms of brain plasticity and adaptation. Information is examined in relation to the importance of endogenous opioid function, as well as direct and indirect effects of opioid analogues, which like methadone and buprenorphine are used in medication-assisted therapies for opioid addiction during pregnancy and pharmacotherapy in neonatal abstinence syndrome. Potential opioid effects are also discussed regarding late myelination of the brain prefrontal cortex in adolescents and young adults. Such knowledge is fundamental for the design of safer pharmacological interventions for opioid abuse, minimizing deleterious effects in the developing nervous system.
Collapse
Affiliation(s)
- Brandon Velasco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
67
|
Nazari B, Namjoo Z, Moradi F, Kazemi M, Ebrahimi-Barough S, Sadroddiny E, Ai J. miR-219 overexpressing oligodendrocyte progenitor cells for treating compression spinal cord injury. Metab Brain Dis 2021; 36:1069-1077. [PMID: 33635477 DOI: 10.1007/s11011-021-00701-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) transplantation has been considered a promising treatment for spinal cord injury, according to previous studies. Recent research shed light on the importance of microRNA 219 (miR-219) in oligodendrocyte development, so here miR-219-overexpressing OPCs (miR-219 OPCs) were transplanted in animal models of spinal cord injury to evaluate the impact of miR-219 on oligodendrocyte differentiation and functional recovery in vivo. Our findings demonstrate that transplanted cells were distributed in the tissue sections and contributed to reducing the size of cavity in the injury site. Interestingly, miR-219 promoted OPC differentiation into mature oligodendrocyte expressing MBP in vivo whereas in absence of miR-219, less number of cells differentiated into mature oligodendrocytes. An eight week evaluation using the Basso Beattie Bresnahan (BBB) locomotor test confirmed improvement in functional recovery of hind limbs. Overall, this study demonstrated that miR-219 promoted differentiation and maturation of OPCs after transplantation and can be used in cell therapy of spinal cord injury.
Collapse
Affiliation(s)
- Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansure Kazemi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
68
|
Yin J, Chen H, Li S, Zhang S, Guo X. Blockage of miR-485-5p on Cortical Neuronal Apoptosis Induced by Oxygen and Glucose Deprivation/Reoxygenation Through Inactivating MAPK Pathway. Neuromolecular Med 2021; 23:256-266. [PMID: 32719988 DOI: 10.1007/s12017-020-08605-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
This study is designed to explore the role of miR-485-5p in hypoxia/reoxygenation-induced neuronal injury in primary rat cortical neurons. Hypoxia/reoxygenation model was established through oxygen and glucose deprivation/reoxygenation (OGD/R). RN-c cells were transfected with miR-485-5p mimics, miR-485-5p inhibitors, si-SOX6, pCNDA3.1-SOX6 or miR-485-5p + pCDNA3.1-SOX6, in which cell viability, apoptosis, lactate dehydrogenase (LDH) release rate were assessed. Western blot detected the protein expressions of apoptotic-related proteins (caspase3, Bcl-2, Bax) and the phosphorylated level of ERK1/2. The potential binding sites between miR-485-5p and SOX6 were predicted by STARBASE and identified using dual luciferase reporter gene assay. OGD/R-treated RN-c cell presented increases in apoptosis and LDH release rate as well as a decrease in cell viability. miR-485-5p was downregulated while SOX6 was upregulated in OGD/R-treated RN-c cells. Overexpression of miR-485-5p or SOX6 knockdown rescued cell viability and Bcl-2 expression, while attenuated apoptosis, LDH release rate, expression of SOX6 and the phosphorylated level of ERK1/2. Consistently, miR-485-5p inhibition led to the reverse pattern. Co-transfection of miR-485-5p and SOX6 reversed the protective effect of miR-485-5p on OGD/R-induced neuronal apoptosis. miR-485-5p can directly target SOX6. Together, miR-485-5p inhibited SOX6 to alleviate OGD/R-induced apoptosis. Collectively, miR-485-5p protects primary cortical neurons against hypoxia injury through downregulating SOX6 and inhibiting MAPK pathway.
Collapse
Affiliation(s)
- Jiangliu Yin
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Huan Chen
- Hunan Provincial Center for Disease Prevent and Control, Changsha, 410006, Hunan, People's Republic of China
| | - Suonan Li
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Shuai Zhang
- Department of Neurosurgery, Changsha Central Hospital of University of South China, Changsha, 410005, Hunan, People's Republic of China
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital of Quanzhou Medical College, No. 392, Xinhua Road, Meiling Street, Quanzhou, 362200, Fujian, People's Republic of China.
| |
Collapse
|
69
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
70
|
Nishiyama A, Serwanski DR, Pfeiffer F. Many roles for oligodendrocyte precursor cells in physiology and pathology. Neuropathology 2021; 41:161-173. [PMID: 33913208 DOI: 10.1111/neup.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) are a fourth resident glial cell population in the mammalian central nervous system. They are evenly distributed throughout the gray and white matter and continue to proliferate and generate new oligodendrocytes (OLs) throughout life. They were understudied until a few decades ago when immunolabeling for NG2 and platelet-derived growth factor receptor alpha revealed cells that are distinct from mature OLs, astrocytes, neurons, and microglia. In this review, we provide a summary of the known properties of OPCs with some historical background, followed by highlights from recent studies that suggest new roles for OPCs in certain pathological conditions.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.,The Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Friederike Pfeiffer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
71
|
Inamura N, Go S, Watanabe T, Takase H, Takakura N, Nakayama A, Takebayashi H, Matsuda J, Enokido Y. Reduction in miR-219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathol 2021; 31:e12951. [PMID: 33822434 PMCID: PMC8412087 DOI: 10.1111/bpa.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early‐onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso‐derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)‐219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR‐219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR‐219 effectively rescued their cell‐autonomous developmental defects and apoptotic death. miR‐219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR‐219 expression in KD pathogenesis and suggest that miR‐219 has therapeutic potential for treating KD OL pathologies.
Collapse
Affiliation(s)
- Naoko Inamura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurobiochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| |
Collapse
|
72
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
73
|
Nishiyama A, Shimizu T, Sherafat A, Richardson WD. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol 2021; 116:25-37. [PMID: 33741250 PMCID: PMC8292179 DOI: 10.1016/j.semcdb.2021.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) originate in localized germinal zones in the embryonic neural tube, then migrate and proliferate to populate the entire central nervous system, both white and gray matter. They divide and generate myelinating oligodendrocytes (OLs) throughout postnatal and adult life. OPCs express NG2 and platelet-derived growth factor receptor alpha subunit (PDGFRα), two functionally important cell surface proteins, which are also widely used as markers for OPCs. The proliferation of OPCs, their terminal differentiation into OLs, survival of new OLs, and myelin synthesis are orchestrated by signals in the local microenvironment. We discuss advances in our mechanistic understanding of paracrine effects, including those mediated through PDGFRα and neuronal activity-dependent signals such as those mediated through AMPA receptors in OL survival and myelination. Finally, we review recent studies supporting the role of new OL production and “adaptive myelination” in specific behaviours and cognitive processes contributing to learning and long-term memory formation. Our article is not intended to be comprehensive but reflects the authors’ past and present interests.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| | - Takahiro Shimizu
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
74
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
75
|
Brandi R, Fabiano M, Giorgi C, Arisi I, La Regina F, Malerba F, Turturro S, Storti AE, Ricevuti F, Amadio S, Volontè C, Capsoni S, Scardigli R, D’Onofrio M, Cattaneo A. Nerve Growth Factor Neutralization Promotes Oligodendrogenesis by Increasing miR-219a-5p Levels. Cells 2021; 10:cells10020405. [PMID: 33669304 PMCID: PMC7920049 DOI: 10.3390/cells10020405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In the brain, the neurotrophin Nerve growth factor (NGF) regulates not only neuronal survival and differentiation, but also glial and microglial functions and neuroinflammation. NGF is known to regulate oligodendrogenesis, reducing myelination in the central nervous system (CNS). In this study, we found that NGF controls oligodendrogenesis by modulating the levels of miR-219a-5p, a well-known positive regulator of oligodendrocyte differentiation. We exploited an NGF-deprivation mouse model, the AD11 mice, in which the postnatal expression of an anti-NGF antibody leads to NGF neutralization and progressive neurodegeneration. Notably, we found that these mice also display increased myelination. A microRNA profiling of AD11 brain samples and qRT-PCR analyses revealed that NGF deprivation leads to an increase of miR-219a-5p levels in hippocampus and cortex and a corresponding down-regulation of its predicted targets. Neurospheres isolated from the hippocampus of AD11 mice give rise to more oligodendrocytes and this process is dependent on miR-219a-5p, as shown by decoy-mediated inhibition of this microRNA. Moreover, treatment of AD11 neurospheres with NGF inhibits miR-219a-5p up-regulation and, consequently, oligodendrocyte differentiation, while anti-NGF treatment of wild type (WT) oligodendrocyte progenitors increases miR-219a-5p expression and the number of mature cells. Overall, this study indicates that NGF inhibits oligodendrogenesis and myelination by down-regulating miR-219a-5p levels, suggesting a novel molecular circuitry that can be exploited for the discovery of new effectors for remyelination in human demyelinating diseases, such as Multiple Sclerosis.
Collapse
Affiliation(s)
- Rossella Brandi
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Marietta Fabiano
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Corinna Giorgi
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
- CNR, Institute of Molecular Biology and Pathology (IBPM), P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
- CNR, Institute of Translational Pharmacology (IFT), Via del Fosso del Cavaliere 100, 00131 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Francesca Malerba
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Sabrina Turturro
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Andrea Ennio Storti
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Flavia Ricevuti
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
| | - Susanna Amadio
- IRCCS Fondazione Santa Lucia, Preclinical Neuroscience, Via del Fosso di Fiorano 65, 00143 Rome, Italy; (S.A.); (C.V.)
| | - Cinzia Volontè
- IRCCS Fondazione Santa Lucia, Preclinical Neuroscience, Via del Fosso di Fiorano 65, 00143 Rome, Italy; (S.A.); (C.V.)
- CNR, Institute for Systems Analysis and Computer Science, Via Dei Taurini 19, 00185 Rome, Italy
| | - Simona Capsoni
- Bio@SNS, Scuola Normale Superiore, 56124 Pisa, Italy;
- Institute of Physiology, Department of Neuroscience and Rehabilitation University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Scardigli
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
- CNR, Institute of Translational Pharmacology (IFT), Via del Fosso del Cavaliere 100, 00131 Rome, Italy
- Correspondence: (R.S.); (M.D.); (A.C.)
| | - Mara D’Onofrio
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, Viale Regina Elena, 295, 00161 Rome, Italy; (R.B.); (M.F.); (C.G.); (I.A.); (F.L.R.); (F.M.); (S.T.); (A.E.S.); (F.R.)
- CNR, Institute of Translational Pharmacology (IFT), Via del Fosso del Cavaliere 100, 00131 Rome, Italy
- Correspondence: (R.S.); (M.D.); (A.C.)
| | - Antonino Cattaneo
- Bio@SNS, Scuola Normale Superiore, 56124 Pisa, Italy;
- Correspondence: (R.S.); (M.D.); (A.C.)
| |
Collapse
|
76
|
Huang WQ, Lin Q, Chen S, Sun L, Chen Q, Yi K, Li Z, Ma Q, Tzeng CM. Integrated analysis of microRNA and mRNA expression profiling identifies BAIAP3 as a novel target of dysregulated hsa-miR-1972 in age-related white matter lesions. Aging (Albany NY) 2021; 13:4674-4695. [PMID: 33561007 PMCID: PMC7906144 DOI: 10.18632/aging.202562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
White matter lesions known as leukoaraiosis (LA) are cerebral white matter hyperintensities observed in elderly individuals. Currently, no reliable molecular biomarkers are available for monitoring their progression over time. To identify biomarkers for the onset and progression of LA, we analyzed whole blood-based, microRNA expression profiles of leukoaraiosis, validated those exhibiting significant microRNA changes in clinical subjects by means of quantitative real-time polymerase chain reactions and determined the function of miRNA in cell lines by means of microRNA mimic transfection assays. A total of seven microRNAs were found to be significantly down-regulated in leukoaraiosis. Among the microRNAs, hsa-miR-1972 was downregulated during the early onset phase of leukoaraiosis, as confirmed in independent patients, and it was found to target leukoaraiosis-dependent BAIAP3, decreasing its expression in 293T cell lines. Functional enrichment analysis revealed that significantly dysregulated miRNAs-mRNAs changes associated with the onset of leukoaraiosis were involved in neurogenesis, neuronal development, and differentiation. Taken together, the study identified a set of candidate microRNA biomarkers that may usefully monitor the onset and progression of leukoaraiosis. Given the enrichment of leukoaraiosis-associated microRNAs and mRNAs in neuron part and membrane system, BAIAP3 could potentially represent a novel target of hsa-miR-1972 in leukoaraiosis through which microRNAs are involved in the pathogenesis of white matter lesions.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Shanghai Institute of Precision Medicine (SHIPM), Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qing Lin
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China.,The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiamen Key Laboratory of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Chen Zhi-nan Academician Workstation, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shanxi, China
| | - Lixiang Sun
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qingjie Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kehui Yi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Neurology, Zhongshan Xiamen Hospital, Fudan University, Xiamen, Fujian, China
| | - Zhi Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China.,The First Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
77
|
Akay LA, Effenberger AH, Tsai LH. Cell of all trades: oligodendrocyte precursor cells in synaptic, vascular, and immune function. Genes Dev 2021; 35:180-198. [PMID: 33526585 PMCID: PMC7849363 DOI: 10.1101/gad.344218.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) are not merely a transitory progenitor cell type, but rather a distinct and heterogeneous population of glia with various functions in the developing and adult central nervous system. In this review, we discuss the fate and function of OPCs in the brain beyond their contribution to myelination. OPCs are electrically sensitive, form synapses with neurons, support blood-brain barrier integrity, and mediate neuroinflammation. We explore how sex and age may influence OPC activity, and we review how OPC dysfunction may play a primary role in numerous neurological and neuropsychiatric diseases. Finally, we highlight areas of future research.
Collapse
Affiliation(s)
- Leyla Anne Akay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Audrey H Effenberger
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
78
|
Chamling X, Kallman A, Fang W, Berlinicke CA, Mertz JL, Devkota P, Pantoja IEM, Smith MD, Ji Z, Chang C, Kaushik A, Chen L, Whartenby KA, Calabresi PA, Mao HQ, Ji H, Wang TH, Zack DJ. Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nat Commun 2021; 12:652. [PMID: 33510160 PMCID: PMC7844020 DOI: 10.1038/s41467-021-20892-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
Injury and loss of oligodendrocytes can cause demyelinating diseases such as multiple sclerosis. To improve our understanding of human oligodendrocyte development, which could facilitate development of remyelination-based treatment strategies, here we describe time-course single-cell-transcriptomic analysis of developing human stem cell-derived oligodendrocyte-lineage-cells (hOLLCs). The study includes hOLLCs derived from both genome engineered embryonic stem cell (ESC) reporter cells containing an Identification-and-Purification tag driven by the endogenous PDGFRα promoter and from unmodified induced pluripotent (iPS) cells. Our analysis uncovers substantial transcriptional heterogeneity of PDGFRα-lineage hOLLCs. We discover sub-populations of human oligodendrocyte progenitor cells (hOPCs) including a potential cytokine-responsive hOPC subset, and identify candidate regulatory genes/networks that define the identity of these sub-populations. Pseudotime trajectory analysis defines developmental pathways of oligodendrocytes vs astrocytes from PDGFRα-expressing hOPCs and predicts differentially expressed genes between the two lineages. In addition, pathway enrichment analysis followed by pharmacological intervention of these pathways confirm that mTOR and cholesterol biosynthesis signaling pathways are involved in maturation of oligodendrocytes from hOPCs.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alyssa Kallman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weixiang Fang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joseph L Mertz
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Prajwal Devkota
- Department of Computer Science, University of Miami, Coral Gables, FL, 33146, USA
| | - Itzy E Morales Pantoja
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Calvin Chang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katharine A Whartenby
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering Baltimore, Maryland, MD, 21218, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
79
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
80
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
81
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
82
|
Cullen CL, O'Rourke M, Beasley SJ, Auderset L, Zhen Y, Pepper RE, Gasperini R, Young KM. Kif3a deletion prevents primary cilia assembly on oligodendrocyte progenitor cells, reduces oligodendrogenesis and impairs fine motor function. Glia 2020; 69:1184-1203. [PMID: 33368703 PMCID: PMC7986221 DOI: 10.1002/glia.23957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Primary cilia are small microtubule‐based organelles capable of transducing signals from growth factor receptors embedded in the cilia membrane. Developmentally, oligodendrocyte progenitor cells (OPCs) express genes associated with primary cilia assembly, disassembly, and signaling, however, the importance of primary cilia for adult myelination has not been explored. We show that OPCs are ciliated in vitro and in vivo, and that they disassemble their primary cilia as they progress through the cell cycle. OPC primary cilia are also disassembled as OPCs differentiate into oligodendrocytes. When kinesin family member 3a (Kif3a), a gene critical for primary cilium assembly, was conditionally deleted from adult OPCs in vivo (Pdgfrα‐CreER™:: Kif3afl/fl transgenic mice), OPCs failed to assemble primary cilia. Kif3a‐deletion was also associated with reduced OPC proliferation and oligodendrogenesis in the corpus callosum and motor cortex and a progressive impairment of fine motor coordination.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Megan O'Rourke
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Shannon J Beasley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Robert Gasperini
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
83
|
Okado H. Nervous system regulated by POZ domain Krüppel-like zinc finger (POK) family transcription repressor RP58. Br J Pharmacol 2020; 178:813-826. [PMID: 32959890 DOI: 10.1111/bph.15265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
The POZ domain Krüppel-like zinc finger transcription repressor (POK family) contains many important molecules, including RP58, Bcl6 and PLZF. They function as transcription repressors via chromatin remodelling and histone deacetylation and are known to be involved in the development and tumourigenesis of various organs. Furthermore, they are important in the formation and function of the nervous system. This review summarizes the role of the POK family transcription repressors in the nervous system. We particularly targeted Rp58 (also known as Znf238, Znp238 and Zbtb18), a sequence-specific transcriptional repressor that is strongly expressed in developing glutamatergic projection neurons in the cerebral cortex. It regulates various physiological processes, including neuronal production, neuronal migration and neuronal maturation. Human studies suggest that reduced RP58 levels are involved in cognitive function impairment and brain tumour formation. This review particularly focuses on the mechanisms underlying RP58-mediated neuronal development and function. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Haruo Okado
- Laboratory of Neural Development, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
84
|
Mazloumfard F, Mirian M, Eftekhari SM, Aliomrani M. Hydroxychloroquine effects on miR-155-3p and miR-219 expression changes in animal model of multiple sclerosis. Metab Brain Dis 2020; 35:1299-1307. [PMID: 32860610 DOI: 10.1007/s11011-020-00609-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system which causes chronic demyelination. Hydroxychloroquine (HCQ) possess immunosuppressive and anti-inflammatory properties. The aim of this study was to investigate the effect of HCQ on miR-219 and miR-155-3p expression changes in MS-induced model. The animal model was induced by the administration of cuprizone containing food pellets (0.2%). Briefly, C57BL/6 mice were randomly divided into five groups. Group 1 received normal food and water during the study. Group 2 received cuprizone pellets for 5 weeks (demyelination phase) following one-week normal feeding during the remyelination phase. The remaining three groups received HCQ (2.5, 10 and 100 mg/kg) via drinking water during the demyelination phase. At the end of each phase, mice were deeply anesthetized, perfused with PBS through the heart, and their brains were removed. Brain sections stained with luxol fast blue and the images were analyzed. Also, the expression levels of miR-219 and miR-155-3p were evaluated by quantitative Real-Time PCR in all samples. HCQ decreased the expression of miR-155-3p and increased miR-219 expression in animals treated with 100 mg/kg of HCQ compared to the control group (p < 0.0001) and the cuprizone group (p < 0.0001). LFB method revealed a gradual increment of myelination in animals treated with 10 and 100 mg/kg of HCQ compared to the cuprizone group. Based on the obtained results of this study, HCQ can decrease microglial activity and increase oligodendrocye production by altering the expression of disease-associated miRNAs.
Collapse
Affiliation(s)
- Fatemeh Mazloumfard
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Seyed-Mehdi Eftekhari
- Department of Pathology, Azarmehr Clinical Pathology Laboratory, Isfahan, Islamic Republic of Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology and Isfahan Pharmaceutical Science Research center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
85
|
Gholami S, Mirian M, Eftekhari SM, Aliomrani M. Apamin administration impact on miR-219 and miR-155-3p expression in cuprizone induced multiple sclerosis model. Mol Biol Rep 2020; 47:9013-9019. [PMID: 33174081 DOI: 10.1007/s11033-020-05959-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease that attacks the central nervous system. This study aims to investigate miR-219 and miR-155-3p expression levels involved in the myelination process following the administration of apamin peptide in the model of multiple sclerosis disease. Forty-four 8 week C57BL/6 male mice (22 ± 5 g) randomly divided into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week in cuprizone induced MS model. At the end of study myelin content and microRNA expression levels were measured with LFB staining and quantitative Real-Time PCR method, respectively. It was observed that the intended microRNAs were dysregulated during the different phases of disease induction. After 6 weeks of cuprizone exposure, miR-219 downregulated in phase I in comparison with the negative control. On the other hand, the apamin co-treatment significantly inhibit the miR-155-3p upregulation during the phase I as compared with the cuprizone group (p < 0.0001). Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease. Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease.
Collapse
Affiliation(s)
- Samira Gholami
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Room 117, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
86
|
Gámez-Valero A, Guisado-Corcoll A, Herrero-Lorenzo M, Solaguren-Beascoa M, Martí E. Non-Coding RNAs as Sensors of Oxidative Stress in Neurodegenerative Diseases. Antioxidants (Basel) 2020; 9:E1095. [PMID: 33171576 PMCID: PMC7695195 DOI: 10.3390/antiox9111095] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) results from an imbalance between the production of reactive oxygen species and the cellular antioxidant capacity. OS plays a central role in neurodegenerative diseases, where the progressive accumulation of reactive oxygen species induces mitochondrial dysfunction, protein aggregation and inflammation. Regulatory non-protein-coding RNAs (ncRNAs) are essential transcriptional and post-transcriptional gene expression controllers, showing a highly regulated expression in space (cell types), time (developmental and ageing processes) and response to specific stimuli. These dynamic changes shape signaling pathways that are critical for the developmental processes of the nervous system and brain cell homeostasis. Diverse classes of ncRNAs have been involved in the cell response to OS and have been targeted in therapeutic designs. The perturbed expression of ncRNAs has been shown in human neurodegenerative diseases, with these changes contributing to pathogenic mechanisms, including OS and associated toxicity. In the present review, we summarize existing literature linking OS, neurodegeneration and ncRNA function. We provide evidences for the central role of OS in age-related neurodegenerative conditions, recapitulating the main types of regulatory ncRNAs with roles in the normal function of the nervous system and summarizing up-to-date information on ncRNA deregulation with a direct impact on OS associated with major neurodegenerative conditions.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Anna Guisado-Corcoll
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
| | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain; (A.G.-V.); (A.G.-C.); (M.H.-L.); (M.S.-B.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28046 Madrid, Spain
| |
Collapse
|
87
|
Alam MN, Shapla UM, Shen H, Huang Q. Linking emerging contaminants exposure to adverse health effects: Crosstalk between epigenome and environment. J Appl Toxicol 2020; 41:878-897. [PMID: 33113590 DOI: 10.1002/jat.4092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Environmental epigenetic findings shed new light on the roles of epigenetic regulations in environmental exposure-induced toxicities or disease susceptibilities. Currently, environmental emerging contaminants (ECs) are in focus for further investigation due to the evidence of human exposure in addition to their environmental occurrences. However, the adverse effects of these environmental ECs on health through epigenetic mechanisms are still poorly addressed in many aspects. This review discusses the epigenetic mechanisms (DNA methylation, histone modifications, and microRNA expressions) linking ECs exposure to health outcomes. We emphasized on the recent literature describing how ECs can dysregulate epigenetic mechanisms and lead to downstream health outcomes. These up-to-date research outputs could provide novel insights into the toxicological mechanisms of ECs. However, the field still faces a demand for further studies on the broad spectrum of health effects, synergistic/antagonistic effects, transgenerational epigenetic effects, and epidemiologic and demographic data of ECs.
Collapse
Affiliation(s)
- Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ummay Mahfuza Shapla
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
88
|
Santos G, Barateiro A, Brites D, Fernandes A. S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement. Front Cell Neurosci 2020; 14:279. [PMID: 33100970 PMCID: PMC7500156 DOI: 10.3389/fncel.2020.00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 01/30/2023] Open
Abstract
Increased expression of S100B and its specific receptor for advanced glycation end products (RAGE) has been described in patients with multiple sclerosis (MS), being associated with an active demyelinating process. We previously showed that a direct neutralization of S100B reduces lysophosphatidylcholine (LPC)-induced demyelination and inflammation using an ex vivo demyelinating model. However, whether S100B actions occur through RAGE and how oligodendrogenesis and remyelination are affected are not clarified. To evaluate the role of the S100B–RAGE axis in the course of a demyelinating insult, organotypic cerebellar slice cultures (OCSC) were demyelinated with LPC in the presence or absence of RAGE antagonist FPS-ZM1. Then, we explored the effects of the S100B–RAGE axis inhibition on glia reactivity and inflammation, myelination and neuronal integrity, and on oligodendrogenesis and remyelination. In the present study, we confirmed that LPC-induced demyelination increased S100B and RAGE expression, while RAGE antagonist FPS-ZM1 markedly reduced their content and altered RAGE cellular localization. Furthermore, FPS-ZM1 prevented LPC-induced microgliosis and astrogliosis, as well as NF-κB activation and pro-inflammatory cytokine gene expression. In addition, RAGE antagonist reduced LPC-induced demyelination having a beneficial effect on axonal and synaptic protein preservation. We have also observed that RAGE engagement is needed for LPC-induced oligodendrocyte (OL) maturation arrest and loss of mature myelinating OL, with these phenomena being prevented by FPS-ZM1. Our data suggest that increased levels of mature OL in the presence of FPS-ZM1 are related to increased expression of microRNAs (miRs) associated with OL differentiation and remyelination, such as miR-23a, miR-219a, and miR-338, which are defective upon LPC incubation. Finally, our electron microscopy data show that inhibition of the S100B–RAGE axis prevents axonal damage and myelin loss, in parallel with enhanced functional remyelination, as observed by the presence of thinner myelin sheaths when compared with Control. Overall, our data implicate the S100B–RAGE axis in the extent of myelin and neuronal damage, as well as in the inflammatory response that follows a demyelinating insult. Thus, prevention of RAGE engagement may represent a novel strategy for promoting not only inflammatory reduction but also neuronal and myelin preservation and/or remyelination, improving recovery in a demyelinating condition as MS.
Collapse
Affiliation(s)
- Gisela Santos
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Barateiro
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
89
|
Medved J, Wood WM, van Heyst MD, Sherafat A, Song JY, Sakya S, Wright DL, Nishiyama A. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 2020; 69:792-811. [PMID: 33098183 DOI: 10.1002/glia.23930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs), also known as NG2 cells or polydendrocytes, are distributed widely throughout the developing and mature central nervous system. They remain proliferative throughout life and are an important source of myelinating cells in normal and demyelinating brain as well as a source of glioma, the most common type of primary brain tumor with a poor prognosis. OPC proliferation is dependent on signaling mediated by platelet-derived growth factor (PDGF) AA binding to its alpha receptor (PDGFRα). Here, we describe a group of structurally related compounds characterized by the presence of a basic guanidine group appended to an aromatic core that is effective in specifically repressing the transcription of Pdgfra but not the related beta receptor (Pdgfrb) in OPCs. These compounds specifically and dramatically reduced proliferation of OPCs but not that of astrocytes and did not affect signal transduction by PDGFRα. These findings suggest that the compounds could be further developed for potential use in combinatorial treatment strategies for neoplasms with dysregulated PDGFRα function.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael D van Heyst
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Amin Sherafat
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Ju-Young Song
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sagune Sakya
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis L Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Mansfield, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Mansfield, Connecticut, USA
| |
Collapse
|
90
|
Ma Q, Matsunaga A, Ho B, Oksenberg JR, Didonna A. Oligodendrocyte-specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:297. [PMID: 33046105 PMCID: PMC7552381 DOI: 10.1186/s12974-020-01964-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) belong to a class of evolutionary conserved, non-coding small RNAs with regulatory functions on gene expression. They negatively affect the expression of target genes by promoting either RNA degradation or translational inhibition. In recent years, converging studies have identified miRNAs as key regulators of oligodendrocyte (OL) functions. OLs are the cells responsible for the formation and maintenance of myelin in the central nervous system (CNS) and represent a principal target of the autoimmune injury in multiple sclerosis (MS). METHODS MiRAP is a novel cell-specific miRNA affinity-purification technique which relies on genetically tagging Argonaut 2 (AGO2), an enzyme involved in miRNA processing. Here, we exploited miRAP potentiality to characterize OL-specific miRNA dynamics in the MS model experimental autoimmune encephalomyelitis (EAE). RESULTS We show that 20 miRNAs are differentially regulated in OLs upon transition from pre-symptomatic EAE stages to disease peak. Subsequent in vitro differentiation experiments demonstrated that a sub-group of them affects the OL maturation process, mediating either protective or detrimental signals. Lastly, transcriptome profiling highlighted the endocytosis, ferroptosis, and FoxO cascades as the pathways associated with miRNAs mediating or inhibiting OL maturation. CONCLUSIONS Altogether, our work supports a dual role for miRNAs in autoimmune demyelination. In particular, the enrichment in miRNAs mediating pro-myelinating signals suggests an active involvement of these non-coding RNAs in the homeostatic response toward neuroinflammatory injury.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Atsuko Matsunaga
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Brenda Ho
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
91
|
Li J, Durose WW, Ito J, Kakita A, Iguchi Y, Katsuno M, Kunisawa K, Shimizu T, Ikenaka K. Exploring the factors underlying remyelination arrest by studying the post-transcriptional regulatory mechanisms of cystatin F gene. J Neurochem 2020; 157:2070-2090. [PMID: 32947653 DOI: 10.1111/jnc.15190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination. Using hemizygous proteolipid protein transgenic 4e (PLP4e/- ) mice, an animal model of chronic demyelination, we found that cystatin F mRNA expression was induced at 2.5 months of age and up-regulated in the early phase of demyelination, but significantly decreased in the chronic phase. We next investigated cystatin F regulatory factors as potential mechanisms of remyelination arrest in chronic demyelinating disorders. We used the CysF-STOP-tetO::Iba-mtTA mouse model, in which cystatin F gene expression is driven by the tetracycline operator. Interestingly, we found that forced cystatin F mRNA over-expression was eventually decreased. Our findings show that cystatin F expression is modulated post-transcriptionally. We next identified embryonic lethal, abnormal vision, drosophila like RNA-binding protein 1 (ELAVL-1), and miR29a as cystatin F mRNA stabilizing and destabilizing factors, respectively. These roles were confirmed in vitro in NIH3T3 cells. Using postmortem plaque samples from human multiple sclerosis patients, we also confirmed that ELAVL-1 expression was highly correlated with the previously reported expression pattern of cystatin F. These data indicate the important roles of ELAVL-1 and miR29a in regulating cystatin F expression. Furthermore, they provide new insights into potential therapeutic targets for demyelinating disorders.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wilaiwan Wisessmith Durose
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, Thailand.,Department of Pediatrics, Hematology University of Minnesota, Minneapolis, MN, USA
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuo Kunisawa
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Research Division of Advanced Diagnostic System, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takeshi Shimizu
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
92
|
Beylerli OA, Azizova ST, Konovalov NA, Akhmedov AD, Gareev IF, Belogurov AA. [Non-coding RNAs as therapeutic targets in spinal cord injury]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:104-110. [PMID: 32759933 DOI: 10.17116/neiro202084031104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) may be followed by persistent motor dysfunction and somatosensory disturbances that negatively influences the quality of life of patients and creates a significant economic burden. Analysis of secondary biological processes associated with changes in genetic expression is becoming increasingly important every day in understanding the pathophysiology of spinal cord injury. The results of international sequencing of the human genome were analyzed in 2004. These data revealed about 20,000 protein-coding genes covering near 2% of the total genomic sequence. The vast majority of gene transcripts are actually characterized as non-coding RNAs (ncRNAs). These RNA clusters do not encode functional proteins and ensure post-transcriptional regulation of gene expression. The clusters may be small (approximately 20 nucleotides) known as miRNAs or the transcripts can enroll over 200 nucleotides defined as long non-coding RNAs (lncRNAs). Some modern studies describe transient expression of microRNA in case of spinal cord injury. These RNAs are associated with inflammation and apoptosis, functional recovery and regeneration. Large-scale genomic analysis has demonstrated the existence of multiple lncRNAs whose expression is associated with some processes of spinal cord injury. lncRNA can be divided into two categories depending on the position in relation to the coding genes: intergenic and intragenic. Intergenic lncRNAs is currently the most studied class. Intragenic lncRNAs can be subdivided depending on the overlap of the coding genes (antisense, intron, etc.). According to recent studies, long non-coding RNAs are abundantly present in the tissues of central nervous system and may be crucial in the pathogenesis of certain diseases of nervous system. At the cellular level, it has been shown that lncRNAs regulate the expression of protein-coding RNAs. Moreover, these molecules are involved into such processes as neuronal death, demyelination and glia activation. This review is devoted to the role of ncRNAs in the pathogenesis of spinal cord injury and their potential use as targets for the treatment of consequences of spinal cord injury.
Collapse
Affiliation(s)
- O A Beylerli
- Bashkir State Medical University of the Ministry of Health of the Russian Federation, Ufa, Russia
| | - Sh T Azizova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - I F Gareev
- Bashkir State Medical University of the Ministry of Health of the Russian Federation, Ufa, Russia
| | - A A Belogurov
- Shemyakin-Ovcinnicov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
93
|
Tripathi A, Volsko C, Garcia JP, Agirre E, Allan KC, Tesar PJ, Trapp BD, Castelo-Branco G, Sim FJ, Dutta R. Oligodendrocyte Intrinsic miR-27a Controls Myelination and Remyelination. Cell Rep 2020; 29:904-919.e9. [PMID: 31644912 DOI: 10.1016/j.celrep.2019.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated with multiple sclerosis (MS) lesions and in animal models of demyelination. Increased levels of miR-27a led to inhibition of OPC proliferation by cell-cycle arrest, as well as impaired differentiation of human OPCs (hOPCs) and myelination by dysregulating the Wnt-β-catenin signaling pathway. In vivo administration of miR-27a led to suppression of myelinogenic signals, leading to loss of endogenous myelination and remyelination. Our findings provide evidence supporting a critical role for a steady-state level of OL-specific miR-27a in supporting multiple steps in the complex process of OPC maturation and remyelination.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Christina Volsko
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jessie P Garcia
- Jacob's School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Goncalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fraser J Sim
- Jacob's School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
94
|
Yuan X, Wei Y, Ao T, Gong K, Sun Q, Zheng Z, Hagiwara H, Ao Q. Effects of microRNA-338 Transfection into Sciatic Nerve on Rats with Experimental Autoimmune Neuritis. J Mol Neurosci 2020; 71:713-723. [PMID: 32915416 DOI: 10.1007/s12031-020-01689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Nerve demyelination or axonal lesions are characteristic of experimental autoimmune neuritis (EAN). Previous studies have demonstrated that microRNA-338 can regulate the differentiation and maturation of oligodendrocytes and Schwann cells and promote injured peripheral nerves in rats. In this study, we used microRNA-338 coded lentivirus vector (miR-338-LV) in a Lewis rat EAN model, in with the conjunction P0 peptide 180-199 which was injected into the footpads of animals to induce immunization. The clinical scores of miR-338-LV and intravenous immunoglobulin (IVIg) (positive drug) groups were significantly superior to those of untreated group at disease peak and disease plateau (p < 0.05). The nerve conduction velocity and the compound nerve action potential amplitude of miR-338-LV and IVIg groups increased significantly compared to those of the untreated group at disease peak (p < 0.01). At disease peak, myelin swelling, cavity formation, and lamellae separation showed improvement in miR-338-LV and IVIg groups compared to untreated group. S100 and NF200 expression in miR-338-LV and IVIg groups increased compared to that in untreated group. Iba1 and S100 co-expression in Schwann cells in miR-338-LV and IVIg groups decreased compared to that in untreated group, which was indicative of the reduced conversion of Schwann cells into inflammatory cells. Overall, miR-338-LV in sciatic nerves might improve neuromuscular function in EAN by inhibiting the conversion of Schwann cells into inflammatory cells.
Collapse
Affiliation(s)
- Xiaojing Yuan
- Department of Rehabilitation, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Yujun Wei
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Tianrang Ao
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Kai Gong
- College of life science, Tsinghua University, Beijing, 100084, China
| | - Qiangsan Sun
- Department of Rehabilitation, The Second Hospital, Jinan, 250033, Shandong, China
| | - Zuncheng Zheng
- Department of Rehabilitation, Taian City Central Hospital, Taian, 271000, Shandong, China.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, Japan
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, China. .,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
95
|
Ong W, Marinval N, Lin J, Nai MH, Chong YS, Pinese C, Sajikumar S, Lim CT, Ffrench-Constant C, Bechler ME, Chew SY. Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAP-Dependent Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003656. [PMID: 32790058 DOI: 10.1002/smll.202003656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A key hallmark of many diseases, especially those in the central nervous system (CNS), is the change in tissue stiffness due to inflammation and scarring. However, how such changes in microenvironment affect the regenerative process remains poorly understood. Here, a biomimicking fiber platform that provides independent variation of fiber structural and intrinsic stiffness is reported. To demonstrate the functionality of these constructs as a mechanotransduction study platform, these substrates are utilized as artificial axons and the effects of axon structural versus intrinsic stiffness on CNS myelination are independently analyzed. While studies have shown that substrate stiffness affects oligodendrocyte differentiation, the effects of mechanical stiffness on the final functional state of oligodendrocyte (i.e., myelination) has not been shown prior to this. Here, it is demonstrated that a stiff mechanical microenvironment impedes oligodendrocyte myelination, independently and distinctively from oligodendrocyte differentiation. Yes-associated protein is identified to be involved in influencing oligodendrocyte myelination through mechanotransduction. The opposing effects on oligodendrocyte differentiation and myelination provide important implications for current work screening for promyelinating drugs, since these efforts have focused mainly on promoting oligodendrocyte differentiation. Thus, the platform may have considerable utility as part of a drug discovery program in identifying molecules that promote both differentiation and myelination.
Collapse
Affiliation(s)
- William Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Disciplinary School, Nanyang Technological University, Singapore, 637533, Singapore
| | - Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yee-Song Chong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Coline Pinese
- Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, ENSCM, Montpellier, F-34093, France
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Charles Ffrench-Constant
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marie E Bechler
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
96
|
Duffy CP, McCoy CE. The Role of MicroRNAs in Repair Processes in Multiple Sclerosis. Cells 2020; 9:cells9071711. [PMID: 32708794 PMCID: PMC7408558 DOI: 10.3390/cells9071711] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterised by demyelination of central nervous system neurons with subsequent damage, cell death and disability. While mechanisms exist in the CNS to repair this damage, they are disrupted in MS and currently there are no treatments to address this deficit. In recent years, increasing attention has been paid to the influence of the small, non-coding RNA molecules, microRNAs (miRNAs), in autoimmune disorders, including MS. In this review, we examine the role of miRNAs in remyelination in the different cell types that contribute to MS. We focus on key miRNAs that have a central role in mediating the repair process, along with several more that play either secondary or inhibitory roles in one or more aspects. Finally, we consider the current state of miRNAs as therapeutic targets in MS, acknowledging current challenges and potential strategies to overcome them in developing effective novel therapeutics to enhance repair mechanisms in MS.
Collapse
|
97
|
Chen Q, Yan J, Xie W, Xie W, Li M, Ye Y. LncRNA LINC00641 Sponges miR-497-5p to Ameliorate Neural Injury Induced by Anesthesia via Up-Regulating BDNF. Front Mol Neurosci 2020; 13:95. [PMID: 32714145 PMCID: PMC7344214 DOI: 10.3389/fnmol.2020.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Ketamine, which is widely used in anesthesia, can induce cortical neurotoxicity in patients. This study aims to investigate the effects of long non-coding RNA LINC00641 on the ketamine-induced neural injury. Materials and Methods In this study, rat pheochromocytoma cells (PC12 cells) were used as a cell model and Sprague–Dawley postnatal day 7 rats were used for experiments in vivo. Ketamine-induced aberrant expression levels of LINC00641, miR-497-5p and brain-derived neurotrophic factor (BDNF) were examined by qRT-PCR. The effects of LINC00641 and miR-497-5p on ketamine-induced neural injury were then examined by MTT assays and TUNEL analysis. In addition, the activity of ROS and caspase-3 was measured. The regulatory relationships between LINC00641 and miR-497-5p, miR-497-5p and BDNF were detected by dual-luciferase reporter assay, respectively. Results Ketamine induced the apoptosis of PC12 cells, accompanied by down-regulation of LINC00641 and BDNF, and up-regulation of miR-497-5p. LINC00641 overexpression enhanced the resistance to the apoptosis of PC12 cells, while transfection of miR-497-5p had opposite effects. Furthermore, LINC00641 could bind to miR-497-5p and reduce its expression, but indirectly increase the BDNF expression, which was considered as a protective factor in neural injury and activated TrkB/PI3K/Akt pathway. Conclusion Collectively, LINC00641/miR-497-5p/BDNF axis was validated to be an important signaling pathway in modulating ketamine-induced neural injury.
Collapse
Affiliation(s)
- Qingxia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingjia Yan
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenji Xie
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenqin Xie
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meijun Li
- Department of Nursing, Quanzhou Medical College, Quanzhou, China
| | - Yanle Ye
- Department of Urology, The First Hospital of Quanzhou, Quanzhou, China
| |
Collapse
|
98
|
Su X, Xiao D, Huang L, Li S, Ying J, Tong Y, Ye Q, Mu D, Qu Y. MicroRNA Alteration in Developing Rat Oligodendrocyte Precursor Cells Induced by Hypoxia-Ischemia. J Neuropathol Exp Neurol 2020; 78:900-909. [PMID: 31403686 DOI: 10.1093/jnen/nlz071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) are involved in the pathogenesis of white matter injury (WMI). However, their roles in developing rat brains under hypoxia-ischemia (HI) insult remain unknown. Here, we examined the expression profiles of miRNAs in oligodendrocyte precursor cells using microarray analysis. We identified 162 miRNAs and only 6 were differentially regulated in HI compared with sham. Next, we used these 6 miRNAs and 525 extensively changed coding genes (fold change absolute: FC(abs) ≥2, p < 0.05) to establish the coexpression network, the result revealed that only 3 miRNAs (miR-142-3p, miR-466b-5p, and miR-146a-5p) have differentially expressed targeted mRNAs. RT-PCR analysis showed that the expression of the miRNAs was consistent with the microarray analysis. Further gene ontology and KEGG pathway analysis of the targets of these 3 miRNAs indicated that they were largely associated with neural activity. Furthermore, we found that 2 of the 3 miRNAs, miR-142-3p, and miR-466b-5p, have the same target gene, Capn6, an antiapoptotic gene that is tightly regulated in the pathogenesis of neurological diseases. Collectively, we have shown that a number of miRNAs change in oligodendrocyte precursor cells in response to HI insult in developing brains, and miR-142-3p/miR-466b-5p/Capn6 pathway might affect the pathogenesis of WMI, providing us new clues for the diagnosis and therapy for WMI.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Qianghua Ye
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| |
Collapse
|
99
|
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4368-4378. [PMID: 31692427 DOI: 10.2174/1381612825666191105120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs. METHODS This article reviews the literature on the roles of miRNAs in autism. RESULTS Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment. CONCLUSION In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Puthiripadath S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Parakkal Rahna
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| |
Collapse
|
100
|
Li X, Pritykin Y, Concepcion CP, Lu Y, La Rocca G, Zhang M, King B, Cook PJ, Au YW, Popow O, Paulo JA, Otis HG, Mastroleo C, Ogrodowski P, Schreiner R, Haigis KM, Betel D, Leslie CS, Ventura A. High-Resolution In Vivo Identification of miRNA Targets by Halo-Enhanced Ago2 Pull-Down. Mol Cell 2020; 79:167-179.e11. [PMID: 32497496 DOI: 10.1016/j.molcel.2020.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoyi Li
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carla P Concepcion
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuheng Lu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter J Cook
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yu Wah Au
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Zuid-Holland, 2333 ZA, the Netherlands
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah G Otis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan Schreiner
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|