51
|
Hao J, Beck J, Zhou X, Lackner GL, Johnston R, Reinhard M, Goldsmith P, Hollinshead S, Dehlinger V, Filla SA, Wang XS, Richardson J, Posada M, Mohutsky M, Schober D, Katner JS, Chen Q, Hu B, Remick DM, Coates DA, Mathes BM, Hawk MK, Svensson KA, Hembre E. Synthesis and Preclinical Characterization of LY3154885, a Human Dopamine D1 Receptor Positive Allosteric Modulator with an Improved Nonclinical Drug-Drug Interaction Risk Profile. J Med Chem 2022; 65:3786-3797. [PMID: 35175768 DOI: 10.1021/acs.jmedchem.1c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.
Collapse
|
52
|
Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Biomedicines 2022; 10:biomedicines10020398. [PMID: 35203607 PMCID: PMC8962391 DOI: 10.3390/biomedicines10020398] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success. Although several advances in treating peripheral pathologies have been achieved, targeting CNS pathologies remains challenging for researchers. Nevertheless, significant progress has been made in recent years to develop functionally selective orthosteric and allosteric ligands targeting the mAChRs with limited side effect profiles. This review highlights past efforts and focuses on recent advances in drug design targeting these receptors for Alzheimer’s disease (AD), schizophrenia (SZ), and depression.
Collapse
|
53
|
Li W, Wang Y, Lohith TG, Zeng Z, Tong L, Mazzola R, Riffel K, Miller P, Purcell M, Holahan M, Haley H, Gantert L, Hesk D, Ren S, Morrow J, Uslaner J, Struyk A, Wai JMC, Rudd MT, Tellers DM, McAvoy T, Bormans G, Koole M, Van Laere K, Serdons K, de Hoon J, Declercq R, De Lepeleire I, Pascual MB, Zanotti-Fregonara P, Yu M, Arbones V, Masdeu JC, Cheng A, Hussain A, Bueters T, Anderson MS, Hostetler ED, Basile AS. The PET tracer [ 11C]MK-6884 quantifies M4 muscarinic receptor in rhesus monkeys and patients with Alzheimer's disease. Sci Transl Med 2022; 14:eabg3684. [PMID: 35020407 DOI: 10.1126/scitranslmed.abg3684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wenping Li
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Yuchuan Wang
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Zhizhen Zeng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Ling Tong
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Kerry Riffel
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Mona Purcell
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Hyking Haley
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Liza Gantert
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - David Hesk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Sumei Ren
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - John Morrow
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | - Arie Struyk
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, KU Leuven, 3001 Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Kim Serdons
- Nuclear Medicine and Molecular Imaging, KU Leuven and University Hospital Leuven, 3001 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, KU Leuven, 3001 Leuven, Belgium
| | - Ruben Declercq
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Inge De Lepeleire
- Translational Pharmacology Europe, MSD (Europe) Inc., 1200 Brussels, Belgium
| | - Maria B Pascual
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Paolo Zanotti-Fregonara
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Meixiang Yu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Victoria Arbones
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist Neurological Institute, Houston, TX 77030, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Cheng
- MRL, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
54
|
Krishna Deepak RNV, Verma RK, Hartono YD, Yew WS, Fan H. Recent Advances in Structure, Function, and Pharmacology of Class A Lipid GPCRs: Opportunities and Challenges for Drug Discovery. Pharmaceuticals (Basel) 2021; 15:12. [PMID: 35056070 PMCID: PMC8779880 DOI: 10.3390/ph15010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Great progress has been made over the past decade in understanding the structural, functional, and pharmacological diversity of lipid GPCRs. From the first determination of the crystal structure of bovine rhodopsin in 2000, much progress has been made in the field of GPCR structural biology. The extraordinary progress in structural biology and pharmacology of GPCRs, coupled with rapid advances in computational approaches to study receptor dynamics and receptor-ligand interactions, has broadened our comprehension of the structural and functional facets of the receptor family members and has helped usher in a modern age of structure-based drug design and development. First, we provide a primer on lipid mediators and lipid GPCRs and their role in physiology and diseases as well as their value as drug targets. Second, we summarize the current advancements in the understanding of structural features of lipid GPCRs, such as the structural variation of their extracellular domains, diversity of their orthosteric and allosteric ligand binding sites, and molecular mechanisms of ligand binding. Third, we close by collating the emerging paradigms and opportunities in targeting lipid GPCRs, including a brief discussion on current strategies, challenges, and the future outlook.
Collapse
Affiliation(s)
- R. N. V. Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Ravi Kumar Verma
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
| | - Yossa Dwi Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore; (R.K.V.); (Y.D.H.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| |
Collapse
|
55
|
Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nat Commun 2021; 12:5426. [PMID: 34521824 PMCID: PMC8440590 DOI: 10.1038/s41467-021-25620-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
Much hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states. Here, the authors use smFRET to assess the structural dynamics of metabotropic glutamate receptor mGlu2 and show that a positive allosteric modulator or the Gi protein stabilize mGlu2 in the glutamate-induced active state, leading to the full activation of the receptor.
Collapse
|
56
|
Larsson JE, Karlsson U, Wu X, Liin SI. Combining endocannabinoids with retigabine for enhanced M-channel effect and improved KV7 subtype selectivity. J Gen Physiol 2021; 152:151732. [PMID: 32365171 PMCID: PMC7398146 DOI: 10.1085/jgp.202012576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Retigabine is unique among anticonvulsant drugs by targeting the neuronal M-channel, which is composed of KV7.2/KV7.3 and contributes to the negative neuronal resting membrane potential. Unfortunately, retigabine causes adverse effects, which limits its clinical use. Adverse effects may be reduced by developing M-channel activators with improved KV7 subtype selectivity. The aim of this study was to evaluate the prospect of endocannabinoids as M-channel activators, either in isolation or combined with retigabine. Human KV7 channels were expressed in Xenopus laevis oocytes. The effect of extracellular application of compounds with different properties was studied using two-electrode voltage clamp electrophysiology. Site-directed mutagenesis was used to construct channels with mutated residues to aid in the mechanistic understanding of these effects. We find that arachidonoyl-L-serine (ARA-S), a weak endocannabinoid, potently activates the human M-channel expressed in Xenopus oocytes. Importantly, we show that ARA-S activates the M-channel via a different mechanism and displays a different KV7 subtype selectivity compared with retigabine. We demonstrate that coapplication of ARA-S and retigabine at low concentrations retains the effect on the M-channel while limiting effects on other KV7 subtypes. Our findings suggest that improved KV7 subtype selectivity of M-channel activators can be achieved through strategically combining compounds with different subtype selectivity.
Collapse
Affiliation(s)
- Johan E Larsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
57
|
Eriksen J, Li F, Stroud RM, Edwards RH. Allosteric Inhibition of a Vesicular Glutamate Transporter by an Isoform-Specific Antibody. Biochemistry 2021; 60:2463-2470. [PMID: 34319067 DOI: 10.1021/acs.biochem.1c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of glutamate in excitatory neurotransmission depends on its transport into synaptic vesicles by the vesicular glutamate transporters (VGLUTs). The three VGLUT isoforms exhibit a complementary distribution in the nervous system, and the knockout of each produces severe, pleiotropic neurological effects. However, the available pharmacology lacks sensitivity and specificity, limiting the analysis of both transport mechanism and physiological role. To develop new molecular probes for the VGLUTs, we raised six mouse monoclonal antibodies to VGLUT2. All six bind to a structured region of VGLUT2, five to the luminal face, and one to the cytosolic. Two are specific to VGLUT2, whereas the other four bind to both VGLUT1 and 2; none detect VGLUT3. Antibody 8E11 recognizes an epitope spanning the three extracellular loops in the C-domain that explains the recognition of both VGLUT1 and 2 but not VGLUT3. 8E11 also inhibits both glutamate transport and the VGLUT-associated chloride conductance. Since the antibody binds outside the substrate recognition site, it acts allosterically to inhibit function, presumably by restricting conformational changes. The isoform specificity also shows that allosteric inhibition provides a mechanism to distinguish between closely related transporters.
Collapse
Affiliation(s)
- Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Fei Li
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States.,Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, United States
| |
Collapse
|
58
|
Castillo CA, Ballesteros-Yáñez I, León-Navarro DA, Albasanz JL, Martín M. Early Effects of the Soluble Amyloid β 25-35 Peptide in Rat Cortical Neurons: Modulation of Signal Transduction Mediated by Adenosine and Group I Metabotropic Glutamate Receptors. Int J Mol Sci 2021; 22:ijms22126577. [PMID: 34205261 PMCID: PMC8234864 DOI: 10.3390/ijms22126577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain;
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
| | - Inmaculada Ballesteros-Yáñez
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| | - Mairena Martín
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
59
|
Foster DJ, Bryant ZK, Conn PJ. Targeting muscarinic receptors to treat schizophrenia. Behav Brain Res 2021; 405:113201. [PMID: 33647377 PMCID: PMC8006961 DOI: 10.1016/j.bbr.2021.113201] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disorder characterized by a diverse range of symptoms that can have profound impacts on the lives of patients. Currently available antipsychotics target dopamine receptors, and while they are useful for ameliorating the positive symptoms of the disorder, this approach often does not significantly improve negative and cognitive symptoms. Excitingly, preclinical and clinical research suggests that targeting specific muscarinic acetylcholine receptor subtypes could provide more comprehensive symptomatic relief with the potential to ameliorate numerous symptom domains. Mechanistic studies reveal that M1, M4, and M5 receptor subtypes can modulate the specific brain circuits and physiology that are disrupted in schizophrenia and are thought to underlie positive, negative, and cognitive symptoms. Novel therapeutic strategies for targeting these receptors are now advancing in clinical and preclinical development and expand upon the promise of these new treatment strategies to potentially provide more comprehensive relief than currently available antipsychotics.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - Zoey K Bryant
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
60
|
Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IY, Perminova AA, Shpakov AO. Effect of Low-Molecular-Weight Allosteric
Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution
in Rat Testes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
61
|
Zhuang Y, Krumm B, Zhang H, Zhou XE, Wang Y, Huang XP, Liu Y, Cheng X, Jiang Y, Jiang H, Zhang C, Yi W, Roth BL, Zhang Y, Xu HE. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res 2021; 31:593-596. [PMID: 33750903 PMCID: PMC8089099 DOI: 10.1038/s41422-021-00482-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2021] [Indexed: 01/30/2023] Open
Affiliation(s)
- Youwen Zhuang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brian Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Research Institute, Grand, Rapids, MI, USA
| | - Yue Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA
| | - Xi Cheng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology, and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, 311121, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
62
|
Shapiro L, Gado F, Manera C, Escayg A. Allosteric modulation of the cannabinoid 2 receptor confers seizure resistance in mice. Neuropharmacology 2021; 188:108448. [PMID: 33450277 DOI: 10.1016/j.neuropharm.2021.108448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence suggests that modulation of cannabinoid 2 receptors (CB2Rs) is therapeutic in mouse models of neurological disorders, including neuropathic pain, neurodegenerative disease, and stroke. We previously showed that reducing CB2R activity increases seizure susceptibility in mice. In the present study, we evaluated the therapeutic potential of the CB2R positive allosteric modulator, Ec21a, against induced seizures in mice. The pharmacokinetic profile of Ec21 demonstrated a similar distribution in brain and plasma, with detection up to 12 h following injection. Ec21a increased resistance to induced seizures in CF1 wild-type mice and mice harboring the SCN1A R1648H human epilepsy mutation. A rotarod test provided evidence that Ec21a does not cause neurotoxicity-induced motor deficits at its therapeutic dose, and seizure protection was maintained with repeated drug administration. The selectivity of Ec21a for CB2R was supported by the ability of the CB2R antagonist AM630, but not the CB1R antagonist AM251, to block Ec21a-conferred seizure protection in mice, and a lack of significant binding of Ec21a to 34 brain-expressed receptors and transporters in vitro. These results identify allosteric modulation of CB2Rs as a promising therapeutic approach for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lindsey Shapiro
- Emory University, Department of Human Genetics, Atlanta, 30322, Georgia
| | - Francesca Gado
- University of Pisa, Department of Pharmacy, Pisa, 56126, Italy
| | | | - Andrew Escayg
- Emory University, Department of Human Genetics, Atlanta, 30322, Georgia.
| |
Collapse
|
63
|
Kryszkowski W, Boczek T. The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment-A Narrative Review. J Clin Med 2021; 10:jcm10071475. [PMID: 33918323 PMCID: PMC8038150 DOI: 10.3390/jcm10071475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/02/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.
Collapse
Affiliation(s)
- Waldemar Kryszkowski
- General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland;
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland
- Correspondence:
| |
Collapse
|
64
|
Ma N, Nivedha AK, Vaidehi N. Allosteric communication regulates ligand-specific GPCR activity. FEBS J 2021; 288:2502-2512. [PMID: 33738925 PMCID: PMC9805801 DOI: 10.1111/febs.15826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound proteins that are ubiquitously expressed in many cell types and take part in mediating multiple signaling pathways. GPCRs are dynamic proteins and exist in an equilibrium between an ensemble of conformational states such as inactive and fully active states. This dynamic nature of GPCRs is one of the factors that confers their basal activity even in the absence of any ligand-mediated activation. Ligands selectively bind and stabilize a subset of the conformations from the ensemble leading to a shift in the equilibrium toward the inactive or the active state depending on the nature of the ligand. This ligand-selective effect is achieved through allosteric communication between the ligand binding site and G protein or β-arrestin coupling site. Similarly, the G protein coupling to the receptor exerts the allosteric effect on the ligand binding region leading to increased binding affinity for agonists and decreased affinity for antagonists or inverse agonists. In this review, we enumerate the current state of our understanding of the mechanism of allosteric communication in GPCRs with a specific focus on the critical role of computational methods in delineating the residues involved in allosteric communication. Analyzing allosteric communication mechanism using molecular dynamics simulations has revealed (a) a structurally conserved mechanism of allosteric communication that regulates the G protein coupling, (b) a rational structure-based approach to designing selective ligands, and (c) an approach to designing allosteric GPCR mutants that are either ligand and G protein or β-arrestin selective.
Collapse
Affiliation(s)
- Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Anita K. Nivedha
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
65
|
Madrid LI, Jimenez-Martin J, Coulson EJ, Jhaveri DJ. Cholinergic regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. Int J Biochem Cell Biol 2021; 134:105969. [PMID: 33727042 DOI: 10.1016/j.biocel.2021.105969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
The production and circuit integration of new neurons is one of the defining features of the adult mammalian hippocampus. A wealth of evidence has established that adult hippocampal neurogenesis is exquisitely sensitive to neuronal activity-mediated regulation. How these signals are interpreted and contribute to neurogenesis and hippocampal functions has been a subject of immense interest. In particular, neurotransmitters, in addition to their synaptic roles, have been shown to offer important trophic support. Amongst these, acetylcholine, which has a prominent role in cognition, has been implicated in regulating neurogenesis. In this review, we appraise the evidence linking the contribution of cholinergic signalling to the regulation of adult hippocampal neurogenesis and hippocampus-dependent functions. We discuss open questions that need to be addressed to gain a deeper mechanistic understanding of the role and translational potential of acetylcholine and its receptors in regulating this form of cellular neuroplasticity.
Collapse
Affiliation(s)
- Lidia I Madrid
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Javier Jimenez-Martin
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
66
|
Abstract
Methamphetamine abuse leads to devastating consequences, including addiction, crime, and death. Despite decades of research, no medication has been approved by the U.S. Food and Drug Administration for the treatment of Methamphetamine Use Disorder. Thus, there is a need for new therapeutic approaches. Animal studies demonstrate that methamphetamine exposure dysregulates forebrain function involving the Group-I metabotropic glutamate receptor subtype 5 (mGlu5), which is predominantly localized to postsynaptic sites. Allosteric modulators of mGlu5 offer a unique opportunity to modulate glutamatergic neurotransmission selectively, thereby potentially ameliorating methamphetamine-induced disruptions. Negative allosteric modulators of mGlu5 attenuate the effects of methamphetamine, including rewarding/reinforcing properties of the drug across animal models, and have shown promising effects in clinical trials for Anxiety Disorder and Major Depressive Disorder. Preclinical studies have also sparked great interest in mGlu5 positive allosteric modulators, which exhibit antipsychotic and anxiolytic properties, and facilitate extinction learning when access to methamphetamine is removed, possibly via the amelioration of methamphetamine-induced cognitive deficits. Clinical research is now needed to elucidate the mechanisms underlying the mGlu5 receptor-related effects of methamphetamine and the contributions of these effects to addictive behaviors. The growing array of mGlu5 allosteric modulators provides excellent tools for this purpose and may offer the prospect of developing tailored and effective medications for Methamphetamine Use Disorder.
Collapse
|
67
|
Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV, Wu G. Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 2021; 296:100517. [PMID: 33676895 PMCID: PMC8050390 DOI: 10.1016/j.jbc.2021.100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR–Cas9–mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yinquan Fang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
68
|
Mielnik CA, Lam VM, Ross RA. CB 1 allosteric modulators and their therapeutic potential in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110163. [PMID: 33152384 DOI: 10.1016/j.pnpbp.2020.110163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
CB1 is the most abundant GPCR found in the mammalian brain. It has garnered considerable attention as a potential therapeutic drug target. CB1 is involved in a wide range of physiological and psychiatric processes and has the potential to be targeted in a wide range of disease states. However, most of the selective and non-selective synthetic CB1 agonists and antagonists/inverse agonists developed to date are primarily used as research tools. No novel synthetic cannabinoids are currently in the clinic for use in psychiatric illness; synthetic analogues of the phytocannabinoid THC are on the market to treat nausea and vomiting caused by cancer chemotherapy, along with off-label use for pain. Novel strategies are being explored to target CB1, but with emphasis on the elimination or mitigation of the potential psychiatric adverse effects that are observed by central agonism/antagonism of CB1. New pharmacological options are being pursued that may avoid these adverse effects while preserving the potential therapeutic benefits of CB1 modulation. Allosteric modulation of CB1 is one such approach. In this review, we will summarize and critically analyze both the in vitro characterization and in vivo validation of CB1 allosteric modulators developed to date, with a focus on CNS therapeutic effects.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Vincent M Lam
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
69
|
Arsova A, Møller TC, Hellyer SD, Vedel L, Foster SR, Hansen JL, Bräuner-Osborne H, Gregory KJ. Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias. Mol Pharmacol 2021; 99:328-341. [PMID: 33602724 DOI: 10.1124/molpharm.120.000185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Positive allosteric modulation of metabotropic glutamate subtype 5 (mGlu5) receptor has emerged as a potential new therapeutic strategy for the treatment of schizophrenia and cognitive impairments. However, positive allosteric modulator (PAM) agonist activity has been associated with adverse side effects, and neurotoxicity has also been observed for pure PAMs. The structural and pharmacological basis of therapeutic versus adverse mGlu5 PAM in vivo effects remains unknown. Thus, gaining insights into the signaling fingerprints, as well as the binding kinetics of structurally diverse mGlu5 PAMs, may help in the rational design of compounds with desired properties. We assessed the binding and signaling profiles of N-methyl-5-(phenylethynyl)pyrimidin-2-amine (MPPA), 3-cyano-N-(2,5-diphenylpyrazol-3-yl)benzamide (CDPPB), and 1-[4-(4-chloro-2-fluoro-phenyl)piperazin-1-yl]-2-(4-pyridylmethoxy)ethenone [compound 2c, a close analog of 1-(4-(2-chloro-4-fluorophenyl)piperazin-1-yl)-2-(pyridin-4-ylmethoxy)ethanone] in human embryonic kidney 293A cells stably expressing mGlu5 using Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and receptor internalization assays. Of the three allosteric ligands, only CDPPB had intrinsic agonist efficacy, and it also had the longest receptor residence time and highest affinity. MPPA was a biased PAM, showing higher positive cooperativity with orthosteric agonists in ERK1/2 phosphorylation and Ca2+ mobilization over IP1 accumulation and receptor internalization. In primary cortical neurons, all three PAMs showed stronger positive cooperativity with (S)-3,5-dihydroxyphenylglycine (DHPG) in Ca2+ mobilization over IP1 accumulation. Our characterization of three structurally diverse mGlu5 PAMs provides further molecular pharmacological insights and presents the first assessment of PAM-mediated mGlu5 internalization. SIGNIFICANCE STATEMENT: Enhancing metabotropic glutamate receptor subtype 5 (mGlu5) activity is a promising strategy to treat cognitive and positive symptoms in schizophrenia. It is increasingly evident that positive allosteric modulators (PAMs) of mGlu5 are not all equal in preclinical models; there remains a need to better understand the molecular pharmacological properties of mGlu5 PAMs. This study reports detailed characterization of the binding and functional pharmacological properties of mGlu5 PAMs and is the first study of the effects of mGlu5 PAMs on receptor internalization.
Collapse
Affiliation(s)
- Angela Arsova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Thor C Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Shane D Hellyer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Line Vedel
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Simon R Foster
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Jakob L Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| | - Karen J Gregory
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia (S.D.H., K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Novo Nordisk Park 1, Måløv, Denmark (J.L.H.)
| |
Collapse
|
70
|
Ke R, Lok SIS, Singh K, Chow BKC, Janovjak H, Lee LTO. Formation of Kiss1R/GPER Heterocomplexes Negatively Regulates Kiss1R-mediated Signalling through Limiting Receptor Cell Surface Expression. J Mol Biol 2021; 433:166843. [PMID: 33539880 DOI: 10.1016/j.jmb.2021.166843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.
Collapse
Affiliation(s)
- Ran Ke
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Samson Ian Sam Lok
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Billy Kwok Chong Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Harald Janovjak
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
| | - Leo Tsz On Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
71
|
Liauw BWH, Afsari HS, Vafabakhsh R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat Chem Biol 2021; 17:291-297. [PMID: 33398167 PMCID: PMC7904630 DOI: 10.1038/s41589-020-00702-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) relay information across cell membranes through conformational coupling between the ligand-binding domain and cytoplasmic signaling domain. In dimeric class C GPCRs, the mechanism of this process, which involves propagation of local ligand-induced conformational changes over 12 nm through three distinct structural domains, is unknown. Here, we used single-molecule FRET (smFRET) and live-cell imaging and found that metabotropic glutamate receptor 2 (mGluR2) interconverts between four conformational states, two of which were previously unknown, and activation proceeds through the conformational selection mechanism. Furthermore, the conformation of the ligand-binding domains and downstream domains are weakly coupled. We show that the intermediate states act as conformational checkpoints for activation and control allosteric modulation of signaling. Our results demonstrate a mechanism for activation of mGluRs where ligand binding controls the proximity of signaling domains, analogous to some receptor kinases. This design principle may be generalizable to other biological allosteric sensors.
Collapse
Affiliation(s)
| | | | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
72
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
73
|
Positive Allosteric Modulation of CB1 and CB2 Cannabinoid Receptors Enhances the Neuroprotective Activity of a Dual CB1R/CB2R Orthosteric Agonist. Life (Basel) 2020; 10:life10120333. [PMID: 33302569 PMCID: PMC7763181 DOI: 10.3390/life10120333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies highlighted that compounds targeting cannabinoid receptors could be useful for developing novel therapies against neurodegenerative disorders. However, the chronic use of orthosteric agonists alone has several disadvantages, limiting their usefulness as clinically relevant drugs. Positive allosteric modulators might represent a promising approach to achieve the potential therapeutic benefits of orthosteric agonists of cannabinoid receptors through increasing their activity and limiting their adverse effects. The aim of the present study was to show the effects of positive allosteric ligands of cannabinoid receptors on the activity of a potent dual orthosteric agonist for neuroinflammation and excitotoxic damage by excessive glutamate release. The results indicate that the combination of an orthosteric agonist with positive allosteric modulators could represent a promising therapeutic approach to the treatment of neurodegenerative disorders.
Collapse
|
74
|
Morales P, Navarro G, Gómez‐Autet M, Redondo L, Fernández‐Ruiz J, Pérez‐Benito L, Cordomí A, Pardo L, Franco R, Jagerovic N. Discovery of Homobivalent Bitopic Ligands of the Cannabinoid CB 2 Receptor*. Chemistry 2020; 26:15839-15842. [PMID: 32794211 PMCID: PMC7756656 DOI: 10.1002/chem.202003389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Single chemical entities with potential to simultaneously interact with two binding sites are emerging strategies in medicinal chemistry. We have designed, synthesized and functionally characterized the first bitopic ligands for the CB2 receptor. These compounds selectively target CB2 versus CB1 receptors. Their binding mode was studied by molecular dynamic simulations and site-directed mutagenesis.
Collapse
Affiliation(s)
- Paula Morales
- Medicinal Chemistry InstituteSpanish Research CouncilMadridSpain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, CIBERNEDFaculty of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
| | - Marc Gómez‐Autet
- Laboratory of Computational Medicine, Biostatistics UnitFaculty of MedicineUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Laura Redondo
- Medicinal Chemistry InstituteSpanish Research CouncilMadridSpain
| | - Javier Fernández‐Ruiz
- Department of Biochemistry and Molecular Biology, CIBERNED, IRYCISFaculty of MedicineUniversidad Complutense de MadridMadridSpain
| | - Laura Pérez‐Benito
- Laboratory of Computational Medicine, Biostatistics UnitFaculty of MedicineUniversitat Autónoma de BarcelonaBarcelonaSpain
- Present address: Computational ChemistryJanssen Research & Development, Janssen Pharmaceutica N.V.Belgium
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics UnitFaculty of MedicineUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics UnitFaculty of MedicineUniversitat Autónoma de BarcelonaBarcelonaSpain
| | - Rafael Franco
- Department of Biochemistry and Physiology, CIBERNEDFaculty of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
- Department of Biochemistry and Molecular Biology, CIBERNEDSchool of ChemistryUniversitat de BarcelonaBarcelonaSpain
| | - Nadine Jagerovic
- Medicinal Chemistry InstituteSpanish Research CouncilMadridSpain
| |
Collapse
|
75
|
Touma AM, Malik RU, Gupte T, Sivaramakrishnan S. Allosteric modulation of adenosine A1 and cannabinoid 1 receptor signaling by G-peptides. Pharmacol Res Perspect 2020; 8:e00673. [PMID: 33124765 PMCID: PMC7596666 DOI: 10.1002/prp2.673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
While allosteric modulation of GPCR signaling has gained prominence to address the need for receptor specificity, efforts have mainly focused on allosteric sites adjacent to the orthosteric ligand-binding pocket and lipophilic molecules that target transmembrane helices. In this study, we examined the allosteric influence of native peptides derived from the C-terminus of the Gα subunit (G-peptides) on signaling from two Gi-coupled receptors, adenosine A1 receptor (A1 R) and cannabinoid receptor 1 (CB1 ). We expressed A1 R and CB1 fusions with G-peptides derived from Gαs, Gαi, and Gαq in HEK 293 cells using systematic protein affinity strength modulation (SPASM) and monitored the impact on downstream signaling in the cell compared to a construct lacking G-peptides. We used agonists N6 -Cyclopentyladenosine (CPA) and 5'-N-Ethylcarboxamidoadenosine (NECA) for A1 R and 2-Arachidonoylglycerol (2-AG) and WIN 55,212-2 mesylate (WN) for CB1 . G-peptides derived from Gαi and Gαq enhance agonist-dependent cAMP inhibition, demonstrating their effect as positive allosteric modulators of Gi-coupled signaling. In contrast, both G-peptides suppress agonist-dependent IP1 levels suggesting that they differentially function as negative allosteric modulators of Gq-coupled signaling. Taken together with our previous studies on Gs-coupled receptors, this study provides an extended model for the allosteric effects of G-peptides on GPCR signaling, and highlights their potential as probe molecules to enhance receptor specificity.
Collapse
Affiliation(s)
- Anja M. Touma
- Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaMinneapolisMNUSA
| | - Rabia U. Malik
- Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaMinneapolisMNUSA
| | - Tejas Gupte
- Department of Genetics, Cell Biology, and DevelopmentUniversity of MinnesotaMinneapolisMNUSA
| | | |
Collapse
|
76
|
Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci 2020; 21:ijms21228811. [PMID: 33233865 PMCID: PMC7699963 DOI: 10.3390/ijms21228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a mental disorder that affects approximately 1-2% of the population and develops in early adulthood. The disease is characterized by positive, negative, and cognitive symptoms. A large percentage of patients with schizophrenia have a treatment-resistant disease, and the risk of developing adverse effects is high. Many researchers have attempted to introduce new antipsychotic drugs to the clinic, but most of these treatments failed, and the diversity of schizophrenic symptoms is one of the causes of disappointing results. The present review summarizes the results of our latest papers, showing that the simultaneous activation of two receptors with sub-effective doses of their ligands induces similar effects as the highest dose of each compound alone. The treatments were focused on inhibiting the increased glutamate release responsible for schizophrenia arousal, without interacting with dopamine (D2) receptors. Ligands activating metabotropic receptors for glutamate, GABAB or muscarinic receptors were used, and the compounds were administered in several different combinations. Some combinations reversed all schizophrenia-related deficits in animal models, but others were active only in select models of schizophrenia symptoms (i.e., cognitive or negative symptoms).
Collapse
|
77
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Carli M, Scarselli M, Maggio R, Rossi M. Allosteric Modulators of G Protein-Coupled Dopamine and Serotonin Receptors: A New Class of Atypical Antipsychotics. Pharmaceuticals (Basel) 2020; 13:ph13110388. [PMID: 33202534 PMCID: PMC7696972 DOI: 10.3390/ph13110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia was first described by Emil Krapelin in the 19th century as one of the major mental illnesses causing disability worldwide. Since the introduction of chlorpromazine in 1952, strategies aimed at modifying the activity of dopamine receptors have played a major role for the treatment of schizophrenia. The introduction of atypical antipsychotics with clozapine broadened the range of potential targets for the treatment of this psychiatric disease, as they also modify the activity of the serotoninergic receptors. Interestingly, all marketed drugs for schizophrenia bind to the orthosteric binding pocket of the receptor as competitive antagonists or partial agonists. In recent years, a strong effort to develop allosteric modulators as potential therapeutic agents for schizophrenia was made, mainly for the several advantages in their use. In particular, the allosteric binding sites are topographically distinct from the orthosteric pockets, and thus drugs targeting these sites have a higher degree of receptor subunit specificity. Moreover, “pure” allosteric modulators maintain the temporal and spatial fidelity of native orthosteric ligand. Furthermore, allosteric modulators have a “ceiling effect”, and their modulatory effect is saturated above certain concentrations. In this review, we summarize the progresses made in the identification of allosteric drugs for dopamine and serotonin receptors, which could lead to a new generation of atypical antipsychotics with a better profile, especially in terms of reduced side effects.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
| | - Francesco Marampon
- Department of Radiotherapy, “Sapienza” University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Marco Carli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Marco Scarselli
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (M.C.); (M.S.)
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of l’Aquila, 67100 L’Aquila, Italy; (I.F.); (F.P.); (G.A.)
- Correspondence:
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
78
|
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: a new dimension in drug discovery. Nat Rev Drug Discov 2020; 19:884-901. [PMID: 33177699 DOI: 10.1038/s41573-020-0086-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.
Collapse
Affiliation(s)
- Mette Ishøy Rosenbaum
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
79
|
Sebastianutto I, Goyet E, Andreoli L, Font-Ingles J, Moreno-Delgado D, Bouquier N, Jahannault-Talignani C, Moutin E, Di Menna L, Maslava N, Pin JP, Fagni L, Nicoletti F, Ango F, Cenci MA, Perroy J. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. J Clin Invest 2020; 130:1168-1184. [PMID: 32039920 DOI: 10.1172/jci126361] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson's disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5-dependent PLC signaling was causally linked with excessive activation of extracellular signal-regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Sebastianutto
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elise Goyet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laura Andreoli
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joan Font-Ingles
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - David Moreno-Delgado
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Department of Neuroscience Research, UCB Pharma, Braine l'Alleud, Belgium
| | - Nathalie Bouquier
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Luisa Di Menna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Natallia Maslava
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurent Fagni
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fabrice Ango
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
80
|
Comparative Study of the Steroidogenic Effects of Human Chorionic Gonadotropin and Thieno[2,3-D]pyrimidine-Based Allosteric Agonist of Luteinizing Hormone Receptor in Young Adult, Aging and Diabetic Male Rats. Int J Mol Sci 2020; 21:ijms21207493. [PMID: 33050653 PMCID: PMC7590010 DOI: 10.3390/ijms21207493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Low-molecular-weight agonists of luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptor (LHCGR), which interact with LHCGR transmembrane allosteric site and, in comparison with gonadotropins, more selectively activate intracellular effectors, are currently being developed. Meanwhile, their effects on testicular steroidogenesis have not been studied. The purpose of this work is to perform a comparative study of the effects of 5-amino-N-tert-butyl-4-(3-(1-methylpyrazole-4-carboxamido)phenyl)-2-(methylthio)thieno[2,3-d] pyrimidine-6-carboxamide (TP4/2), a LHCGR allosteric agonist developed by us, and hCG on adenylyl cyclase activity in rat testicular membranes, testosterone levels, testicular steroidogenesis and spermatogenesis in young (four-month-old), aging (18-month-old) and diabetic male Wistar rats. Type 1 diabetes was caused by a single streptozotocin (50 mg/kg) injection. TP4/2 (20 mg/kg/day) and hCG (20 IU/rat/day) were administered for 5 days. TP4/2 was less effective in adenylyl cyclase stimulation and ability to activate steroidogenesis when administered once into rats. On the 3rd–5th day, TP4/2 and hCG steroidogenic effects in young adult, aging and diabetic rats were comparable. Unlike hCG, TP4/2 did not inhibit LHCGR gene expression and did not hyperstimulate the testicular steroidogenesis system, moderately increasing steroidogenic proteins gene expression and testosterone production. In aging and diabetic testes, TP4/2 improved spermatogenesis. Thus, during five-day administration, TP4/2 steadily stimulates testicular steroidogenesis, and can be used to prevent androgen deficiency in aging and diabetes.
Collapse
|
81
|
Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 2020; 177:108231. [DOI: 10.1016/j.neuropharm.2020.108231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2020] [Accepted: 07/04/2020] [Indexed: 11/30/2022]
|
82
|
Conradi Smith GD. Allostery in oligomeric receptor models. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2020; 37:313-333. [PMID: 31822901 DOI: 10.1093/imammb/dqz016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
We show how equilibrium binding curves of receptor homodimers can be expressed as rational polynomial functions of the equilibrium binding curves of the constituent monomers, without approximation and without assuming independence of receptor monomers. Using a distinguished spanning tree construction for reduced graph powers, the method properly accounts for thermodynamic constraints and allosteric interactions between receptor monomers (i.e. conformational coupling). The method is completely general; it begins with an arbitrary undirected graph representing the topology of a monomer state-transition diagram and ends with an algebraic expression for the equilibrium binding curve of a receptor oligomer composed of two or more identical and indistinguishable monomers. Several specific examples are analysed, including guanine nucleotide-binding protein-coupled receptor dimers and tetramers composed of multiple 'ternary complex' monomers.
Collapse
|
83
|
The operational model of allosteric modulation of pharmacological agonism. Sci Rep 2020; 10:14421. [PMID: 32879329 PMCID: PMC7468285 DOI: 10.1038/s41598-020-71228-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Proper determination of agonist efficacy is indispensable in the evaluation of agonist selectivity and bias to activation of specific signalling pathways. The operational model (OM) of pharmacological agonism is a useful means for achieving this goal. Allosteric ligands bind to receptors at sites that are distinct from those of endogenous agonists that interact with the orthosteric domain on the receptor. An allosteric modulator and an orthosteric agonist bind simultaneously to the receptor to form a ternary complex, where the allosteric modulator affects the binding affinity and operational efficacy of the agonist. Allosteric modulators are an intensively studied group of receptor ligands because of their selectivity and preservation of physiological space-time pattern of the signals they modulate. We analysed the operational model of allosterically-modulated agonism (OMAM) including modulation by allosteric agonists. Similar to OM, several parameters of OMAM are inter-dependent. We derived equations describing mutual relationships among parameters of the functional response and OMAM. We present a workflow for the robust fitting of OMAM to experimental data using derived equations.
Collapse
|
84
|
Cardiac dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure. Nat Commun 2020; 11:4364. [PMID: 32868781 PMCID: PMC7459304 DOI: 10.1038/s41467-020-18128-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/30/2020] [Indexed: 01/25/2023] Open
Abstract
Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.
Collapse
|
85
|
Mazzolari A, Gervasoni S, Pedretti A, Fumagalli L, Matucci R, Vistoli G. Repositioning Dequalinium as Potent Muscarinic Allosteric Ligand by Combining Virtual Screening Campaigns and Experimental Binding Assays. Int J Mol Sci 2020; 21:ijms21175961. [PMID: 32825082 PMCID: PMC7503225 DOI: 10.3390/ijms21175961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.
Collapse
Affiliation(s)
- Angelica Mazzolari
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy; (A.M.); (S.G.); (A.P.); (L.F.)
- Correspondence: ; Tel.: +39-02-5019349
| |
Collapse
|
86
|
Martel JC, Gatti McArthur S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front Pharmacol 2020; 11:1003. [PMID: 32765257 PMCID: PMC7379027 DOI: 10.3389/fphar.2020.01003] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Dopamine receptors are widely distributed within the brain where they play critical modulator roles on motor functions, motivation and drive, as well as cognition. The identification of five genes coding for different dopamine receptor subtypes, pharmacologically grouped as D1- (D1 and D5) or D2-like (D2S, D2L, D3, and D4) has allowed the demonstration of differential receptor function in specific neurocircuits. Recent observation on dopamine receptor signaling point at dopamine-glutamate-NMDA neurobiology as the most relevant in schizophrenia and for the development of new therapies. Progress in the chemistry of D1- and D2-like receptor ligands (agonists, antagonists, and partial agonists) has provided more selective compounds possibly able to target the dopamine receptors homo and heterodimers and address different schizophrenia symptoms. Moreover, an extensive evaluation of the functional effect of these agents on dopamine receptor coupling and intracellular signaling highlights important differences that could also result in highly differentiated clinical pharmacology. The review summarizes the recent advances in the field, addressing the relevance of emerging new targets in schizophrenia in particular in relation to the dopamine - glutamate NMDA systems interactions.
Collapse
|
87
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
88
|
Evenseth LSM, Gabrielsen M, Sylte I. The GABA B Receptor-Structure, Ligand Binding and Drug Development. Molecules 2020; 25:molecules25133093. [PMID: 32646032 PMCID: PMC7411975 DOI: 10.3390/molecules25133093] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
The γ-aminobutyric acid (GABA) type B receptor (GABAB-R) belongs to class C of the G-protein coupled receptors (GPCRs). Together with the GABAA receptor, the receptor mediates the neurotransmission of GABA, the main inhibitory neurotransmitter in the central nervous system (CNS). In recent decades, the receptor has been extensively studied with the intention being to understand pathophysiological roles, structural mechanisms and develop drugs. The dysfunction of the receptor is linked to a broad variety of disorders, including anxiety, depression, alcohol addiction, memory and cancer. Despite extensive efforts, few compounds are known to target the receptor, and only the agonist baclofen is approved for clinical use. The receptor is a mandatory heterodimer of the GABAB1 and GABAB2 subunits, and each subunit is composed of an extracellular Venus Flytrap domain (VFT) and a transmembrane domain of seven α-helices (7TM domain). In this review, we briefly present the existing knowledge about the receptor structure, activation and compounds targeting the receptor, emphasizing the role of the receptor in previous and future drug design and discovery efforts.
Collapse
Affiliation(s)
- Linn Samira Mari Evenseth
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Mari Gabrielsen
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| |
Collapse
|
89
|
Hellyer SD, Aggarwal S, Chen ANY, Leach K, Lapinsky DJ, Gregory KJ. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chem Neurosci 2020; 11:1597-1609. [PMID: 32396330 DOI: 10.1021/acschemneuro.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a transmembrane-spanning class C G protein-coupled receptor that is an attractive therapeutic target for multiple psychiatric and neurological disorders. A key challenge has been deciphering the contribution of mGlu2 relative to other closely related mGlu receptors in mediating different physiological responses, which could be achieved through the utilization of subtype selective pharmacological tools. In this respect, allosteric modulators that recognize ligand-binding sites distinct from the endogenous neurotransmitter glutamate offer the promise of higher receptor-subtype selectivity. We hypothesized that mGlu2-selective positive allosteric modulators could be derivatized to generate bifunctional pharmacological tools. Here we developed clickable photoaffinity probes for mGlu2 based on two different positive allosteric modulator scaffolds that retained similar pharmacological activity to parent compounds. We demonstrate successful probe-dependent incorporation of a commercially available clickable fluorophore using bioorthogonal conjugation. Importantly, we also show the limitations of using these probes to assess in situ fluorescence of mGlu2 in intact cells where significant nonspecific membrane binding is evident.
Collapse
Affiliation(s)
- Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Shaili Aggarwal
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - David J. Lapinsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
90
|
Abulwerdi G, Stoica BA, Loane DJ, Faden AI. Putative mGluR4 positive allosteric modulators activate G i-independent anti-inflammatory mechanisms in microglia. Neurochem Int 2020; 138:104770. [PMID: 32454165 DOI: 10.1016/j.neuint.2020.104770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/23/2023]
Abstract
Chronic dysregulated microglial activation may lead to persistent inflammation and progressive neurodegeneration. A previous study reported that ADX88178, a putative metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator (PAM), exerts anti-inflammatory effects in microglia by activating mGluR4. We employed in vitro models of immortalized microglia cell lines and primary microglia to elucidate the molecular mechanisms responsible for the regulation of inflammatory pathways by ADX88178 and other mGluR4 PAMs. ADX88178 downregulated lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators, including TNF-α, IL-1β, CCL-2, IL-6, NOS2, and miR-155, as well as NO levels, in BV2 cells and primary microglia. Other mGluR4 modulators had divergent activities; VU0361737 (PAM) showed anti-inflammatory effects, whereas the orthosteric group III agonist, L-AP4, and VU0155041 (PAM) displayed no anti-inflammatory actions. In contrast to the earlier report, ADX88178 anti-inflammatory effects appeared to be mGluR4-independent as mGluR4 expression in our in vitro models was very low and its actions were not altered by pharmacological or molecular inhibition of mGluR4. Moreover, we showed that ADX88178 activated Gi-independent, alternative signaling pathways as indicated by the absence of pertussis toxin-mediated inhibition and by increased phosphorylation of cAMP-response element binding protein (CREB), an inhibitor of the NFkB pro-inflammatory pathway. ADX88178 also attenuated NFkB activation by reducing the degradation of IkB and the associated translocation of NFkB-p65 to the nucleus. ADX88178 did not exert its anti-inflammatory effects through adenosine receptors, reported as mGluR4 heteromerization partners. Thus, our results indicate that in microglia, putative mGluR4 PAMs activate mGluR4/Gi-independent mechanisms to attenuate pro-inflammatory pathways.
Collapse
Affiliation(s)
- Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
91
|
Jiang C, Amaradhi R, Ganesh T, Dingledine R. An Agonist Dependent Allosteric Antagonist of Prostaglandin EP2 Receptors. ACS Chem Neurosci 2020; 11:1436-1446. [PMID: 32324375 DOI: 10.1021/acschemneuro.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All reported prostaglandin EP2 receptor antagonists have a purely orthosteric, competitive mode of action. Herein, we report the characterization of compound 1 (pubchem CID 664888) as the first EP2 antagonist that features a reversible, agonist dependent allosteric mode of action. Compound 1 displayed an unsurmountable inhibition of cAMP accumulation stimulated by different EP2 agonists in C6 glioma cells overexpressing human EP2 (C6G-hEP2). The degree of reduction of agonist potency and efficacy depended on the agonist employed. Negative allosteric modulation was not observed in C6G cells overexpressing human EP4, IP, or DP1 receptors. Moreover, in the murine microglial cell line that stably expresses human EP2 receptors (BV2-hEP2), compound 1 reduced the EP2 agonist-induced elevation of interleukin 6 (IL-6), IL-1β, and hEP2 mRNA levels and increased that of tumor necrosis factor (TNF)-α. Compound 1 was docked into a homology model of hEP2. The predicted binding site on the cytoplasmic receptor surface was similar to that of allosteric inhibitors of the β2-adrenergic, CC chemokine receptor 9 (CCR9), and CC chemokine receptor 2 (CCR2) receptors, which supports the notion of a conserved G-protein-coupled receptor (GPCR) binding pocket for allosteric inhibitors. As the first agonist dependent negative allosteric modulator of EP2 receptor, the structure of this compound may provide a basis for developing improved allosteric modulators of EP2 receptors.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan, China
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
92
|
Nuara SG, Hamadjida A, Kwan C, Bédard D, Frouni I, Gourdon JC, Huot P. Combined mGlu2 orthosteric stimulation and positive allosteric modulation alleviates l-DOPA-induced psychosis-like behaviours and dyskinesia in the parkinsonian marmoset. J Neural Transm (Vienna) 2020; 127:1023-1029. [DOI: 10.1007/s00702-020-02185-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
|
93
|
Finlay DB, Duffull SB, Glass M. 100 years of modelling ligand-receptor binding and response: A focus on GPCRs. Br J Pharmacol 2020; 177:1472-1484. [PMID: 31975518 PMCID: PMC7060363 DOI: 10.1111/bph.14988] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Experimental pharmacologists rely on the application of models to describe biological observations in order to learn about a drug's effective concentration, the strength with which it binds its target and drives a response (at either molecular or system level), and the nature of more complex drug actions (allosterism/functional selectivity). Models in current use build upon decades of basic principles, going back to the beginning of the last century. Yet often, researchers are only partially familiar with these underlying principles, creating the potential for confusion due to failure to recognise the underpinning assumptions of the models that are used. Here, we describe the history of receptor theory as it underpins receptor stimulus-response models in use today, emphasising particularly attributes and models relevant to GPCRs-and point to some current aims of model development.
Collapse
Affiliation(s)
- David B. Finlay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Stephen B. Duffull
- Otago Pharmacometrics Group, School of PharmacyUniversity of OtagoDunedinNew Zealand
| | - Michelle Glass
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
94
|
Lans I, Díaz Ó, Dalton JAR, Giraldo J. Exploring the Activation Mechanism of the mGlu5 Transmembrane Domain. Front Mol Biosci 2020; 7:38. [PMID: 32211419 PMCID: PMC7069277 DOI: 10.3389/fmolb.2020.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/18/2020] [Indexed: 01/14/2023] Open
Abstract
As a class C GPCR and regulator of synaptic activity, mGlu5 is an attractive drug target, potentially offering treatment for several neurologic and psychiatric disorders. As little is known about the activation mechanism of mGlu5 at a structural level, potential of mean force calculations linked to molecular dynamics simulations were performed on the mGlu5 transmembrane domain crystal structure to explore various internal mechanisms responsible for its activation. Our results suggest that the hydrophilic interactions between intracellular loop 1 and the intracellular side of TM6 have to be disrupted to reach a theoretically active-like conformation. In addition, interactions between residues that are key for mGlu5 activation (Tyr6593.44 and Ile7515.51) and mGlu5 inactivation (Tyr6593.44 and Ser8097.39) have been identified. Inasmuch as mGlu5 receptor signaling is poorly understood, potentially showing a complex network of micro-switches and subtle structure-activity relationships, the present study represents a step forward in the understanding of mGlu5 transmembrane domain activation.
Collapse
Affiliation(s)
- Isaias Lans
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Óscar Díaz
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - James A R Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
95
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
96
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
97
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
98
|
Lutzu S, Castillo PE. Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond. Neuroscience 2020; 456:27-42. [PMID: 32105741 DOI: 10.1016/j.neuroscience.2020.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
Abstract
NMDA receptors (NMDARs) play a critical role in excitatory synaptic transmission, plasticity and in several forms of learning and memory. In addition, NMDAR dysfunction is believed to underlie a number of neuropsychiatric conditions. Growing evidence has demonstrated that NMDARs are tightly regulated by several G-protein-coupled receptors (GPCRs). Ligands that bind to GPCRs, such as neurotransmitters and neuromodulators, activate intracellular pathways that modulate NMDAR expression, subcellular localization and/or functional properties in a short- or a long-term manner across many synapses throughout the central nervous system. In this review article we summarize current knowledge on the molecular and cellular mechanisms underlying NMDAR modulation by GPCRs, and we discuss the implications of this modulation spanning from synaptic transmission and plasticity to circuit function and brain disease.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
99
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
100
|
Wu CS, Jew CP, Sun H, Ballester Rosado CJ, Lu HC. mGlu5 in GABAergic neurons modulates spontaneous and psychostimulant-induced locomotor activity. Psychopharmacology (Berl) 2020; 237:345-361. [PMID: 31646346 PMCID: PMC7024012 DOI: 10.1007/s00213-019-05367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/22/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE A role of group I metabotropic glutamate receptor 5 (mGlu5) in regulating spontaneous locomotion and psychostimulant-induced hyperactivity has been proposed. OBJECTIVES This study aims to determine if mGlu5 in GABAergic neurons regulates spontaneous or psychostimulant-induced locomotion. METHODS We generated mice specifically lacking mGlu5 in forebrain GABAergic neuron by crossing DLX-Cre mice with mGlu5flox/flox mice to generate DLX-mGlu5 KO mice. The locomotion of adult mice was examined in the open-field assay (OFA) and home cage setting. The effects of the mGlu5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP), cocaine, and methylphenidate on acute motor behaviors in DLX-mGlu5 KO and littermate control mice were assessed in OFA. Striatal synaptic plasticity of these mice was examined with field potential electrophysiological recordings. RESULTS Deleting mGlu5 from forebrain GABAergic neurons results in failure to induce long-term depression (LTD) in the dorsal striatum and absence of habituated locomotion in both novel and familiar settings. In a familiar environment (home cage), DLX-mGlu5 KO mice were hyperactive. In the OFA, DLX-mGlu5 KO mice exhibited initial hypo-activity, and then gradually increased their locomotion with time, resulting in no habituation response. DLX-mGlu5 KO mice exhibited almost no locomotor response to MPEP (40 mg/kg), while the same dose elicited hyperlocomotion in control mice. The DLX-mGlu5 KO mice also showed reduced hyperactivity response to cocaine, while they retained normal hyperactivity response to methylphenidate, albeit with delayed onset. CONCLUSION mGlu5 in forebrain GABAergic neurons is critical to trigger habituation upon the initiation of locomotion as well as to mediate MPEP-induced hyperlocomotion and modulate psychostimulant-induced hyperactivity.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Department of Nutrition and Food Science, Texas A&M University, 123 Cater-Mattil, 2253 TAMU, College Station, TX, 77843, USA.
| | - Christopher P Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
| | - Carlos J Ballester Rosado
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, 77030, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, 77030, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Linda and Jack Gill Center, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|