51
|
Watt G, Chesworth R, Przybyla M, Ittner A, Garner B, Ittner LM, Karl T. Chronic cannabidiol (CBD) treatment did not exhibit beneficial effects in 4-month-old male TAU58/2 transgenic mice. Pharmacol Biochem Behav 2020; 196:172970. [PMID: 32562718 DOI: 10.1016/j.pbb.2020.172970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, motor impairments, and accumulation of hallmark proteins, amyloid-beta (Aβ) and tau. Traditionally, transgenic mouse models for AD have focused on Aβ pathology, however, recently a number of tauopathy transgenic models have been developed, including the TAU58/2 transgenic model. Cannabidiol (CBD), a non-toxic constituent of the Cannabis sativa plant, has been shown to prevent and reverse cognitive deficits in Aβ transgenic mouse models of AD. Importantly, the therapeutic properties of CBD on the behavioural phenotype of tauopathy mouse models have not been investigated. We assessed the impact of chronic CBD treatment (i.e. 50 mg/kg CBD i.p. administration starting 3 weeks prior to behavioural assessments) on disease-relevant behaviours of 4-month-old TAU58/2 transgenic males in paradigms for anxiety, motor functions, and cognition. TAU58/2 transgenic males demonstrated reduced body weight, anxiety and impaired motor functions. Furthermore, they demonstrated increased freezing in fear conditioning compared to wild type-like animals. Interestingly, both sociability and social recognition memory were intact in AD transgenic mice. Chronic CBD treatment did not affect behavioural changes in transgenic males. In summary, 4-month-old TAU58/2 transgenic males exhibited no deficits in social recognition memory, suggesting that motor deficits and changes in anxiety at this age do not impact on social domains. The moderate increase in fear-associated memory needs further investigation but could be related to differences in fear extinction. Future investigations will need to clarify CBD's therapeutic potential for reversing motor deficits in TAU58/2 transgenic mice by considering alternative CBD treatment designs including changed CBD dosing.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Arne Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Brett Garner
- School of Chemistry and Molecular Bioscience, Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Lars M Ittner
- Dementia Research Centre, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia; Neuroscience Research Australia (NeuRA), Randwick, Australia.
| |
Collapse
|
52
|
Cannabinoid-mediated Modulation of Oxidative Stress and Early Inflammatory Response after Hypoxia-Ischemia. Int J Mol Sci 2020; 21:ijms21041283. [PMID: 32074976 PMCID: PMC7072925 DOI: 10.3390/ijms21041283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition. The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS). This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia–ischemia (HI) in fetal lambs. Hypoxic–ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 μg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6 induced by HI, a modulatory effect not observed for oxidative stress. Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.
Collapse
|
53
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [PMID: 31831863 DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 568] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
54
|
Friedman LK, Wongvravit JP. Anticonvulsant and Neuroprotective Effects of Cannabidiol During the Juvenile Period. J Neuropathol Exp Neurol 2019; 77:904-919. [PMID: 30169677 DOI: 10.1093/jnen/nly069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anticonvulsant effects of cannabidiol (CBD), a nonpsychoactive cannabinoid, have not been investigated in the juvenile brain. We hypothesized that CBD would attenuate epileptiform activity at an age when the brain first becomes vulnerable to neurotoxicity and social/cognitive impairments. To induce seizures, kainic acid (KA) was injected either into the hippocampus (KAih) or systemically (KAip) on postnatal (P) day 20. CBD was coadministered (KA + CBDih, KA + CBDip) or injected 30 minutes postseizure onset (KA/CBDih, KA/CBDip). Hyperactivity, clonic convulsions, and electroencephalogram rhythmic oscillations were attenuated or absent after KA + CBDih and reduced after KA + CBDip. NeuN immunohistochemistry revealed neuroprotection. Augmented reactive glia number and expression were reversed in CA1 but persisted deep within the dentate hilus. Parvalbumin-positive (PV+) interneurons were reduced in both models, whereas immunolabeling was dramatically increased within ipsilateral and contralateral dendritic/neuropilar fields following KA + CBDih. Cannabinoid receptor 1 (CB1) expression was minimally affected after KAih contrasting elevations observed after KAip. Intracranial coadministration data suggest that CBD has higher efficacy in epilepsy with hippocampal focus rather than when extrahippocampal amygdala/cortical structures are triggered by systemic treatments. Inhibition of surviving PV+ and CB1+ interneurons may be facilitated by CBD implying a protective role in regulating hippocampal seizures and neurotoxicity at juvenile ages.
Collapse
Affiliation(s)
- Linda K Friedman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Joann P Wongvravit
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
55
|
Osborne AL, Solowij N, Babic I, Lum JS, Huang XF, Newell KA, Weston-Green K. Cannabidiol improves behavioural and neurochemical deficits in adult female offspring of the maternal immune activation (poly I:C) model of neurodevelopmental disorders. Brain Behav Immun 2019; 81:574-587. [PMID: 31326506 DOI: 10.1016/j.bbi.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Cognitive impairment is a major source of disability in schizophrenia and current antipsychotic drugs (APDs) have minimal efficacy for this symptom domain. Cannabidiol (CBD), the major non-intoxicating component of Cannabis sativa L., exhibits antipsychotic and neuroprotective properties. We recently reported the effects of CBD on cognition in male offspring of a maternal immune activation (polyinosinic-polycytidilic acid (poly I:C)) model relevant to the aetiology of schizophrenia; however, the effects of CBD treatment in females are unknown. Sex differences are observed in the onset of schizophrenia symptoms and response to APD treatment. Furthermore, the endogenous cannabinoid system, a direct target of CBD, is sexually dimorphic in humans and rodents. Therefore, the present work aimed to assess the therapeutic impact of CBD treatment on behaviour and neurochemical signalling markers in female poly I:C offspring. Time-mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg; i.v.) or saline (control) on gestational day 15. From postnatal day 56, female offspring received CBD (10 mg/kg, i.p.) or vehicle treatment for approximately 3 weeks. Following 2 weeks of CBD treatment, offspring underwent behavioural testing, including the novel object recognition, rewarded alternation T-maze and social interaction tests to assess recognition memory, working memory and sociability, respectively. After 3 weeks of CBD treatment, the prefrontal cortex (PFC) and hippocampus (HPC) were collected to assess effects on endocannabinoid, glutamatergic and gamma-aminobutyric acid (GABA) signalling markers. CBD attenuated poly I:C-induced deficits in recognition memory, social interaction and glutamatergic N-methyl-d-aspartate receptor (NMDAR) binding in the PFC of poly I:C offspring. Working memory performance was similar between treatment groups. CBD also increased glutamate decarboxylase 67, the rate-limiting enzyme that converts glutamate to GABA, and parvalbumin protein levels in the HPC. In contrast to the CBD treatment effects observed in poly I:C offspring, CBD administration to control rats reduced social interaction, cannabinoid CB1 receptor and NMDAR binding density in the PFC, suggesting that CBD administration to healthy rats may have negative consequences on social behaviour and brain maturation in adulthood. Overall, the findings of this study support the therapeutic benefits of CBD on recognition memory and sociability in female poly I:C offspring, and provide insight into the neurochemical changes that may underlie the therapeutic benefits of CBD in the poly I:C model.
Collapse
Affiliation(s)
- Ashleigh L Osborne
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of Social Sciences, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Ilijana Babic
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra and Shoalhaven Local Health District, Wollongong, NSW 2500, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Kelly A Newell
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Translational Neuroscience, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
56
|
Ceprián M, Vargas C, García-Toscano L, Penna F, Jiménez-Sánchez L, Achicallende S, Elezgarai I, Grandes P, Hind W, Pazos MR, Martínez-Orgado J. Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats. Front Pharmacol 2019; 10:1131. [PMID: 31611802 PMCID: PMC6775595 DOI: 10.3389/fphar.2019.01131] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/30/2019] [Indexed: 01/09/2023] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy. Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals. We hereby aimed to study CBD’s effects on long-lasting HI-induced myelination deficits in newborn rats. Thus, P7 Wistar rats received s.c. vehicle (HV) or cannabidiol (HC) after HI brain damage (left carotid artery electrocoagulation plus 10% O2 for 112 min). Controls were non-HI pups. At P37, neurobehavioral tests were performed and immunohistochemistry [quantifying mature oligodendrocyte (mOL) populations and myelin basic protein (MBP) density] and electron microscopy (determining axon number, size, and myelin thickness) studies were conducted in cortex (CX) and white matter (WM). Expression of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) were analyzed by western blot at P14. HI reduced mOL or MBP in CX but not in WM. In both CX and WM, axon density and myelin thickness were reduced. MBP impairment correlated with functional deficits. CBD administration resulted in normal function associated with normal mOL and MBP, as well as normal axon density and myelin thickness in all areas. CBD’s effects were not associated with increased BDNF or GDNF expression. In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.
Collapse
Affiliation(s)
- María Ceprián
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Carlos Vargas
- Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Laura García-Toscano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Federica Penna
- Department of DBSV, Laboratory of Neuropsychopharmacology, University of Insubria, Varese, Italy
| | - Laura Jiménez-Sánchez
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain
| | - Svein Achicallende
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Izaskun Elezgarai
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | - Pedro Grandes
- School of Medicine and Nursery, Universidad del País Vasco, Bilbao, Spain
| | | | - M Ruth Pazos
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José Martínez-Orgado
- Department of Experimental Medicine, Health Research Institute Puerta de Hierro Majadahonda, Madrid, Spain.,Division of Neonatology, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| |
Collapse
|
57
|
Abrantes De Lacerda Almeida T, Santos MV, Da Silva Lopes L, Goel G, Leonardo De Freitas R, De Medeiros P, Crippa JA, Machado HR. Intraperitoneal cannabidiol attenuates neonatal germinal matrix hemorrhage-induced neuroinflamation and perilesional apoptosis. Neurol Res 2019; 41:980-990. [PMID: 31378168 DOI: 10.1080/01616412.2019.1651487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background. As the survival of preterm infants has increased significantly, germinal matrix hemorrhage (GMH) has become an important public health issue. Nevertheless, treatment strategies for the direct neuronal injury are still scarce. The present study aims to analyze the neuroprotective properties of cannabidiol in germinal matrix hemorrhage. Methods. 112 Wistar rat pups (P7) were submitted to an experimental collagenase induced model of GMH. Inflammatory response and neuronal death were analyzed both at the perilesional area as at the distant ipsilateral CA1 hippocampal area. Immunohistochemistry for GFAP and caspase 3 was used. The ipsilateral free water content was assessed for stimation of cerebral edema, and neurodevelopment and neurofunctional tests were conducted. Results. Reduction of reactive astrocytosis was observed both in the perilesional area 24 hours and 14 days after the hemorrhage lesion (p < 0.001) and in the Stratum oriens of the ipsilateral hippocampal CA1 14 days after the hemorrhage lesion (p < 0.05) in the treated groups. Similarly, there was a reduction in the number of Caspase 3-positive astrocytes in the perilesional area in the treated groups 24 hours after the hemorrhage lesion (p < 0.001). Finally, we found a significant increase in the weight of the rats treated with cannabidiol. Conclusion. The treatment of GMH with cannabidiol significantly reduced the number of apoptotic cells and reactive astrocytes in the perilesional area and the ipsilateral hippocampus. In addition, this response was sustained 14 days after the hemorrhage. These results corroborate our hypothesis that cannabidiol is a potential neuroprotective agent in the treatment of germinal matrix hemorrhage.
Collapse
Affiliation(s)
- Timóteo Abrantes De Lacerda Almeida
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil.,Division of stereotactic and functional neurosurgery, University of British Columbia , Vancouver , Canada
| | - Marcelo Volpon Santos
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Luiza Da Silva Lopes
- Department of surgery and anatomy, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Gunjan Goel
- Division of neurosurgery, University of California San Diego , San Diego , USA
| | - Renato Leonardo De Freitas
- Laboratory of neuroscience for pain and emotions,Department of surgery and anatomy, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto,Brazil
| | - Priscila De Medeiros
- Ribeirão Preto School of Pharmacology, University of São Paulo , Ribeirão Preto , Brazil
| | - José Alexandre Crippa
- Department of psychiatry, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Hélio Rubens Machado
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
58
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
59
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
60
|
Schleicher EM, Ott FW, Müller M, Silcher B, Sichler ME, Löw MJ, Wagner JM, Bouter Y. Prolonged Cannabidiol Treatment Lacks on Detrimental Effects on Memory, Motor Performance and Anxiety in C57BL/6J Mice. Front Behav Neurosci 2019; 13:94. [PMID: 31133833 PMCID: PMC6513893 DOI: 10.3389/fnbeh.2019.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 01/27/2023] Open
Abstract
The Cannabis plant contains more than 100 currently known phytocannabinoids. Regarding the rising consumption of the non-psychotropic phytocannabinoid cannabidiol (CBD) in people's everyday life (e.g., beauty products, food and beverages), the importance of studies on the influence of CBD on healthy humans and rodents is evident. Therefore, the behavioral profile of CBD was investigated with a battery of behavioral tests, including motor, anxiety, and memory tests after prolonged CBD treatment. Adult C57Bl/6J wildtype (WT) mice were daily intraperitoneally injected with 20 mg/kg CBD for 6 weeks starting at two different points of ages (3 months and 5 months) to compare the influence of prolonged CBD treatment with a washout period (former group) to the effects of long term CBD treatment (current group). Our results show that CBD treatment does not influence motor performance on an accelerating Rotarod test, while it also results in a lower locomotor activity in the open field (OF). No influence of CBD on spatial learning and long term memory in the Morris Water Maze (MWM) was observed. Memory in the Novel Object Recognition test (NORT) was unaffected by CBD treatment. Two different anxiety tests revealed that CBD does not affect anxiety behavior in the Dark-Light Box (DLB) and OF test. Although, anxiety is altered by current CBD treatment in the Elevated Plus Maze (EPM). Moreover, CBD-treated C57Bl/6J mice showed an unaltered acoustic startle response (ASR) compared to vehicle-treated mice. However, current CBD treatment impairs prepulse inhibition (PPI), a test to analyze sensorimotor gating. Furthermore, prolonged CBD treatment did not affect the hippocampal neuron number. Our results demonstrate that prolonged CBD treatment has no negative effect on the behavior of adult C57Bl/6J mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center Goettingen (UMG), Georg-August-University, Goettingen, Germany
| |
Collapse
|
61
|
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Front Behav Neurosci 2019; 13:7. [PMID: 30814939 PMCID: PMC6381068 DOI: 10.3389/fnbeh.2019.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has limited therapeutic outcomes. Besides, the immature brain of premature children is at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible to it and less responsive to protective/therapeutical interventions. Here, we model in male and female C57BL/6 mice, the impact of neonatal HI and the protective effects of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation. From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received either NH or left undisturbed. HI brain damage occurred by permanent left carotid occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The behavioral and functional screening of the pups at weaning (PND23) and their long-term outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows: somatic development (weight), sensorimotor functions (reflexes, rods and hanger tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both sexes but affected motor development, sensorimotor functions, induced hyperactivity at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex- and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of HI males was normalized at adulthood. HI increased neophobia and other anxiety-like behaviors in males but emotionality in females. Both sexes showed worse short/long-term learning, but memory was more affected in males. Striking neuroprotective effects of NH were found, with significantly lower injury scores, mostly in HI males. At the functional level, NH reversed the impaired reflex responses and improved memory performances in hippocampal-dependent spatial-learning tasks, especially in males. Finally, neuropathological correlates referred to atrophy, neuronal densities and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus, neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying the sex- and age- functional impacts of these risk/protection interventions on sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
Franco R, Villa M, Morales P, Reyes-Resina I, Gutiérrez-Rodríguez A, Jiménez J, Jagerovic N, Martínez-Orgado J, Navarro G. Increased expression of cannabinoid CB 2 and serotonin 5-HT 1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019; 152:58-66. [PMID: 30738036 DOI: 10.1016/j.neuropharm.2019.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
| | - María Villa
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Irene Reyes-Resina
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Ana Gutiérrez-Rodríguez
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Physiology. Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
63
|
Saravia R, Ten-Blanco M, Grande MT, Maldonado R, Berrendero F. Anti-inflammatory agents for smoking cessation? Focus on cognitive deficits associated with nicotine withdrawal in male mice. Brain Behav Immun 2019; 75:228-239. [PMID: 30391635 DOI: 10.1016/j.bbi.2018.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/20/2023] Open
Abstract
Nicotine withdrawal is associated with cognitive deficits including attention, working memory, and episodic memory impairments. These cognitive deficits are a hallmark of nicotine abstinence which could be targeted in order to prevent smoking relapse. The underlying mechanisms, however, are poorly understood. In this study, memory impairment was observed in mice 4 days after the precipitation of nicotine withdrawal by the nicotinic antagonist mecamylamine. The presence of cognitive deficits correlated with microglial activation in the hippocampus and the prefrontal cortex. Moreover, an increased expression of neuroinflammatory markers including IL1β, TNFα and IFNγ was found in both memory-related brain regions. Notably, flow cytometric analysis also revealed an enhancement of TNFα and IFNγ plasmatic levels at the same time point during nicotine withdrawal. Impaired neurogenesis, as shown by reduction in the expression of the endogenous cell proliferation marker Ki67 and the early neuron marker doublecortin, was also associated with nicotine abstinence. Treatment with the non-psychoactive cannabinoid cannabidiol abolished memory impairment of nicotine withdrawal and microglia reactivity, reduced the expression of IL1β and IFNγ in the hippocampus and the prefrontal cortex, respectively, and normalized Ki67 levels. The nonsteroidal anti-inflammatory drug indomethacin also prevented cognitive deficits and microglial reactivity during withdrawal. These data underline the usefulness of anti-inflammatory agents to improve cognitive performance during early nicotine abstinence.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - Marc Ten-Blanco
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain
| | - María T Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain.
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
64
|
Luján MÁ, Castro-Zavala A, Alegre-Zurano L, Valverde O. Repeated Cannabidiol treatment reduces cocaine intake and modulates neural proliferation and CB1R expression in the mouse hippocampus. Neuropharmacology 2018; 143:163-175. [DOI: 10.1016/j.neuropharm.2018.09.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
|
65
|
Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E, Criado E, Sobrino E, Vargas C, Ceprián M, Gutiérrez-Rodríguez A, Hind W, Martínez-Orgado J. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2018; 146:1-11. [PMID: 30468796 DOI: 10.1016/j.neuropharm.2018.11.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.
Collapse
Affiliation(s)
- Lorena Barata
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Luis Arruza
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | | | - Esther Aleo
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Eva Vierge
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Enrique Criado
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Elena Sobrino
- Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Carlos Vargas
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Ceprián
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | - José Martínez-Orgado
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
| |
Collapse
|
66
|
Cannabinoid signalling in the immature brain: Encephalopathies and neurodevelopmental disorders. Biochem Pharmacol 2018; 157:85-96. [DOI: 10.1016/j.bcp.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
67
|
Davidson JO, Dhillon SK, Wassink G, Zhou KQ, Bennet L, Gunn AJ. Endogenous neuroprotection after perinatal hypoxia-ischaemia: the resilient developing brain. J R Soc N Z 2018. [DOI: 10.1080/03036758.2018.1529685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Joanne O. Davidson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kelly Q. Zhou
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
68
|
da Silva VK, de Freitas BS, Garcia RCL, Monteiro RT, Hallak JE, Zuardi AW, Crippa JAS, Schröder N. Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload. Transl Psychiatry 2018; 8:176. [PMID: 30177808 PMCID: PMC6120904 DOI: 10.1038/s41398-018-0232-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022] Open
Abstract
Iron accumulation in the brain has been recognized as a common feature of both normal aging and neurodegenerative diseases. Cognitive dysfunction has been associated to iron excess in brain regions in humans. We have previously described that iron overload leads to severe memory deficits, including spatial, recognition, and emotional memory impairments in adult rats. In the present study we investigated the effects of neonatal iron overload on proteins involved in apoptotic pathways, such as Caspase 8, Caspase 9, Caspase 3, Cytochrome c, APAF1, and PARP in the hippocampus of adult rats, in an attempt to establish a causative role of iron excess on cell death in the nervous system, leading to memory dysfunction. Cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa, was examined as a potential drug to reverse iron-induced effects on the parameters analyzed. Male rats received vehicle or iron carbonyl (30 mg/kg) from the 12th to the 14th postnatal days and were treated with vehicle or CBD (10 mg/kg) for 14 days in adulthood. Iron increased Caspase 9, Cytochrome c, APAF1, Caspase 3 and cleaved PARP, without affecting cleaved Caspase 8 levels. CBD reversed iron-induced effects, recovering apoptotic proteins Caspase 9, APAF1, Caspase 3 and cleaved PARP to the levels found in controls. These results suggest that iron can trigger cell death pathways by inducing intrinsic apoptotic proteins. The reversal of iron-induced effects by CBD indicates that it has neuroprotective potential through its anti-apoptotic action.
Collapse
Affiliation(s)
- Vanessa Kappel da Silva
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Rebeca Carvalho Lacerda Garcia
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ricardo Tavares Monteiro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Jaime Eduardo Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, 14048-900, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
69
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - George Hasko
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
70
|
Zhang J, Tucker LD, DongYan, Lu Y, Yang L, Wu C, Li Y, Zhang Q. Tert-butylhydroquinone post-treatment attenuates neonatal hypoxic-ischemic brain damage in rats. Neurochem Int 2018; 116:1-12. [PMID: 29530758 PMCID: PMC5895521 DOI: 10.1016/j.neuint.2018.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, PR China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - DongYan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
71
|
Becerra-Calixto A, Posada-Duque R, Cardona-Gómez GP. Recovery of Neurovascular Unit Integrity by CDK5-KD Astrocyte Transplantation in a Global Cerebral Ischemia Model. Mol Neurobiol 2018; 55:8563-8585. [PMID: 29564811 DOI: 10.1007/s12035-018-0992-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Astrocytes play metabolic and structural support roles and contribute to the integrity of the blood-brain barrier (BBB), linking communication between neurons and the endothelium. Cyclin-dependent kinase 5 (CDK5) likely exerts a dual effect on the endothelium and astrocytes due to its involvement in migration and angiogenesis; the overactivation of CDK5 is associated with dysfunction in glutamate recapture and hypoxia. Recently, we proposed that CDK5-targeted astrocytes facilitate the recovery of neurological and motor function in transplanted ischemic rats. In the current study, we treated cerebral ischemic rats and endothelial cells exposed to glutamate toxicity with CDK5 knock-down (CDK5-KD) astrocytes to determine the role of CDK5 in neurovascular integrity. We found that the effects of CDK5-KD were sustained for 4 months, preventing neuronal and astrocyte loss, facilitating the recovery of the BBB via the production of BDNF by endogenous astrocytes (GFP-) surrounding vessels in the motor cortex and the corpus callosum of global ischemic rats, and improving neurological performance. These findings were supported by the in vitro findings of increased transendothelial resistance, p120-ctn+ adhesion and reduced intercellular gaps induced by a CDK5 inhibitor (roscovitine) in bEnd.3 cells in a glutamate-toxicity model. Additionally, CDK5-KD astrocytes in co-culture protected the endothelial cell viability, increased BDNF release from astrocytes, increased BDNF immunoreactivity in neighboring astrocytes and endothelial cells and enhanced cell adhesion in a glutamate-toxicity model. Altogether, these findings suggest that a CDK5 reduction in astrocytes protects the endothelium, which promotes BDNF release, endothelial adhesion, and the recovery of neurovascular unit integrity and brain function in ischemic rats.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia. .,Universidad de Antioquia, Sede de Investigación Universitaria (SIU), Calle 62 # 52 - 59; Torre 1, Piso 4, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
72
|
da Silva VK, de Freitas BS, Dornelles VC, Kist LW, Bogo MR, Silva MC, Streck EL, Hallak JE, Zuardi AW, Crippa JAS, Schröder N. Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: Reversal by cannabidiol. Brain Res Bull 2018; 139:1-8. [PMID: 29374603 DOI: 10.1016/j.brainresbull.2018.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
Abstract
Evidence has demonstrated iron accumulation in specific brain regions of patients suffering from neurodegenerative disorders, and this metal has been recognized as a contributing factor for neurodegeneration. Using an experimental model of brain iron accumulation, we have shown that iron induces severe memory deficits that are accompanied by oxidative stress, increased apoptotic markers, and decreased synaptophysin in the hippocampus of rats. The present study aims to characterize iron loading effects as well as to determine the molecular targets of cannabidiol (CBD), the main non-psychomimetic compound of Cannabis sativa, on mitochondria. Rats received iron in the neonatal period and CBD for 14 days in adulthood. Iron induced mitochondrial DNA (mtDNA) deletions, decreased epigenetic modulation of mtDNA, mitochondrial ferritin levels, and succinate dehydrogenase activity. CBD rescued mitochondrial ferritin and epigenetic modulation of mtDNA, and restored succinate dehydrogenase activity in iron-treated rats. These findings provide new insights into molecular targets of iron neurotoxicity and give support for the use of CBD as a disease modifying agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vanessa Kappel da Silva
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Victória Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil
| | - Milena Carvalho Silva
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Emílio Luiz Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), 88806-000 Criciúma, SC, Brazil
| | - Jaime Eduardo Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, 14048-900 São Paulo, SP, Brazil
| | - Nadja Schröder
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, 90619-900 Porto Alegre, RS, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil.
| |
Collapse
|
73
|
Cannabinoid Modulation of Object Recognition and Location Memory—A Preclinical Assessment. HANDBOOK OF OBJECT NOVELTY RECOGNITION 2018. [DOI: 10.1016/b978-0-12-812012-5.00031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
74
|
Khaksar S, Bigdeli MR. Intra-cerebral cannabidiol infusion-induced neuroprotection is partly associated with the TNF-α/TNFR1/NF-кB pathway in transient focal cerebral ischaemia. Brain Inj 2017; 31:1932-1943. [PMID: 28872345 DOI: 10.1080/02699052.2017.1358397] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Stroke is a neurological disease, which, in addition to high mortality, imposes many financial and mental burdens on families and the society. The main objective of this study was to investigate the effect of cannabidiol (CBD) on one of the major inflammatory pathways in cerebral ischaemia. METHOD Using stereotaxic surgery, the cannula was implanted into the right lateral ventricle of rats. CBD (50, 100, and 200 ng/rat; i.c.v.) was administrated for five consecutive days. After pretreatment, the rats were subjected to 60 min of right middle cerebral artery occlusion (MCAO). After 24 h, neurological deficits score, infarct volume, brain oedema, and blood-brain barrier (BBB) permeability in total, core, and penumbra areas were assessed. The expression of tumour necrosis factor alfa (TNF-α), tumour necrosis factor receptor 1 (TNFR1), and nuclear factor-kappa B (NF-кB) in the mentioned regions was also studied. RESULTS Administration of CBD (100 and 200 ng/rat) caused a significant reduction in infarction, brain oedema, and BBB permeability compared with the vehicle-received group. Down-regulation of TNF-α, TNFR1, and NF-кB expression was also observed by CBD. CONCLUSION The results achieved in this study support the idea that CBD has a cerebroprotective effect (partly through suppression of TNF-α, TNFR1, and NF-кB) on ischaemic injury. ABBREVIATIONS CBD, cannabidiol; ANOVA, analysis of variance; PVDF, polyvinylidene difluoride; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis; SEM, standard error of mean.
Collapse
Affiliation(s)
- Sepideh Khaksar
- a Department of Physiology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| | - Mohammad Reza Bigdeli
- a Department of Physiology, Faculty of Life Sciences and Biotechnology , Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
75
|
Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid. Int J Mol Sci 2017; 18:ijms18081669. [PMID: 28788104 PMCID: PMC5578059 DOI: 10.3390/ijms18081669] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection. The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies. The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.
Collapse
|
76
|
Ziemka-Nalecz M, Jaworska J, Zalewska T. Insights Into the Neuroinflammatory Responses After Neonatal Hypoxia-Ischemia. J Neuropathol Exp Neurol 2017; 76:644-654. [DOI: 10.1093/jnen/nlx046] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
77
|
Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: Effect of combined treatment with G-CSF. Brain Res 2017; 1667:55-67. [DOI: 10.1016/j.brainres.2017.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
|
78
|
French JA, Koepp M, Naegelin Y, Vigevano F, Auvin S, Rho JM, Rosenberg E, Devinsky O, Olofsson PS, Dichter MA. Clinical studies and anti-inflammatory mechanisms of treatments. Epilepsia 2017; 58 Suppl 3:69-82. [PMID: 28675558 PMCID: PMC5679081 DOI: 10.1111/epi.13779] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A number of animal models have now been used to identify inflammation as a major underlying mechanism of both chronic seizures and the epileptogenic process. These models have demonstrated that specific anti-inflammatory treatments can be effective at both suppressing chronic seizures and interfering with the process of epileptogenesis. Some of these have already been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical trials of both "conventional, broad spectrum" anti-inflammatory agents and novel new approaches to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A summary of some of those approaches appears below, as well as a discussion of the issues facing clinical trials in this new domain.
Collapse
Affiliation(s)
- Jacqueline A. French
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Matthias Koepp
- Institute of Neurology, University College London, London, United Kingdom
| | - Yvonne Naegelin
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children Hospital, Rome, Italy
| | - Stéphane Auvin
- Pediatric Neurology, Robert Debré University Hospital, Paris, France
| | - Jong M. Rho
- Alberta Children’s Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Evan Rosenberg
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A
| | - Peder S. Olofsson
- Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marc A. Dichter
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
79
|
Cannabidiol reduces lung injury induced by hypoxic-ischemic brain damage in newborn piglets. Pediatr Res 2017; 82:79-86. [PMID: 28388598 DOI: 10.1038/pr.2017.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
BackgroundBrain hypoxic-ischemic (HI) damage induces distant inflammatory lung damage in newborn pigs. We aimed to investigate the effects of cannabidiol (CBD) on lung damage in this scenario.MethodsNewborn piglets received intravenous vehicle, CBD, or CBD+WAY100635 (5-HT1A receptor antagonist) after HI brain damage (carotid flow interruption and FiO2 0.10 for 30 min). Total lung compliance (TLC), oxygenation index (OI), and extravascular lung water content (EVLW) were monitored for 6 h. Histological damage, interleukin (IL)-1β concentration, and oxidative stress were assessed in brain and lung tissue. Total protein content was determined in bronchoalveolar lavage fluid (BALF).ResultsCBD prevented HI-induced deleterious effects on TLC and OI and reduced lung histological damage, modulating inflammation (decreased leukocyte infiltration and IL-1 concentration) and reducing protein content in BALF and EVLW. These effects were related to CBD-induced anti-inflammatory changes in the brain. HI did not increase oxidative stress in the lungs. In the lungs, WAY100635 blunted the beneficial effects of CBD on histological damage, IL-1 concentration, and EVLW.ConclusionsCBD reduced brain HI-induced distant lung damage, with 5-HT1A receptor involvement in these effects. Whether the effects of CBD on the lungs were due to the anti-inflammatory effects on the brain or due to the direct effects on the lungs remains to be elucidated.
Collapse
|
80
|
Hypoxic postconditioning improves behavioural deficits at 6 weeks following hypoxic-ischemic brain injury in neonatal rats. Behav Brain Res 2017. [PMID: 28647597 DOI: 10.1016/j.bbr.2017.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic (HI) brain injury in newborns is associated with high morbidity and mortality, with many babies suffering neurological deficits. Recently, we showed that hypoxic postconditioning (PostC) immediately post injury can protect against HI up to one week in neonatal rats. Here, we aimed to examine whether long term functional deficits were also improved by PostC. Sprague-Dawley rats were assigned to control (C) or HI group on postnatal day 7 (P7). The HI group underwent unilateral carotid artery occlusion followed by hypoxia (7% oxygen, 3h). Half of each group were randomly assigned to the PostC group (8% oxygen, 1h/day for 5days post-injury), or normoxic group, where animals were kept under ambient conditions. Righting reflex and negative geotaxis tests were performed on P8 and P14. On P42, rats underwent further behavioural tests of motor function and memory (forelimb grip strength, grid walking and novel object recognition tasks). Brain injury was assessed using histological scoring of brain sections. At P14, PostC reduced the righting reflex deficit compared to HI alone. Long-term (6 weeks) behavioural deficits were observed in grid walking and novel object recognition tests after HI alone, with both functions improved following PostC. Following HI, there was an increase in brain injury assessed by histological scoring compared to control, and this damage was reduced by PostC. This novel finding of long-term histological neuroprotection accompanied by functional improvements by PostC further demonstrates the clinical potential of mild hypoxia for the treatment of HI brain injury.
Collapse
|
81
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
82
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
83
|
Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology 2017; 116:151-159. [DOI: 10.1016/j.neuropharm.2016.12.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
|
84
|
Khaksar S, Bigdeli MR. Correlation Between Cannabidiol-Induced Reduction of Infarct Volume and Inflammatory Factors Expression in Ischemic Stroke Model. Basic Clin Neurosci 2017; 8:139-146. [PMID: 28539998 PMCID: PMC5440923 DOI: 10.18869/nirp.bcn.8.2.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Recent studies demonstrated that cannabidiol had neuroprotective property. There is some evidence about effective role of cannabidiol in reduction of ischemic damages. It has been reported that infarct size is influenced by various factors after MCAO, including inflammatory factors. The aim of the present study was to evaluate the effect of cannabidiol on infarction volume and correlation of infarct size with tumor necrosis factor receptor 1 (TNFR1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression. METHODS Using stereotaxic surgery, guide cannula was implanted in the right lateral ventricle. Cannabidiol (50, 100, and 200 ng/rat) was injected through ntracerebroventricular (i.c.v.) route for 5 consecutive days . Then, the rats underwent 60 minutes of right middle cerebral artery occlusion (MCAO). After 24 h reperfusion, the infarct volume in total, cortex, piriform cortex-amygdala (Pir-Amy), and striatum areas of hemisphere were assessed. The expression of inflammatory factors such as TNFR1 and NF-κB in these regions were also studied. RESULTS The present results indicate that in the MCAO-induced cerebral ischemia, administration of cannabidiol (100 and 200 ng/rat) causes a significant reduction in infarction volume in comparison with the vehicle group. Also, there were significant correlations between decrease of regional infarct volume and TNFR1/NF-κB expression. CONCLUSION The results of this study indicate that cannabidiol reduced cerebral infarction possibly through diminishing TNFR1/NF-κB-induced neurotoxicity in transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Bigdeli
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
85
|
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175:133-150. [PMID: 28232276 DOI: 10.1016/j.pharmthera.2017.02.041] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past years, several lines of evidence support a therapeutic potential of Cannabis derivatives and in particular phytocannabinoids. Δ9-THC and cannabidiol (CBD) are the most abundant phytocannabinoids in Cannabis plants and therapeutic application for both compounds have been suggested. However, CBD is recently emerging as a therapeutic agent in numerous pathological conditions since devoid of the psychoactive side effects exhibited instead by Δ9-THC. In this review, we highlight the pharmacological activities of CBD, its cannabinoid receptor-dependent and -independent action, its biological effects focusing on immunomodulation, angiogenetic properties, and modulation of neuronal and cardiovascular function. Furthermore, the therapeutic potential of cannabidiol is also highlighted, in particular in nuerological diseases and cancer.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Anna Maria Malfitano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Anna Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Roberta Ranieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Gaia Cuomo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Mario Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | - Giorgio Faggiana
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy
| | | | | | | | - Maurizio Bifulco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy; Corporea, Fondazione Idis-Città della Scienza, Naples, Italy.
| |
Collapse
|
86
|
A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia. Neurosci Biobehav Rev 2017; 72:310-324. [DOI: 10.1016/j.neubiorev.2016.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
|
87
|
Garberg HT, Solberg R, Barlinn J, Martinez-Orgado J, Løberg EM, Saugstad OD. High-Dose Cannabidiol Induced Hypotension after Global Hypoxia-Ischemia in Piglets. Neonatology 2017; 112:143-149. [PMID: 28564654 DOI: 10.1159/000471786] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/17/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is considered a promising neuroprotectant after perinatal hypoxia-ischemia (HI). We have previously studied the effects of CBD 1 mg/kg in the early phase after global HI in piglets. In contrast to prior studies, we found no evidence of neuroprotection and hypothesized that higher doses might be required to demonstrate efficacy in this animal model. OBJECTIVE To assess the safety and potential neuroprotective effects of high-dose CBD. METHODS Anesthetized newborn piglets underwent global HI by ventilation with 8% O2 until the point of severe metabolic acidosis (base excess -20 mmol/L) and/or hypotension (mean arterial blood pressure ≤20 mm Hg). Piglets were randomized to intravenous treatment with vehicle (n = 9) or CBD (n = 13). The starting dose, CBD 50 mg/kg, was reduced if adverse effects occurred. The piglets were euthanized 9.5 h after HI and tissue was collected for analysis. RESULTS CBD 50 mg/kg (n = 4) induced significant hypotension in 2 out of 4 piglets, and 1 out of 4 piglets suffered a fatal cardiac arrest. CBD 25 mg/kg (n = 4) induced significant hypotension in 1 out of 4 piglets, while 10 mg/kg (n = 5) was well tolerated. A significant negative correlation between the plasma concentration of CBD and hypotension during drug infusion was observed (p < 0.005). Neuroprotective effects were evaluated in piglets that did not display significant hypotension (n = 9) and CBD did not alter the degree of neuronal damage as measured by a neuropathology score, levels of the astrocytic marker S100B in CSF, magnetic resonance spectroscopy markers (Lac/NAA and Glu/NAA ratios), or plasma troponin T. CONCLUSIONS High-dose CBD can induce severe hypotension and did not offer neuroprotection in the early phase after global HI in piglets.
Collapse
Affiliation(s)
- Håvard T Garberg
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
88
|
Barks JD, Liu Y, Shangguan Y, Djuric Z, Ren J, Silverstein FS. Maternal high-fat diet influences outcomes after neonatal hypoxic-ischemic brain injury in rodents. J Cereb Blood Flow Metab 2017; 37:307-318. [PMID: 26738750 PMCID: PMC5363747 DOI: 10.1177/0271678x15624934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022]
Abstract
The typical US diet has >30% calories from fat; yet, typical laboratory diets contain 17% calories from fat. This disparity could confound the clinical relevance of findings in cerebral ischemia models. We compared outcomes after neonatal brain injury in offspring of rat dams fed standard low-fat chow (17% fat calories) or a higher fat diet (34% fat calories) from day 7 of pregnancy. On postnatal day 7, hypoxic-ischemic injury was induced by right carotid ligation, followed by 60, 75 or 90 min 8% oxygen exposure. Sensorimotor function, brain damage, and serum and brain fatty acid content were compared 1 to 4 weeks later. All lesioned animals developed left forepaw placing deficits; scores were worse in the high-fat groups (p < 0.0001, ANOVA). Similarly, reductions in left forepaw grip strength were more pronounced in the high-fat groups. Severity of right hemisphere damage increased with hypoxia-ischemia duration but did not differ between diet groups. Serum and brain docosahexaenoic acid fatty acid fractions were lower in high-fat progeny (p < 0.05, ANOVA). We speculate that the high-fat diet disrupted docosahexaenoic acid-dependent recovery mechanisms. These findings have significant implications both for refinement of neonatal brain injury models and for understanding the impact of maternal diet on neonatal neuroplasticity.
Collapse
Affiliation(s)
- John D Barks
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yiqing Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yu Shangguan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianwei Ren
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Faye S Silverstein
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
89
|
Short-term effects of cannabidiol after global hypoxia-ischemia in newborn piglets. Pediatr Res 2016; 80:710-718. [PMID: 27441365 DOI: 10.1038/pr.2016.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cannabidiol (CBD), a nonpsychoactive cannabinoid, has shown neuroprotective actions after neonatal hypoxia-ischemia (HI) in animals. We wanted to further explore the effects of CBD, alone and in conjunction with hypothermia, in a piglet model of global HI. METHODS Fifty-five anesthetized newborn piglets were randomized to either controls (n = 7) or HI (n = 48) by ventilation with 8% O2 until mean arterial blood pressure reached 20 mmHg and/or base excess reached -20 mmol/l. After resuscitation piglets were randomized to either: vehicle (VEH), CBD 1mg/kg, VEH+hypothermia (H) or CBD 1mg/kg+H (each n = 12). Piglets were euthanized 9.5 h after HI and plasma, urine, cerebrospinal fluid, and brain tissue were sampled for analysis. RESULTS HI induced global damage with significantly increased neuropathology score, S100B in cerebrospinal fluid, hippocampal proton magnetic resonance spectroscopy biomarkers, plasma troponin-T, and urinary neutrophil gelatinase-associated lipocalin. CBD alone did not have any significant effects on these parameters while CBD+H reduced urinary neutrophil gelatinase-associated lipocalin compared with VEH+H (P < 0.05). Both hypothermic groups had significantly lower glutamate/N-acetylaspartate ratios (P < 0.01) and plasma troponin-T (P<0.05) levels compared with normothermic groups. CONCLUSION In contrast to previous studies, we do not find significant protective effects of CBD after HI in piglets. Evaluation of CBD in higher doses might be warranted.
Collapse
|
90
|
Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats. Mol Neurobiol 2016; 54:7137-7155. [PMID: 27796751 DOI: 10.1007/s12035-016-0221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.
Collapse
|
91
|
Xu Y, Tian Y, Tian Y, Li X, Zhao P. Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 2016; 139:795-805. [PMID: 27659442 DOI: 10.1111/jnc.13851] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Hypoxic-ischemic brain injury (HIBI) in neonates can lead to lifelong cognitive and memory impairment, but protective strategies are lacking at present. It has been demonstrated that autophagy plays a critical role in HIBI, while the function of autophagy in cognitive and memory impairment induced by HIBI in neonates has not been tested. In this study, we tested the impact of autophagy on the impairment of cognitive function and memory in HIBI neonatal rats by using a Morris water maze and investigated its possible mechanisms, which were established as HIBI model by ligating the left common carotid artery in neonatal rats, followed by 2-h hypoxia. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II increased in HI group 24 h after HI in neonatal rats, while Sequestosome 1 (P62/SQSTM1), phosphorylated cAMP-response element-binding protein (p-CREB) decreased (compared with the sham group, p < 0.05), which were shown in the same left hippocampus CA3 region by immunofluorescence analysis. Brain injury of neonatal rats was aggravated significantly at 7 day after HI, coinciding with the results of Morris water maze. An autophagy inhibitor, 3-methyladenine (3-MA) pretreatment significantly attenuated the increase of LC3II and the loss of P62/SQSTM1 and p-CREB, ameliorated neuronal death, and improved the results of Morris water maze. Our results demonstrate that HIBI in neonatal rats induced excessive autophagy flux, which aggravated brain injury and induced cognitive and memory impairment during adolescence. Inhibition of autophagy reversed the results partly and improved the function of spatial learning and memory by attenuating the reduction of p-CREB. The use of autophagy modulators in the immature brain would create new opportunities for protective strategies clinically in the future.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ye Tian
- Department of orthopedics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
92
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
93
|
Lee WS, Erdelyi K, Matyas C, Mukhopadhyay P, Varga ZV, Liaudet L, Hask’ G, ’iháková D, Mechoulam R, Pacher P. Cannabidiol Limits T Cell-Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation. Mol Med 2016; 22:136-146. [PMID: 26772776 PMCID: PMC5004721 DOI: 10.2119/molmed.2016.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell-mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation.
Collapse
Affiliation(s)
- Wen-Shin Lee
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital Medical Center, Lausanne, Switzerland
| | - György Hask’
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Daniela ’iháková
- Department of Pathology and The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine and School of Public Health, Baltimore, Maryland, United States of America
| | - Raphael Mechoulam
- Department for Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University of Jerusalem, EinKerem, Jerusalem, Israel
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
94
|
Li D, Song T, Yang L, Wang X, Yang C, Jiang Y. Neuroprotective actions of pterostilbene on hypoxic-ischemic brain damage in neonatal rats through upregulation of heme oxygenase-1. Int J Dev Neurosci 2016; 54:22-31. [PMID: 27576146 DOI: 10.1016/j.ijdevneu.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain damage causes acute mortality and morbidity in newborns and long-term neurological disorders in the survivors. Pterostilbene (PTE) is a natural compound possessing various biological and pharmacological activities. In the present study, we aimed to investigate the effect of PTE on neonatal HI brain damagein P7 rat model and to explore the possible mechanisms. Neonatal HI brain damage was induced in rat pups (P7). Prior to the induction of HI injury, PTE was injected with or without zinc protoporphyrin IX (ZnPP), an inhibitor of heme oxygenase-1 (HO-1). ZnPP was used to test whether abnormal changes of HO-1 expression were involved in the effect of PTE. The results showed that PTE exhibited excellent neuroprotective effects against neonatal HI brain injury, as evidenced by the decrease of brain infarct volume, brain edema, neurological score, and improvement in motor coordination motor deficit and working memory deficit. PTE pretreatment decreased the expression of several proinflammatory cytokines, including TNFα, IL-1β, IL-6, and key transcription factor p65 NF-κB, and reduced the number of TUNEL-stained neurons, indicating the inhibition of inflammation and programmed cell death. Moreover, PTE pretreatment decreased thiobarbituric acid reactive substances content, increased superoxide dismutase activity and decreased reactive oxygen species level, indicating that PTE played an important antioxidant role. Furthermore, ZnPP was able to inhibit PTE-induced suppression of oxidative stress, programmed cell death, inflammation and brain damage. In conclusion, PTE pretreatment prevented HI-induced brain injury in newborns through HO-1-mediated reduction of oxidative stress, programmed cell death, and inflammation, and final improvement of histological and functional injury. Overall, the data that obtained in rat model provide novel insights into the pathogenesis of neonatal HI brain injury and may be translational to human clinical intervention for HI-associated brain injury in newborns.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Tingting Song
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lin Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Xueying Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Changhong Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yongsheng Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
95
|
Gómez-Cañas M, Morales P, García-Toscano L, Navarrete C, Muñoz E, Jagerovic N, Fernández-Ruiz J, García-Arencibia M, Pazos M. Biological characterization of PM226, a chromenoisoxazole, as a selective CB 2 receptor agonist with neuroprotective profile. Pharmacol Res 2016; 110:205-215. [DOI: 10.1016/j.phrs.2016.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
|
96
|
Lafuente H, Pazos MR, Alvarez A, Mohammed N, Santos M, Arizti M, Alvarez FJ, Martinez-Orgado JA. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia. Front Neurosci 2016; 10:323. [PMID: 27462203 PMCID: PMC4940392 DOI: 10.3389/fnins.2016.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022] Open
Abstract
Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult.
Collapse
Affiliation(s)
- Hector Lafuente
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | - Maria R. Pazos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Antonia Alvarez
- Department of Cell Biology, University of the Basque CountryLeioa, Spain
| | - Nagat Mohammed
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Martín Santos
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
| | - Maialen Arizti
- Neonatology Research Group, Biocruces Health Research InstituteBizkaia, Spain
| | | | - Jose A. Martinez-Orgado
- Group of Cannabinoids Research on Neonatal Pathologies, Research Institute Puerta de Hierro MajadahondaMadrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos–Instituto de Investigación Sanitaria San Carlos (IdISSC)Madrid, Spain
| |
Collapse
|
97
|
Kinney WA, McDonnell ME, Zhong HM, Liu C, Yang L, Ling W, Qian T, Chen Y, Cai Z, Petkanas D, Brenneman DE. Discovery of KLS-13019, a Cannabidiol-Derived Neuroprotective Agent, with Improved Potency, Safety, and Permeability. ACS Med Chem Lett 2016; 7:424-8. [PMID: 27096053 DOI: 10.1021/acsmedchemlett.6b00009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022] Open
Abstract
Cannabidiol is the nonpsychoactive natural component of C. sativa that has been shown to be neuroprotective in multiple animal models. Our interest is to advance a therapeutic candidate for the orphan indication hepatic encephalopathy (HE). HE is a serious neurological disorder that occurs in patients with cirrhosis or liver failure. Although cannabidiol is effective in models of HE, it has limitations in terms of safety and oral bioavailability. Herein, we describe a series of side chain modified resorcinols that were designed for greater hydrophilicity and "drug likeness", while varying hydrogen bond donors, acceptors, architecture, basicity, neutrality, acidity, and polar surface area within the pendent group. Our primary screen evaluated the ability of the test agents to prevent damage to hippocampal neurons induced by ammonium acetate and ethanol at clinically relevant concentrations. Notably, KLS-13019 was 50-fold more potent and >400-fold safer than cannabidiol and exhibited an in vitro profile consistent with improved oral bioavailability.
Collapse
Affiliation(s)
- William A. Kinney
- KannaLife Sciences, 3805 Old Easton
Road, Doylestown, Pennsylvania 18902, United States
| | - Mark E. McDonnell
- KannaLife Sciences, 3805 Old Easton
Road, Doylestown, Pennsylvania 18902, United States
| | - Hua Marlon Zhong
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Chaomin Liu
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Lanyi Yang
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Wei Ling
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Tao Qian
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Yu Chen
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Zhijie Cai
- PharmaAdvance, Inc., 6 Dongsheng West
Road, Building D1, Jiangyin, Jiangsu Province, P. R. China
| | - Dean Petkanas
- KannaLife Sciences, 3805 Old Easton
Road, Doylestown, Pennsylvania 18902, United States
| | - Douglas E. Brenneman
- KannaLife Sciences, 3805 Old Easton
Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
98
|
Schiavon AP, Bonato JM, Milani H, Guimarães FS, Weffort de Oliveira RM. Influence of single and repeated cannabidiol administration on emotional behavior and markers of cell proliferation and neurogenesis in non-stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:27-34. [PMID: 26187374 DOI: 10.1016/j.pnpbp.2015.06.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Therapeutic effects of antidepressants and atypical antipsychotics may arise partially from their ability to stimulate neurogenesis. Cannabidiol (CBD), a phytocannabinoid present in Cannabis sativa, presents anxiolytic- and antipsychotic-like effects in preclinical and clinical settings. Anxiolytic-like effects of repeated CBD were shown in chronically stressed animals and these effects were parallel with increased hippocampal neurogenesis. However, antidepressant-like effects of repeated CBD administration in non-stressed animals have been scarcely reported. Here we investigated the behavioral consequences of single or repeated CBD administration in non-stressed animals. We also determined the effects of CBD on cell proliferation and neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ). Single CBD 3mg/kg administration resulted in anxiolytic-like effect in mice submitted to the elevated plus maze (EPM). In the tail suspension test (TST), single or repeated CBD administration reduced immobility time, an effect that was comparable to those of imipramine (20 mg/kg). Moreover, repeated CBD administration at a lower dose (3 mg/kg) increased cell proliferation and neurogenesis, as seen by an increased number of Ki-67-, BrdU- and doublecortin (DCX)-positive cells in both in DG and SVZ. Despite its antidepressant-like effects in the TST, repeated CBD administration at a higher dose (30 mg/kg) decreased cell proliferation and neurogenesis in the hippocampal DG and SVZ. Our findings show a dissociation between behavioral and proliferative effects of repeated CBD and suggest that the antidepressant-like effects of CBD may occur independently of adult neurogenesis in non-stressed Swiss mice.
Collapse
Affiliation(s)
- Angélica Pupin Schiavon
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
99
|
Arteaga O, Revuelta M, Urigüen L, Álvarez A, Montalvo H, Hilario E. Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats. PLoS One 2015; 10:e0142424. [PMID: 26544861 PMCID: PMC4636303 DOI: 10.1371/journal.pone.0142424] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/21/2015] [Indexed: 01/24/2023] Open
Abstract
Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Haizea Montalvo
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine & Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
100
|
Fernández-Ruiz J, Moro MA, Martínez-Orgado J. Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics 2015; 12:793-806. [PMID: 26260390 PMCID: PMC4604192 DOI: 10.1007/s13311-015-0381-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids form a singular family of plant-derived compounds (phytocannabinoids), endogenous signaling lipids (endocannabinoids), and synthetic derivatives with multiple biological effects and therapeutic applications in the central and peripheral nervous systems. One of these properties is the regulation of neuronal homeostasis and survival, which is the result of the combination of a myriad of effects addressed to preserve, rescue, repair, and/or replace neurons, and also glial cells against multiple insults that may potentially damage these cells. These effects are facilitated by the location of specific targets for the action of these compounds (e.g., cannabinoid type 1 and 2 receptors, endocannabinoid inactivating enzymes, and nonendocannabinoid targets) in key cellular substrates (e.g., neurons, glial cells, and neural progenitor cells). This potential is promising for acute and chronic neurodegenerative pathological conditions. In this review, we will collect all experimental evidence, mainly obtained at the preclinical level, supporting that different cannabinoid compounds may be neuroprotective in adult and neonatal ischemia, brain trauma, Alzheimer's disease, Parkinson's disease, Huntington's chorea, and amyotrophic lateral sclerosis. This increasing experimental evidence demands a prompt clinical validation of cannabinoid-based medicines for the treatment of all these disorders, which, at present, lack efficacious treatments for delaying/arresting disease progression, despite the fact that the few clinical trials conducted so far with these medicines have failed to demonstrate beneficial effects.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - María A Moro
- Departamento de Farmacología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | | |
Collapse
|