51
|
Burke LK, Darwish T, Cavanaugh AR, Virtue S, Roth E, Morro J, Liu SM, Xia J, Dalley JW, Burling K, Chua S, Vidal-Puig T, Schwartz GJ, Blouet C. mTORC1 in AGRP neurons integrates exteroceptive and interoceptive food-related cues in the modulation of adaptive energy expenditure in mice. eLife 2017; 6. [PMID: 28532548 PMCID: PMC5441868 DOI: 10.7554/elife.22848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 01/19/2023] Open
Abstract
Energy dissipation through interscapular brown adipose tissue (iBAT) thermogenesis is an important contributor to adaptive energy expenditure. However, it remains unresolved how acute and chronic changes in energy availability are detected by the brain to adjust iBAT activity and maintain energy homeostasis. Here, we provide evidence that AGRP inhibitory tone to iBAT represents an energy-sparing circuit that integrates environmental food cues and internal signals of energy availability. We establish a role for the nutrient-sensing mTORC1 signaling pathway within AGRP neurons in the detection of environmental food cues and internal signals of energy availability, and in the bi-directional control of iBAT thermogenesis during nutrient deficiency and excess. Collectively, our findings provide insights into how mTORC1 signaling within AGRP neurons surveys energy availability to engage iBAT thermogenesis, and identify AGRP neurons as a neuronal substrate for the coordination of energy intake and adaptive expenditure under varying physiological and environmental contexts. DOI:http://dx.doi.org/10.7554/eLife.22848.001 Losing weight through dieting can be difficult. Weight loss strategies often prove ineffective because the body works like a thermostat and couples what we eat to the number of calories we burn. When we eat less, our bodies compensate and burn fewer calories, which makes losing weight harder. The brain is the master regulator of this caloric thermostat, but it is not clear how it adjusts our energy expenditure to account for how much we have eaten. A structure deep within the brain called the hypothalamus, which helps regulate appetite, is thought to be involved in the caloric thermostat. Activating a group of neurons within the hypothalamus called the agouti-related neuropeptide (AGRP) neurons causes animals to consume large quantities of food. By contrast, inhibiting AGRP neurons causes animals to stop eating almost entirely. Burke et al. studied AGRP neurons in mice. The experiments show that artificially activating the neurons in mice that don’t have access to food increases the animals’ activity levels but reduces the rate at which they burn calories, which helps the mice to maintain their existing weight. Allowing the mice to eat, or even just to see and smell food, switches off this effect and returns energy expenditure to normal. Finally, exposing mice to a high-fat diet for several days inhibits their AGRP neurons, and causes the animals to burn calories at a faster rate. By using up excess calories, this change also helps the animals maintain their existing body weight. The findings of Burke et al. show that AGRP neurons are a key component of the caloric thermostat. By adjusting the rate at which the body burns calories, AGRP neurons can compensate for any changes in food intake and so limit changes in body weight. This work opens up the possibility of developing therapies that disconnect energy expenditure from energy intake to help maintain long-term weight loss. DOI:http://dx.doi.org/10.7554/eLife.22848.002
Collapse
Affiliation(s)
- Luke K Burke
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Tamana Darwish
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Althea R Cavanaugh
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Sam Virtue
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Emma Roth
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Joanna Morro
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Shun-Mei Liu
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Jing Xia
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jeffrey W Dalley
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Keith Burling
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Streamson Chua
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Toni Vidal-Puig
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, The Albert Einstein College of Medicine, New York, United States
| | - Clémence Blouet
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom.,WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
52
|
Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017; 12:854-863. [PMID: 28448947 PMCID: PMC5406580 DOI: 10.1016/j.redox.2017.04.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known as browning. Several peripheral signals relaying information about energy status act in the brain, particularly the hypothalamus, to regulate thermogenesis in BAT and browning of WAT. Different hypothalamic areas have the capacity to regulate the thermogenic process in brown and beige adipocytes through the sympathetic nervous system (SNS). This review discusses important concepts and discoveries about the central control of thermogenesis as a trip that starts in the hypothalamus, and taking the sympathetic roads to reach brown and beige fat to modulate thermogenic functions.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
53
|
Moura Santos D, Ribeiro Marins F, Limborço-Filho M, de Oliveira ML, Hamamoto D, Xavier CH, Moreira FA, Santos RAS, Campagnole-Santos MJ, Peliky Fontes MA. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress 2017; 20:189-196. [PMID: 28288545 DOI: 10.1080/10253890.2017.1296949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can reduce some of the effects of stress. We found that angiotensin-(1-7), acting in the brain, can reduce anxiety and reduce the increase in heart rate associated with emotional stress. These findings may provide a lead for design of new drugs to reduce stress.
Collapse
Affiliation(s)
- Danielle Moura Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Fernanda Ribeiro Marins
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marcelo Limborço-Filho
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marilene Luzia de Oliveira
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | | | - Carlos Henrique Xavier
- c Department of Physiology , Institute of Biological Sciences, Federal University of Goiás , Goiás , Brazil Goiânia
| | - Fabrício Araújo Moreira
- d Department of Pharmacology , Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Robson Augusto Souza Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
- b Alamantec/LABFAR , Minas Gerais , Brazil
- e Institute of Cardiology , University Foundation of Cardiology , Rio Grande do Sul , Brazil
| | - Maria José Campagnole-Santos
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| | - Marco Antonio Peliky Fontes
- a Department of Physiology and Biophysics , INCT, Institute of Biological Sciences, Federal University of Minas Gerais , Minas Gerais , Brazil
| |
Collapse
|
54
|
Abstract
The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.
Collapse
|
55
|
Chen M, Shrestha YB, Podyma B, Cui Z, Naglieri B, Sun H, Ho T, Wilson EA, Li YQ, Gavrilova O, Weinstein LS. Gsα deficiency in the dorsomedial hypothalamus underlies obesity associated with Gsα mutations. J Clin Invest 2016; 127:500-510. [PMID: 27991864 DOI: 10.1172/jci88622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Gsα, encoded by Gnas, mediates hormone and neurotransmitter receptor-stimulated cAMP generation. Heterozygous Gsα-inactivating mutations lead to obesity in Albright hereditary osteodystrophy (AHO) patients, but only when the mutations occur on the maternal allele. This parent-of-origin effect is due to Gsα imprinting in the CNS, although the relevant CNS regions are unknown. We have now shown that mice with a Gnas gene deletion disrupting Gsα expression on the maternal allele, but not the paternal allele, in the dorsomedial nucleus of the hypothalamus (DMH) developed obesity and reduced energy expenditure without hyperphagia. Although maternal Gnas deletion impaired activation of brown adipose tissue (BAT) in mice, their responses to cold environment remained intact. Similar findings were observed in mice with DMH-specific deficiency of melanocortin MC4R receptors, which are known to activate Gsα. Our results show that Gsα imprinting in the DMH underlies the parent-of-origin metabolic phenotype that results from Gsα mutations and that DMH MC4R/Gsα signaling is important for regulation of energy expenditure and BAT activation, but not the metabolic response to cold.
Collapse
|
56
|
Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol Cell Endocrinol 2016; 438:107-115. [PMID: 27498420 DOI: 10.1016/j.mce.2016.08.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) has been also considered as the main thermogenic organ responsible of maintenance body temperature through heat production. However, a new type of thermogenic fat has been characterized during the last years, the beige or brite fat, that is developed from white adipose tissue (WAT) in response to different stimuli by a process known as browning. The activities of brown and beige adipocytes ameliorate metabolic disease, including obesity in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease. The hypothalamus is the main central place orchestrating the outflow signals that drive the sympathetic nerve activity to BAT and WAT, controlling heat production and energy homeostasis. Recent data have revealed new hypothalamic molecular mechanisms, such as hypothalamic AMP-activated protein kinase (AMPK), that control both thermogenesis and browning. This review provides an overview of the factors influencing BAT and WAT thermogenesis, with special focus on the integration of peripheral information on hypothalamic circuits controlling thermoregulation.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
57
|
Abstract
Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.
Collapse
Affiliation(s)
- Liping Luo
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Meilian Liu
- Department of Metabolism and EndocrinologyMetabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital,
Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular BiologyUniversity of New Mexico Health Sciences Center,
Albuquerque, New Mexico, USA
| |
Collapse
|
58
|
Madden CJ, Santos da Conceicao EP, Morrison SF. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis. Temperature (Austin) 2016; 4:89-96. [PMID: 28349097 PMCID: PMC5356211 DOI: 10.1080/23328940.2016.1257407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 02/08/2023] Open
Abstract
In urethane/α-chloralose anesthetized rats, electrical stimulation of cervical vagal afferent fibers inhibited the increases in brown adipose tissue sympathetic nerve activity and brown adipose tissue thermogenesis evoked by cold exposure, by nanoinjection of the GABAA receptor antagonist, bicuculline, in the dorsomedial hypothalamus, and by nanoinjection of N-methyl-D-aspartate in the rostral raphe pallidus. Vagus nerve stimulation-evoked inhibition of brown adipose tissue sympathetic nerve activity was prevented by blockade of ionotropic glutamate receptors in the termination site of vagal afferents in the nucleus of the solitary tract, and by nanoinjection of GABAA receptor antagonists in the rostral raphe pallidus. In conclusion, the brown adipose tissue sympathoinhibitory effect of cervical afferent vagal nerve stimulation is mediated by glutamatergic activation of second-order sensory neurons in the nucleus of the solitary tract and by a GABAergic inhibition of brown adipose tissue sympathetic premotor neurons in the rostral raphe pallidus, but does not require GABAergic inhibition of the brown adipose tissue sympathoexcitatory neurons in the dorsomedial hypothalamus.
Collapse
Affiliation(s)
- Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University , Portland, OR, USA
| | | | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University , Portland, OR, USA
| |
Collapse
|
59
|
Chaar LJ, Coelho A, Silva NM, Festuccia WL, Antunes VR. High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiol Rep 2016; 4:4/11/e12811. [PMID: 27273815 PMCID: PMC4908489 DOI: 10.14814/phy2.12811] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
We evaluated herein whether diet‐induced obesity alters sympathovagal balance, blood pressure, and neuropeptides levels at the hypothalamus and brainstem of mice. Male C57BL6J mice fed with a high‐fat (HFD) or a high‐fat high‐sucrose (HFHSu), or a regular chow diet (C) for 8 weeks were evaluated for metabolic parameters and blood pressure, the latter being performed in conscious freely moving mice. Spectral analysis from the records of systolic blood pressure (SBP) and cardiac pulse intervals (PI) was performed to analyse the autonomic balance in the cardiovascular system. HFD‐fed mice developed two distinct hemodynamic phenotypes: hypertensive mice (HFD‐H) with high systolic and diastolic BP levels and hypertension‐resistant mice (HFD‐R) whose BP levels were similar to C group. Spectral analysis of SBP and PI variabilities indicate that the low‐frequency (LF)/high‐frequency (HF) ratio, which is an index of sympathovagal balance, is higher in HFD‐H compared to HFD‐R. Along with hypertension and higher LF/HF ratio, HFD‐H mice presented increased hypothalamic mRNA levels of cocaine‐ and amphetamine‐regulated transcript (CART), and increased CART‐positive neurones in the dorsomedial hypothalamus (DMH) by high‐fat diet when compared to C group. Despite developing obesity to similar levels than HFD feeding, intake of a HFHSu was not associated with hypertension in mice neither CART levels increase. Collectively, our main findings indicate that high‐fat diet induced‐hypertension and autonomic imbalance are associated to an upregulation of CART levels in the DMH of mice.
Collapse
Affiliation(s)
- Laiali J Chaar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Coelho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William L Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
60
|
Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. Warm-Sensitive Neurons that Control Body Temperature. Cell 2016; 167:47-59.e15. [PMID: 27616062 DOI: 10.1016/j.cell.2016.08.028] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 08/13/2016] [Indexed: 01/12/2023]
Abstract
Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth K Cooke
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn E Daly
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Zimmerman
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
61
|
Chitravanshi VC, Kawabe K, Sapru HN. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. Am J Physiol Heart Circ Physiol 2016; 311:H433-44. [PMID: 27402666 DOI: 10.1152/ajpheart.00176.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
62
|
Abstract
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
63
|
Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 2016; 196:14-24. [PMID: 26924538 DOI: 10.1016/j.autneu.2016.02.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, Unites States.
| |
Collapse
|
64
|
Nyhuis TJ, Masini CV, Day HEW, Campeau S. Evidence for the Integration of Stress-Related Signals by the Rostral Posterior Hypothalamic Nucleus in the Regulation of Acute and Repeated Stress-Evoked Hypothalamo-Pituitary-Adrenal Response in Rat. J Neurosci 2016; 36:795-805. [PMID: 26791210 PMCID: PMC4719015 DOI: 10.1523/jneurosci.3413-15.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/02/2015] [Accepted: 12/02/2015] [Indexed: 02/08/2023] Open
Abstract
A likely adaptive process mitigating the effects of chronic stress is the phenomenon of stress habituation, which frequently reduces multiple stress-evoked responses to the same (homotypic) stressor experienced repeatedly. The current studies investigated putative brain circuits that may coordinate the reduction of stress-related responses associated with stress habituation, a process that is inadequately understood. Initially, two rat premotor regions that respectively regulate neuroendocrine (medial parvicellular region of the paraventricular hypothalamic nucleus [PaMP]) and autonomic (rostral medullary raphe pallidus [RPa]) responses were targeted with distinguishable retrograde tracers. Two to 3 weeks later, injected animals underwent loud noise stress, and their brains were processed for fluorescent immunohistochemical detection of the tracers and the immediate early gene Fos. A rostral region of the posterior hypothalamic nucleus (rPH), and to a lesser extent, the median preoptic nucleus, exhibited the highest numbers of retrogradely labeled cells from both the RPa and PaMP that were colocalized with loud noise-induced Fos expression. Injections of an anterograde tracer in the rPH confirmed these connections and suggested that this region may contribute to the coordination of multiple stress-related responses. This hypothesis was partially tested by posterior hypothalamic injections of small volumes of muscimol, which disrupts normal synaptic functions, before acute and repeated loud noise or restraint exposures. In addition to significantly reduced corticosterone release in response to these two distinct stressors, rPH muscimol disrupted habituation to each stressor modality, suggesting a novel and important contribution of the rostral posterior hypothalamic nucleus in this category of adaptive processes. Significance statement: Habituation to stress is a process that possibly diminishes the detrimental health consequences of chronic stress by reducing the amplitude of many responses when the same challenging conditions are experienced repeatedly. Stress elicits a highly coordinated set of neuroendocrine, autonomic, and behavioral responses that are independently and relatively well defined; however, how the brain achieves coordination of these responses and their habituation-related declines is not well understood. The current studies provide some of the first anatomical and functional results suggesting that a specific region of the hypothalamus, the rostral posterior hypothalamic nucleus, targets multiple premotor regions and contributes to the regulation of acute neuroendocrine responses and their habituation to repeated stress.
Collapse
Affiliation(s)
- Tara J Nyhuis
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Cher V Masini
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Heidi E W Day
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, Colorado 80309
| |
Collapse
|
65
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
66
|
El Bitar N, Pollin B, Huang G, Mouraux A, Le Bars D. The rostral ventromedial medulla control of cutaneous vasomotion of paws and tail in the rat: implication for pain studies. J Neurophysiol 2015; 115:773-89. [PMID: 26581872 DOI: 10.1152/jn.00695.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
Thermal neutrality in rodents is achieved by large cyclic variations of the sympathetic drive of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Given the pivotal functional role of rostral ventromedial medulla (RVM) in nociception and rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, we aimed at circumscribing the brainstem regions that are the source of premotor afferents to sympathetic preganglionic neurons that control the vasomotor tone of the tail and hind paws. A thermometric infrared camera recorded indirectly the vasomotor tone of the tail and hind paws. During the control period, the rat was maintained in vasoconstriction by preserving a stable, homogeneous, and constant surrounding temperature, slightly below the core temperature. The functional blockade of the RVM/rMR by the GABAA receptor agonist muscimol (0.5 nmol, 50 nl) elicited an extensive increase of the temperature of the paws and tail, associated with a slight decrease of blood pressure and heart rate. Both the increased heat loss through vasodilatation and the decrease heart-induced heat production elicited a remarkable reduction of the central temperature. The effective zones were circumscribed to the parts of the RVM/rMR facing the facial nucleus. They match very exactly the brain regions often described as specifically devoted to the control of nociception. Our data support and urge on the highest cautiousness regarding the interpretation of results aimed at studying the effects of any pharmacological manipulations of RVM/rMR with the usual tests of pain.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Gan Huang
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| |
Collapse
|
67
|
Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 2015; 9:150. [PMID: 26578907 PMCID: PMC4630288 DOI: 10.3389/fnsys.2015.00150] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities.
Collapse
Affiliation(s)
- Sebastien M Labbé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Boris Monge-Rofarello
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal (COR), Georgia State University Atlanta, GA, USA
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval Québec, QC, Canada
| |
Collapse
|
68
|
Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 2015; 309:R429-43. [PMID: 26041109 DOI: 10.1152/ajpregu.00051.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023]
Abstract
Actual or potentially threatening stimuli in the external environment (i.e., psychological stressors) trigger highly coordinated defensive behavioral responses that are accompanied by appropriate autonomic and respiratory changes. As discussed in this review, several brain regions and pathways have major roles in subserving the cardiovascular and respiratory responses to threatening stimuli, which may vary from relatively mild acute arousing stimuli to more prolonged life-threatening stimuli. One key region is the dorsomedial hypothalamus, which receives inputs from the cortex, amygdala, and other forebrain regions and which is critical for generating autonomic, respiratory, and neuroendocrine responses to psychological stressors. Recent studies suggest that the dorsomedial hypothalamus also receives an input from the dorsolateral column in the midbrain periaqueductal gray, which is another key region involved in the integration of stress-evoked cardiorespiratory responses. In addition, it has recently been shown that neurons in the midbrain colliculi can generate highly synchronized autonomic, respiratory, and somatomotor responses to visual, auditory, and somatosensory inputs. These collicular neurons may be part of a subcortical defense system that also includes the basal ganglia and which is well adapted to responding to threats that require an immediate stereotyped response that does not involve the cortex. The basal ganglia/colliculi system is phylogenetically ancient. In contrast, the defense system that includes the dorsomedial hypothalamus and cortex evolved at a later time, and appears to be better adapted to generating appropriate responses to more sustained threatening stimuli that involve cognitive appraisal.
Collapse
Affiliation(s)
- Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
69
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
70
|
Bondarenko E, Beig MI, Hodgson DM, Braga VA, Nalivaiko E. Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am J Physiol Regul Integr Comp Physiol 2015; 308:R816-22. [DOI: 10.1152/ajpregu.00415.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
The dorsomedial hypothalamus (DMH) and the perifornical area (DMH/PeF) is one of the key regions of central autonomic processing. Previous studies have established that this region contains neurons that may be involved in respiratory processing; however, this has never been tested in conscious animals. The aim of our study was to investigate the involvement of the DMH/PeF area in mediating respiratory responses to stressors of various intensities and duration. Adult male Wistar rats ( n = 8) received microinjections of GABAA agonist muscimol or saline into the DMH/PeF bilaterally and were subjected to a respiratory recording using whole body plethysmography. Presentation of acoustic stimuli (500-ms white noise) evoked transient responses in respiratory rate, proportional to the stimulus intensity, ranging from +44 ± 27 to +329 ± 31 cycles/min (cpm). Blockade of the DMH/PeF almost completely abolished respiratory rate and tidal volume responses to the 40- to 70-dB stimuli and also significantly attenuated responses to the 80- to 90-dB stimuli. Also, it significantly attenuated respiratory rate during the acclimatization period (novel environment stress). The light stimulus (30-s 2,000 lux) as well as 15-min restraint stress significantly elevated respiratory rate from 95 ± 4.0 to 236 ± 29 cpm and from 117 ± 5.2 to 189 ± 13 cpm, respectively; this response was abolished after the DMH/PeF blockade. We conclude that integrity of the DMH/PeF area is essential for generation of respiratory responses to both stressful and alerting stimuli.
Collapse
Affiliation(s)
| | | | | | - Valdir A. Braga
- Biotechnology Centre, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | | |
Collapse
|
71
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Zhang W, Bi S. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis. Front Endocrinol (Lausanne) 2015; 6:136. [PMID: 26379628 PMCID: PMC4553396 DOI: 10.3389/fendo.2015.00136] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- *Correspondence: Wei Zhang, Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA,
| | - Sheng Bi
- Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
73
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
74
|
Abstract
Amphetamine (Amp) increases exercise duration. It is thought to do so by masking fatigue, but there have been very few studies looking at the effect of amphetamine on maximal oxygen consumption (VO2MAX) and running economy. Furthermore, it is unknown if amphetamine's effect on exercise duration occurs in a warm environment. We conducted separate experiments in male Sprague-Dawley rats testing the effect of amphetamine on VO2MAX (n = 12), running economy (n = 12), and exercise duration (n = 24) in a warm environment. For VO2MAX and running economy, rats were randomized to either amphetamine at 1 mg/kg (Amp-1) or 2 mg/kg (Amp-2). Animals served as their own controls in a crossover design with the administration order counter-balanced. To study the effect of amphetamine on exercise duration, we conducted run-to-exhaustion treadmill testing on rats in a 32˚C environment following administration of Amp-1, Amp-2, or Saline. Compared to control, Amp-2 increased VO2MAX (by 861 ± 184 ml/kg/hr, p = 0.005) and the time to VO2MAX (by 2.5 ± 0.8 min, p = 0.03). Amp-1 had no effect on VO2MAX but increased the time to VO2MAX (by 1.7 ± 0.5 min, p = 0.03). Neither dose improved running economy. In the warm, only rats in the Amp-1 group (+9.4 min, p = 0.02) had an increased time to exhaustion. Compared to control (41.6 ± 0.3°C), both amphetamine doses had higher temperatures at exhaustion: Amp-1 (42.0 ± 0.2°C) and Amp-2 (42.1 ± 0.2°C). Our results suggest that ergogenic effect of amphetamine occurs by masking fatigue but this effect may be offset in the warm with higher doses.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Mary Beth Brown
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, 1140 W Michigan St, Indianapolis, Indiana, USA, 46202
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, 720 Eskenazi Ave, Indianapolis, Indiana, USA, 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barhill Drive, Indianapolis, Indiana, USA, 46202
| |
Collapse
|
75
|
Xavier CH, Ianzer D, Lima AM, Marins FR, Pedrino GR, Vaz G, Menezes GB, Nalivaiko E, Fontes MAP. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus. PLoS One 2014; 9:e112412. [PMID: 25397884 PMCID: PMC4232378 DOI: 10.1371/journal.pone.0112412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 10/14/2014] [Indexed: 02/05/2023] Open
Abstract
The dorsomedial hypothalamus (DMH) and lateral/dorsolateral periaqueductal gray (PAG) are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R-) sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA). In the current study, we investigated whether excitatory amino acid (EAA) receptors in the DMH-PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p.) anesthetized rats, we observed that: (i) nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl) into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii) nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii) blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L-) PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL) into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.
Collapse
Affiliation(s)
- Carlos Henrique Xavier
- Laboratório de Fisiologia e Terapêutica Cardiovascular, Departamento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| | - Danielle Ianzer
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Augusto Martins Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Ribeiro Marins
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Rodrigues Pedrino
- Laboratório de Fisiologia e Terapêutica Cardiovascular, Departamento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Gisele Vaz
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Batista Menezes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Marco Antônio Peliky Fontes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
76
|
Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system. Neuroscience 2014; 285:60-9. [PMID: 25446344 DOI: 10.1016/j.neuroscience.2014.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 10/08/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system.
Collapse
|
77
|
Fassini A, Scopinho AA, Resstel LB, Correa FM. Opioid receptors in the prelimbic cortex modulate restraint stress-induced cardiovascular responses in the rat. Neuropharmacology 2014; 85:367-74. [DOI: 10.1016/j.neuropharm.2014.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/09/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
|
78
|
Koganezawa T, Paton JFR. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats. Exp Physiol 2014; 99:1453-66. [PMID: 25016023 DOI: 10.1113/expphysiol.2014.080069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Brainstem hypoperfusion is a major excitant of sympathetic activity triggering hypertension, but the exact mechanisms involved remain incompletely understood. A major source of excitatory drive to preganglionic sympathetic neurons originates from the ongoing activity of premotor neurons in the rostral ventrolateral medulla (RVLM sympathetic premotor neurons). The chemosensitivity profile of physiologically characterized RVLM sympathetic premotor neurons during hypoxia and hypercapnia remains unclear. We examined whether physiologically characterized RVLM sympathetic premotor neurons can sense brainstem ischaemia intrinsically. We addressed this issue in a unique in situ arterially perfused preparation before and after a complete blockade of fast excitatory and inhibitory synaptic transmission. During hypercapnic hypoxia, respiratory modulation of RVLM sympathetic premotor neurons was lost, but tonic firing of most RVLM sympathetic premotor neurons was elevated. After blockade of fast excitatory and inhibitory synaptic transmission, RVLM sympathetic premotor neurons continued to fire and exhibited an excitatory firing response to hypoxia but not hypercapnia. This study suggests that RVLM sympathetic premotor neurons can sustain high levels of neuronal discharge when oxygen is scarce. The intrinsic ability of RVLM sympathetic premotor neurons to maintain responsivity to brainstem hypoxia is an important mechanism ensuring adequate arterial pressure, essential for maintaining cerebral perfusion in the face of depressed ventilation and/or high cerebral vascular resistance.
Collapse
Affiliation(s)
- Tadachika Koganezawa
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
79
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Mouraux A, Le Bars D. Thermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute pain. J Neurophysiol 2014; 112:2185-98. [PMID: 25008410 DOI: 10.1152/jn.00721.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The tail and paws in rodents are heat exchangers involved in the maintenance of core body temperature (T(core)). They are also the most widely used target organs to study acute or chronic "models" of pain. We describe the fluctuations of vasomotor tone in the tail and paws in conditions of thermal neutrality and the constraints of these physiological processes on the responses to thermal nociceptive stimuli, commonly used as an index of pain. Skin temperatures were recorded with a calibrated thermal camera to monitor changes of vasomotor tone in the tail and paws of awake and anesthetized rats. In thermoneutral conditions, the sympathetic tone fluctuated at a rate of two to seven cycles/h. Increased mean arterial blood pressure (MAP; ∼46 mmHg) was followed by increased heart rate (HR; ∼45 beats/min) within 30 s, vasoconstriction of extremities (3.5-7°C range) within 3-5 min, and increased T(core) (∼0.7°C) within 6 min. Decreased MAP was followed by opposite events. There was a high correlation between HR and T(core) recorded 5-6 min later. The reaction time of the animal's response to a radiant thermal stimulus-heat ramp (6°C/s, 20 mm(2) spot) generated by a CO2 laser-directed to the tail depends on these variations. Consequently, the fluctuations in tail and paw temperature thus represent a serious confound for thermal nociceptive tests, particularly when they are conducted at thermal neutrality.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| |
Collapse
|
80
|
Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 2014; 19:741-756. [PMID: 24630813 PMCID: PMC4016184 DOI: 10.1016/j.cmet.2014.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermogenesis, the production of heat energy, is the specific, neurally regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Christopher J Madden
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| | - Domenico Tupone
- Department of Neurological Surgery Oregon Health & Science University Portland, OR, 97239 USA
| |
Collapse
|
81
|
Tupone D, Madden CJ, Morrison SF. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci 2014; 8:14. [PMID: 24570653 PMCID: PMC3916784 DOI: 10.3389/fnins.2014.00014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
82
|
Molkov YI, Zaretskaia MV, Zaretsky DV. Meth math: modeling temperature responses to methamphetamine. Am J Physiol Regul Integr Comp Physiol 2014; 306:R552-66. [PMID: 24500434 DOI: 10.1152/ajpregu.00365.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methamphetamine (Meth) can evoke extreme hyperthermia, which correlates with neurotoxicity and death in laboratory animals and humans. The objective of this study was to uncover the mechanisms of a complex dose dependence of temperature responses to Meth by mathematical modeling of the neuronal circuitry. On the basis of previous studies, we composed an artificial neural network with the core comprising three sequentially connected nodes: excitatory, medullary, and sympathetic preganglionic neuronal (SPN). Meth directly stimulated the excitatory node, an inhibitory drive targeted the medullary node, and, in high doses, an additional excitatory drive affected the SPN node. All model parameters (weights of connections, sensitivities, and time constants) were subject to fitting experimental time series of temperature responses to 1, 3, 5, and 10 mg/kg Meth. Modeling suggested that the temperature response to the lowest dose of Meth, which caused an immediate and short hyperthermia, involves neuronal excitation at a supramedullary level. The delay in response after the intermediate doses of Meth is a result of neuronal inhibition at the medullary level. Finally, the rapid and robust increase in body temperature induced by the highest dose of Meth involves activation of high-dose excitatory drive. The impairment in the inhibitory mechanism can provoke a life-threatening temperature rise and makes it a plausible cause of fatal hyperthermia in Meth users. We expect that studying putative neuronal sites of Meth action and the neuromediators involved in a detailed model of this system may lead to more effective strategies for prevention and treatment of hyperthermia induced by amphetamine-like stimulants.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; and
| | | | | |
Collapse
|
83
|
Chechi K, Nedergaard J, Richard D. Brown adipose tissue as an anti-obesity tissue in humans. Obes Rev 2014; 15:92-106. [PMID: 24165204 DOI: 10.1111/obr.12116] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 12/27/2022]
Abstract
During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.
Collapse
Affiliation(s)
- K Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | | | | |
Collapse
|
84
|
Kenney MJ, Ganta CK, Fels RJ. Disinhibition of RVLM neural circuits and regulation of sympathetic nerve discharge at peak hyperthermia. J Appl Physiol (1985) 2013; 115:1297-303. [PMID: 23990239 DOI: 10.1152/japplphysiol.00494.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperthermia is a potent activator of visceral sympathetic nerve discharge (SND), and the functional integrity of the rostral ventral lateral medulla (RVLM) is critically important for sustaining sympathoexcitation at peak hyperthermia. However, RVLM mechanisms mediating SND activation to acute heat stress are not well understood. Because RVLM GABA is tonically inhibitory to sympathetic nerve outflow, it is plausible to hypothesize that disinhibition of RVLM sympathetic neural circuits, via withdrawal of GABAergic tone, may affect SND regulation at peak hyperthermia. The effect of RVLM bicuculline (BIC; GABAA receptor antagonist, 100-200 pmol) microinjections on the level of renal SND in anesthetized rats was determined after internal body temperature (Tc) had been increased to 41.5°C. Temperature-control experiments involved RVLM BIC (100-200 pmol) microinjections, with Tc maintained at 38°C. As expected, acute heating significantly increased renal SND from control levels. Bilateral RVLM BIC microinjections at 41.5°C produced immediate and significant increases in renal SND above heating-induced levels of activation. Bilateral RVLM BIC microinjections at 38°C increased renal SND to similar levels as produced by RVLM BIC microinjections after Tc had been increased to 41.5°C (heating + RVLM BIC). These results demonstrate that a considerable level of RVLM GABAergic inhibition is sustained at peak hyperthermia, an interesting physiological response profile based on the significance of SND activation to cardiovascular regulation during heat stress.
Collapse
Affiliation(s)
- Michael J Kenney
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | | |
Collapse
|
85
|
Lockie SH, Stefanidis A, Oldfield BJ, Perez-Tilve D. Brown adipose tissue thermogenesis in the resistance to and reversal of obesity: A potential new mechanism contributing to the metabolic benefits of proglucagon-derived peptides. Adipocyte 2013; 2:196-200. [PMID: 24052894 PMCID: PMC3774694 DOI: 10.4161/adip.25417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/29/2022] Open
Abstract
The capacity for increased thermogenesis through brown adipose tissue (BAT) activation is important for body weight homeostasis. Differences in BAT thermogenesis can underlie significant differences in body weight and body composition, as we demonstrate in a rat model of obesity. This mini-review focuses on our current understanding of physiological BAT regulation, with a view to how it may be exploited therapeutically. BAT activation is under central nervous system control, with the most potent activator of BAT being the sympathetic nervous system, although other humoral and hormonal factors also contribute to BAT regulation. The peptide products of the proglucagon gene are important in energy homeostasis, with well-described effects on feeding and body weight. We recently demonstrated that the peptides glucagon-like peptide 1, glucagon, and oxyntomodulin are also able to induce BAT thermogenesis by a central, sympathetic mechanism. Given the wide spread use of GLP-1 receptor based therapies for type 2 diabetes, drugs targeting this system may be useful in a wider energy balance context.
Collapse
|
86
|
Lee SJ, Kirigiti M, Lindsley SR, Loche A, Madden CJ, Morrison SF, Smith MS, Grove KL. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 2013; 521:1891-914. [PMID: 23172177 DOI: 10.1002/cne.23265] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.
Collapse
Affiliation(s)
- Shin J Lee
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Hassan SF, Cornish JL, Goodchild AK. Respiratory, metabolic and cardiac functions are altered by disinhibition of subregions of the medial prefrontal cortex. J Physiol 2013; 591:6069-88. [PMID: 24042503 DOI: 10.1113/jphysiol.2013.262071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The prefrontal cortex (PFC) is referred to as the visceral motor cortex; however, little is known about whether this region influences respiratory or metabolic outflows. The aim of this study was to describe simultaneous changes in respiratory, metabolic and cardiovascular functions evoked by disinhibition of the medial PFC (mPFC) and adjacent lateral septal nucleus (LSN). In urethane-anaesthetized rats, bicuculline methiodide was microinjected (2 mm; GABA-A receptor antagonist) into 90 sites in the mPFC at 0.72-4.00 mm from bregma. Phrenic nerve amplitude and frequency, arterial pressure, heart rate, splanchnic and lumbar sympathetic nerve activities (SNA), expired CO2, and core and brown adipose tissue temperatures were measured. Novel findings included disturbances to respiratory rhythm evoked from all subregions of the mPFC. Injections into the cingulate cortex evoked reductions in central respiratory function exclusively, whereas in ventral sites, particularly the infralimbic region, increases in respiratory drive and frequency, and metabolic and cardiac outflows were evoked. Disinhibition of sites in surrounding regions revealed that the LSN could evoke cardiovascular changes accompanied by distinct oscillations in SNA, as well as increases in respiratory amplitude. We show that activation of neurons within the mPFC and LSN influence respiratory, metabolic and cardiac outflows in a site-dependent manner. This study has implications with respect to the altered PFC neuronal activity seen in stress-related and mental health disorders, and suggests how basic physiological systems may be affected.
Collapse
Affiliation(s)
- Sarah F Hassan
- A. K. Goodchild: Australian School of Advanced Medicine, Level 1, 2 Technology Place, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | |
Collapse
|
88
|
Martins Lima A, Xavier CH, Ferreira AJ, Raizada MK, Wallukat G, Velloso EPP, dos Santos RAS, Fontes MAP. Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol 2013; 305:H1057-67. [PMID: 23873801 DOI: 10.1152/ajpheart.00433.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent data indicate the brain angiotensin-converting enzyme/ANG II/AT1 receptor axis enhances emotional stress responses. In this study, we investigated whether its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/ANG-(1-7)/Mas axis, attenuate the cardiovascular responses to acute emotional stress. In conscious male Wistar rats, the tachycardia induced by acute stress (air jet 10 l/min) was attenuated by intravenous injection of ANG-(1-7) [Δ heart rate (HR): saline 136 ± 22 vs. ANG-(1-7) 61 ± 25 beats/min; P < 0.05]. Peripheral injection of the ACE2 activator compound, XNT, abolished the tachycardia induced by acute stress. We found a similar effect after intracerebroventricular injections of either ANG-(1-7) or XNT. Under urethane anesthesia, the tachycardia evoked by the beta-adrenergic agonist was markedly reduced by ANG-(1-7) [ΔHR: saline 100 ± 16 vs. ANG-(1-7) 18 ± 15 beats/min; P < 0.05]. The increase in renal sympathetic nerve activity (RSNA) evoked by isoproterenol was also abolished after the treatment with ANG-(1-7) [ΔRSNA: saline 39% vs. ANG-(1-7) -23%; P < 0.05]. The tachycardia evoked by disinhibition of dorsomedial hypothalamus neurons, a key nucleus for the cardiovascular response to emotional stress, was reduced by ∼45% after intravenous injection of ANG-(1-7). In cardiomyocyte, the incubation with ANG-(1-7) (1 μM) markedly attenuated the increases in beating rate induced by isoproterenol. Our data show that activation of the ACE2/ANG-(1-7)/Mas axis attenuates stress-induced tachycardia. This effect might be either via the central nervous system reducing anxiety level and/or interfering with the positive chronotropy mediated by activation of cardiac β adrenergic receptors. Therefore, ANG-(1-7) might contribute to reduce the sympathetic load to the heart during situations of emotional stress, reducing the cardiovascular risk.
Collapse
Affiliation(s)
- Augusto Martins Lima
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
89
|
da Silva GS, Giusti H, Castro OW, Garcia-Cairasco N, Gargaglioni LH, Branco LG, Glass ML. Serotonergic neurons in the nucleus raphé obscurus are not involved in the ventilatory and thermoregulatory responses to hypoxia in adult rats. Respir Physiol Neurobiol 2013; 187:139-48. [DOI: 10.1016/j.resp.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 11/25/2022]
|
90
|
Abstract
During the last decades, obesity research has focused on food intake regulation, whereas energy expenditure has been mainly measured based on whole-body oxygen consumption. With the renaissance of brown adipose tissue (BAT) thermogenesis as a potential drug target in humans, more thought is put into alternative heat-producing mechanisms. Also, the interaction of peripheral and central components to regulate thermogenesis requires further studies. Certainly, several of the novel molecular genetic tools available now, compared with 40 years ago, will be helpful to gain new insights in BAT-controlled energy homeostasis and promises new approaches to pharmacologically control body weight.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| | | |
Collapse
|
91
|
Rezai-Zadeh K, Münzberg H. Integration of sensory information via central thermoregulatory leptin targets. Physiol Behav 2013; 121:49-55. [PMID: 23458626 DOI: 10.1016/j.physbeh.2013.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The adipocyte derived hormone leptin acts in the brain to regulate body weight, food intake and energy expenditure. Even though it is well accepted that leptin regulates energy expenditure at least in part by modulating thermogenesis, the exact mechanisms are not clear. Particularly, it is unclear which central circuits regulate thermogenic leptin actions and if and how these may interact with feeding circuits. Within the last decade our understanding of central thermoregulatory circuits has increased substantially and allowed the identification of leptin target neurons (those expressing the long form leptin receptor - LepRb) that are involved in the sympathetic control of the heat generating brown adipose tissue (BAT). Indeed, LepRb neurons in the preoptic area and dorsomedial hypothalamus are part of the known thermoregulatory circuits controlling sympathetic premotor neurons that are located in the raphe pallidus. Thermoregulatory control and food intake are both regulated by leptin signaling pathways, even though distinct neuronal pathways have been described, respectively. Nevertheless, feeding status and control of body temperature and energy expenditure are tightly interconnected, but it is unknown how these aspects are connected within leptin signaling pathways to result in appropriate output signals (e.g. BAT thermogenesis). Indeed, cold-induced thermogenesis is potently blocked during fasting, which instead triggers an active decrease in energy expenditure and body temperature, a state known as torpor. In this article we will review recent data characterizing central thermoregulatory LepRb pathways and speculate on potential integration mechanisms that may relay anorexic and thermoregulatory leptin action to control energy homeostasis.
Collapse
Affiliation(s)
- Kavon Rezai-Zadeh
- Department of Central Leptin Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | | |
Collapse
|
92
|
Wagner KM, Roeder Z, Desrochers K, Buhler AV, Heinricher MM, Cleary DR. The dorsomedial hypothalamus mediates stress-induced hyperalgesia and is the source of the pronociceptive peptide cholecystokinin in the rostral ventromedial medulla. Neuroscience 2013; 238:29-38. [PMID: 23415792 DOI: 10.1016/j.neuroscience.2013.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/31/2022]
Abstract
While intense or highly arousing stressors have long been known to suppress pain, relatively mild or chronic stress can enhance pain. The mechanisms underlying stress-induced hyperalgesia (SIH) are only now being defined. The physiological and neuroendocrine effects of mild stress are mediated by the dorsomedial hypothalamus (DMH), which has documented connections with the rostral ventromedial medulla (RVM), a brainstem region capable of facilitating nociception. We hypothesized that stress engages both the DMH and the RVM to produce hyperalgesia. Direct pharmacological activation of the DMH increased sensitivity to mechanical stimulation in awake animals, confirming that the DMH can mediate behavioral hyperalgesia. A behavioral model of mild stress also produced mechanical hyperalgesia, which was blocked by inactivation of either the DMH or the RVM. The neuropeptide cholecystokinin (CCK) acts in the RVM to enhance nociception and is abundant in the DMH. Using a retrograde tracer and immunohistochemical labeling, we determined that CCK-expressing neurons in the DMH are the only significant supraspinal source of CCK in the RVM. However, not all neurons projecting from the DMH to the RVM contained CCK, and microinjection of the CCK2 receptor antagonist YM022 in the RVM did not interfere with SIH, suggesting that transmitters in addition to CCK play a significant role in this connection during acute stress. While the RVM has a well-established role in facilitation of nociception, the DMH, with its well-documented role in stress, may also be engaged in a number of chronic or abnormal pain states. Taken as a whole, these findings establish an anatomical and functional connection between the DMH and RVM by which stress can facilitate pain.
Collapse
Affiliation(s)
- K M Wagner
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
93
|
Xavier CH, Beig MI, Ianzer D, Fontes MAP, Nalivaiko E. Asymmetry in the control of cardiac performance by dorsomedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013; 304:R664-74. [PMID: 23408030 DOI: 10.1152/ajpregu.00401.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dorsomedial hypothalamus (DMH) plays a key role in integrating cardiovascular responses to stress. We have recently reported greater heart rate responses following disinhibition of the right side of the DMH (R-DMH) in anesthetized rats and greater suppression of stress-induced tachycardia following inhibition of the R-DMH in conscious rats [both compared with similar intervention in the left DMH (L-DMH)], suggesting existence of right/left side asymmetry in controlling cardiac chronotropic responses by the DMH. The aim of the present study was to determine whether similar asymmetry is present for controlling cardiac contractility. In anesthetized rats, microinjections of the GABAA antagonist bicuculline methiodide (BMI; 40 pmol/100 nl) into the DMH-evoked increases in heart rate (HR), left ventricular pressure (LVP), myocardial contractility (LVdP/dt), arterial pressure, and respiratory rate. DMH disinhibition also precipitated multiple ventricular and supraventricular ectopic beats. DMH-induced increases in HR, LVP, LVdP/dt, and in the number of ectopic beats dependent on the side of stimulation, with R-DMH provoking larger responses. In contrast, pressor and respiratory responses did not depend on the side of stimulation. Newly described DMH-induced inotropic responses were rate-, preload- and (largely) afterload-independent; they were mediated by sympathetic cardiac pathway, as revealed by their sensitivity to β-adrenergic blockade. We conclude that recruitment of DMH neurons causes sympathetically mediated positive chronotropic and inotropic effects, and that there is an asymmetry, at the level of the DMH, in the potency to elicit these effects, with R-DMH > L-DMH.
Collapse
Affiliation(s)
- Carlos Henrique Xavier
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
94
|
Combined testing of autonomic and sensory dysfunction in patients with unilateral facial flushing and sweating during exercise. Neurophysiol Clin 2013; 43:1-10. [PMID: 23290171 DOI: 10.1016/j.neucli.2012.09.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/24/2012] [Accepted: 09/22/2012] [Indexed: 11/23/2022] Open
Abstract
AIMS OF THE STUDY Patients with unilateral facial flushing are occasionally referred to clinical neurophysiological evaluation with the question of the site of lesion. These patients may have a mixture of autonomic and sensory symptoms. We wanted to study to which extent a combined autonomic and sensory clinical neurophysiological testing before and after exercise may help in the diagnostic evaluation of the patients. PATIENTS AND METHODS Five patients were investigated at rest with quantitative sensory thresholds (QST, measurement of thermal thresholds) and quantitative sudomotor axon reflex test (QSART) in all extremities. Sweet volumes (QSWEAT) and skin temperatures were then measured after 30 to 60 minutes of exercise. RESULTS Marked side-to-side differences were observed for QST and QSART at rest as well as for QSWEAT and skin temperatures following exercise, in accordance with the patients' symptoms. However, asymptomatic abnormal findings were also demonstrated in the feet of four patients, following both crossed and non-crossed distributions. EMG/neurography and MRI-findings were normal in all patients and no aetiological explanations were found. CONCLUSION Combined autonomic and sensory testing including the legs provided evidence of unexpectedly more widespread abnormalities, including asymptomatic findings. Although the patients presented with seemingly similar symptoms, there was a striking heterogeneity in their results, suggesting different sites of dysfunction. An extracranial lesion was considered likely in one or maybe two patients, while the possibility of a central lesion had to be considered in the three other patients.
Collapse
|
95
|
Biagioni AF, de Freitas RL, da Silva JA, de Oliveira RC, de Oliveira R, Alves VM, Coimbra NC. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways. Neuropharmacology 2012. [PMID: 23201351 DOI: 10.1016/j.neuropharm.2012.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH.
Collapse
Affiliation(s)
- Audrey Francisco Biagioni
- Laboratório de Neuroanatomia & Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Av. dos Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
96
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
97
|
Müller-Ribeiro FCDF, Zaretsky DV, Zaretskaia MV, Santos RAS, DiMicco JA, Fontes MAP. Contribution of infralimbic cortex in the cardiovascular response to acute stress. Am J Physiol Regul Integr Comp Physiol 2012; 303:R639-50. [PMID: 22785427 DOI: 10.1152/ajpregu.00573.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The infralimbic region of the medial prefrontal cortex (IL) modulates autonomic and neuroendocrine function via projections to subcortical structures involved in the response to stress. We evaluated the contribution of the IL to the cardiovascular response evoked by acute stress. Under anesthesia (80 mg/kg ketamine-11.5 mg/kg xylazine), rats were implanted with telemetry probes or arterial lines for recording heart rate and blood pressure. Guide cannulas were implanted to target the IL for microinjection of muscimol (100 pmol/100 nl), N-methyl-d-aspartate (NMDA) (6 pmol/100 nl), or vehicle (100 nl). Microinjection of muscimol, an agonist of GABA(A) receptors, into the IL had no effect on stress-evoked cardiovascular and thermogenic changes in any of the paradigms evaluated (cage switch, restraint plus air-jet noise, or air-jet stress). However, microinjection of the excitatory amino acid NMDA into the IL attenuated the pressor and tachycardic response to air-jet stress. Pretreatment with the selective NMDA antagonist dl-2-amino-5-phosphonopentanoic acid (AP-5, 100 pmol/100 nl) blocked the effect of NMDA on the cardiovascular response to air-jet stress. We conclude that 1) the IL region is not tonically involved in cardiovascular or thermogenic control during stress or under baseline conditions, and 2) activation of NMDA receptors in the IL can suppress the cardiovascular response to acute stress exposure.
Collapse
|
98
|
Renner E, Puskás N, Dobolyi A, Palkovits M. Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides 2012; 35:14-22. [PMID: 22401907 DOI: 10.1016/j.peptides.2012.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 01/01/2023]
Abstract
A high number of neurons express c-fos in response to unlimited food intake in fasted rats in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMHv). We report here, that in same conditions, limited food consumption failed to induce Fos expression in DMHv neurons suggesting that satiation should be one of the important signals that activate these neurons. The possible origin of fibers conducting satiation signals to the DMHv could be in the lower brainstem, especially glucagon-like peptide-1 (GLP-1)-containing neurons in the nucleus of the solitary tract (NTS). We demonstrate that GLP-1-immunoreactive fibers and fiber terminals topographically overlap with activated Fos-positive neurons in the DMHv in refed rats. Using immunocytochemistry and in situ hybridization histochemistry, we demonstrated GLP-1 receptors in Fos-expressing neurons of the DMH. Unilateral transections of ascending GLP-1-containing fibers from the NTS inside the pons in refed rats (unlimited food consumption) resulted in a dramatic decrease in the density of GLP-1 fibers and in the number of Fos-immunoreactive neurons in the DMHv, but only on the side of the transection. Contralateral to the transection, neither the GLP-1 fiber density nor the number of Fos-positive cells changed significantly. Meanwhile, the density of GLP-1 immunoreactivity was markedly accumulated in transected nerve fibers caudal to the cuts, as a consequence of the interruption of the ascending GLP-1 transport route. These findings suggest that the solitary-hypothalamic projections may represent the neuronal route through GLP-1 neurons of the NTS activate DMHv neurons via GLP-1 receptors by conveying information on satiety.
Collapse
Affiliation(s)
- E Renner
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Semmelweis University, Budapest H-1094, Hungary
| | | | | | | |
Collapse
|
99
|
Vaughan CH, Bartness TJ. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1049-58. [PMID: 22378771 DOI: 10.1152/ajpregu.00640.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.
Collapse
Affiliation(s)
- Cheryl H Vaughan
- Dept. of Biology, Georgia State Univ., Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
100
|
Abstract
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described.
Collapse
Affiliation(s)
- Shaun F. Morrison
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence: Shaun F. Morrison, Neurological Surgery, Oregon Health and Science University, 3181 South West Sam Jackson Park Road, Portland, OR 97239, USA. e-mail:
| | - Christopher J. Madden
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
| | - Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|