51
|
Pham TH, Defaix C, Xu X, Deng SX, Fabresse N, Alvarez JC, Landry DW, Brachman RA, Denny CA, Gardier AM. Common Neurotransmission Recruited in (R,S)-Ketamine and (2R,6R)-Hydroxynorketamine-Induced Sustained Antidepressant-like Effects. Biol Psychiatry 2018; 84:e3-e6. [PMID: 29174592 DOI: 10.1016/j.biopsych.2017.10.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Thu Ha Pham
- CESP/UMR-S 1178, Université Paris-Sud, Faculté de Pharmacie, INSERM, Université Paris-Saclay, Châtenay Malabry, France
| | - Céline Defaix
- CESP/UMR-S 1178, Université Paris-Sud, Faculté de Pharmacie, INSERM, Université Paris-Saclay, Châtenay Malabry, France
| | - Xiaoming Xu
- Department of Medicine, Columbia University, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University, New York, New York
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University, New York, New York
| | - Nicolas Fabresse
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Jean-Claude Alvarez
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire Raymond Poincaré, AP-HP, Garches, France
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University, New York, New York
| | | | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, New York; Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, Inc/New York State Psychiatric Institute, New York, New York
| | - Alain M Gardier
- CESP/UMR-S 1178, Université Paris-Sud, Faculté de Pharmacie, INSERM, Université Paris-Saclay, Châtenay Malabry, France.
| |
Collapse
|
52
|
Alasmari F, Bell RL, Rao PSS, Hammad AM, Sari Y. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats. Pharmacol Biochem Behav 2018; 170:44-55. [PMID: 29753887 PMCID: PMC7714273 DOI: 10.1016/j.pbb.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats.
Collapse
Affiliation(s)
- Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - P S S Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH 45840, USA
| | - Alaa M Hammad
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
53
|
Lee SW, Park HJ, Im W, Kim M, Hong S. Repeated immune activation with low-dose lipopolysaccharide attenuates the severity of Huntington's disease in R6/2 transgenic mice. Anim Cells Syst (Seoul) 2018; 22:219-226. [PMID: 30460101 PMCID: PMC6138304 DOI: 10.1080/19768354.2018.1473291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin gene. Previously, therapeutic approaches using anti-inflammatory agents were reportedly not effective for preventing HD progression. Since whether immune responses contribute to the onset of HD is not entirely understood, we herein investigated the role of immune activation in HD using the R6/2 transgenic (Tg) HD model mouse. IL12 production and the expression of costimulatory molecules (e.g. CD86 and CD40) on innate immune cells (DCs and macrophages) were diminished in the disease stage of R6/2 Tg mice. Moreover, the number of adaptive T cells (CD4+ and CD8+ T cells) and the frequency of effector memory phenotype CD4+ T cells were decreased in these mice. These results suggest that the severity of HD is closely related to an impaired immune system and might be reversed by activation of the immune system. Since lipopolysaccharide (LPS), a potent TLR4 agonist, activates immune cells, we evaluated the effect of immune activation on the pathogenesis of HD using LPS. The repeated immune activation with low-dose LPS significantly recovered the impaired immune status back to normal levels and attenuated both severe weight loss and the increased clasping phenotype found in the disease stage of R6/2 Tg mice, consequently resulting in prolonged survival. Taken together, these results strongly indicate that immune activation has beneficial influences on alleviating HD pathology and could provide new therapeutic strategies for HD.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| |
Collapse
|
54
|
Region- and Activity-Dependent Regulation of Extracellular Glutamate. J Neurosci 2018; 38:5351-5366. [PMID: 29760178 DOI: 10.1523/jneurosci.3213-17.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Transporter-mediated glutamate uptake plays an essential role in shaping synaptic neurotransmission. The rapid removal of synaptically released glutamate ensures the high temporal dynamics characteristic of fast excitatory chemical neurotransmission and prevents the overexcitation of extrasynaptic NMDA receptors that have been implicated in synaptic plasticity impairments and cell death. Despite clear regional differences in plasticity and excitotoxic thresholds, few studies have compared extracellular glutamate dynamics across different brain regions and in response to a range of neural activity including plasticity-inducing stimuli. Here, we used the rapid extracellular fluorescent glutamate sensor iGluSnFR (intensity-based glutamate-sensing fluorescent reporter) and high-speed imaging (205 frames per second) to quantify relative differences in glutamate clearance rates over a wide range of presynaptic activity in situ in the hippocampus, cortex, and striatum of male C57/BL6NCrl mice. We found that the hippocampus was significantly more efficient than the cortex and striatum at clearing synaptically released glutamate and that this efficiency could be attributed, at least in part, to faster glutamate diffusion away from the release site. In addition, we found that pharmacological inhibition of GLT-1, the brain's most abundant glutamate transporter, slowed clearance rates to only a fraction (∼20-25%) of the effect induced by nonselective transporter blockade, regardless of the brain region and the duration of presynaptic activity. In all, our data reveal clear regional differences in glutamate dynamics after neural activity and suggest that non-GLT-1 transporters can make a large contribution to the rate of glutamate clearance in the hippocampus, cortex, and striatum.SIGNIFICANCE STATEMENT Glutamate is the brain's most abundant neurotransmitter, and although essential for rapid cell-cell communication, too much glutamate can negatively impact cellular health. Extracellular glutamate levels are tightly regulated by membrane-bound transporters that rapidly remove the glutamate that is released during neural activity, thereby shaping both the spatial and temporal dynamics of excitatory neurotransmission. Using high-speed imaging of an optical sensor of extracellular glutamate, we show that glutamate dynamics vary widely from one brain region to the next and are highly dependent on the duration of synaptic activity. Our data demonstrate the heterogeneous nature of glutamate regulation in the brain and suggest that such regional differences can dramatically affect both the localization and duration of postsynaptic receptor activation during synaptic neurotransmission.
Collapse
|
55
|
Rebec GV. Corticostriatal network dysfunction in Huntington's disease: Deficits in neural processing, glutamate transport, and ascorbate release. CNS Neurosci Ther 2018; 24:281-291. [PMID: 29464896 PMCID: PMC6489880 DOI: 10.1111/cns.12828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/25/2022] Open
Abstract
AIMS This review summarizes evidence for dysfunctional connectivity between cortical and striatal neurons in Huntington's disease (HD), a fatal neurodegenerative condition caused by a single gene mutation. The focus is on data derived from recording of electrophysiological signals in behaving transgenic mouse models. DISCUSSIONS Firing patterns of individual neurons and the frequency oscillations of local field potentials indicate a disruption in corticostriatal processing driven, in large part, by interactions between cells that contain the mutant gene rather than the mutant gene alone. Dysregulation of glutamate, an excitatory amino acid released by cortical afferents, plays a key role in the breakdown of corticostriatal communication, a process modulated by ascorbate, an antioxidant vitamin found in high concentration in striatum. Up-regulation of glutamate transport by drug administration or viral-vector delivery improves ascorbate homeostasis and neurobehavioral processing in HD mice. Further analysis of electrophysiological data, including the use of sophisticated computational strategies, is required to discern how behavioral demands modulate the flow of corticostriatal information and its disruption by HD. CONCLUSIONS Long before massive cell loss occurs, HD impairs the mechanisms by which cortical and striatal neurons communicate. A key problem identified in transgenic animal models is dysregulation of the dynamic changes in extracellular glutamate and ascorbate. Improved understanding of how these neurochemical systems impact corticostriatal communication is necessary before an effective therapeutic strategy can emerge.
Collapse
Affiliation(s)
- George V. Rebec
- Program in NeuroscienceDepartment of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| |
Collapse
|
56
|
Wang D, Wang X. GLT-1 mediates exercise-induced fatigue through modulation of glutamate and lactate in rats. Neuropathology 2018; 38:237-246. [DOI: 10.1111/neup.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dongmei Wang
- Physical Education and Sports College; Beijing Normal University; Beijing China
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| | - Xingtong Wang
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| |
Collapse
|
57
|
Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions. Brain Res Bull 2018; 136:17-25. [DOI: 10.1016/j.brainresbull.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/03/2023]
|
58
|
Abstract
Huntington disease is a monogenic neurodegenerative disorder that displays an autosomal-dominant pattern of inheritance. It is characterized by motor, psychiatric, and cognitive symptoms that progress over 15-20 years. Since the identification of the causative genetic mutation in 1993 much has been discovered about the underlying pathogenic mechanisms, but as yet there are no disease-modifying therapies available. This chapter reviews the epidemiology, genetic basis, pathogenesis, presentation, and clinical management of Huntington disease. The principles of genetic testing are explained. We also describe recent developments in the ongoing search for therapeutics and for biomarkers to track disease progression.
Collapse
Affiliation(s)
- Rhia Ghosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
59
|
Ghosh R, Tabrizi SJ. Clinical Features of Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:1-28. [PMID: 29427096 DOI: 10.1007/978-3-319-71779-1_1] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is the most common monogenic neurodegenerative disease and the commonest genetic dementia in the developed world. With autosomal dominant inheritance, typically mid-life onset, and unrelenting progressive motor, cognitive and psychiatric symptoms over 15-20 years, its impact on patients and their families is devastating. The causative genetic mutation is an expanded CAG trinucleotide repeat in the gene encoding the Huntingtin protein, which leads to a prolonged polyglutamine stretch at the N-terminus of the protein. Since the discovery of the gene over 20 years ago much progress has been made in HD research, and although there are currently no disease-modifying treatments available, there are a number of exciting potential therapeutic developments in the pipeline. In this chapter we discuss the epidemiology, genetics and pathogenesis of HD as well as the clinical presentation and management of HD, which is currently focused on symptomatic treatment. The principles of genetic testing for HD are also explained. Recent developments in therapeutics research, including gene silencing and targeted small molecule approaches are also discussed, as well as the search for HD biomarkers that will assist the validation of these potentially new treatments.
Collapse
Affiliation(s)
- Rhia Ghosh
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
60
|
GABA Uptake Inhibition Reduces In Vivo Extraction Fraction in the Ventral Tegmental Area of Long Evans Rats Measured by Quantitative Microdialysis Under Transient Conditions. Neurochem Res 2017; 43:306-315. [PMID: 29127598 DOI: 10.1007/s11064-017-2424-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/17/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4 ± 1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19 ± 0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170 ± 4 nM and reduced in vivo extraction fraction to 0.112 ± 0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.
Collapse
|
61
|
Kang S, Li J, Bekker A, Ye JH. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 2017; 129:47-56. [PMID: 29128307 DOI: 10.1016/j.neuropharm.2017.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism and psychiatric disorders like depression and anxiety are often comorbid. Although the mechanisms underlying this comorbidity are unclear, emerging evidence suggests that maladaptation of the glial glutamate transporter GLT-1 may play a role. Findings from animal and human studies have linked aversive states, including those related to drugs of abuse and depression, to aberrant activity in the lateral habenula (LHb). The relationship between GLT-1 maladaptation, LHb activity, and abnormal behaviors related to alcohol withdrawal, however, remains unknown. Here we show that dihydrokainic acid (DHK), a GLT-1 blocker, potentiated glutamatergic transmission to LHb neurons in slices from ethanol naïve rats; this potentiation, though, was not observed in slices from rats withdrawn from repeated in vivo ethanol administration, suggesting reduced GLT-1 function. Furthermore, GLT-1 protein expression was reduced in the LHb of withdrawn rats. This reduction was restored by systemic administration of ceftriaxone, a β-lactam antibiotic known to increase GLT-1 expression. Systemic ceftriaxone treatment also normalized the hyperactivity of LHb neurons in slices from withdrawn rats, which was reversed by bath-applied DHK. Finally, systemic administration of ceftriaxone alleviated depression- and anxiety-like behaviors, which was fully blocked by intra-LHb administrations of DHK, suggesting that GLT-1's function in the LHb is critical. These findings highlight the significant role of LHb astrocytic GLT-1 in the hyperactivity of LHb neurons, and in depressive- and anxiety-like behaviors during ethanol withdrawal. Thus, GLT-1 in the LHb could serve as a therapeutic target for psychiatric disorders comorbid with ethanol withdrawal.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
62
|
Veldman MB, Yang XW. Molecular insights into cortico-striatal miscommunications in Huntington's disease. Curr Opin Neurobiol 2017; 48:79-89. [PMID: 29125980 DOI: 10.1016/j.conb.2017.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD), a dominantly inherited neurodegenerative disease, is defined by its genetic cause, a CAG-repeat expansion in the HTT gene, its motor and psychiatric symptomology and primary loss of striatal medium spiny neurons (MSNs). However, the molecular mechanisms from genetic lesion to disease phenotype remain largely unclear. Mouse models of HD have been created that exhibit phenotypes partially recapitulating those in the patient, and specifically, cortico-striatal disconnectivity appears to be a shared pathogenic event shared by HD mouse models and patients. Molecular studies have begun to unveil converging molecular and cellular pathogenic mechanisms that may account for cortico-striatal miscommunication in various HD mouse models. Systems biological approaches help to illuminate synaptic molecular networks as a nexus for HD cortio-striatal pathogenesis, and may offer new candidate targets to modify the disease.
Collapse
Affiliation(s)
- Matthew B Veldman
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - X William Yang
- Center for Neurobehavioral Genetics and Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
63
|
Chotibut T, Meadows S, Kasanga E, McInnis T, Cantu MA, Bishop C, Salvatore MF. Ceftriaxone reduces L-dopa-induced dyskinesia severity in 6-hydroxydopamine parkinson's disease model. Mov Disord 2017; 32:1547-1556. [PMID: 28631864 PMCID: PMC5681381 DOI: 10.1002/mds.27077] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increased extracellular glutamate may contribute to l-dopa induced dyskinesia, a debilitating side effect faced by Parkinson's disease patients 5 to 10 years after l-dopa treatment. Therapeutic strategies targeting postsynaptic glutamate receptors to mitigate dyskinesia may have limited success because of significant side effects. Increasing glutamate uptake may be another approach to attenuate excess glutamatergic neurotransmission to mitigate dyskinesia severity or prolong the time prior to onset. Initiation of a ceftriaxone regimen at the time of nigrostriatal lesion can attenuate tyrosine hydroxylase loss in conjunction with increased glutamate uptake and glutamate transporter GLT-1 expression in a rat 6-hydroxydopamine model. In this article, we examined if a ceftriaxone regimen initiated 1 week after nigrostriatal lesion, but prior to l-dopa, could reduce l-dopa-induced dyskinesia in an established dyskinesia model. METHODS Ceftriaxone (200 mg/kg, intraperitoneal, once daily, 7 consecutive days) was initiated 7 days post-6-hydroxydopamine lesion (days 7-13) and continued every other week (days 21-27, 35-39) until the end of the study (day 39 postlesion, 20 days of l-dopa). RESULTS Ceftriaxone significantly reduced abnormal involuntary movements at 5 time points examined during chronic l-dopa treatment. Partial recovery of motor impairment from nigrostriatal lesion by l-dopa was unaffected by ceftriaxone. The ceftriaxone-treated l-dopa group had significantly increased striatal GLT-1 expression and glutamate uptake. Striatal tyrosine hydroxylase loss in this group was not significantly different when compared with the l-dopa alone group. CONCLUSIONS Initiation of ceftriaxone after nigrostriatal lesion, but prior to and during l-dopa, may reduce dyskinesia severity without affecting l-dopa efficacy or the reduction of striatal tyrosine hydroxylase loss. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tanya Chotibut
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| | - Samantha Meadows
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - Ella Kasanga
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Tamara McInnis
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Mark A. Cantu
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000
| | - Michael F. Salvatore
- Institute for Healthy Aging & Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie, Fort Worth, TX 76107
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130
| |
Collapse
|
64
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
66
|
Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J Neurosci 2017; 36:4959-75. [PMID: 27147650 DOI: 10.1523/jneurosci.0316-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED This study evaluates single-cell indicators of glutamate transport in sulforhodamine 101-positive astrocytes of Q175 mice, a knock-in model of Huntington's disease (HD). Transport-related fluorescent ratio signals obtained with sodium-binding benzofuran isophtalate (SBFI) AM from unperturbed or voltage-clamped astrocytes and respective glutamate transporter currents (GTCs) were induced by photolytic or synaptic glutamate release and isolated pharmacologically. The HD-induced deficit ranged from -27% (GTC maximum at -100 mV in Ba(2+)) to -41% (sodium transients in astrocytes after loading SBFI-AM). Our specific aim was to clarify the mechanism(s) by which Kir4.1 channels can influence glutamate transport, as determined by either Na(+) imaging or transport-associated electrical signals. A decrease of Kir4.1 conductance was mimicked with Ba(2+) (200 μm), and an increase of Kir4.1 expression was obtained by intravenous administration of AAV9-gfaABC1D-Kir4.1-EGFP. The decrease of Kir4.1 conductance reduced the sodium transients but increased the amplitudes of somatic GTCs. Accordingly, after genetic upregulation of Kir4.1, somatic GTCs were found to be decreased. In individual cells, there was a negative correlation between Kir4.1 currents and GTCs. The relative effect of the Kir4.1 conductance was higher in the astrocyte periphery. These and other results suggest that the Kir4.1 conductance affects glutamate transporter activity in a dual manner: (1) by providing the driving force (voltage dependency of the transport itself) and (2) by limiting the lateral charge transfer (thereby reducing the interference with other electrogenic transporter functions). This leads to the testable prediction that restoring the high conductance state of passive astrocytes will not only normalize glutamate uptake but also restore other astrocytic transporter activities afflicted with HD. SIGNIFICANCE STATEMENT Insufficiency of astrocytic glutamate uptake is a major element in the pathophysiology of neurodegenerative diseases. Considering the heterogeneity of astrocytes and their differential susceptibility to therapeutic interventions, it becomes necessary to evaluate the determinants of transport activity in individual astroglial cells. We have examined intracellular Na(+) transients and glutamate transporter currents as the most telling indicators of glutamate clearance after synaptic or photolytic release of glutamate in striatal slices. The results show that, in Huntington's disease, glutamate uptake activity critically depends on Kir4.1. These channels enable the high conductance state of the astrocytic plasma membrane, which ensures the driving force for glutamate transport and dumps the transport-associated depolarization along the astrocyte processes. This has significant implications for developing therapeutic targets.
Collapse
|
67
|
Hakami AY, Sari Y. β-Lactamase inhibitor, clavulanic acid, attenuates ethanol intake and increases glial glutamate transporters expression in alcohol preferring rats. Neurosci Lett 2017; 657:140-145. [PMID: 28826758 DOI: 10.1016/j.neulet.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Studies from our laboratory showed that upregulation of glutamate transporter 1 (GLT-1) and cystine-glutamate exchanger (xCT) expression with ceftriaxone, β-lactam antibiotic, in the brain was associated with attenuation of ethanol consumption. In this study, we tested clavulanic acid, which is another β-lactam compound with negligible antimicrobial activity, on ethanol consumption and expression of GLT-1, xCT and glutamate aspartate transporter (GLAST) in male alcohol-preferring (P) rats. Clavulanic acid has the central β-lactam pharmacophore that is critical for the upregulation of GLT-1 and xCT expression. We found that clavulanic acid, at 5mg/kg (i.p.) dose, significantly attenuated ethanol consumption and ethanol preference in P rats as compared to vehicle-treated group. This effect was associated with a significant increase in water intake in clavulanic acid treated group. Importantly, we found that clavulanic acid increased the expression of GLT-1 and xCT in nucleus accumbens. However, there was no effect of clavulanic acid on GLAST expression in the nucleus accumbens. Clavulanic acid treatment did not upregulate the expression of GLT-1, xCT and GLAST in prefrontal cortex. These findings revealed that clavulanic acid at 20-40 fold lower dose than ceftriaxone can attenuate ethanol consumption, in part through upregulation of GLT-1 and xCT expression in the nucleus accumbens. Thus, we suggest that clavulanic acid might be used as an alternative option to ceftriaxone to attenuate ethanol drinking behavior.
Collapse
Affiliation(s)
- Alqassem Y Hakami
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
68
|
Liu B, Teschemacher AG, Kasparov S. Astroglia as a cellular target for neuroprotection and treatment of neuro-psychiatric disorders. Glia 2017; 65:1205-1226. [PMID: 28300322 PMCID: PMC5669250 DOI: 10.1002/glia.23136] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022]
Abstract
Astrocytes are key homeostatic cells of the central nervous system. They cooperate with neurons at several levels, including ion and water homeostasis, chemical signal transmission, blood flow regulation, immune and oxidative stress defense, supply of metabolites and neurogenesis. Astroglia is also important for viability and maturation of stem-cell derived neurons. Neurons critically depend on intrinsic protective and supportive properties of astrocytes. Conversely, all forms of pathogenic stimuli which disturb astrocytic functions compromise neuronal functionality and viability. Support of neuroprotective functions of astrocytes is thus an important strategy for enhancing neuronal survival and improving outcomes in disease states. In this review, we first briefly examine how astrocytic dysfunction contributes to major neurological disorders, which are traditionally associated with malfunctioning of processes residing in neurons. Possible molecular entities within astrocytes that could underpin the cause, initiation and/or progression of various disorders are outlined. In the second section, we explore opportunities enhancing neuroprotective function of astroglia. We consider targeting astrocyte-specific molecular pathways which are involved in neuroprotection or could be expected to have a therapeutic value. Examples of those are oxidative stress defense mechanisms, glutamate uptake, purinergic signaling, water and ion homeostasis, connexin gap junctions, neurotrophic factors and the Nrf2-ARE pathway. We propose that enhancing the neuroprotective capacity of astrocytes is a viable strategy for improving brain resilience and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Beihui Liu
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Anja G. Teschemacher
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
| | - Sergey Kasparov
- School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBS8 1TDUnited Kingdom
- Institute for Chemistry and BiologyBaltic Federal UniversityKaliningradRussian Federation
| |
Collapse
|
69
|
Parievsky A, Moore C, Kamdjou T, Cepeda C, Meshul CK, Levine MS. Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2017; 108:29-44. [PMID: 28757327 DOI: 10.1016/j.nbd.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is a fatal genetic disorder characterized by cell death of medium-sized spiny neurons (MSNs) in the striatum, traditionally attributed to excessive glutamate inputs and/or receptor sensitivity. While changes in corticostriatal projections have typically been studied in mouse models of HD, morphological and functional alterations in thalamostriatal projections have received less attention. In this study, an adeno-associated virus expressing channelrhodopsin-2 under the calcium/calmodulin-dependent protein kinase IIα promoter was injected into the sensorimotor cortex or the thalamic centromedian-parafascicular nuclear complex in the R6/2 mouse model of HD, to permit selective activation of corticostriatal or thalamostriatal projections, respectively. In symptomatic R6/2 mice, peak amplitudes and areas of corticostriatal glutamate AMPA and NMDA receptor-mediated responses were reduced. In contrast, although peak amplitudes of AMPA and NMDA receptor-mediated thalamostriatal responses also were reduced, the areas remained unchanged due to an increase in response decay times. Blockade of glutamate reuptake further increased response areas and slowed rise and decay times of NMDA responses. These effects appeared more pronounced at thalamostriatal synapses of R6/2 mice, suggesting increased activation of extrasynaptic NMDA receptors. In addition, the probability of glutamate release was higher at thalamostriatal than corticostriatal synapses, particularly in R6/2 mice. Morphological studies indicated that the density of all excitatory synaptic contacts onto MSNs was reduced, which matches the basic electrophysiological findings of reduced amplitudes. There was a consistent reduction in the area of spines but little change in presynaptic terminal size, indicating that the postsynaptic spine may be more significantly affected than presynaptic terminals. These results highlight the significant and differential contribution of the thalamostriatal projection to glutamate excitotoxicity in HD.
Collapse
Affiliation(s)
- Anna Parievsky
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Cindy Moore
- Research Services, VA Portland Health Care System, Oregon Health & Science University, Portland, OR, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles K Meshul
- Research Services, VA Portland Health Care System, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
70
|
Neuroprotective effects of ceftriaxone treatment on cognitive and neuronal deficits in a rat model of accelerated senescence. Behav Brain Res 2017; 330:8-16. [DOI: 10.1016/j.bbr.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
71
|
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease. Trends Neurosci 2017; 40:422-437. [PMID: 28578789 PMCID: PMC5706770 DOI: 10.1016/j.tins.2017.05.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 01/02/2023]
Abstract
Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter clearance, as well as on the use of transplanted astrocytes to produce therapeutic benefit in mouse models of HD. Overall, the data suggest that astrocyte dysfunction is an important contributor to the onset and progression of some HD symptoms in mice. Additional exploration of astrocytes in HD mouse models and humans is needed and may provide new therapeutic opportunities to explore in conjunction with neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA; Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | - Roger Cachope
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, CA 90045, USA
| | | | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14642, USA; Center for Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rosemarie Grantyn
- Exzellenzcluster NeuroCure & Abt. Experimentelle Neurologie, Charité - Universitätsmedizin Berlin, Robert-Koch-Platz 4, D-10115 Berlin, Germany
| |
Collapse
|
72
|
Hammad AM, Alasmari F, Althobaiti YS, Sari Y. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav Brain Res 2017. [PMID: 28624317 DOI: 10.1016/j.bbr.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamatergic system has an important role in cocaine-seeking behavior. Studies have reported that chronic exposure to cocaine induces downregulation of glutamate transporter-1 (GLT-1) and cystine/glutamate exchanger (xCT) in the central reward brain regions. Ceftriaxone, a β-lactam antibiotic, restored GLT-1 expression and consequently reduced cue-induced reinstatement of cocaine-seeking behavior. In this study, we investigated the reinstatement to cocaine (20mg/kg, i.p.) seeking behavior using a conditioned place preference (CPP) paradigm in male alcohol-preferring (P) rats. In addition, we investigated the effects of Ampicillin/Sulbactam (AMP/SUL) (200mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement. We also investigated the effects of AMP/SUL on the expression of glial glutamate transporters and metabotropic glutamate receptor 1 (mGluR1) in the nucleus accumbens (NAc) core and shell and the dorsomedial prefrontal cortex (dmPFC). We found that AMP/SUL treatment reduced cocaine-triggered reinstatement. This effect was associated with a decrease in locomotor activity. Moreover, GLT-1 and xCT were downregulated in the NAc core and shell, but not in the dmPFC, following cocaine-primed reinstatement. However, cocaine exposure increased the expression of mGluR1 in the NAc core, but not in the NAc shell or dmPFC. Importantly, AMP/SUL treatment normalized GLT-1 and xCT expression in the NAc core and shell; however, the drug normalized mGluR1 expression in the NAc core only. Additionally, AMP/SUL increased the expression of GLT-1 and xCT in the dmPFC as compared to the water naïve group. These findings demonstrated that glial glutamate transporters and mGluR1 in the mesocorticolimbic area could be potential therapeutic targets for the attenuation of reinstatement to cocaine-seeking behavior.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
73
|
Hsieh MH, Meng WY, Liao WC, Weng JC, Li HH, Su HL, Lin CL, Hung CS, Ho YJ. Ceftriaxone reverses deficits of behavior and neurogenesis in an MPTP-induced rat model of Parkinson's disease dementia. Brain Res Bull 2017; 132:129-138. [PMID: 28576659 DOI: 10.1016/j.brainresbull.2017.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/22/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Hyperactivity of the glutamatergic system is involved in excitotoxicity and neurodegeneration in Parkinson's disease (PD) so that glutamatergic modulation maybe a potential therapeutic target for PD. Ceftriaxone (CEF) has been reported to increase glutamate uptake by increasing glutamate transporter expression and has been demonstrated neuroprotective effects in animal study. The aim of this study was to determine the effects of CEF on behavior and neurogenesis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD rat model. MPTP was stereotaxically injected into the substantia nigra pars compacta (SNc) of male Wistar rats. Starting on the same day after MPTP lesioning (day 0), the rats were injected daily with either CEF or saline for 14days and underwent a T-maze test on days 8-10 and an object recognition test on days 12-14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased motor function, working memory, and object recognition and reduced neurogenesis in the substantial nigra and dentate gyrus of the hippocampus. These behavioral and neuronal changes were prevented by CEF treatment. To our knowledge, this is the first study showing that CEF prevents loss of neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- Department of Psychiatry, Chung Shan Medical University Hospital, Department of Psychiatry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC
| | - Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, ROC
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
74
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
75
|
Wang JKT, Langfelder P, Horvath S, Palazzolo MJ. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. Front Neurosci 2017; 11:149. [PMID: 28611571 PMCID: PMC5374209 DOI: 10.3389/fnins.2017.00149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Michael J Palazzolo
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| |
Collapse
|
76
|
Wright DJ, Renoir T, Gray LJ, Hannan AJ. Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. ADVANCES IN NEUROBIOLOGY 2017; 15:93-128. [DOI: 10.1007/978-3-319-57193-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
77
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
78
|
Althobaiti YS, Alshehri FS, Almalki AH, Sari Y. Effects of Ceftriaxone on Glial Glutamate Transporters in Wistar Rats Administered Sequential Ethanol and Methamphetamine. Front Neurosci 2016; 10:427. [PMID: 27713684 PMCID: PMC5031687 DOI: 10.3389/fnins.2016.00427] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants that is co-abused with ethanol. Repeated exposure to high dose of METH has been shown to cause increases in extracellular glutamate concentration. We have recently reported that ethanol exposure can also increase the extracellular glutamate concentration and downregulate the expression of glutamate transporter subtype 1 (GLT-1). GLT-1 is a glial transporter that regulates the majority of extracellular glutamate. A Wistar rat model of METH and ethanol co-abuse was used to examine the expression of GLT-1 as well as other glutamate transporters such as cystine/glutamate exchanger (xCT) and glutamate aspartate transporter (GLAST). We also examined the body temperature in rats administered METH, ethanol or both drugs. We further investigated the effects of ceftriaxone (CEF), a β-lactam antibiotic known to upregulate GLT-1, in this METH/ethanol co-abuse rat model. After 7 days of either ethanol (6 g/kg) or water oral gavage, Wistar rats received either saline or METH (10 mg/kg i.p. every 2 h × 4), followed by either saline or CEF (200 mg/kg) posttreatment. METH administered alone decreased GLT-1 expression in the nucleus accumbens (NAc) and prefrontal cortex (PFC) and increased body temperature, but did not reduce either xCT or GLAST expression in ethanol and water-pretreated rats. Interestingly, ethanol and METH were found to have an additive effect on the downregulation of GLT-1 expression in the NAc but not in the PFC. Moreover, ethanol alone caused GLT-1 downregulation in the NAc and elevated body temperature compared to control. Finally, CEF posttreatment significantly reversed METH-induced hyperthermia, restored GLT-1 expression, and increased xCT expression. These findings suggest the potential therapeutic role of CEF against METH- or ethanol/METH-induced hyperglutamatergic state and hyperthermia.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Fahad S Alshehri
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Atiah H Almalki
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of ToledoToledo, OH, USA
| |
Collapse
|
79
|
Dysfunctional Calcium and Glutamate Signaling in Striatal Astrocytes from Huntington's Disease Model Mice. J Neurosci 2016; 36:3453-70. [PMID: 27013675 DOI: 10.1523/jneurosci.3693-15.2016] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Astrocytes tile the entire CNS, but their functions within neural circuits in health and disease remain incompletely understood. We used genetically encoded Ca(2+)and glutamate indicators to explore the rules for astrocyte engagement in the corticostriatal circuit of adult wild-type (WT) and Huntington's disease (HD) model mice at ages not accompanied by overt astrogliosis (at approximately postnatal days 70-80). WT striatal astrocytes displayed extensive spontaneous Ca(2+)signals, but did not respond to cortical stimulation, implying that astrocytes were largely disengaged from cortical input in healthy tissue. In contrast, in HD model mice, spontaneous Ca(2+)signals were significantly reduced in frequency, duration, and amplitude, but astrocytes responded robustly to cortical stimulation with evoked Ca(2+)signals. These action-potential-dependent astrocyte Ca(2+)signals were mediated by neuronal glutamate release during cortical stimulation, accompanied by prolonged extracellular glutamate levels near astrocytes and tightly gated by Glt1 glutamate transporters. Moreover, dysfunctional Ca(2+)and glutamate signaling that was observed in HD model mice was largely, but not completely, rescued by astrocyte specific restoration of Kir4.1, emphasizing the important contributions of K(+)homeostatic mechanisms that are known to be reduced in HD model mice. Overall, our data show that astrocyte engagement in the corticostriatal circuit is markedly altered in HD. Such prodromal astrocyte dysfunctions may represent novel therapeutic targets in HD and other brain disorders. SIGNIFICANCE STATEMENT We report how early-onset astrocyte dysfunction without detectable astrogliosis drives disease-related processes in a mouse model of Huntington's disease (HD). The cellular mechanisms involve astrocyte homeostasis and signaling mediated by Kir4.1, Glt1, and Ca(2+) The data show that the rules for astrocyte engagement in a neuronal circuit are fundamentally altered in a brain disease caused by a known molecular defect and that fixing early homeostasis dysfunction remedies additional cellular deficits. Overall, our data suggest that key aspects of altered striatal function associated with HD may be triggered, at least in part, by dysfunctional astrocytes, thereby providing details of an emerging striatal microcircuit mechanism in HD. Such prodromal changes in astrocytes may represent novel therapeutic targets.
Collapse
|
80
|
Raymond LA. Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. Biochem Biophys Res Commun 2016; 483:1051-1062. [PMID: 27423394 DOI: 10.1016/j.bbrc.2016.07.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
Synaptic dysfunction and altered calcium homeostasis in the brain is common to many neurodegenerative disorders. Among these, Huntington disease (HD), which is inherited in an autosomal dominant fashion, can serve as a model for investigating these mechanisms. HD generally manifests in middle age as a disorder of movement, mood and cognition. An expanded polymorphic CAG repeat in the HTT gene results in progressive neurodegeneration that impacts striatal spiny projection neurons (SPNs) earliest and most severely. Striatal SPNs receive massive glutamatergic input from cortex and thalamus, and these excitatory synapses are a focus for early changes that can trigger aberrant downstream signaling to disrupt synaptic plasticity and lead to later degeneration. Mitochondrial dysfunction and altered intracellular calcium-induced calcium release and sequestration mechanisms add to the impairments in circuit function that may underlie prodromal cognitive and subtle motor deficits. These mechanisms and implications for developing disease-modifying therapy will be reviewed here.
Collapse
Affiliation(s)
- Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 4834-2255 Wesbrook Mall, Vancouver, BC, Canada, V6T 1Z3.
| |
Collapse
|
81
|
Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 2016; 132:1-21. [PMID: 26961251 PMCID: PMC6774634 DOI: 10.1007/s00401-016-1553-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022]
Abstract
Kir4.1 is an inwardly rectifying K(+) channel expressed exclusively in glial cells in the central nervous system. In glia, Kir4.1 is implicated in several functions including extracellular K(+) homeostasis, maintenance of astrocyte resting membrane potential, cell volume regulation, and facilitation of glutamate uptake. Knockout of Kir4.1 in rodent models leads to severe neurological deficits, including ataxia, seizures, sensorineural deafness, and early postnatal death. Accumulating evidence indicates that Kir4.1 plays an integral role in the central nervous system, prompting many laboratories to study the potential role that Kir4.1 plays in human disease. In this article, we review the growing evidence implicating Kir4.1 in a wide array of neurological disease. Recent literature suggests Kir4.1 dysfunction facilitates neuronal hyperexcitability and may contribute to epilepsy. Genetic screens demonstrate that mutations of KCNJ10, the gene encoding Kir4.1, causes SeSAME/EAST syndrome, which is characterized by early onset seizures, compromised verbal and motor skills, profound cognitive deficits, and salt-wasting. KCNJ10 has also been linked to developmental disorders including autism. Cerebral trauma, ischemia, and inflammation are all associated with decreased astrocytic Kir4.1 current amplitude and astrocytic dysfunction. Additionally, neurodegenerative diseases such as Alzheimer disease and amyotrophic lateral sclerosis demonstrate loss of Kir4.1. This is particularly exciting in the context of Huntington disease, another neurodegenerative disorder in which restoration of Kir4.1 ameliorated motor deficits, decreased medium spiny neuron hyperexcitability, and extended survival in mouse models. Understanding the expression and regulation of Kir4.1 will be critical in determining if this channel can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Vishnu A Cuddapah
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Kelsey C Patterson
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Anita C Randolph
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, UK.
| |
Collapse
|
82
|
Bunner KD, Rebec GV. Corticostriatal Dysfunction in Huntington's Disease: The Basics. Front Hum Neurosci 2016; 10:317. [PMID: 27445757 PMCID: PMC4924423 DOI: 10.3389/fnhum.2016.00317] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022] Open
Abstract
The main input to the basal ganglia, the corticostriatal pathway, shows some of the earliest signs of neuropathology in Huntington’s disease (HD), an inherited neurodegenerative condition that typically strikes in mid-life with progressively deteriorating cognitive, emotional, and motor symptoms. Although an effective treatment remains elusive, research on transgenic animal models has implicated dysregulation of glutamate (Glu), the excitatory amino acid released by corticostriatal neurons, in HD onset. Abnormalities in the control of Glu transmission at the level of postsynaptic receptors and Glu transport proteins play a critical role in the loss of information flow through downstream circuits that set the stage for the HD behavioral phenotype. Parallel but less-well characterized changes in dopamine (DA), a key modulator of Glu activation, ensure further deficits in neuronal communication throughout the basal ganglia. Continued analysis of corticostriatal Glu transmission and its modulation by DA, including analysis at the neurobehavioral level in transgenic models, is likely to be an effective strategy in the pursuit of HD therapeutics.
Collapse
Affiliation(s)
- Kendra D Bunner
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| | - George V Rebec
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, IN, USA
| |
Collapse
|
83
|
Go BS, Kim J, Yang JH, Choe ES. Psychostimulant-Induced Endoplasmic Reticulum Stress and Neurodegeneration. Mol Neurobiol 2016; 54:4041-4048. [PMID: 27314686 DOI: 10.1007/s12035-016-9969-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is a subcellular organelle that ensures proper protein folding process. The ER stress is defined as cellular conditions that disturb the ER homeostasis, resulting in accumulation of unfolded and/or misfolded proteins in the lumen of the ER. The presence of these proteins within the ER activates the ER stress response, known as unfolded protein response (UPR), to restore normal functions of the ER. However, under the severe and/or prolonged ER stress, UPR initiates apoptotic cell death. Psychostimulants such as cocaine, amphetamine, and methamphetamine cause the ER stress and/or apoptotic cell death in regions of the brain related to drug addiction. Recent studies have shown that the ER stress in response to psychostimulants is linked to behavioral sensitization and that the psychostimulant-induced ER stress signaling cascades are closely associated with the pathogenesis of the neurodegenerative diseases. Therefore, this review was conducted to improve understanding of the functional role of the ER stress in the addiction as well as neurodegenerative diseases. This would be helpful to facilitate development of new therapeutic strategies for the drug addiction and/or neurodegenerative diseases caused or exacerbated by exposure to psychostimulants.
Collapse
Affiliation(s)
- Bok Soon Go
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea.,Department of Psychology, Washington State University, 100 Dairy Road, Pullman, WA, 99164, USA
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Busan, 46241, Korea.
| |
Collapse
|
84
|
Gregg RA, Hicks C, Nayak SU, Tallarida CS, Nucero P, Smith GR, Reitz AB, Rawls SM. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator. Neuropharmacology 2016; 108:111-9. [PMID: 27085607 DOI: 10.1016/j.neuropharm.2016.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/18/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Synthetic cathinones produce dysregulation of monoamine systems, but their effects on the glutamate system and the influence of glutamate on behavioral effects related to cathinone abuse are unknown. A principal regulator of glutamate homeostasis is glutamate transporter subtype 1 (GLT-1), an astrocytic protein that clears glutamate from the extracellular space and influences behavioral effects of established psychostimulants. We hypothesized that repeated administration of the synthetic cathinone, MDPV (3,4-methylenedioxypyrovalerone), would affect GLT-1 expression in the corticolimbic circuit, and that a GLT-1 activator (ceftriaxone, CTX) would reduce rewarding and locomotor-stimulant effects of MDPV in rats. GLT-1 protein expression in the nucleus accumbens (NAcc), but not prefrontal cortex (PFC), was decreased following withdrawal (2, 5 and 10 days) from repeated MDPV treatment, but not immediately after the last MDPV injection. CTX (200 mg/kg) pretreatment did not affect acute locomotor activation produced by MDPV (0.5, 1, 3 mg/kg). However, CTX (200 mg/kg) administered during a 7-day MDPV treatment paradigm attenuated the development of MDPV-induced sensitization of repetitive movements in rats challenged with MDPV following 11 days of drug abstinence. Pretreatment with CTX (200 mg/kg) during a 4-day MDPV (2 mg/kg) conditioned place preference (CPP) paradigm reduced the development of place preference produced by MDPV. The present data demonstrate dysregulation of corticolimbic glutamate transport systems during withdrawal from chronic MDPV exposure, and show that a GLT-1 transporter activator disrupts behavioral effects of MDPV that are related to synthetic cathinone abuse.
Collapse
Affiliation(s)
- Ryan A Gregg
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Callum Hicks
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Sunil U Nayak
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Christopher S Tallarida
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Paul Nucero
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Garry R Smith
- Fox Chase Chemical Diversity Center, Doylestown, PA, United States
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Doylestown, PA, United States
| | - Scott M Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, United States; Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
85
|
Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun 2016; 7:11251. [PMID: 27052848 PMCID: PMC4829692 DOI: 10.1038/ncomms11251] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/07/2016] [Indexed: 12/17/2022] Open
Abstract
It has become well accepted that Huntington disease (HD) is associated with impaired glutamate uptake, resulting in a prolonged time-course of extracellular glutamate that contributes to excitotoxicity. However, the data supporting this view come largely from work in synaptosomes, which may overrepresent nerve-terminal uptake over astrocytic uptake. Here, we quantify real-time glutamate dynamics in HD mouse models by high-speed imaging of an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) and electrophysiological recordings of synaptically activated transporter currents in astrocytes. These techniques reveal a disconnect between the results obtained in synaptosomes and those in situ. Exogenous glutamate uptake is impaired in synaptosomes, whereas real-time measures of glutamate clearance in the HD striatum are normal or even accelerated, particularly in the aggressive R6/2 model. Our results highlight the importance of quantifying glutamate dynamics under endogenous release conditions, and suggest that the widely cited uptake impairment in HD does not contribute to pathogenesis. Huntington disease (HD) has been linked via biochemical uptake assays to impaired glutamate clearance and resultant excitotoxicity. Here, utilizing a fluorescent reporter, the authors measure real-time glutamate dynamics in mouse model HD brain slices and find normal or even accelerated glutamate clearance.
Collapse
|
86
|
Early exposure to dynamic environments alters patterns of motor exploration throughout the lifespan. Behav Brain Res 2016; 302:81-7. [PMID: 26778790 DOI: 10.1016/j.bbr.2016.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
We assessed early rearing conditions on aging-related changes in mouse behavior. Two isolated-housing groups, running wheel (IHRW) and empty cage (IHEC), were compared against two enriched environments, static (EEST) and dynamic (EEDY), both of which included toys and other mice. For EEDY, the location of toys and sources of food and water changed daily, but remained constant for EEST. All mice, randomly assigned to one of the four groups at ∼4 weeks of age, remained in their respective environments for 25 weeks followed by single housing in empty cages. Beginning at ∼40 weeks of age, all mice were tested at monthly intervals in a plus-shaped maze in which we measured the number of arm entries and the probability of entering a perpendicular arm. Despite making significantly more arm entries than any other group, IHEC mice also were less likely to turn into the left or right arm, a sign of motor inflexibility. Both EEDY and EEST mice showed enhanced turning relative to IHRW and IHEC groups, but only EEDY mice maintained their turning performance for up to ∼100 weeks of age. EEDY and EEST mice also were unique in showing an increase in expression of the major glutamate transporter (GLT1) in striatum, but a decrease in motor cortex, suggesting a need for further assessment of environmental manipulations on long-term changes in forebrain glutamate transmission. Our behavioral results indicate that early exposure to continually changing environments, rather than socialization or exercise alone, results in life-long changes in patterns of motor exploration.
Collapse
|
87
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
88
|
Weng JC, Tikhonova MA, Chen JH, Shen MS, Meng WY, Chang YT, Chen KH, Liang KC, Hung CS, Amstislavskaya TG, Ho YJ. Ceftriaxone prevents the neurodegeneration and decreased neurogenesis seen in a Parkinson's disease rat model: An immunohistochemical and MRI study. Behav Brain Res 2016; 305:126-39. [PMID: 26940602 DOI: 10.1016/j.bbr.2016.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique for detecting neuronal activity in the brain of a living animal. Ceftriaxone (CEF) has been shown to have neuroprotective effects in neurodegenerative diseases. The present study was aimed at clarifying whether, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model, the known CEF-induced neuronal protection was accompanied by neurogenesis and decreased loss of neuronal activity. After MPTP lesioning (day 0), the rats were treated with CEF (100mg/kg/day, i.p.) or saline for 15 days. They were then injected with MnCl2 (40mg/kg, i.p.) on day 13 and underwent a brain MRI scan on day 14, then the brain was taken for histological evaluation on day 15. The results showed that MPTP lesioning resulted in decreased neuronal activity and density in the nigrostriatal dopaminergic (DAergic) system and the hippocampal CA1, CA3, and dentate gyrus (DG) areas and reduced neurogenesis in the DG, but in hyperactivity in the subthalamic nucleus (STN). These neuronal changes were prevented by CEF treatment. Positive correlations between MEMRI R1 values and neuronal density in the hippocampus were evidenced. Neuronal densities in the hippocampus and SNc were positively correlated. In addition, the R1 value of the STN showed a positive correlation with its neuronal activity but showed a negative correlation with the density of DAergic neurons in the SNc. Therefore, MEMRI R1 value may serve as a good indicator for PD severity and the effect of treatment. To our knowledge, this is the first study showing that CEF prevents loss of neuronal activity and neurogenesis in the brain of PD rats. CEF may therefore have clinical potential in the treatment of PD.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Department of Medical Imaging, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia
| | - Jian-Horng Chen
- School of Physical Therapy, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Mei-Shiuan Shen
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Wan-Yun Meng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Yen-Ting Chang
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ke-Hsin Chen
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Keng-Chen Liang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine", Novosibirsk 630117, Russia.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
89
|
New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J Neurosci 2016; 35:13827-35. [PMID: 26468182 DOI: 10.1523/jneurosci.2603-15.2015] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.
Collapse
|
90
|
Ratti E, Berry JD, Greenblatt DJ, Loci L, Ellrodt AS, Shefner JM, Cudkowicz ME. Preclinical Rodent Toxicity Studies for Long Term Use of Ceftriaxone. Toxicol Rep 2015; 2:1396-1403. [PMID: 26705515 PMCID: PMC4685718 DOI: 10.1016/j.toxrep.2015.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
A 6-month rodent toxicology and pharmacokinetic (PK) study was performed to provide supportive safety data for long-term use of intravenous ceftriaxone in a clinical trial in patients with amyotrophic lateral sclerosis (ALS). Ceftriaxone was administered by subcutaneous injection at up to 2 g/kg/day to Sprague-Dawley Crl:CD (SD) rats. Ceftriaxone was found to be safe and well tolerated. Specifically, no significant differences in body weight and food consumption were observed between the treatment and control groups. With the exception of in red cell parameters decrease, there were no ceftriaxone-related changes in hematology, coagulation, clinical chemistry and urinalysis parameters. Injection site trauma and associated reversible anemia, likely due to chronic blood loss at the injection site, were all attributable to subcutaneous route of administration. Cecum dilatation and some skin changes were reversible after recovery period, while bile duct dilatation, observed only in a few animals, persisted. Changes in the non-glandular stomach do not have a human correlate. The no-observed-adverse-effect dose level (NOAEL) was 0.5 g/kg/day ceftriaxone in both sexes. Ceftriaxone showed rapid absorption with half-life values ranging between 1 and 1.5 hours. Additionally, there was no evidence of accumulation and a virtually complete elimination by 16 hours after the last dose. Overall there were no toxicologically meaningful drug-related animal findings associated with the long-term administration (6 months) of ceftriaxone. These results support safety of long-term use of ceftriaxone in human clinical trials.
Collapse
Affiliation(s)
- Elena Ratti
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA
| | - James D. Berry
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA
| | - David J. Greenblatt
- Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Lorena Loci
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA
| | - Amy Swartz Ellrodt
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA
| | - Jeremy M. Shefner
- Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Merit E. Cudkowicz
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA 02114, USA
| |
Collapse
|
91
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
92
|
Guerriero RM, Giza CC, Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 2015; 15:27. [PMID: 25796572 DOI: 10.1007/s11910-015-0545-1] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.
Collapse
Affiliation(s)
- Réjean M Guerriero
- Division Epilepsy, Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA,
| | | | | |
Collapse
|
93
|
Verkhratsky A, Nedergaard M. Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130595. [PMID: 25225089 DOI: 10.1098/rstb.2013.0595] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Astroglial perisynaptic sheath covers the majority of synapses in the central nervous system. This glial coverage evolved as a part of the synaptic structure in which elements directly responsible for neurotransmission (exocytotic machinery and appropriate receptors) concentrate in neuronal membranes, whereas multiple molecules imperative for homeostatic maintenance of the synapse (transporters for neurotransmitters, ions, amino acids, etc.) are shifted to glial membranes that have substantially larger surface area. The astrocytic perisynaptic processes act as an 'astroglial cradle' essential for synaptogenesis, maturation, isolation and maintenance of synapses, representing the fundamental mechanism contributing to synaptic connectivity, synaptic plasticity and information processing in the nervous system.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA
| |
Collapse
|
94
|
Kim J, John J, Langford D, Walker E, Ward S, Rawls SM. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice. Amino Acids 2015; 48:689-696. [PMID: 26543027 DOI: 10.1007/s00726-015-2117-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/09/2015] [Indexed: 01/11/2023]
Abstract
The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.
Collapse
Affiliation(s)
- Jae Kim
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joel John
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Dianne Langford
- Department of Neurosciences, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen Walker
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Sara Ward
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Scott M Rawls
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA.
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
95
|
Dodman K, Featherstone RE, Bang J, Liang Y, Siegel SJ. Ceftriaxone reverses ketamine-induced lasting EEG and astrocyte alterations in juvenile mice. Drug Alcohol Depend 2015; 156:14-20. [PMID: 26442907 PMCID: PMC4633341 DOI: 10.1016/j.drugalcdep.2015.07.1198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ketamine, an N-methyl-d-aspartate receptor antagonist, is used as a pediatric anesthetic because of its favorable safety profile. It is also being investigated as an antidepressant. Unfortunately, ketamine causes adverse reactions including hallucinations and is associated with a high prevalence of abuse among adolescents. Although chronic ketamine use has been shown to produce cognitive impairments even years following cessation, little is known about its long-term consequences on adolescents. The beta-lactam ceftriaxone has been shown to attenuate alcohol withdrawal, and alleviate early brain injury and memory impairments following subarachnoid hemorrhage. However, its ability to reverse the effects of adolescent ketamine exposure is not known. Previous data indicate that ketamine causes a reduction in the number of Excitatory Amino Acid Transporter Type 2 (EAAT2)-containing astrocytes. Additionally, the beta lactam antibiotic ceftriaxone increased expression of EAAT2. As EAAT2 is a principal mechanism of glutamate clearance from the synapse, the current study tests the hypothesis that ceftriaxone may reverse functional consequences of ketamine exposure. METHODS We examined the effects of chronic ketamine in juvenile mice as well as reversal by ceftriaxone using electroencephalography (EEG). Subsequently, we assessed the effects of these treatments on markers of astrocyte proliferation, using Glial Fibrillary Acidic Protein (GFAP), and function, as evidenced by EAAT2. RESULTS Juvenile mice exposed to chronic ketamine showed lasting alterations in EEG measurements as well as markers of astrocyte number and function. These alterations were reversed by ceftriaxone. CONCLUSIONS Data suggest that ceftriaxone may be able to ameliorate ketamine-induced long-term disturbances in adolescent brains.
Collapse
Affiliation(s)
- K Dodman
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - R E Featherstone
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J Bang
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Y Liang
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - S J Siegel
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
96
|
Massie A, Boillée S, Hewett S, Knackstedt L, Lewerenz J. Main path and byways: non-vesicular glutamate release by system xc(-) as an important modifier of glutamatergic neurotransmission. J Neurochem 2015; 135:1062-79. [PMID: 26336934 DOI: 10.1111/jnc.13348] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
System xc(-) is a cystine/glutamate antiporter that exchanges extracellular cystine for intracellular glutamate. Cystine is intracellularly reduced to cysteine, a building block of GSH. As such, system xc(-) can regulate the antioxidant capacity of cells. Moreover, in several brain regions, system xc(-) is the major source of extracellular glutamate. As such this antiporter is able to fulfill key physiological functions in the CNS, while evidence indicates it also plays a role in certain brain pathologies. Since the transcription of xCT, the specific subunit of system xc(-), is enhanced by the presence of reactive oxygen species and inflammatory cytokines, system xc(-) could be involved in toxic extracellular glutamate release in neurological disorders that are associated with increased oxidative stress and neuroinflammation. System xc(-) has also been reported to contribute to the invasiveness of brain tumors and, as a source of extracellular glutamate, could participate in the induction of peritumoral seizures. Two independent reviews (Pharmacol. Rev. 64, 2012, 780; Antioxid. Redox Signal. 18, 2013, 522), approached from a different perspective, have recently been published on the functions of system xc(-) in the CNS. In this review, we highlight novel achievements and insights covering the regulation of system xc(-) as well as its involvement in emotional behavior, cognition, addiction, neurological disorders and glioblastomas, acquired in the past few years. System xc(-) constitutes an important source of extrasynaptic glutamate in the brain. By modulating the tone of extrasynaptic metabotropic or ionotropic glutamate receptors, it affects excitatory neurotransmission, the threshold for overexcitation and excitotoxicity and, as a consequence, behavior. This review describes the current knowledge of how system xc(-) is regulated and involved in physiological as well as pathophysiological brain functioning.
Collapse
Affiliation(s)
- Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Séverine Boillée
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sandra Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Lori Knackstedt
- Psychology Department, University of Florida, Gainesville, Florida, USA
| | - Jan Lewerenz
- Department of Neurology, Ulm University, Oberer Eselsberg 45, Ulm, Germany
| |
Collapse
|
97
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
98
|
Huang CK, Chang YT, Amstislavskaya TG, Tikhonova MA, Lin CL, Hung CS, Lai TJ, Ho YJ. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson's disease dementia. Behav Brain Res 2015; 294:198-207. [PMID: 26296668 DOI: 10.1016/j.bbr.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022]
Abstract
Both ceftriaxone (CEF) and erythropoietin (EPO) show neuroprotection and cognitive improvement in neurodegenerative disease. The present study was aimed at clarifying whether combined treatment with CEF and EPO (CEF+EPO) had superior neuroprotective and behavioral effects than treatment with CEF or EPO alone in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) rat model. The rats were injected with CEF (5 mg/kg/day), EPO (100 IU/kg/day), or CEF+EPO after MPTP lesioning and underwent the bar-test, T-maze test, and object recognition test, then the brains were taken for histological evaluation. MPTP lesioning resulted in deficits in working memory and in object recognition, but the cognitive deficits were markedly reduced or eliminated in rats treated with CEF or CEF+EPO, with the combination having a greater effect. Lesioning also caused neurodegeneration in the nigrostriatal dopaminergic system and the hippocampal CA1 area and these changes were reduced or eliminated by treatment with CEF, EPO, or CEF+EPO, with the combination having a greater effect than single treatment in the densities of DAergic terminals in the striatum and neurons in the hippocampal CA1 area. Thus, compared to treatment with CEF or EPO alone, combined treatment with CEF+EPO had a greater inhibitory effect on the lesion-induced behavioral and neuronal deficits. To our knowledge, this is the first study showing a synergistic effect of CEF and EPO on neuroprotection and improvement in cognition in a PD rat model. Combined CEF and EPO treatment may have clinical potential for the treatment of the dementia associated with PD.
Collapse
Affiliation(s)
- Chiu-Ku Huang
- Department of Pharmacy, Tainan Municipal Hospital, Tainan 701, Taiwan, ROC
| | - Yen-Ting Chang
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Emotional Pathology, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Physiology and Basic Medicine, Federal State Budgetary Scientific Institution, Novosibirsk 630117, Russia
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10341, Taiwan, ROC.
| | - Te-Jen Lai
- Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| | - Ying-Jui Ho
- School of Psychology, Chung Shan Medical University, Taichung 402, Taiwan, ROC; Department of Psychiatry, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 402, Taiwan, ROC.
| |
Collapse
|
99
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
100
|
Ben Haim L, Carrillo-de Sauvage MA, Ceyzériat K, Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 2015; 9:278. [PMID: 26283915 PMCID: PMC4522610 DOI: 10.3389/fncel.2015.00278] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes play crucial roles in the brain and are involved in the neuroinflammatory response. They become reactive in response to virtually all pathological situations in the brain such as axotomy, ischemia, infection, and neurodegenerative diseases (ND). Astrocyte reactivity was originally characterized by morphological changes (hypertrophy, remodeling of processes) and the overexpression of the intermediate filament glial fibrillary acidic protein (GFAP). However, it is unclear how the normal supportive functions of astrocytes are altered by their reactive state. In ND, in which neuronal dysfunction and astrocyte reactivity take place over several years or decades, the issue is even more complex and highly debated, with several conflicting reports published recently. In this review, we discuss studies addressing the contribution of reactive astrocytes to ND. We describe the molecular triggers leading to astrocyte reactivity during ND, examine how some key astrocyte functions may be enhanced or altered during the disease process, and discuss how astrocyte reactivity may globally affect ND progression. Finally we will consider the anticipated developments in this important field. With this review, we aim to show that the detailed study of reactive astrocytes may open new perspectives for ND.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Kelly Ceyzériat
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département des Sciences du Vivant, Institut d'Imagerie Biomédicale, MIRCen Fontenay-aux-Roses, France ; Neurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique, Université Paris-Sud, UMR 9199 Fontenay-aux-Roses, France
| |
Collapse
|