51
|
Nakajima S, Kunugi H. Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures. Heliyon 2020; 6:e03892. [PMID: 32420479 PMCID: PMC7218271 DOI: 10.1016/j.heliyon.2020.e03892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/17/2019] [Accepted: 04/28/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have suggested the potential efficacy of middle chain fatty acids (MCFAs) in the treatment of mood disorders and cognitive dysfunction. MCFAs are metabolized to ketone bodies in astrocytes; however, their effects on neuronal development including neurotrophic factor level are not well-understood. In the present study, we examined the effect of MCFAs on the mRNA expression of growth factors and cytokines in primary cultures of cortical astrocytes. The effect of MCFAs on neuron-astrocyte interaction in neuronal maturation was also determined using co-culture and astrocyte-conditioned medium. Lauric acid (LA) typically increased the mRNA expression of glial-derived neurotrophic factor (Gdnf), interleukin-6 (Il6), and C–C motif chemokine 2 (Ccl2) in astrocytes. LA-induced phosphorylation of extracellular signal-regulated kinase contributed to these changes. In primary cultures of cortical neurons containing astrocytes, LA enhanced the presynaptic protein levels. Astrocyte-conditioned medium after LA treatment also enhanced the presynaptic protein levels in the cortical neuron cultures. These results suggest that LA increase the mRNA expression of GDNF and cytokines in astrocytes, and thereby, enhances the presynaptic maturation.
Collapse
Affiliation(s)
- Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
- Corresponding author.
| |
Collapse
|
52
|
Yan M, Li M, Gu S, Sun Z, Ma T, Ma X. Ginkgo biloba extract protects diabetic rats against cerebral ischemia‑reperfusion injury by suppressing oxidative stress and upregulating the expression of glutamate transporter 1. Mol Med Rep 2020; 21:1809-1818. [PMID: 32319622 PMCID: PMC7057817 DOI: 10.3892/mmr.2020.10990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
The current study aimed to evaluate the neuroprotective effect of Ginkgo biloba extract (GbE) on the progression of acute cerebral ischemia-reperfusion injury in diabetic rats, and to determine the molecular mechanism associated with this effect. Streptozotocin (STZ) induced diabetic rats were pretreated with GbE (50, 100 and 200 mg/kg/day; intragastric) for 3 weeks. During this period, body weight changes and fasting blood glucose levels were assessed each week. Following pretreatment, rats were subjected to suture occlusion of the middle cerebral artery for 30 min, which was followed by 24 h of reperfusion. Neurological deficits were subsequently evaluated at 2 and 24 h following reperfusion. Rats were sacrificed after 24 h reperfusion, and infarct volume and S100B content were measured to evaluate the neuroprotective effect of GbE. The results of the present study demonstrated that GbE pretreatment improved neurological scores, and reduced cerebral infarct volume and S100B content. Oxidative stress markers, including glutathione (GSH) and superoxide dismutase (SOD) were increased, and malondialdehyde (MDA) contents were reduced following GbE treatment. The levels of p-Akt, p-mTOR and glutamate transporter 1 (GLT1) were observed to be increased in GbE-pretreated rats. These results indicated that GbE pretreatment may serve a protective role against cerebral ischemia-reperfusion injury in diabetic rats by inhibiting oxidative stress reaction, upregulating the expression of Akt/mTOR and promoting GLT1 expression. In conclusion, the current study revealed the protective role and molecular mechanisms of GbE in diabetic rats with cerebral ischemia-reperfusion injury, and may provide novel insight into the future clinical treatment of this condition.
Collapse
Affiliation(s)
- Miao Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Mei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Shuling Gu
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zheng Sun
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Tengfei Ma
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xing Ma
- Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
53
|
Maher AM, Saleh SR, Elguindy NM, Hashem HM, Yacout GA. Exogenous melatonin restrains neuroinflammation in high fat diet induced diabetic rats through attenuating indoleamine 2,3-dioxygenase 1 expression. Life Sci 2020; 247:117427. [PMID: 32067945 DOI: 10.1016/j.lfs.2020.117427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
|
54
|
Staricha K, Meyers N, Garvin J, Liu Q, Rarick K, Harder D, Cohen S. Effect of high glucose condition on glucose metabolism in primary astrocytes. Brain Res 2020; 1732:146702. [PMID: 32032612 DOI: 10.1016/j.brainres.2020.146702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
In the brain, glucose enters astrocytes through glucose transporter (GLUT1) and either enters glycolysis or the glycogen shunt. Astrocytes meet the energy needs of neurons by building up and breaking down their glycogen supply. High glucose exposure causes astrocyte dysregulation, but its effects on glucose metabolism are relatively unknown. We hypothesized that high glucose conditioning induces a glycogenic state in the astrocyte, resulting in an inefficient mobilization of substrates when challenged with glucose deprivation. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media and measured cell membrane GLUT1 expression, glucose analog uptake, glycogen content, and cellular bioenergetics. This study demonstrates that HG conditioning causes increased glucose analog uptake (p < 0.05) without affecting GLUT1 membrane expression when compared to NG conditioned astrocytes. Increased glucose uptake in HG astrocytes is associated with higher baseline glycogen content compared to NG exposed astrocytes (p < 0.05). When challenged with glucose deprivation, HG astrocytes break down more than double the amount of glycogen molecules compared to NG astrocytes, although they break down a similar percentage of the starting glycogen stores (NG = 62%, HG = 55%). Additionally, HG conditioning negatively impacts astrocyte maximal respiration and glycolytic reserve capacity assessed by the Seahorse mitochondrial stress test and glycolytic stress test, respectively (p < 0.05). These results suggest that HG conditioning shifts astrocytes towards glycogen storage at baseline. Despite increased glycogen storage, HG astrocytes demonstrate decreased metabolic efficiency and capacity putting them at higher risk during extended periods of glucose deprivation.
Collapse
Affiliation(s)
- Kelly Staricha
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - Nicholas Meyers
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States
| | - Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI 53226, United States.
| |
Collapse
|
55
|
Pereira CA, Carlos D, Ferreira NS, Silva JF, Zanotto CZ, Zamboni DS, Garcia VD, Ventura DF, Silva JS, Tostes RC. Mitochondrial DNA Promotes NLRP3 Inflammasome Activation and Contributes to Endothelial Dysfunction and Inflammation in Type 1 Diabetes. Front Physiol 2020; 10:1557. [PMID: 32009974 PMCID: PMC6978691 DOI: 10.3389/fphys.2019.01557] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: NLRP3 inflammasome activation in response to several signals, including mitochondrial DNA (mDNA), regulates inflammatory responses by caspase-1 activation and interleukin-1β (IL-1β) release. Circulating mDNA is linked to micro and macrovascular complications in diabetes. However, a role for mDNA in endothelial dysfunction is not clear. We tested the hypothesis that mDNA contributes to diabetes-associated endothelial dysfunction and vascular inflammation via NLRP3 activation. Methods: Vascular reactivity, reactive oxygen species (ROS) generation, calcium (Ca2+) influx and caspase-1 and IL-1β activation were determined in mesenteric resistance arteries from normoglicemic and streptozotocin-induced diabetic C57BL/6 and NLRP3 knockout (Nlrp3-/- ) mice. Endothelial cells and mesenteric arteries were stimulated with mDNA from control (cmDNA) and diabetic (dmDNA) mice. Results: Diabetes reduced endothelium-dependent vasodilation and increased vascular ROS generation and caspase-1 and IL-1β activation in C57BL/6, but not in Nlrp3-/- mice. Diabetes increased pancreatic cytosolic mDNA. dmDNA decreased endothelium-dependent vasodilation. In endothelial cells, dmDNA activated NLRP3 via mitochondrial ROS and Ca2+ influx. Patients with type 1 diabetes exhibited increased circulating mDNA as well as caspase-1 and IL-1β activation. Conclusion: dmDNA activates endothelial NLRP3 inflammasome by mechanisms that involve Ca2+ influx and mitochondrial ROS generation. NLRP3 deficiency prevents diabetes-associated vascular inflammatory damage and endothelial dysfunction. Our study highlights the importance of NLRP3 inflammasome in diabetes-associated vascular dysfunction, which is key to diabetic complications.
Collapse
Affiliation(s)
- Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathanne S Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Z Zanotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dario S Zamboni
- Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valéria D Garcia
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
56
|
Nedzvetsky VS, Sukharenko EV, Baydas G, Andrievsky GV. Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complications of both first and second types of diabetes mellitus patients are important cause of decline in quality of life and mortality worldwide. Diabetic retinopathy (DR) is a widespread complication that affects almost 60% of patients with prolonged (at least 10–15 years) diabetes. The critical role of glial cells has been shown in retinopathy initiation in the last decades. Furthermore, glial reactivity and inflammation could be key players in early pathogenesis of DR. Despite the large amount of research data, the approaches of effective DR therapy remain unclear. The progress of DR is accompanied by pro-inflammatory and pro-oxidative changes in retinal cells including astrocytes and Muller cells. Glial reactivity is a key pathogenetic factor of various disorders in neural tissue. Fullerene C60 nanoparticles were confirmed for both antioxidant and anti-inflammatory capability. In the presented study glioprotective efficacy of water-soluble hydrated fullerene C60 (C60HyFn) was tested in a STZ-diabetes model during 12 weeks. Exposure of the STZ-diabetic rat group to C60HyFn ameliorated the astrocyte reactivity which was determined via S100β and PARP1 overexpression. Moreover, C60HyFn induced the decrease of TNFα production in the retina of STZ-diabetic rats. By contrast, the treatment with C60HyFn of the normal control rat group didn’t change the content of all abovementioned markers of astrogliosis and inflammation. Thus, diabetes-induced abnormalities in the retina were suppressed via the anti-oxidant, anti-inflammatory and glioprotective effects of C60HyFn at low doses. The presented results demonstrate that C60HyFn can ensure viability of retinal cells viability through glioprotective effect and could be a new therapeutic nano-strategy of DR treatment.
Collapse
|
57
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
58
|
Lee CP, Nithiyanantham S, Hsu HT, Yeh KT, Kuo TM, Ko YC. ALPK1 regulates streptozotocin-induced nephropathy through CCL2 and CCL5 expressions. J Cell Mol Med 2019; 23:7699-7708. [PMID: 31557402 PMCID: PMC6815771 DOI: 10.1111/jcmm.14643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
ALPK1 is associated with chronic kidney disease, gout and type 2 diabetes mellitus. Raised renal ALPK1 level in patients with diabetes was reported. Accelerated fibrotic nephropathies were observed in hyperglycaemic mice with up-regulated ALPK1. The aim of this study was to identify the mediators contributing to ALPK1 effect involving in nephropathies induction. The haematoxylin and eosin staining, Masson's trichrome and immunohistochemical analysis of ALPK1, NFkB, CCL2 and CCL5 were performed in the mice kidney. Cytokine antibody array analysis was performed in streptozotocin-treated wild-type mice (WT-STZ) and streptozotocin-treated ALPK1 transgenic mice (TG-STZ). The ALPK1 levels were measured in mice kidney and in cultured cells. We found that the higher levels of renal CCL2/MCP-1, CCL5/Rantes and G-CSF expression in TG-STZ compared with the WT-STZ. Glucose increased ALPK1 expressions in monocytic THP1 and human kidney-2 cells. The protein expression of ALPK1, NFkB and lectin was up-regulated in glucose-treated HK-2 cells. Knockdown of ALPK1 reduced CCL2 and CCL5 mRNA levels, whereas overexpressed ALPK1 increased CCL2 and CCL5 in cultured kidney cells. Taken together, these results show that high glucose increases ALPK1 and chemokine levels in the kidney. Elevated ALPK1 expression enhances renal CCL2 and CCL5 expressions in vivo and in vitro. ALPK1 is a mediator for CCL2 and CCL5 chemokine up-regulation involving in diabetic nephropathies induction.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
59
|
Almeida LHS, Pilownic KJ, Tarquínio SBC, Felix AC, Pappen FG, Romano AR. Influence of Pregnancy on the Inflammatory Process Following Direct Pulp Capping: a Preliminary Study in Rats. Braz Dent J 2019; 30:22-30. [PMID: 30864642 DOI: 10.1590/0103-6440201902093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the inflammatory process following direct pulp capping during pregnancy. This experimental study involved 48 maxillary first molars of female Wistar rats. The procedures were performed in pregnant and non-pregnant animals (n =20 each). Direct pulp capping with mineral trioxide aggregate (MTA) and restoration with a light-cured resin composite was performed in half of exposed pulp specimens. In the other half of specimens, light-cured composite was placed directly on the exposed pulp. In the control groups (n=4 each), no intervention was performed. Animals were euthanized at 3 and 7 days. All sections (three per slide) were viewed under an optical microscope. One previously calibrated pathologist performed descriptive analysis and assigned scores for inflammatory response and tissue organization adjacent to the pulp exposure. The Kappa value for intra-examiner variability was 0.91. At 3 days, in animals treated with MTA, inflammatory infiltrate was absent in non-pregnant animals while mild inflammatory infiltrate was observed in some pregnant animals. The inflammatory response ranged from mild to severe in both groups treated with composite alone. At 7 days, the inflammatory response was more intense in pregnant than in non-pregnant animals treated with MTA; while this difference were not evident in animals treated with composite alone. In conclusion, pregnancy may not influence the inflammatory process following direct pulp capping with light-cured resin composite, which was always harmful to the pulp; while the tissue response after the direct pulp with MTA were more favorable in non-pregnant animals.
Collapse
Affiliation(s)
| | | | | | - Anelize Campello Felix
- Central Vivarium, Faculty of Veterinary, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Ana Regina Romano
- Graduate Program in Dentistry, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
60
|
Shou J, Peng J, Zhao Z, Huang X, Li H, Li L, Gao X, Xing Y, Liu H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 333:576967. [DOI: 10.1016/j.jneuroim.2019.576967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
|
61
|
Chistyakov DV, Azbukina NV, Astakhova AA, Polozhintsev AI, Sergeeva MG, Reiser G. Toll-like receptors control p38 and JNK MAPK signaling pathways in rat astrocytes differently, when cultured in normal or high glucose concentrations. Neurochem Int 2019; 131:104513. [PMID: 31369777 DOI: 10.1016/j.neuint.2019.104513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022]
Abstract
Astrocytes play a vital role in regulating central nervous system inflammation, energy metabolism and brain homeostasis. Unlike macrophages and microglia, which are cells of myeloid ancestry, astrocytes are of ectodermal origin. However, regulatory specificities of signaling pathways connecting inflammatory and metabolic processes are still largely unknown. We analyzed firstly cellular responses to toll-like receptor (TLR) agonists and secondly, modulation of the mRNA of the three isoforms of the transcription factors PPARs (peroxisome proliferator-activated receptors) in primary rat astrocytes exposed to normal glucose (5.5 mM) and high glucose (25 mM). Cell culturing of rat brain astrocytes for 2 days in high glucose did not alter cellular morphology, but i) enhanced the release of TNFα that was induced by TLR4 agonist LPS or TLR3 agonist PIC and the synthesis of prostaglandin E2 (PGE2), ii) changed the signaling pathways of TLR4/MAPK (increase in p38 MAPK, and decrease in JNK activities at early stages of TLR activation) and iii) modulated mRNA expression of PPARs. High glucose cultivation reduced PPARα and PPARβ mRNA levels, without altering PPARγ mRNA level and changed the sensitivity of expressions to agonists of TLR1/2 (PGN), TLR4 (LPS), TLR3 (PIC), and TLR5 (FGN). Differences between low and high glucose-adapted cells were obtained for agonists of TLR1/2 (PPARα, PPARβ), TLR4 (PPAR β), TLR3 (PPARα). In the TLR4/p38/PPARβ signaling pathway, there was a stimulatory connection in normal glucose but an inhibitory connection in high glucose. TLR4/JNK/activated PPARβ, TLR4/JNK/inhibited PPARγ both in cells adapted to normal or high glucose, but PPARα expression was not affected. As PPARs in astrocytes are involved in inflammatory processes in the form of the recently published PPAR triad, the changes in expression revealed here are most likely resulting in implications of high glucose in inflammatory processes. Our data underline the complexity of multiple regulatory interactions between inflammatory responses and energy metabolism in astrocytes.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Nadezda V Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Alina A Astakhova
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Artemiy I Polozhintsev
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow, Russia
| | - Marina G Sergeeva
- A.N. Belozersky Institute of Physico-Chemical-Biology, Moscow State-University, Moscow, Russia
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Inflammation und Neurodegeneration (Neurobiochemie), Magdeburg, Germany.
| |
Collapse
|
62
|
Szot K, Góralczyk K, Michalska M, Veryho N, Chojnowski J, Ponikowska I, Rość D. The effects of humic water on endothelial cells under hyperglycemic conditions: inflammation-associated parameters. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1577-1582. [PMID: 30610442 PMCID: PMC6702181 DOI: 10.1007/s10653-018-0238-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Humic waters (HW) are globally unique, deep underground, dark-brown waters containing humic acids, and they present numerous therapeutic activities including anti-inflammatory. In the present study, we use HW from source in Poland. Diabetes has become an epidemic and is a risk factor of cardiovascular diseases. Hyperglycemia in diabetes is responsible for damaging of the endothelium and increases inflammation on the surface of the vascular lining. The inflammatory process in diabetes is associated with the secretion of inflammatory cytokines by endothelial cells, e.g., tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), and with the reduction of cell proliferation. In the study, we used cultures of endothelial cells (HUVEC line-human umbilical vein endothelial cells) with the addition 30 mM/L of glucose in the culture medium which imitated the conditions of uncontrolled diabetes. The addition of HW in the proper volume to the culture medium causes reduction of inflammation by significant decrease in inflammatory cytokines such as TNFα and IL-6 and also leads to enhancement of the cell proliferation. It appears that the adverse effects of hyperglycemia on vascular endothelial cells may be corrected by addition of humic water. The above promising results of in vitro tests provide an opportunity to the possible use of humic water in the supportive treatment of endothelial dysfunction disorders in diabetes. However, this issue requires further clinical research.
Collapse
Affiliation(s)
- Katarzyna Szot
- Uniwersytet Mikolaja Kopernika Collegium Medicum, Bydgoszcz, Poland.
| | | | | | - Natallia Veryho
- Uniwersytet Mikolaja Kopernika Collegium Medicum, Bydgoszcz, Poland
| | - Jacek Chojnowski
- Uniwersytet Mikolaja Kopernika Collegium Medicum, Bydgoszcz, Poland
| | | | - Danuta Rość
- Uniwersytet Mikolaja Kopernika Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
63
|
Cohen S, Liu Q, Wright M, Garvin J, Rarick K, Harder D. High glucose conditioned neonatal astrocytes results in impaired mitogenic activity in cerebral microvessel endothelial cells in co-culture. Heliyon 2019; 5:e01795. [PMID: 31193586 PMCID: PMC6536426 DOI: 10.1016/j.heliyon.2019.e01795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/22/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is a highly complex and coordinated process in the brain. Under normal conditions, it is a vital process in growth and development, but under adverse conditions such as diabetes mellitus, it can lead to severe pathology. Astrocytes are a key constituent of the neurovascular unit and contribute to cerebral function, not only bridging the gap between metabolic supplies from blood vessels to neurons, but also regulating angiogenesis. Astrocytes affect angiogenesis by secreting angiogenic factors such as vascular endothelial growth factor (VEGF) into its microenvironment and regulating mitogenic activity in cerebral microvessel endothelial cells (CMEC). We hypothesized that astrocytes conditioned in high glucose media would produce and secrete decreased VEGF which would lead to impaired proliferation, migration, and tube formation of CMEC in vitro. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5mM) vs. high glucose (HG, 25mM) feeding media and measured VEGF message and protein levels as well as secreted VEGF. We co-cultured conditioned astrocytes with isolated rat CMEC and measured mitogenic activity of endothelial cells using BrdU assay, scratch recovery assay, and tube formation assay. HG astrocytes produced and secreted decreased VEGF protein and resulted in impaired mitogenic activity when co-cultured with CMEC as demonstrated by decreased BrdU uptake, decreased scratch recovery, and slower tube formation. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross-talk between astrocytes and CMEC which could be one explanation for cerebral microangiopathy seen in diabetic conditions.
Collapse
Affiliation(s)
- Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding author.
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
64
|
Bułdak Ł, Machnik G, Skudrzyk E, Bołdys A, Okopień B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp Ther Med 2019; 17:2861-2869. [PMID: 30906473 DOI: 10.3892/etm.2019.7245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
GLP-1 agonists such as exenatide and liraglutide are novel drugs for the treatment of diabetes and obesity. While improvements in glycemic control can rely on an incretin effect, the mechanisms behind the loss of weight following therapy have yet to be completely elucidated, and seem to be associated with alterations in eating habits, resulting from changes in cytokines e.g. interleukin 1β (IL-1β) and oxidative signaling in the central nervous system (CNS). Increased levels of IL-1β and reactive oxygen species have been demonstrated to exert anorexigenic properties, and astrocytes appear to actively participate in maintaining the integrity of the CNS, which includes the paracrine secretion of inflammatory cytokines and involvement in the redox status. Therefore, the present study decided to explore the influence of exenatide [a glucagon-like peptide 1 (GLP-1 agonist)] on inflammatory and oxidative stress markers in cultured human astrocytes as a potential target for weight reduction therapies. In an experimental setting, normal human astrocytes were subjected to various glycemic conditions, including 40 mg/dl-hypoglycemic, 100 mg/dl-normoglycemic and 400 mg/dl-hyperglycemic, and exenatide, which is a GLP-1 agonist. The involvement of intracellular signaling by a protein kinase A (PKA) in the action of exenatide was estimated using a specific PKA inhibitor-PKI (14-22). The expression levels of IL-1β, nuclear factor kappa κB (NFκB), glial-fibrillary acidic protein (GFAP), p22 NADPH oxidase, glutathione peroxidase, catalase, superoxide dismutase 1, and reactive oxidative species were measured. The present study demonstrated that varying glucose concentrations in the culture media did not affect the protein expression or the level of reactive oxygen species. Conversely, exenatide led to an increase in IL-1β in normoglycemic culture conditions, which was accompanied by the increased expression of p22, glutathione peroxidase and the reduced expression of GFAP. Changes in the expression of IL-1β and p22 were dependent on the activation of PKA. The present study concluded that exenatide predominantly affected astrocytes in normoglycemic conditions, and hypothesize that this impact demonstrated one of novel mechanisms associated with astrocyte signaling that may contribute to weight loss.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Estera Skudrzyk
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
65
|
Barca Mayo O, Berdondini L, De Pietri Tonelli D. Astrocytes and Circadian Rhythms: An Emerging Astrocyte-Neuron Synergy in the Timekeeping System. Methods Mol Biol 2019; 1938:131-154. [PMID: 30617978 DOI: 10.1007/978-1-4939-9068-9_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animals have an internal timekeeping system to anticipate daily changes associated with the transition of day to night, which is deeply involved in the regulation and maintenance of behavioral and physiological processes. Prevailing knowledge associated the control of circadian clocks to a network of neurons in the central pacemaker, the suprachiasmatic nucleus (SCN), but astrocytes are rapidly emerging as key cellular contributors to the timekeeping system. However, how these glial cells impact the neuronal clock to modulate rhythmic neurobehavioral outputs just begin to be investigated. Astrocyte-neuron cocultures are an excellent exploratory method to further characterize the critical role of circadian communication between nerve cells, as well as to address the role of astrocytes as modulators and targets of neuronal rhythmic behaviors. Here, we describe a robust method to study astrocyte rhythmic interactions with neurons by coculturing them with primary neurons in physically separated layers. This simple coculture system provides hints on in vivo signaling processes. Moreover, it allows investigating cell-type specific effects separately as well as the identification of extracellular astrocytic or neuronal factors involved in rhythm generation in both cell types.
Collapse
Affiliation(s)
- Olga Barca Mayo
- Neurobiology of miRNAs Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Luca Berdondini
- Microtechnology for Neuroelectronics (Nets3) Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Davide De Pietri Tonelli
- Neurobiology of miRNAs Laboratory, Neuroscience and Brain Technologies Department, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
66
|
Young TL, Zychowski KE, Denson JL, Campen MJ. Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
67
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
68
|
Kato A, Tatsumi Y, Yako H, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res 2018; 147:26-32. [PMID: 30444976 DOI: 10.1016/j.neures.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Hypoglycemia and fluctuating high or low glucose conditions are under-appreciated sources of oxidative stress contributing to diabetic neuropathy. We investigated the effects of recurrent short-term hypoglycemia and hyperglycemia, on apoptosis and oxidative stress in Schwann cells. Immortalized adult mouse Schwann (IMS32) cells were exposed to five different glucose treatments over 3 days: 1) normal glucose (NG), 2) constant low glucose (LG), 3) constant high glucose (HG), 4) intermittent low glucose (ILG; 1 h three times per day), 5) intermittent high glucose (IHG; 1 h three times per day). Cell viability was decreased by all treatment variants, in comparison to NG. Thiobarbituric acid reactive substance (TBARS) levels were increased by HG, LG, IHG, and ILG. High glucose (HG and IHG) and low glucose (LG and ILG) increased the expression of cleaved caspase-3 and reduced that of Bcl-2. In addition, endoplasmic reticulum (ER) stress-responsive transcription factor C/EBP homologous protein (CHOP) expression was increased under low and high glucose conditions. Cell death and oxidative stress induced by HG, LG, IHG, and ILG were significantly reduced by 4-phenyl butyric acid (4-PBA), an ER stress inhibitor. These findings indicate that recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in Schwann cells.
Collapse
Affiliation(s)
- Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan.
| |
Collapse
|
69
|
Lee JY, Nam JH, Nam Y, Nam HY, Yoon G, Ko E, Kim SB, Bautista MR, Capule CC, Koyanagi T, Leriche G, Choi HG, Yang J, Kim J, Hoe HS. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD. J Neuroinflammation 2018; 15:286. [PMID: 30309372 PMCID: PMC6182807 DOI: 10.1186/s12974-018-1321-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
Background Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer’s disease (AD). Thus, modulating the neuroinflammatory response represents a potential therapeutic strategy for treating neurodegenerative diseases. Several recent studies have shown that dopamine (DA) and its receptors are expressed in immune cells and are involved in the neuroinflammatory response. Thus, we recently developed and synthesized a non-self-polymerizing analog of DA (CA140) and examined the effect of CA140 on neuroinflammation. Methods To determine the effects of CA140 on the neuroinflammatory response, BV2 microglial cells were pretreated with lipopolysaccharide (LPS, 1 μg/mL), followed by treatment with CA140 (10 μM) and analysis by reverse transcription-polymerase chain reaction (RT-PCR). To examine whether CA140 alters the neuroinflammatory response in vivo, wild-type mice were injected with both LPS (10 mg/kg, intraperitoneally (i.p.)) and CA140 (30 mg/kg, i.p.), and immunohistochemistry was performed. In addition, familial AD (5xFAD) mice were injected with CA140 or vehicle daily for 2 weeks and examined for microglial and astrocyte activation. Results Pre- or post-treatment with CA140 differentially regulated proinflammatory responses in LPS-stimulated microglia and astrocytes. Interestingly, CA140 regulated D1R levels to alter LPS-induced proinflammatory responses. CA140 significantly downregulated LPS-induced phosphorylation of ERK and STAT3 in BV2 microglia cells. In addition, CA140-injected wild-type mice exhibited significantly decreased LPS-induced microglial and astrocyte activation. Moreover, CA140-injected 5xFAD mice exhibited significantly reduced microglial and astrocyte activation. Conclusions CA140 may be beneficial for preventing and treating neuroinflammatory-related diseases, including AD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1321-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Gwangho Yoon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea
| | - Eunhwa Ko
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Mahealani R Bautista
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Christina C Capule
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Hwan Geun Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0358, USA
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41068, South Korea.
| |
Collapse
|
70
|
Chiu CD, Chiu YP, Lin CL, Ji HR, Shen CC, Lee HT, Chang C. Acetazolamide alleviates sequelae of hyperglycaemic intracerebral haemorrhage by suppressing astrocytic reactive oxygen species. Free Radic Res 2018; 52:1010-1019. [PMID: 30079794 DOI: 10.1080/10715762.2018.1508838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hyperglycaemia is associated with the poor outcome after intracerebral haemorrhage (ICH). Acetazolamide (AZA), a kind of carbonic anhydrogenase (CA) inhibitor, its effectiveness in ICH had been reported. However, the connections between AZA and ICH, especially in hyperglycaemia condition had never been defined. In this study, adult Sprague-Dawley rats were administered with vehicle or streptozotocin (STZ) to render them into normoglycaemic (NG) or hyperglycaemic (HG), respectively. Collagenase was then injected into the striatum. The NG or HG ICH rats treated with vehicle control or 5 mg/kg AZA (oral gavage) underwent haemorrhagic area assessments on the 1st, 4th, and 7th day after ICH. The coverage of pericytes was examined by immunohistochemistry. Reactive oxygen species (ROS) levels were assessed in mouse astrocyte cell line treated with vehicle or 20 μmol/L of AZA in culture media according to two different glucose concentrations. AZA reduced the haematoma size, improved neurobehavioral functions, suppressed astrocytic ROS production in vitro, and preserved cerebral pericytes coverage, which are even more remarkable in HG conditions. The present study indicates that AZA may alleviate some sequelae after ICH, especially in poorer prognostic HG rats through the suppression of astrocytic ROS production.
Collapse
Affiliation(s)
- Cheng-Di Chiu
- a School of Medicine , China Medical University , Taichung , Taiwan.,b Graduate Institute of Biomedical Science , China Medical University , Taichung , Taiwan.,c Department of Neurosurgery , China Medical University Hospital , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - You-Pen Chiu
- a School of Medicine , China Medical University , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - Cheng-Li Lin
- a School of Medicine , China Medical University , Taichung , Taiwan
| | - Hui-Ru Ji
- b Graduate Institute of Biomedical Science , China Medical University , Taichung , Taiwan.,d Stroke Center , China Medical University Hospital , Taichung , Taiwan
| | - Chiung-Chyi Shen
- e Department of Minimally Invasive Skull Base Neurosurgery , Neurological Institute, Taichung Veterans General Hospital , Taichung , Taiwan
| | - Hsu-Tung Lee
- f Department of Neurosurgical Oncology , Neurological Institute, Taichung Veterans General Hospital , Taichung , Taiwan
| | - Chen Chang
- g Institute of Biomedical Sciences, Academic Sinica , Taipei , Taiwan
| |
Collapse
|
71
|
Li W, Roy Choudhury G, Winters A, Prah J, Lin W, Liu R, Yang SH. Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation. Aging Dis 2018; 9:674-684. [PMID: 30090655 PMCID: PMC6065301 DOI: 10.14336/ad.2017.1208] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/08/2017] [Indexed: 12/01/2022] Open
Abstract
Diabetes milieu is a complex metabolic disease that has been known to associate with high risk of various neurological disorders. Hyperglycemia in diabetes could dramatically increase neuronal glucose levels which leads to neuronal damage, a phenomenon referred to as glucose neurotoxicity. On the other hand, the impact of hyperglycemia on astrocytes has been less explored. Astrocytes play important roles in brain energy metabolism through neuron-astrocyte coupling. As the component of blood brain barrier, glucose might be primarily transported into astrocytes, hence, impose direct impact on astrocyte metabolism and function. In the present study, we determined the effect of high glucose on the energy metabolism and function of primary astrocytes. Hyperglycemia level glucose (25 mM) induced cell cycle arrest and inhibited proliferation and migration of primary astrocytes. Consistently, high glucose decreased cyclin D1 and D3 expression. High glucose enhanced glycolytic metabolism, increased ATP and glycogen content in primary astrocytes. In addition, high glucose activated AMP-activated protein kinase (AMPK) signaling pathway in astrocytes. In summary, our in vitro study indicated that hyperglycemia might impact astrocyte energy metabolism and function phenotype. Our study provides a potential mechanism which may underlie the diabetic cerebral neuropathy and warrant further in vivo study to determine the effect of hyperglycemia on astrocyte metabolism and function.
Collapse
Affiliation(s)
- Wenjun Li
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gourav Roy Choudhury
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ali Winters
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jude Prah
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Wenping Lin
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.,2Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Fujian Province, 362000, China
| | - Ran Liu
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shao-Hua Yang
- 1Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
72
|
Roosterman D, Meyerhof W, Cottrell GS. Proton Transport Chains in Glucose Metabolism: Mind the Proton. Front Neurosci 2018; 12:404. [PMID: 29962930 PMCID: PMC6014028 DOI: 10.3389/fnins.2018.00404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/25/2018] [Indexed: 01/11/2023] Open
Abstract
The Embden-Meyerhof-Parnas (EMP) pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OH)COOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-). We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH) complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OH)COO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.
Collapse
Affiliation(s)
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
73
|
Geng J, Wang L, Zhang L, Qin C, Song Y, Ma Y, Chen Y, Chen S, Wang Y, Zhang Z, Yang GY. Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine. Front Aging Neurosci 2018; 10:129. [PMID: 29867440 PMCID: PMC5949351 DOI: 10.3389/fnagi.2018.00129] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Patients with diabetes suffer the higher risk of dementia and the underlying pathological mechanism of cognitive dysfunction in diabetes is not fully understood. In this study, we explore whether the cognitive impairment in the diabetic rat is associated with increased blood brain barrier (BBB) permeability and the change of the inflammatory cytokine. Experimental diabetic rats were induced by single intraperitoneal injection of streptozotocin (STZ). Cognitive function was evaluated by Morris water maze in the normal and the diabetic rats, respectively. The spatial acquisition trials were conducted over five consecutive days and the probe test was performed on day 6, followed by working memory test on the next 4 days. Escape latency was recorded in the acquisition trials and working memory test; time spent in the target quadrant and the number of crossing the former platform were recorded in the probe test. BBB permeability was assessed by measuring the extravasation of IgG. The image of occludin and claudin-5 staining by a confocal microscope were acquired to measure the gap in the tight junction. Cytokines TNF-α, IL-1β and IL-6 mRNA expression were further examined by Real-time PCR. The time spent in the target quadrant within 30 s decreased in the 8-week STZ rats compared to that of the normal rats (p < 0.05), while no difference was seen in the performance of working memory between the diabetic and normal rats. IgG leakage significantly increased in the brain parenchyma of the 8-week STZ rats compared to the normal rats (p < 0.05). The immunostaining of occludin and claudin-5 suggested the gap in the tight junction increased in the 8-week STZ rats compared to the normal rats (p < 0.05). Moreover, TNF-α and IL-6 mRNA also increased in the brain of 8-week STZ rats compared to the normal rats (p < 0.05). These results suggested that loss of BBB integrity might contribute to progressive impairment of cognitive in the diabetic rats. The increase of TNF-α and IL-6 expression might trigger the disruption of BBB in the brain, which eventually caused cognitive impairment in the 8-week STZ rats.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Qin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaying Song
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
74
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int J Mol Sci 2018; 19:ijms19041212. [PMID: 29659554 PMCID: PMC5979570 DOI: 10.3390/ijms19041212] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Collapse
Affiliation(s)
- Alexandre Vallée
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, 92150 Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Rémy Guillevin
- Data Analysis and Computations Through Imaging Modeling-Mathématiques (DACTIM), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348 (Laboratoire de Mathématiques et Application), University of Poitiers, Centre Hospitalier Universitaire (CHU) de Poitiers, 86000 Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France.
- LMA (Laboratoire de Mathématiques et Applications), Unité mixte de recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, Université de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
75
|
Wang XJ, Wang MH, Fu XT, Hou YJ, Chen W, Tian DC, Bai SY, Fu XY. Selenocysteine antagonizes oxygen glucose deprivation-induced damage to hippocampal neurons. Neural Regen Res 2018; 13:1433-1439. [PMID: 30106056 PMCID: PMC6108205 DOI: 10.4103/1673-5374.235300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Designing and/or searching for novel antioxidants against oxygen glucose deprivation (OGD)-induced oxidative damage represents an effective strategy for the treatment of human ischemic stroke. Selenium is an essential trace element, which is beneficial in the chemoprevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S4O2, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspase-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-mediated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Xian-Jun Wang
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Mei-Hong Wang
- Department of Neurology, People's Hospital of Yishui, Linyi, Shandong Province, China
| | - Xiao-Ting Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Ya-Jun Hou
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Wang Chen
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Da-Chen Tian
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Su-Yun Bai
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
76
|
Zhao Y, Pu D, Sun Y, Chen J, Luo C, Wang M, Zhou J, Lv A, Zhu S, Liao Z, Zhao K, Xiao Q. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res 2017; 363:171-178. [PMID: 29294308 DOI: 10.1016/j.yexcr.2017.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
Diabetes, characterized by chronic hyperglycemia, is known to induce synaptic degeneration in the brain, thereby resulting in cognitive dysfunction. Thrombospondin-1(TSP-1), the secreted protein produced by astrocytes, plays a crucial role in promoting synapse formation. Toll-like receptor 9 (TLR9) has been widely known to initiate the innate immune response. We recently reported TLR9 activation in neurons results in tau hyperphosphorylation induced by HG in vitro. Its activation has been also considered to mediate oxidative stress and astrocytic dysfunction under pathological circumstance. However, whether astrocytic TSP-1 alteration plays a role in synaptic protein loss under high glucose condition and whether TLR9 activation is involved in this process have not been reported. In this study, we found that primary mouse astrocytes incubated in high glucose (30mM) induced a significant decreased TSP-1 secretion and increased intracellular contents of TSP-1 without affecting transcription level. Addition of conditioned medium from high glucose (30mM) treated astrocytes to the primary neurons exhibited reduced synaptic proteins expression, which was attenuated by treatment with exogenous rTSP-1. In addition, we demonstrated that TLR9 activation along with reactive oxygen species (ROS) generation in astrocytes was induced by high glucose (30mM). Furthermore, we explored the relationship between TLR9 activation and TSP-1 production. Both TLR9 deficiency and the antioxidant N-acetyl-L-cysteine treatment improved altered intra- and extracellular TSP-1 levels under high glucose condition. Together, our findings suggest that high glucose (30mM) impairs TSP-1 secretion from astrocytes, which depends on astrocytic dysfunction associated with TLR9 activation mediated ROS signaling, ultimately contributing to the synaptic proteins loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, No. 1 Friendship Road, YuZhong District, Chongqing 400016, China.
| |
Collapse
|
77
|
Ferreira LL, Gomes-Filho JE, Benetti F, Carminatti M, Ervolino E, Briso ALF, Cintra LTA. The effect of dental bleaching on pulpal tissue response in a diabetic animal model: a study of immunoregulatory cytokines. Int Endod J 2017; 51:347-356. [PMID: 28857196 DOI: 10.1111/iej.12852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
AIM To evaluate the influence of tooth bleaching on immunoregulatory cytokines production (IL-6, Tumour necrosis factor (TNF)-α and IL-17) in the pulp tissue of normoglycaemic and diabetic rats. METHODOLOGY Twenty-eight rats were divided into normoglycaemic and diabetic rats (n = 14). Diabetes mellitus (DM) was induced with a single dose of alloxan diluted in citrate buffer via intramuscular injection. After DM confirmation, all rats were sedated and tooth bleaching was performed using 35% hydrogen peroxide on the right maxillary molars for 30 min. Left molars were used as controls. Bleaching resulted in four hemimaxillae groups: normoglycaemic (N), N-bleached (NBle), diabetic (D) and D-bleached (DBle). After 2 and 30 days, rats were euthanized and hemimaxillae processed for analysis by haematoxylin and eosin and immunohistochemistry. Results within and between animals were submitted to Wilcoxon signed-rank and Mann-Whitney tests (P < 0.05). RESULTS At 2 days, the NBle group had mild, and the DBle had severe inflammatory infiltration in the pulpal tissue (P < 0.05). TNF-α and IL-6 cytokines were associated with increased immunolabelling in the bleached groups compared to nonbleached (P < 0.05). However, IL-17 had increased immunolabelling in the NBle compared to the N and DBle group (P < 0.05). At 30 days, reactionary dentine was observed in the coronal pulp of all bleached teeth and no inflammation was present (P > 0.05). TNF-α cytokines had increased immunolabelling in the DBle group compared to the D group (P < 0.05). However, for IL-6 and IL-17, no difference was observed in this period (P > 0.05). CONCLUSIONS Tooth bleaching increased IL-6 and TNF-α in the pulp tissue regardless of diabetes mellitus; however, diabetic rats had higher TNF-α levels for longer periods. Tooth bleaching influenced the increase in IL-17 in the early periods in normoglycaemic rats.
Collapse
Affiliation(s)
- L L Ferreira
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - J E Gomes-Filho
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - F Benetti
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - M Carminatti
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - E Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - A L F Briso
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - L T A Cintra
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| |
Collapse
|
78
|
Saba F, Sirigu A, Pillai R, Caria P, Cordeddu L, Carta G, Murru E, Sogos V, Banni S. Downregulation of inflammatory markers by conjugated linoleic acid isomers in human cultured astrocytes. Nutr Neurosci 2017; 22:207-214. [PMID: 28847225 DOI: 10.1080/1028415x.2017.1367130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Conjugated linoleic acid (CLA) isomers have been shown to possess anti-inflammatory activity in the central nervous system. In this study, we aimed to evaluate whether modulation of the fatty acid profile by the CLA isomers c9,t11 or t10,c12CLA was associated with changes in the expression of pro-inflammatory molecules in human astrocytes. METHODS Cultured astrocytes were treated for 6 days with 100 µM fatty acids (c9,t11CLA or t10,c12CLA or oleic acid). Following the treatment, the fatty acid profile of the cell and pro-inflammatory molecule expression were assessed. RESULTS Only the t10,c12CLA isomer induced a significant decrease in arachidonic acid and increased the ratio of docosahexaenoic acid/eicosapentaenoic acid, which constitutes indirect evidence of peroxisome proliferator-activated receptor alpha activation. Inhibition of tumour necrosis factor-α, interleukin-1β, and RANTES expression was observed in astrocytes treated with c9,t11CLA and t10,c12CLA. DISCUSSION Current data demonstrate that CLA isomers, particularly t10,c12, may affect neuroinflammation by reducing the pro-inflammatory molecules in cultured astrocytes, suggesting a potential nutritional role of CLA isomers in modulating the astrocyte inflammatory response.
Collapse
Affiliation(s)
- Francesca Saba
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Annarita Sirigu
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Rita Pillai
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Paola Caria
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Lina Cordeddu
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Gianfranca Carta
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Elisabetta Murru
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Valeria Sogos
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| | - Sebastiano Banni
- a Department of Biomedical Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|
79
|
Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang GY. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 2017; 8:163. [PMID: 28697748 PMCID: PMC5505148 DOI: 10.1186/s13287-017-0605-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Meijie Qu
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
80
|
Song ZX, Jiang WD, Liu Y, Wu P, Jiang J, Zhou XQ, Kuang SY, Tang L, Tang WN, Zhang YA, Feng L. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 66:497-523. [PMID: 28549941 DOI: 10.1016/j.fsi.2017.05.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Our study investigated the effects of dietary zinc (Zn) deficiency on growth performance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (244.14 ± 0.40 g) were fed graded levels of zinc lactate (10.71, 30.21, 49.84, 72.31, 92.56, 110.78 mg Zn/kg diet) and one zinc sulfate group (56.9 mg Zn/kg diet) for 60 days. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. These results indicated that compared with optimal dietary Zn level, dietary Zn deficiency (10.71 mg/kg diet) decreased the production of antibacterial compounds, up-regulated pro-inflammatory cytokines related to nuclear factor kappa B (NF-κB) and down-regulated anti-inflammatory cytokines related to target of rapamycin (TOR) in three intestinal segments of young grass carp (P < 0.05), suggesting that dietary Zn deficiency could impair intestinal immune barrier of fish; decreased the activities and mRNA levels of antioxidant enzymes related to NF-E2-related factor 2 (Nrf2), up-regulated the mRNA levels of caspase-3, -7, -8, -9 related to p38 mitogen activated protein (p38 MAPK) and c-Jun N-terminal protein kinase (JNK), down-regulated the mRNA levels of tight junction complexes (TJs) related to myosin light chain kinase (MLCK) in three intestinal segments of young grass carp (P < 0.05), demonstrating that dietary Zn deficiency could injury intestinal physical barrier of fish. Besides, the Zn requirements (zinc lactate as Zn source) based on percent weight gain (PWG), against enteritis morbidity, acid phosphatase (ACP) activity in the proximal intestine (PI) and malondialdehyde (MDA) content in the PI of young grass carp was estimated to be 61.2, 61.4, 69.2 and 69.5 mg/kg diet, respectively. Finally, based on specific growth rate (SGR), feed efficiency (FE) and against enteritis morbidity of young grass carp, the efficacy of zinc lactate relative to zinc sulfate were 132.59%, 135.27% and 154.04%, respectively.
Collapse
Affiliation(s)
- Zheng-Xing Song
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
81
|
Zhao Y, Shen Z, Zhang D, Luo H, Chen J, Sun Y, Xiao Q. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats. Metab Brain Dis 2017; 32:903-912. [PMID: 28357639 DOI: 10.1007/s11011-017-0001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023]
Abstract
Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Zhaoxing Shen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Dongling Zhang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Huiqiong Luo
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Jinliang Chen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Yue Sun
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China
| | - Qian Xiao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, No. 1 YouYi Road, YuZhong District, Chongqing, 400016, China.
| |
Collapse
|
82
|
Bogush M, Heldt NA, Persidsky Y. Blood Brain Barrier Injury in Diabetes: Unrecognized Effects on Brain and Cognition. J Neuroimmune Pharmacol 2017; 12:593-601. [PMID: 28555373 DOI: 10.1007/s11481-017-9752-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/19/2017] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is a disorder due to the inability properly to metabolize glucose associated with dysregulation of metabolic pathways of lipids and proteins resulting in structural and functional changes of various organ systems. DM has detrimental effects on the vasculature, resulting in the development of various cardiovascular diseases and stemming from microvascular injury. The blood brain barrier (BBB) is a highly specialized structure protecting the unique microenvironment of the brain. Endothelial cells, connected by junctional complexes and expressing numerous transporters, constitute the main cell type in the BBB. Other components, including pericytes, basement membrane, astrocytes and perivascular macrophages, join endothelial cells to form the neurovascular unit (NVU) and contribute to the proper function and integrity of the BBB. The role of the BBB in the pathogenesis of diabetic encephalopathy and other diabetes-related complications in the central nervous system is apparent. However, the mechanisms, timing and consequences of BBB injury in diabetes are not well understood. The importance of further studies related to barrier dysfunction in diabetes is dictated by its potential involvement in the cognitive demise associated with DM. This review summarizes the impact of DM on BBB/NVU integrity and function leading to neurological and cognitive complications.
Collapse
Affiliation(s)
- Marina Bogush
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
83
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
84
|
Sun D, Moore S, Jakobs TC. Optic nerve astrocyte reactivity protects function in experimental glaucoma and other nerve injuries. J Exp Med 2017; 214:1411-1430. [PMID: 28416649 PMCID: PMC5413323 DOI: 10.1084/jem.20160412] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 12/05/2016] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
Reactive remodeling of optic nerve head astrocytes is consistently observed in glaucoma and other optic nerve injuries. However, it is unknown whether this reactivity is beneficial or harmful for visual function. In this study, we used the Cre recombinase (Cre)-loxP system under regulation of the mouse glial fibrillary acidic protein promoter to knock out the transcription factor signal transducer and activator of transcription 3 (STAT3) from astrocytes and test the effect this has on reactive remodeling, ganglion cell survival, and visual function after experimental glaucoma and nerve crush. After injury, STAT3 knockout mice displayed attenuated astrocyte hypertrophy and reactive remodeling; astrocytes largely maintained their honeycomb organization and glial tubes. These changes were associated with increased loss of ganglion cells and visual function over a 30-day period. Thus, reactive astrocytes play a protective role, preserving visual function. STAT3 signaling is an important mediator of various aspects of the reactive phenotype within optic nerve astrocytes.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Sara Moore
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
85
|
Deng Z, Wang Y, Zhou L, Shan Y, Tan S, Cai W, Liao S, Peng L, Lu Z. High salt-induced activation and expression of inflammatory cytokines in cultured astrocytes. Cell Cycle 2017; 16:785-794. [PMID: 28296539 DOI: 10.1080/15384101.2017.1301330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Salt (sodium chloride, NaCl) accumulation in the brain is associated with various diseases of central nervous system (CNS). Activation of astrocytes is an important manifestation of pathophysiological processes in the CNS. However, the direct impact of high salt (HS) environment on astrocytes is unclear. In the current study, we found that high salt treatment can induce activation of astrocytes both in vivo and in vitro, manifested as morphological alteration coupled with increased expression of glial fibrillary acidic protein (GFAP). Additionally, HS upregulated the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF); however, its effects on transforming growth factor-β (TGF-β) expression were not evident. Furthermore, HS treatment induced increased phosphorylation of signal transducer and activator transcription 3 (STAT 3). Inhibition of Janus kinase 2 (JAK 2) by specific pharmacological antagonists, AG490, attenuated the activation of JAK2/STAT3 pathway and induction of GFAP and other pro-inflammatory factors, respectively. The results suggest that the aforementioned multiple inflammatory cytokines and mediators that may be linked to the HS induced pathogenesis of CNS via the JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Zhezhi Deng
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yuge Wang
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Li Zhou
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Yilong Shan
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Sha Tan
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wei Cai
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Siyuan Liao
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Lisheng Peng
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Zhengqi Lu
- a Department of Neurology , Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
86
|
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 2017; 14:21. [PMID: 28115020 PMCID: PMC5260103 DOI: 10.1186/s12974-016-0774-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide. A strong inflammatory response characterized by activation and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes contributes to brain damage following stroke. Stroke outcomes are worse among diabetics, resulting in increased mortality and disabilities. Diabetes involves chronic inflammation manifested by reactive oxygen species generation, expression of proinflammatory cytokines, and activation/expression of other inflammatory mediators. It appears that increased proinflammatory processes due to diabetes are further accelerated after cerebral ischemia, leading to increased ischemic damage. Hypoglycemia is an intrinsic side effect owing to glucose-lowering therapy in diabetics, and is known to induce proinflammatory changes as well as exacerbate cerebral damage in experimental stroke. Here, we present a review of available literature on the contribution of neuroinflammation to increased cerebral ischemic damage in diabetics. We also describe the role of hypoglycemia in neuroinflammation and cerebral ischemic damage in diabetics. Understanding the role of neuroinflammatory mechanisms in worsening stroke outcome in diabetics may help limit ischemic brain injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Akhalesh Kumar Shakya
- Present address: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA. .,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
87
|
Time-Dependent Lactate Production and Amino Acid Utilization in Cultured Astrocytes Under High Glucose Exposure. Mol Neurobiol 2017; 55:1112-1122. [DOI: 10.1007/s12035-016-0360-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
|
88
|
Li Y, Zhou Q, Pei C, Liu B, Li M, Fang L, Sun Y, Li Y, Meng S. Hyperglycemia and Advanced Glycation End Products Regulate miR-126 Expression in Endothelial Progenitor Cells. J Vasc Res 2016; 53:94-104. [DOI: 10.1159/000448713] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
|
89
|
Quincozes-Santos A, Bobermin LD, de Assis AM, Gonçalves CA, Souza DO. Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1-14. [PMID: 27663722 DOI: 10.1016/j.bbadis.2016.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/21/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Astrocytes are dynamic cells that maintain brain homeostasis by regulating neurotransmitter systems, antioxidant defenses, inflammatory responses and energy metabolism. Astroglial cells are also primarily responsible for the uptake and metabolism of glucose in the brain. Diabetes mellitus (DM) is a pathological condition characterized by hyperglycemia and is associated with several changes in the central nervous system (CNS), including alterations in glial function. Classically, excessive glucose concentrations are used to induce experimental models of astrocyte dysfunction; however, hypoglycemic episodes may also cause several brain injuries. The main focus of the present study was to evaluate how fluctuations in glucose levels induce cytotoxicity. The culture medium of astroglial cells was replaced twice as follows: (1) from 6mM (control) to 12mM (high glucose), and (2) from 12mM to 0mM (glucose deprivation). Cell viability, mitochondrial function, oxidative/nitrosative stress, glutamate metabolism, inflammatory responses, nuclear factor κB (NFκB) transcriptional activity and p38 mitogen-activated protein kinase (p38 MAPK) levels were assessed. Our in vitro experimental model showed that up and down fluctuations in glucose levels decreased cell proliferation, induced mitochondrial dysfunction, increased oxidative/nitrosative stress with consequent cellular biomolecular damage, impaired glutamate metabolism and increased pro-inflammatory cytokine release. Additionally, activation of the NFκB and p38 signaling pathways were putative mechanisms of the effects of glucose fluctuations on astroglial cells. In summary, for the first time, we show that changes in glucose concentrations, from high-glucose levels to glucose deprivation, exacerbate glial injury.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriano M de Assis
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
90
|
Del Rey A, Verdenhalven M, Lörwald AC, Meyer C, Hernangómez M, Randolf A, Roggero E, König AM, Heverhagen JT, Guaza C, Besedovsky HO. Brain-borne IL-1 adjusts glucoregulation and provides fuel support to astrocytes and neurons in an autocrine/paracrine manner. Mol Psychiatry 2016; 21:1309-20. [PMID: 26643538 DOI: 10.1038/mp.2015.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- A Del Rey
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - M Verdenhalven
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - A C Lörwald
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - C Meyer
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - M Hernangómez
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - A Randolf
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - E Roggero
- Instituto de Inmunologia, Facultad de Medicina, Universidad Nacional de Rosario and Universidad Abierta Interamericana, Rosario, Argentina
| | - A M König
- Centre of Imaging Research (ZebiF), University Institute of Diagnostic and Interventional Radiology, Marburg, Germany
| | - J T Heverhagen
- University Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - C Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain
| | - H O Besedovsky
- Division of Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
91
|
Abstract
Both type 1 (T1DM) and type 2 diabetes mellitus (T2DM) have been associated with reduced performance on multiple domains of cognitive function and with evidence of abnormal structural and functional brain magnetic resonance imaging (MRI). Cognitive deficits may occur at the very earliest stages of diabetes and are further exacerbated by the metabolic syndrome. The duration of diabetes and glycemic control may have an impact on the type and severity of cognitive impairment, but as yet we cannot predict who is at greatest risk of developing cognitive impairment. The pathophysiology of cognitive impairment is multifactorial, although dysfunction in each interconnecting pathway ultimately leads to discordance in metabolic signaling. The pathophysiology includes defects in insulin signaling, autonomic function, neuroinflammatory pathways, mitochondrial (Mt) metabolism, the sirtuin-peroxisome proliferator-activated receptor-gamma co-activator 1α (SIRT-PGC-1α) axis, and Tau signaling. Several promising therapies have been identified in pre-clinical studies, but remain to be validated in clinical trials.
Collapse
Affiliation(s)
- Lindsay A Zilliox
- Department of Neurology, Maryland VA Healthcare System and University of Maryland, 110 South Paca Street, Baltimore, MD, 21201, USA
| | - Krish Chadrasekaran
- Department of Neurology, Maryland VA Healthcare System and University of Maryland, 110 South Paca Street, Baltimore, MD, 21201, USA
| | - Justin Y Kwan
- Department of Neurology, Maryland VA Healthcare System and University of Maryland, 110 South Paca Street, Baltimore, MD, 21201, USA
| | - James W Russell
- Department of Neurology, Maryland VA Healthcare System and University of Maryland, 110 South Paca Street, Baltimore, MD, 21201, USA.
- School of Medicine, Department of Neurology, University of Maryland, 3S-129, 110 South Paca Street, Baltimore, MD, 21201-1595, USA.
| |
Collapse
|
92
|
Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway? Neuroscience 2016; 330:205-18. [DOI: 10.1016/j.neuroscience.2016.05.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
|
93
|
Jeon SJ, Sung JH, Koh PO. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke. Neurosci Lett 2016; 626:13-8. [PMID: 27177727 DOI: 10.1016/j.neulet.2016.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
Abstract
Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO.
Collapse
Affiliation(s)
- Seong-Jun Jeon
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea
| | - Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju 660-701, South Korea.
| |
Collapse
|
94
|
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem Neurosci 2016; 7:131-42. [PMID: 26667832 DOI: 10.1021/acschemneuro.5b00240] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.
Collapse
Affiliation(s)
- Joana M. Gaspar
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - Filipa I. Baptista
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M. Paula Macedo
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - António F. Ambrósio
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
| |
Collapse
|
95
|
Góralczyk K, Szymańska J, Szot K, Fisz J, Rość D. Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 2016; 31:825-31. [PMID: 26861982 PMCID: PMC4908157 DOI: 10.1007/s10103-016-1880-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022]
Abstract
Diabetes mellitus is considered to be a very serious lifestyle disease leading to cardiovascular complications and impaired wound healing observed in the diabetic foot syndrome. Chronic hyperglycemia is the source of the endothelial activation. The inflammatory process in diabetes is associated with the secretion of inflammatory cytokines by endothelial cells, e.g., tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). The method of phototherapy using laser beam of low power (LLLT-low-level laser therapy) effectively supports the conventional treatment of diabetic vascular complications such as diabetic foot syndrome. The aim of our study was to evaluate the effect of low-power laser irradiation at two wavelengths (635 and 830 nm) on the secretion of inflammatory factors (TNF-α and IL-6) by the endothelial cell culture-HUVEC line (human umbilical vein endothelial cell)-under conditions of hyperglycemia. It is considered that adverse effects of hyperglycemia on vascular endothelial cells may be corrected by the action of LLLT, especially with the wavelength of 830 nm. It leads to the reduction of TNF-α concentration in the supernatant and enhancement of cell proliferation. Endothelial cells play an important role in the pathogenesis of diabetes; however, a small number of studies evaluate an impact of LLLT on these cells under conditions of hyperglycemia. Further work on this subject is warranted.
Collapse
Affiliation(s)
- Krzysztof Góralczyk
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Skłodowskiej-Curie Street No 9, Bydgoszcz, Poland.
| | - Justyna Szymańska
- Department of Laserotherapy and Physiotherapy, Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Szot
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Skłodowskiej-Curie Street No 9, Bydgoszcz, Poland
| | - Jacek Fisz
- Department of Laserotherapy and Physiotherapy, Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Danuta Rość
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Skłodowskiej-Curie Street No 9, Bydgoszcz, Poland
| |
Collapse
|
96
|
Yang CM, Lin CC, Hsieh HL. High-Glucose-Derived Oxidative Stress-Dependent Heme Oxygenase-1 Expression from Astrocytes Contributes to the Neuronal Apoptosis. Mol Neurobiol 2016; 54:470-483. [PMID: 26742524 DOI: 10.1007/s12035-015-9666-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/17/2015] [Indexed: 12/26/2022]
Abstract
An elevated level of glucose has been found in the blood of hyperglycemia and diabetes patients associated with several central nervous system (CNS) complications. These disorders may be due to the up-regulation of many neurotoxic mediators by host cells triggered by high glucose (HG). Moreover, heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. However, the molecular mechanisms underlying HG-induced HO-1 expression in brain cells remain poorly defined. Thus, we use the rat brain astrocytes (RBA-1) as a model to investigate the signaling mechanisms of HO-1 induction by HG and its effects on neuronal cells. We demonstrated that HG induced HO-1 expression via a reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)- and mitochondrion-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream transcriptional factors nuclear factor-kappaB (NF-κB) and c-Fos/activator protein 1 (AP-1), respectively. Subsequently, the activated NF-κB and AP-1 turned on transcription of HO-1 gene. These results indicated that in brain astrocytes, activation of MAPK-mediated NF-κB and c-Fos/AP-1 cascades by Nox/ROS and mitoROS-dependent events is essential for HO-1 up-regulation induced by HG. Moreover, we found that HG-induced extracellular ROS increase and HO-1 expression from astrocytes resulted in neuronal apoptosis. These results offers new insights into the mechanisms and effects of the action of HG, supporting that HG may cause brain disorders in the development of diabetes- and hyperglycemia-induced CNS complications such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Gui-Shan, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Gui-Shan, Tao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
97
|
Hyperglycemia-Induced Oxidative-Nitrosative Stress Induces Inflammation and Neurodegeneration via Augmented Tuberous Sclerosis Complex-2 (TSC-2) Activation in Neuronal Cells. Mol Neurobiol 2016; 54:238-254. [PMID: 26738854 DOI: 10.1007/s12035-015-9667-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
Diabetes is a systemic disease mainly characterized by chronic hyperglycemia and with extensive and long-lasting spiteful complications in central nervous systems (CNS). Astrocytes play an important role in the defense mechanism of CNS, with great ability of withstanding accumulation of toxic substances. Apart from functional disorders, hyperglycemia leads to slow progressive structural abnormalities in the CNS through oxidative stress pathways. However, the molecular mechanism by which neurons die under oxidative stress induced by high glucose (HG) remains largely unclear. Here, we report that HG-induced inflammation and neurodegeneration in brain tissues, brain astrocytes (C6), and pheochromocytoma (PC-12) cells are cultured in HG conditions. Our results show that the increases in phosphorylation of Akt and ERK1/2MAPK are associated with increased accumulations of reactive oxygen species (ROS) in neuronal cells, which simultaneously enhanced phosphorylations of tuberous sclerosis complex-2 (TSC-2) and mammalian target of rapamycin (mTOR) in the diabetic brain and in HG-exposed neuronal cells. Pharmacologic inhibition of Akt or ERK1/2 or siRNA-mediated gene silencing of TSC-2 suppressed the strong downregulation of TSC-2-mTOR activation. Findings of this study also demonstrate that HG resulted in phosphorylation of NF-κB, coinciding with the increased production of inflammatory mediators and activation of neurodegenerative markers. Pretreatment of cells with antioxidants, phosphoinositide3-kinase (PI3-K)/Akt, and ERK1/2 inhibitors significantly reduced HG-induced TSC-2 phosphorylation and restored NF-κB protein expression leading to decreased production of inflammatory mediators and neurodegenerative markers. These results illustrate that ROS functions as a key signaling component in the regulatory pathway induced by elevated glucose in neuronal cell activation leading to inflammation and neurodegeneration.
Collapse
|
98
|
Nijland PG, Molenaar RJ, van der Pol SMA, van der Valk P, van Noorden CJF, de Vries HE, van Horssen J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol Commun 2015; 3:79. [PMID: 26637184 PMCID: PMC4670517 DOI: 10.1186/s40478-015-0261-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Results Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. Conclusion In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0261-8) contains supplementary material, which is available to authorized users.
Collapse
|
99
|
Rivera-Aponte DE, Méndez-González MP, Rivera-Pagán AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 2015; 310:216-23. [PMID: 26404875 DOI: 10.1016/j.neuroscience.2015.09.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022]
Abstract
Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke.
Collapse
Affiliation(s)
- D E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - A F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - Y V Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - L Y Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - S N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| |
Collapse
|
100
|
Kahya MC, Naziroğlu M, Çiğ B. Melatonin and selenium reduce plasma cytokine and brain oxidative stress levels in diabetic rats. Brain Inj 2015; 29:1490-6. [DOI: 10.3109/02699052.2015.1053526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|