51
|
Goldman GS. Examples of Outcome Reporting Bias in Vaccine Studies: Illustrating How Perpetuating Medical Consensus Can Impede Progress in Public Health. Cureus 2022; 14:e29399. [PMID: 36304385 PMCID: PMC9585808 DOI: 10.7759/cureus.29399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Outcome reporting bias in vaccine studies is a widespread problem among all researchers who have a tendency to report selective results and conclusions that support their beliefs and values or those of sponsoring agencies. Especially during the COVID-19 pandemic, this bias surfaced through the unprecedented proliferation of conflicting vaccine studies. Many researchers strongly recommend and report on the safety and effectiveness of the COVID-19 vaccine. Those researchers who embrace the COVID-19 vaccine and vaccines, in general, are often dismissive of other researchers who present views that differ from medical orthodoxy and oppose medical consensus. Methods: The aim of this analysis is to critically evaluate seven vaccine studies using qualitative and/or quantitative approaches to identify outcome reporting bias and assess its potential impact on the stated conclusions that align with medical consensus. Four studies claim to have found no association between autism and (a) blood levels of mercury, (b) measles, mumps, and rubella (MMR) vaccine, and (c) thimerosal-containing vaccines. Three other studies claim no association exists between infant mortality rate and the number of vaccine doses, universal varicella vaccination and herpes zoster, and pandemic influenza vaccines and fetal losses. Results: The presence of outcome reporting bias and independent reanalysis demonstrated an impact on both the direction and magnitude of the observed effect - raising questions concerning the robustness of the original study design and conclusions and challenging the current medical consensus. Medical consensus has exonerated vaccines as having any causal relationship to autism spectrum disorders (ASDs), yet no other reasonable cause has been proposed. Medical consensus attributes significant ASD increases to better case ascertainment and broadened clinical diagnosis. According to 2018 data, an estimated 1 in 44 eight-year-olds has been identified with ASD. From 1990 to 2019, there have been an estimated two million new cases of ASD in the US, with lifetime social costs exceeding $7 trillion (in 2019 dollars). Can perpetuating medical consensus impede the advancement of public health? Or has it already done so? Conclusions: Conflicts of interest (e.g., financial) that abound between health regulatory agencies and the pharmaceutical industry impact what is ultimately reckoned as medical consensus. Outcome reporting bias that is inherent to all researchers to some degree, obscures medical and scientific truth. Advancement of public health requires that researchers have integrity and an openness and willingness to collaborate to resolve contradictory findings. In fact, it is usually through meticulous, rigorous, scientific investigation of contradictory findings that medical science has advanced and contributed to improvements in public health - since medical consensus and orthodoxy can be incorrect.
Collapse
|
52
|
Ren Q, Wang X, Gao Q, Wang G, Chen X, Liu C, Gao S, Li Y. Glycerol Monolaurate to Ameliorate Efficacy of Inactivated Pseudorabies Vaccine. Front Vet Sci 2022; 9:891157. [PMID: 36187807 PMCID: PMC9521419 DOI: 10.3389/fvets.2022.891157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The present study is aimed to evaluate the effect of glycerol monolaurate (GML) on the growth performance and immune enhancement of pseudorabies virus (PRV)-inactivated vaccine in the early-weaned piglets. One hundred and twenty-five 28-day-old weaned piglets were randomly assigned to a control group (CON, no vaccine and no challenge), challenge control group (C-CON), inactivated PRV vaccine group (IPV), IPV + 500 mg/kg GML group (L-GML), and IPV + 1,000 mg/kg GML group (H-GML) during the entire 28-day experimental period. All the data analyses were performed by one-way analysis of variance (ANOVA) and multiple comparisons. Our results showed that the final weight, average daily gain (ADG), and average daily feed intake (ADFI) of H-GML were the highest in each group, and F/G of H-GML was increased but there was no significant difference with CON (p > 0.05). Levels of PRV glycoprotein B (gB) antibody and immunoglobulin in serum of L-GML and H-GML were higher than those of IPV, but only gB antibody levels and immunoglobulin G (IgG) in H-GML were significantly increased (p < 0.05). Compared with IPV, the contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in serum of L-GML (TNF-α and IL-1β: p > 0.05, IL-6: p < 0.05, respectively) and H-GML (p < 0.01, both) were all decreased, and the content of interleukin-10 (IL-10) in H-GML was increased (p > 0.05). Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) experiments proved that L-GML and H-GML were both superior to IPV in inhibiting the expression of TNF-α (p < 0.01), IL-6 (p > 0.05), and IL-1β (p < 0.01) mRNAs and promoting the expression of IL-10 mRNA (L-GML: p > 0.05, H-GML: p < 0.05, respectively) in the superficial inguinal lymph nodes. Histopathological examination found mild congestion in the lung and inguinal lymph nodes of IPV, while the tissues (brain, lung, and inguinal lymph nodes) of L-GML and H-GML were the same as CON with no obvious lesions. The above results indicate that GML may improve the growth performance of weaned piglets and enhance the immunity of PRV-inactivated vaccine by increasing the levels of PRV gB antibody and immunoglobulin and regulating cytokine levels.
Collapse
Affiliation(s)
- Qinghai Ren
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaobo Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Gaiqin Wang
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | - Song Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li
| |
Collapse
|
53
|
Mamootil D, Grewal A. Viral Versus Vaccine-Associated Acute Transverse Myelitis With Neuromyelitis Optica Immunoglobulin G Antibody and Myelin Basic Protein: A Case Report. Cureus 2022; 14:e28922. [PMID: 36225431 PMCID: PMC9541889 DOI: 10.7759/cureus.28922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Transverse myelitis is a rare spinal cord disorder caused by local inflammation. Usually, this occurs as a complication from infection or autoimmune disease; however, there have been reported idiopathic causes such as vaccinations. A 73-year-old female with a medical history significant for Hashimoto’s thyroiditis presented with new-onset paresthesias in her lower extremities. Her symptom onset was about five weeks after receiving influenza and tetanus, diphtheria, and pertussis (TDaP) vaccines. Magnetic resonance imaging (MRI) of the spine revealed an increased T2 signal of the lower cervical and thoracic spine. Lumbar puncture was also performed, and cerebrospinal fluid (CSF) serology showed elevated myelin basic protein (MBP) at 108.3 ng/mL (reference range: 0-5.5 ng/mL). Serology panel revealed Coxsackie virus type B4 antibody at 1:80 (reference range: <1:10) and Echovirus type 6 antibody at 1:640 (reference range: <1:10). Neuromyelitis optica (NMO) immunoglobulin G (IgG) antibody was 24.6 U/mL (reference range: <2.9 U/mL). She was diagnosed with acute transverse myelitis (ATM) and treated with alternating steroids and plasma exchange (PLEX) therapy for five days each. This case highlights the possible associations of vaccines with transverse myelitis. Although ATM is a rare disorder with serious complications, it has a favorable prognosis in the setting of rapid detection and treatment. Vaccine-related ATM remains controversial, but patients with these adverse reactions need to be cautioned regarding potential recurrence risk.
Collapse
|
54
|
Zhao WM, Wang ZJ, Shi R, Zhu YY, Zhang S, Wang RF, Wang DG. Environmental factors influencing the risk of ANCA-associated vasculitis. Front Immunol 2022; 13:991256. [PMID: 36119110 PMCID: PMC9479327 DOI: 10.3389/fimmu.2022.991256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of diseases characterized by inflammation and destruction of small and medium-sized blood vessels. Clinical disease phenotypes include microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The incidence of AAV has been on the rise in recent years with advances in ANCA testing. The etiology and pathogenesis of AAV are multifactorial and influenced by both genetic and environmental factors, as well as innate and adaptive immune system responses. Multiple case reports have shown that sustained exposure to silica in an occupational environment resulted in a significantly increased risk of ANCA positivity. A meta-analysis involving six case-control studies showed that silica exposure was positively associated with AAV incidence. Additionally, exposure to air pollutants, such as carbon monoxide (CO), is a risk factor for AAV. AAV has seasonal trends. Studies have shown that various environmental factors stimulate the body to activate neutrophils and expose their own antigens, resulting in the release of proteases and neutrophil extracellular traps, which damage vascular endothelial cells. Additionally, the activation of complement replacement pathways may exacerbate vascular inflammation. However, the role of environmental factors in the etiology of AAV remains unclear and has received little attention. In this review, we summarized the recent literature on the study of environmental factors, such as seasons, air pollution, latitude, silica, and microbial infection, in AAV with the aim of exploring the relationship between environmental factors and AAV and possible mechanisms of action to provide a scientific basis for the prevention and treatment of AAV.
Collapse
|
55
|
George PJ, Marches R, Nehar-Belaid D, Banchereau J, Lustigman S. The Th1/Tfh-like biased responses elicited by the rASP-1 innate adjuvant are dependent on TRIF and Type I IFN receptor pathways. Front Immunol 2022; 13:961094. [PMID: 36119026 PMCID: PMC9478378 DOI: 10.3389/fimmu.2022.961094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Ov-ASP-1 (rASP-1), a parasite-derived protein secreted by the helminth Onchocerca volvulus, is an adjuvant which enhances the potency of the influenza trivalent vaccine (IIV3), even when used with 40-fold less IIV3. This study is aimed to provide a deeper insight into the molecular networks that underline the adjuvanticity of rASP-1. Here we show that rASP-1 stimulates mouse CD11c+ bone marrow-derived dendritic (BMDCs) to secrete elevated levels of IL-12p40, TNF-α, IP-10 and IFN-β in a TRIF-dependent but MyD88-independent manner. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th1 cells (IFN-γ+) that was TRIF- and type I interferon receptor (IFNAR)-dependent, and into Tfh-like cells (IL21+) and Tfh1 (IFN-γ+ IL21+) that were TRIF-, MyD88- and IFNAR-dependent. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th17 (IL-17+) cells only when the MyD88 pathway was inhibited. Importantly, rASP-1-activated human blood cDCs expressed upregulated genes that are associated with DC maturation, type I IFN and type II IFN signaling, as well as TLR4-TRIF dependent signaling. These activated cDCs promoted the differentiation of naïve human CD4+ T cells into Th1, Tfh-like and Th17 cells. Our data thus confirms that the rASP-1 is a potent innate adjuvant that polarizes the adaptive T cell responses to Th1/Tfh1 in both mouse and human DCs. Notably, the rASP-1-adjuvanted IIV3 vaccine elicited protection of mice from a lethal H1N1 infection that is also dependent on the TLR4-TRIF axis and IFNAR signaling pathway, as well as on its ability to induce anti-IIV3 antibody production.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara Lustigman
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
56
|
Li X, Wichai N, Wang J, Liu X, Yan H, Wang Y, Luo M, Zhou S, Wang K, Li L, Miao L. Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:196-206. [PMID: 37808346 PMCID: PMC9746255 DOI: 10.1097/hm9.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 08/18/2023]
Abstract
Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination. Graphical abstract http://links.lww.com/AHM/A31.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Jiabao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuping Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyuan Zhou
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kai Wang
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
57
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
58
|
Chen J, Liu Y, Yue J, Duan X, Tang M. Coevolving spreading dynamics of negative information and epidemic on multiplex networks. NONLINEAR DYNAMICS 2022; 110:3881-3891. [PMID: 36035014 PMCID: PMC9395805 DOI: 10.1007/s11071-022-07776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The widespread dissemination of negative information on vaccine may arise people's concern on the safety of vaccine and increase their hesitancy in vaccination, which can seriously impede the progress of epidemic control. Existing works on information-epidemic coupled dynamics focus on the suppression effects of information on epidemic. Here we propose a negative information and epidemic coupled propagation model on two-layer multiplex networks to study the effects of negative information of vaccination on epidemic spreading, where the negative information propagates on the virtual communication layer and the disease spreads on the physical contact layer. In our model, an individual getting an adverse event after vaccination will spread negative information and an individual affected by the negative information will reduce his/her willingness to get vaccinated and spread the negative information. By using the microscopic Markov chain method, we analytically predict the epidemic threshold and final infection density, which agree well with simulation results. We find that the spread of negative information leads to a lower epidemic outbreak threshold and a higher final infection density. However, the individuals' vaccination activities, but not the negative information spreading, has a leading impact on epidemic spreading. Only when the individuals obviously reduce their vaccination willingness due to negative information, the negative information can impact the epidemic spreading significantly.
Collapse
Affiliation(s)
- Jiaxing Chen
- School of Computer Science, Southwest Petroleum University, Chengdu, 610500 China
- Tianjin Key Lab of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300384 China
| | - Ying Liu
- School of Computer Science, Southwest Petroleum University, Chengdu, 610500 China
| | - Jing Yue
- School of Computer Science, Southwest Petroleum University, Chengdu, 610500 China
| | - Xi Duan
- School of Science, Southwest Petroleum University, Chengdu, 610500 China
| | - Ming Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241 China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, 200241 China
| |
Collapse
|
59
|
From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release 2022; 350:107-121. [PMID: 35977582 DOI: 10.1016/j.jconrel.2022.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is a joint-related autoimmune disease that is difficult to cure. Most therapeutics act to alleviate the symptoms but not correct the causes of RA. Novel strategies that specifically target the causes are highly needed for RA management. Currently, early interruption of RA is increasingly suggested but the corresponding therapeutics are not available. Vaccines that have shown great success to combat infection, cancer, degenerative diseases, autoimmune diseases, etc. are ideal candidates for a new generation of anti-RA therapeutics to correct the causes and prevent RA or interrupt RA in early phases. Anti-RA vaccines can be divided into two major categories. One is to induce neutralizing antibodies and the other is to induce antigen-specific immune tolerance. The vaccines are inherently linked to nanotechnology because they usually need a biomacromolecule or carrier to provoke sufficient immune responses. In the past decade, designed nanocarriers such as nanoparticles, liposomes, nanoemulsion, etc., have been applied to optimize the vaccines for autoimmune disease treatment. Nanotechnology endows vaccines with a higher biostability, tunable in vivo behavior, better targeting, co-delivery with stimulatory agents, regulatory effects on immune responses, etc. In this review, unmet medical needs for RA treatment and anti-RA vaccinology are first introduced. The development of anti-RA therapies from vaccines to nanovaccines are then reviewed and perspectives on how nanotechnology promotes vaccine development and advancement are finally provided. In addition, challenges for anti-RA vaccine development are summarized and advantages of nanovaccines are analyzed. In conclusion, nanovaccines will be a promising strategy to revolutionize the treatment of RA by correcting the causes in an early phase of RA.
Collapse
|
60
|
de Queiroz Tavares Ferreira F, Araújo DC, de Albuquerque LM, Bianchini PM, Holanda EC, Pugliesi A. Possible Association between Vogt-Koyanagi-Harada Disease and Coronavirus Disease Vaccine: A Report of Four Cases. Ocul Immunol Inflamm 2022:1-7. [PMID: 35914285 DOI: 10.1080/09273948.2022.2093756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Vogt-Koyanagi-Harada (VKH) syndrome is an autoimmune, multisystemic disease characterized by severe bilateral granulomatous posterior, which can occur due to viral infection or vaccination. We report four cases that had a likely association between VKH disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Two patients had VKH symptoms within 1 and 2 weeks after receiving the ChAdOx1 nCoV-19 vaccine. One patient presented with VKH symptoms 5 days after receiving the BNT162b2 vaccine, and one patient had symptoms within 4 weeks after receiving the CoronaVac vaccine. Early diagnosis and treatment of VKH disease are essential for the visual prognosis of this aggressive disease. Further in-depth studies are necessary to investigate this likely association to enable ophthalmologists to identify new assumed correlations between the diseases described in this study.
Collapse
Affiliation(s)
| | - Daniel Cunha Araújo
- Úvea, Universidade Estadual de Campinas (UNICAMP)Setor de Oftalmologia, Departamento de Retina, Vítreo e , São Paulo, Brazil.,Setor de Oftalmologia, Departamento de Neuro-Oftalmologia, Universidade Estadual de São Paulo (USP), São Paulo, Brazil
| | | | - Priscila Monaro Bianchini
- Úvea, Universidade Estadual de Campinas (UNICAMP)Setor de Oftalmologia, Departamento de Retina, Vítreo e , São Paulo, Brazil
| | | | - Alisson Pugliesi
- Departamento de Ortopedia, Reumatologia e Traumatologia. Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
61
|
Al-Beltagi M, Saeed NK, Bediwy AS. COVID-19 disease and autoimmune disorders: A mutual pathway. World J Methodol 2022; 12:200-223. [PMID: 36159097 PMCID: PMC9350728 DOI: 10.5662/wjm.v12.i4.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a real challenge for humanity with high morbidity and mortality. Despite being primarily a respiratory illness, COVID-19 can affect nearly every human body tissue, causing many diseases. After viral infection, the immune system can recognize the viral antigens presented by the immune cells. This immune response is usually controlled and terminated once the infection is aborted. Nevertheless, in some patients, the immune reaction becomes out of control with the development of autoimmune diseases. Several human tissue antigens showed a strong response with antibodies directed against many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins, such as SARS-CoV-2 S, N, and autoimmune target proteins. The immunogenic effects of SARS-CoV-2 are due to the sizeable viral RNA molecules with interrupted transcription increasing the pool of epitopes with increased chances of molecular mimicry and interaction with the host immune system, the overlap between some viral and human peptides, the viral induced-tissue damage, and the robust and complex binding between sACE-2 and SARS-CoV-2 S protein. Consequently, COVID-19 and its vaccine may trigger the development of many autoimmune diseases in a predisposed patient. This review discusses the mutual relation between COVID-19 and autoimmune diseases, their interactive effects on each other, the role of the COVID-19 vaccine in triggering autoimmune diseases, the factors affecting the severity of COVID-19 in patients suffering from autoimmune diseases, and the different ways to minimize the risk of COVID-19 in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
62
|
Xie Y, Liu Y, Liu Y. The Flare of Rheumatic Disease After SARS-CoV-2 Vaccination: A Review. Front Immunol 2022; 13:919979. [PMID: 35860285 PMCID: PMC9289284 DOI: 10.3389/fimmu.2022.919979] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 01/14/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues worldwide, vaccination has been considered an effective measure to protect people from the COVID-19 and end the pandemic. However, for patients with rheumatic diseases (RD), concern for the induction of RD flare may combat the enthusiasm for vaccination. In general, current evidence doesn’t support the increased risk of disease flare after COVID-19 vaccination. However, the disease flare of RDs may be triggered by COVID-19 vaccinations, especially for patients with high disease activity. Most of these flares after vaccination are mild and need no treatment escalation. Considering the benefits and risks, RD patients are recommended to receive the COVID-19 vaccination but should be vaccinated when the RDs are in stable states.
Collapse
Affiliation(s)
- Yan Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Tsinghua Clinical Research Institute (TCRI), School of Medicine, Tsinghua University, Beijing, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
63
|
Cha HG, Kim DG, Choi JH. Manifestation of Subclinical Extrapulmonary Tuberculosis after COVID-19 Vaccination as Supraclavicular Lymphadenopathy. Vaccines (Basel) 2022; 10:964. [PMID: 35746572 PMCID: PMC9230702 DOI: 10.3390/vaccines10060964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Lymphadenopathy after coronavirus disease 2019 (COVID-19) vaccination is a common side effect that usually resolves within several days to weeks, and only observation is recommended. However, for prolonged lymphadenopathy, other possibilities, including malignancy or other lymphoproliferative diseases, may be considered. Herein, we report the case of a 66-year-old woman who experienced prolonged ipsilateral supraclavicular lymph node enlargement after the second dose of the ChAdOx1 (Oxford-AstraZeneca) COVID-19 vaccine, which was eventually diagnosed as extrapulmonary tuberculosis.
Collapse
Affiliation(s)
- Han Gyu Cha
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| | - Dong Gyu Kim
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| | - Joon Ho Choi
- Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea;
| |
Collapse
|
64
|
Bhattacharjee A, Vishwakarma GK, Gajare N, Singh N. Time Series Analysis Using Different Forecast Methods and Case Fatality Rate for Covid‐19 Pandemic. REGIONAL SCIENCE POLICY & PRACTICE 2022. [PMCID: PMC9347860 DOI: 10.1111/rsp3.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study presents forecasting methods using time series analysis for confirmed cases, the number of deaths and recovery cases, and individual vaccination status in different states of India. It aims to forecast the confirmed cases and mortality rate and develop an artificial intelligence method and different statistical methodologies that can help predict the future of Covid‐19 cases. Various forecasting methods in time series analysis such as ARIMA, Holt's trend, naive, simple exponential smoothing, TBATS, and MAPE are extended for the study. It also involved the case fatality rate for the number of deaths and confirmed cases for respective states in India. This study includes the forecast values for the number of positive cases, cured patients, mortality rate, and case fatality rate for Covid‐19 cases. Among all forecast methods involved in this study, the naive and simple exponential smoothing method shows an increased number of positive instances and cured patients.
Collapse
Affiliation(s)
- Atanu Bhattacharjee
- Section of Biostatistics, Centre for Cancer Epidemiology Tata Memorial Center Navi Mumbai India
- Homi Bhabha National Institute Mumbai India
| | | | - Namrata Gajare
- Section of Biostatistics, Centre for Cancer Epidemiology Tata Memorial Center Navi Mumbai India
| | - Neha Singh
- Department of Mathematics & Computing Indian Institute of Technology Dhanbad Dhanbad India
| |
Collapse
|
65
|
Şendur SN, Özmen F, Oğuz SH, İremli BG, Malkan ÜY, Gürlek A, Erbas T, Ünlütürk U. Association of Human Leukocyte Antigen Genotypes with Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine-Induced Subacute Thyroiditis. Thyroid 2022; 32:640-647. [PMID: 35387473 DOI: 10.1089/thy.2022.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Despite mass vaccination, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced subacute thyroiditis (SAT) is rarely seen as a complication. The reason why some individuals are susceptible to developing vaccine-induced SAT is not known. SAT develops in genetically predisposed individuals who carry specific human leukocyte antigen (HLA) haplotypes. It is unknown whether specific HLA alleles are associated with SARS-CoV-2 vaccine-induced SAT. Objective: This study compared the HLA profiles of patients with SARS-CoV-2 vaccine-induced SAT to controls, to assess whether there is an association between specific HLA genotypes and development of SAT. The relationship between HLA genotypes and the clinical course of SARS-CoV-2 vaccine-induced SAT was also evaluated. Methods: A case-control study was conducted in a Turkish tertiary care center. Fourteen patients with SARS-CoV-2 vaccine-induced SAT and 100 healthy controls were included. HLA-A, HLA-B, HLA-C, HLA-DQB1, and HLA-DRB1 frequencies were analyzed by next-generation sequencing. Results: The frequencies of HLA-B*35 and HLA-C*04 alleles were significantly higher in SARS-CoV-2 vaccine-induced SAT cohort when compared with controls (HLA-B*35: 13 [93%] vs. 40 [40%], p < 0.001; HLA-C*04: 13 [93%] vs. 43 [43%], p < 0.001, respectively). More severe thyrotoxicosis was seen in patients having HLA-B*35 and HLA-C*04 homozygous alleles (free thyroxine: 4.47 ng/dL [3.77-5.18] vs. 1.41 ng/dL [1.22-2.63], p = 0.048). Inflammation tended to be more severe in homozygous patients (C-reactive protein: 28.2 mg/dL [13.6-42.9] vs. 4.8 [1.2-10.5], p = 0.07). Conclusions: The frequencies of HLA-B*35 and HLA-C*04 alleles were higher in SARS-CoV-2 vaccine-induced SAT compared with controls. Homozygosity for HLA-B*35 and HLA-C*04 was associated with thyrotoxicosis and a greater inflammatory reaction. Our findings should be confirmed in studies of other populations.
Collapse
Affiliation(s)
- Süleyman Nahit Şendur
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Füsun Özmen
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seda Hanife Oğuz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Burçin Gönül İremli
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ümit Yavuz Malkan
- Division of Hematology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Alper Gürlek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Tomris Erbas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Uğur Ünlütürk
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
66
|
Alijotas-Reig J, García-GImenez V, Velthuis PJ, Niessen FB, Decates TS. Inflammatory immune-mediated adverse reactions induced by COVID-19 vaccines in previously injected patients with soft tissue fillers: a case-series of 20 patients. J Cosmet Dermatol 2022; 21:3181-3187. [PMID: 35621234 PMCID: PMC9347616 DOI: 10.1111/jocd.15117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Background Adverse events (AE) after COVID‐19 vaccines, particularly, but not solely, with those messenger RNA (mRNA)‐based vaccines, have rarely been reported in patients previously treated with dermal fillers (DF). Objective To evaluate the morphology, clinical characteristics, the timing of presentation, and outcomes of inflammatory AE appeared in patients injected with DF, after anti‐COVID‐19 vaccination. Methods Descriptive study of a case series of 20 consecutive patients collected after the occurrence of AE in previously filled areas post COVID‐19 vaccination. Results From January 2021 to July 2021, we analyzed 20 AE reactions triggered by COVID‐19 vaccines in the previously mentioned cohort. They were vaccinated with Pfizer/Biontech (11; 55%), Moderna (5; 25%), Astra‐Zeneca (3; 15%), and Sputnik (1; 5%). The most common manifestations were oedema/swelling, angioedema, erythema, skin induration, and granuloma. Less common reactions included myalgia and lymphadenopathy. In 13/20 (65%) cases, the AE appeared after the first dose of vaccine. These inflammatory AE appeared more rapidly after the second dose than after the first one. In 13/20 (65%) cases, the symptomatology subsided with anti‐inflammatory/antihistaminic drugs, while spontaneously in 3/20 (15%). The manifestations are ongoing.in the remaining four cases (20%). Conclusion Although probably rare, both RNA‐based and adenovirus‐based anti‐COVID‐19 vaccines can cause inflammatory bouts in patients previously treated with DF. In these cases, caution should be paid on subsequent vaccine doses, considering a tailored risk/benefit for any case before next vaccination.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Disease Unit, Service of Internal Medicine, Vall d'Hebron University Hospital and Department of Medicine. Faculty of Medicine. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor García-GImenez
- Europe Medical Centre, Sociedad Española de Medicina y Cirugía Cosmética, Barcelona, Spain
| | - Peter J Velthuis
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank B Niessen
- Department of Plastic Surgery, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Tom S Decates
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
67
|
Zhu F, Teng Z, Zhou X, Xu R, Bing X, Shi L, Guo N, Wang M, Liu C, Xia M. H1N1 Influenza Virus-Infected Nasal Mucosal Epithelial Progenitor Cells Promote Dendritic Cell Recruitment and Maturation. Front Immunol 2022; 13:879575. [PMID: 35572503 PMCID: PMC9095954 DOI: 10.3389/fimmu.2022.879575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
The barrier function of nasal mucosal epithelial cells plays an irreplaceable role in the spread and expansion of viruses in the body. This study found that influenza A virus H1N1 could induce apoptosis of nasal mucosal epithelial progenitor cells, cause an inflammatory response, and trigger the maturation and recruitment of nasal submucosal dendritic cells (DCs), but the mechanism remained unclear. Therefore, we used RNA sequencing and high-resolution untargeted metabolomics to sequence and perform combined bioinformatic analysis of H1N1 virus-infected nasal mucosal epithelial cells from 6 different patients. The abnormal arginine metabolism signaling pathway caused by H1N1 virus infection was screened out, and arginase inhibitors were used to interfere with the abnormal arginine metabolism and the maturation and recruitment of submucosal DCs caused by the H1N1 virus in vitro and in vivo. We conclude that H1N1 influenza virus promotes the recruitment and maturation of submucosal DCs by causing abnormal arginine metabolism in nasal mucosal epithelial cells, thereby triggering respiratory mucosal immunity.
Collapse
Affiliation(s)
- Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuanchen Zhou
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Runtong Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Bing
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Shi
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Na Guo
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Min Wang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengcheng Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
68
|
Küster O, Schmohl J, Greiner J, Storz MA. Severe immune thrombocytopenia following diphtheria, tetanus, pertussis and polio vaccination in a 36-year-old Caucasian woman: a case report. Eur J Med Res 2022; 27:63. [PMID: 35505368 PMCID: PMC9062629 DOI: 10.1186/s40001-022-00686-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
Background Immune thrombocytopenia (ITP) is a rare autoimmune disorder characterized by low platelet counts and increased bleeding risk. The disease may be induced by other disorders, including malignancies, autoimmune diseases, infectious agents or drugs. However, ITP has also been described following vaccinations, such as the measles–mumps–rubella vaccination. In rare cases, ITP may occur in children who received a DTaP-IP (diphtheria, tetanus, acellular pertussis vaccine and inactivated poliovirus) vaccine. Hereinafter, we report the first well-documented cases of ITP in an adult patient in the temporal context of a DTaP-IP vaccination. Case presentation This case report attempts to capture the life-threatening picture of a 36-year-old otherwise healthy Caucasian woman with newly diagnosed severe immune thrombocytopenia in the temporal context of a DTaP-IP vaccination. Four days after receiving the vaccine, the women presented to her primary care physician with malaise, fever and recurrent epistaxis. Clinical examination revealed oral petechiae, ecchymoses, and non-palpable petechiae on both legs. The patient was immediately referred to a local hematology unit where she developed hematuria and an intestinal bleeding (WHO Bleeding Grade III) requiring multiple transfusions. After receiving oral corticosteroids and intravenous immunoglobulins, her platelets gradually recovered. Common causes of secondary ITP were ruled out by laboratory investigations, bone marrow and peripheral blood examinations. This raises the possibility of a (secondary) vaccination-associated thrombocytopenia. To the best of our knowledge, this is the first well-documented case of a DTaP-IP vaccination-related ITP in an adult patient in the English literature. Conclusion Although a causal connection between both entities may not be established, we would like to raise awareness in clinicians that ITP following DTaP-IP vaccinations is potentially not limited to children, but may also occur in adults. Users of DTaP-IP booster vaccines should be alert of the possibility of such adverse reactions. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00686-z.
Collapse
Affiliation(s)
- Onno Küster
- MVZ Dillmannstraße, Dillmannstraße 19, 70193, Stuttgart, Baden-Württemberg, Germany
| | - Jörg Schmohl
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176, Stuttgart, Germany
| | - Jochen Greiner
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176, Stuttgart, Germany
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
69
|
Dovgan AA, Drapkina Y, Dolgushina NV, Menzhinskaya IV, Krechetova LV, Sukhikh GT. Effects of COVID-19 vector vaccine on autoantibody profile in reproductive age women. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoimmune mechanisms have been implicated in the negative effects of vaccines on female reproductive health. This study evaluates the endogenous levels of self-reactive antibodies and ovarian reserve-associated hormones before and after immunization with the domestically developed Gam-COVID-Vac combined vector vaccine to check for possible reproductive sequelae. The prospective study enrolled 120 women aged 18–49, subject to vaccination with Gam-COVID-Vac. Ovarian reserve was assessed prior to vaccination and 90 days after the first component injection. Profiles of specific antibodies to self-antigens, including phospholipids, nuclear antigens, FSH, progesterone, and also thyroid, ovarian, trophoblast, and zona pellucida antigens, were assessed at the same time points by enzyme immunoassay. Overall, the vaccination had no effect on the levels of ovarian reserve-associated hormones and autoantibodies, apart from a transient increase in positivity for antiphosphatidylethanolamine IgM and anti-dsDNA IgG. Seroprevalence of elevated serum autoantibodies constituted 70.8% before and 75% after vaccination. According to the results, immunization with Gam-COVID-Vac does not affect ovarian reserve or autoimmune status, thus being safe for the female reproductive potential.
Collapse
Affiliation(s)
- AA Dovgan
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - YuS Drapkina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - NV Dolgushina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - IV Menzhinskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - LV Krechetova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - GT Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
70
|
Gomes DA, Santos RR, Freitas P, Paiva MS, Ferreira J, Trabulo M. Miocardite Aguda após a Vacina de mRNA contra a COVID-19. Arq Bras Cardiol 2022; 118:783-786. [PMID: 35508057 PMCID: PMC9007017 DOI: 10.36660/abc.20210469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
|
71
|
Prabhahar A, Naidu GSRSNK, Chauhan P, Sekar A, Sharma A, Sharma A, Kumar A, Nada R, Rathi M, Kohli HS, Ramachandran R. ANCA-associated vasculitis following ChAdOx1 nCoV19 vaccination: case-based review. Rheumatol Int 2022; 42:749-758. [PMID: 35124725 PMCID: PMC8817770 DOI: 10.1007/s00296-021-05069-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023]
Abstract
For the foreseeable future, vaccines are the cornerstone in the global campaign against the Coronavirus Disease-19 (COVID-19) pandemic. As the number and fatalities due to COVID-19 decline and the lockdown anywise rescinded, we recognize an increase in the incidence of autoimmune disease post-COVID-19 vaccination. However, the causality of the most vaccine-induced side effects is debatable and, at best, limited to a temporal correlation. We herein report a case of a 51-year-old gentleman who developed Anti-Neutrophil Cytoplasmic Antibody (ANCA)-associated vasculitis (AAV) 2 week post-COVID-19 vaccination. The patient responded favorably to oral steroids and rituximab. Additionally, we conducted a case-based review of vaccine-associated AAV describing their clinical manifestations and treatment response of this emerging entity.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - G S R S N K Naidu
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prabhat Chauhan
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aravind Sekar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Rathi
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Ramachandran
- Department of Nephology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
72
|
Abstract
Autoimmune endocrine diseases have been reported after influenza and the human papillomavirus vaccine, but there is limited data on autoimmune diseases after coronavirus disease 2019 (COVID-19) vaccination. Our report is about a 42-year-old Caucasian male and a 68-year-old Caucasian female who developed Graves' disease after receiving Moderna (Moderna, Inc., Cambridge, Massachusetts, United States) and Johnson & Johnson (Johnson & Johnson, New Brunswick, New Jersey, United States) vaccines, respectively. Both patients had no previous autoimmune thyroiditis and had normal thyroid function but developed hyperthyroidism characterized by suppressed thyroid-stimulating hormone (TSH), elevated free T4 level, and TSH receptor antibodies after vaccination. COVID-19 vaccines, either mRNA-based (Moderna) or non-mRNA-based (Johnson & Johnson), can cause Graves' disease. The clinical manifestations are similar to Graves' disease but without ocular manifestations.
Collapse
Affiliation(s)
- Gurdeep Singh
- Endocrinology, Diabetes and Metabolism, Our Lady of Lourdes Memorial Hospital, Binghamton, USA
| | - Timothy Howland
- Internal Medicine/Endocrinology, Our Lady of Lourdes Memorial Hospital, Binghamton, USA
| |
Collapse
|
73
|
Venkateswaran K, Aw DCW, Huang J, Angkodjojo S. Dermatomyositis following COVID-19 vaccination. Dermatol Ther 2022; 35:e15479. [PMID: 35355380 PMCID: PMC9111860 DOI: 10.1111/dth.15479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Jingxiang Huang
- Department of Pathology, Sengkang General Hospital, Singapore
| | | |
Collapse
|
74
|
Achiron A, Tuuminen R. Severe panuveitis with iridis rubeosis activation and cystoid macular edema after BioNTech-Pfizer COVID-19 vaccination in a 17-year-old. Am J Ophthalmol Case Rep 2022; 25:101380. [PMID: 35198809 PMCID: PMC8844771 DOI: 10.1016/j.ajoc.2022.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
We report a case of severe uveitis flare-up with iridis rubeosis recurrence and cystoid macular edema early after the first BioNTech-Pfizer COVID-19 vaccination in a 17-year-old boy. We also performed a systematic literature review on ocular inflammation after COVID-19 vaccinations.
Collapse
|
75
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
76
|
Hébert M, Couture S, Schmit I. Bilateral Panuveitis with Occlusive Vasculitis following Coronavirus Disease 2019 Vaccination. Ocul Immunol Inflamm 2022; 31:660-664. [PMID: 35226580 DOI: 10.1080/09273948.2022.2042325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To report a case of bilateral panuveitis and occlusive vasculitis following COVID-19 vaccination. STUDY DESIGN Case report. RESULTS A 41-year-old otherwise healthy male presented with progressive vision loss and floaters starting 48 hours after a first dose of COVID-19 vaccine. Examination initially showed bilateral anterior uveitis, but this evolved into bilateral panuveitis with occlusive vasculitis despite topical corticosteroids over two weeks. The patient underwent extensive testing for other etiologies which were excluded. He was successfully treated with a gradual taper of topical and systemic corticosteroids leading to improvement of signs and symptoms. Follow-up is maintained for observation of avascular zones with possible neovascularization which could require laser as needed. CONCLUSIONS The temporal association between vaccine and presentation makes this a plausible etiology. This remains a rare adverse event, but clinicians should be aware of this possibility to include it in their differential diagnosis when confronted with idiosyncratic ocular presentations.
Collapse
Affiliation(s)
- Mélanie Hébert
- Department of Ophthalmology, Hôpital du Saint-Sacrement, Chu de Québec - Université Laval, Quebec City, Canada
| | - Simon Couture
- Department of Ophthalmology, Hôpital du Saint-Sacrement, Chu de Québec - Université Laval, Quebec City, Canada
| | - Isabelle Schmit
- Department of Ophthalmology, Hôpital du Saint-Sacrement, Chu de Québec - Université Laval, Quebec City, Canada
| |
Collapse
|
77
|
Russo R, Gasparini G, Cozzani E, D’Agostino F, Parodi A. Absolving COVID-19 Vaccination of Autoimmune Bullous Disease Onset. Front Immunol 2022; 13:834316. [PMID: 35251024 PMCID: PMC8895245 DOI: 10.3389/fimmu.2022.834316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Roberto Russo
- Dipartimento di Scienze della Salute (DISSAL), Section of Dermatology, University of Genoa, Genoa, Italy
- Department of Dermatology, San Martino Polyclinic Hospital, Genoa, Italy
| | - Giulia Gasparini
- Dipartimento di Scienze della Salute (DISSAL), Section of Dermatology, University of Genoa, Genoa, Italy
- Department of Dermatology, San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Cozzani
- Dipartimento di Scienze della Salute (DISSAL), Section of Dermatology, University of Genoa, Genoa, Italy
- Department of Dermatology, San Martino Polyclinic Hospital, Genoa, Italy
| | - Federica D’Agostino
- Dipartimento di Scienze della Salute (DISSAL), Section of Dermatology, University of Genoa, Genoa, Italy
- Department of Dermatology, San Martino Polyclinic Hospital, Genoa, Italy
| | - Aurora Parodi
- Dipartimento di Scienze della Salute (DISSAL), Section of Dermatology, University of Genoa, Genoa, Italy
- Department of Dermatology, San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
78
|
Kleinstern G, Larson MC, Ansell SM, Thompson CA, Nowakowski GS, Call TG, Robinson DP, Maurer MJ, Mwangi R, Feldman AL, Kay NE, Novak AJ, Habermann TM, Slager SL, Cerhan JR. Vaccination History and Risk of Lymphoma and Its Major Subtypes. Cancer Epidemiol Biomarkers Prev 2022; 31:461-470. [PMID: 34782394 PMCID: PMC8825700 DOI: 10.1158/1055-9965.epi-21-0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vaccinations have been hypothesized to play a role in lymphoma etiology, but there are few studies, mixed results, and limited data on lymphoma subtypes. Herein, we investigate the association of vaccinations with risk of major lymphoma subtypes. METHODS We studied 2,461 lymphoma cases and 2,253 controls enrolled from 2002 to 2014. Participants self-reported history of vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza. Polytomous logistic regression was used to estimate OR and 95% confidence intervals (CI), adjusting for potential confounders. RESULTS After multivariable adjustment, vaccination against influenza was inversely associated with lymphoma (OR = 0.82; 95% CI, 0.66-1.02), which was stronger for last vaccination 1+ years before enrollment (OR = 0.71; 95% CI, 0.56-0.91) and for >5 influenza vaccinations (OR = 0.56; 95% CI, 0.46-0.68). Ever vaccination against hepatitis A (OR = 0.81; 95% CI, 0.66-1.00) but not hepatitis B (OR = 0.97; 95% CI, 0.81-1.18) was associated with lymphoma risk, although more recent vaccinations were inversely associated with lymphoma risk for both hepatitis A (<6 years before enrollment, OR = 0.56; 95% CI, 0.40-0.77) and hepatitis B (<9 years before enrollment, OR = 0.72; 95% CI, 0.55-0.93). Ever vaccination against yellow fever was inversely associated with risk (OR = 0.73; 95% CI, 0.55-0.96), and this did not vary by time since last vaccination. Although there was no overall statistical evidence for heterogeneity of vaccination history by lymphoma subtype, the only statistically significant inverse associations were observed for influenza and yellow fever vaccinations with diffuse large B-cell and follicular lymphoma. CONCLUSIONS Selected vaccinations were inversely associated with lymphoma risk, with time since last vaccination relevant for some of these vaccines. IMPACT Vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza are unlikely to increase lymphoma risk.
Collapse
Affiliation(s)
- Geffen Kleinstern
- School of Public Health, University of Haifa, Haifa, Israel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Timothy G Call
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Dennis P Robinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Raphael Mwangi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
79
|
Gambichler T, Boms S, Susok L, Dickel H, Finis C, Abu Rached N, Barras M, Stücker M, Kasakovski D. Cutaneous findings following COVID-19 vaccination: review of world literature and own experience. J Eur Acad Dermatol Venereol 2022; 36:172-180. [PMID: 34661927 PMCID: PMC8656409 DOI: 10.1111/jdv.17744] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
There is growing evidence that not only the novel coronavirus disease (COVID-19) but also the COVID-19 vaccines can cause a variety of skin reactions. In this review article, we provide a brief overview on cutaneous findings that have been observed since the emerging mass COVID-19 vaccination campaigns all over the world. Unspecific injection-site reactions very early occurring after the vaccination are most frequent. Type I hypersensitivity reactions (e.g. urticaria, angio-oedema and anaphylaxis) likely due to allergy to ingredients may rarely occur but can be severe. Type IV hypersensitivity reactions may be observed, including delayed large local skin lesions ("COVID arm"), inflammatory reactions in dermal filler or previous radiation sites or even old BCG scars, and more commonly morbilliform and erythema multiforme-like rashes. Autoimmune-mediated skin findings after COVID-19 vaccination include leucocytoclastic vasculitis, lupus erythematosus and immune thrombocytopenia. Functional angiopathies (chilblain-like lesions, erythromelalgia) may also be observed. Pityriasis rosea-like rashes and reactivation of herpes zoster have also been reported after COVID-19 vaccination. In conclusion, there are numerous cutaneous reaction patterns that may occur following COVID-19 vaccination, whereby many of these skin findings are of immunological/autoimmunological nature. Importantly, molecular mimicry exists between SARS-CoV-2 (e.g. the spike-protein sequences used to design the vaccines) and human components and may thus explain some COVID-19 pathologies as well as adverse skin reactions to COVID-19 vaccinations.
Collapse
Affiliation(s)
- T. Gambichler
- Department of DermatologyRuhr‐University BochumBochumGermany
- Department of DermatologyChristian Hospital UnnaUnnaGermany
| | - S. Boms
- Department of DermatologyChristian Hospital UnnaUnnaGermany
| | - L. Susok
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - H. Dickel
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - C. Finis
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - N. Abu Rached
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - M. Barras
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - M. Stücker
- Department of DermatologyRuhr‐University BochumBochumGermany
| | - D. Kasakovski
- European Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center Heidelberg (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
80
|
Greb CS, Aouhab Z, Sisbarro D, Panah E. A Case of Giant Cell Arteritis Presenting After COVID-19 Vaccination: Is It Just a Coincidence? Cureus 2022; 14:e21608. [PMID: 35228965 PMCID: PMC8873313 DOI: 10.7759/cureus.21608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Giant cell arteritis (GCA) is a large vessel vasculitis with variable presentations, including fevers, myalgias, headache, and jaw claudication. A particularly concerning symptom is transient vision loss, which may become irreversible without prompt recognition and treatment. The pathogenesis of GCA is incompletely understood, but it seems that the innate and adaptive immune systems play a key role in vessel inflammation, remodeling, and occlusion. We present a case of a 79-year-old male who developed GCA two days after he received his second dose of a COVID-19 mRNA vaccine. He presented with headaches, fever, and myalgias. Lab workup revealed elevated inflammatory markers, with C-reactive protein (CRP) 272 mg/L (<8.1 mg/L) and erythrocyte sedimentation rate (ESR) 97 mm/hr (0-20mm/hr). Imaging of the head, with CT and MRI, was unremarkable. His headache persisted despite supportive treatment, and he developed new, transient blurred vision, which increased suspicion for GCA. He underwent bilateral temporal artery biopsies, which were consistent with GCA. His symptoms resolved quickly with oral prednisone 60mg daily, and his inflammatory markers returned to normal within a month. A review of the literature revealed several case reports of giant cell arteritis following influenza vaccination. However, no large-scale studies have demonstrated a causal relationship between GCA and immunization. Our case demonstrates the first instance of GCA following a COVID-19 mRNA vaccine. We propose that the upregulated immune response to the vaccine acted as a trigger for GCA in this patient with predisposing factors. While causation cannot be determined based on one case alone, our case demonstrates an opportunity for further research into the relationship between vasculitis and immunizations. Despite this isolated case, the proven benefits of COVID-19 mRNA vaccines significantly outweigh any theoretical risk of immune dysregulation following administration.
Collapse
Affiliation(s)
| | - Zineb Aouhab
- Rheumatology, Loyola University Medical Center, Maywood, USA
| | - Daniel Sisbarro
- Internal Medicine, Loyola University Medical Center, Maywood, USA
| | - Elnaz Panah
- Pathology, Loyola University Medical Center, Maywood, USA
| |
Collapse
|
81
|
Berrú-Villalobos S, Otiniano-Sifuentes R, Castro-Suárez S, Osorio-Marcatinco V, Guevara-Silva E, Meza-Vega M, Caparó-Zamalloa C. Autoimmune/Inflammatory syndrome induced by adjuvants (ASIA): Neuromyelitis optica spectrum disorder after BBIBP-Cor-V vaccine, case report. NEUROIMMUNOLOGY REPORTS 2022. [PMCID: PMC9188454 DOI: 10.1016/j.nerep.2022.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Recently the term Autoimmune/Inflammatory Syndrome induced by Adjuvants has been proposed to describe different clinical conditions, among them post-vaccinal phenomena like demyelinating diseases. Objective We aim to add knowledge on the possible association of vaccines and the development of demyelinating diseases. Case report We present the case of a 38-year-old female that developed a brainstem syndrome after vaccination with COVID-19 BBIBP-CorV Sinopharm Vaccine. The final diagnosis after extensive work-out was Neuromyelitis Optica spectrum disorder with positive Aquaporin 4 positive antibodies; and long-term treatment with Rituximab was initiated. Conclusion Since we are facing a large-scale vaccination, professionals should be aware of the presence of demyelinating diseases as adverse events for COVID-19 vaccine.
Collapse
|
82
|
Huang L, Jiang Z, Zhou J, Chen Y, Huang H. The Effect of Inactivated SARS-CoV-2 Vaccines on TRAB in Graves' Disease. Front Endocrinol (Lausanne) 2022; 13:835880. [PMID: 35651979 PMCID: PMC9150502 DOI: 10.3389/fendo.2022.835880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ongoing coronavirus disease 2019 (COVID-19) pandemic has forced the development of vaccines. Reports have suggested that vaccines play a role in inducing autoimmune diseases (AIDs). Scattered cases have reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may promote thyroid disease, including Graves' disease (GD). However, the effect of inactivated SARS-CoV-2 vaccine on GD remains unclear. The aim of the present study was to investigate the response of thyrotropin receptor antibody (TRAB) to inactivated SARS-COV-2 vaccines. METHODS We conducted a retrospective study to observe the differences in thyroid function and TRAB trends between pre-vaccination (n=412) and post-vaccination (n=231) groups at an interval of 2 months. We then retrospectively observed the differences in serum thyroid function and TRAB levels at 3 months before (n=280), 1 month before (n=294), 1 month after (n=306), and 3 months after (n=250) vaccination. Subsequently, 173 GD patients who were not vaccinated with inactivated SARS-COV-2 vaccines were selected for a prospective study. Thyroid function and TRAB assessment were performed before 3 and 1 months and 1 and 3 months after the first dose of vaccination and were then compared by repeated measures ANOVA to explore their dynamic changes. RESULTS A retrospective study preliminarily observed that the trend of TRAB post-vaccination was opposite of that pre-vaccination (p=0.000), serum TRAB levels decreased before vaccination and increased after vaccination. In this prospective study, repeated measures ANOVA indicated significant differences in serum FT3 (p=0.000), FT4 (p=0.000), TSH (p=0.000), and TRAB (p=0.000) levels at different time points before and after vaccination. Serum TRAB levels showed dynamic changes that decreased significantly at 1 month before vaccination (p=0.000), no significant differences at 1 month after vaccination (p=0.583), and reflected an upward trend at 3 months after vaccination (p=0.034). Serum FT3 and FT4 levels showed similar trends to serum TRAB levels before and after vaccination. Instead, the serum TSH levels showed a continuous upward trend over time. CONCLUSION Based on the results obtained in both retrospective and prospective studies, we concluded that serum TRAB levels decreased less after inactivated SARS-CoV-2 vaccination and showed an upward trend, which may be related to humoral immunity induced by vaccination.
Collapse
Affiliation(s)
- LingHong Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - ZhengRong Jiang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingXiong Zhou
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
83
|
Marchini T, Abogunloko T, Wolf D. Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis. Hamostaseologie 2021; 41:447-457. [PMID: 34942658 PMCID: PMC8702296 DOI: 10.1055/a-1661-1908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAtherosclerosis is a chronic inflammatory disease of the arterial wall that leads to the build-up of occluding atherosclerotic plaques. Its clinical sequelae, myocardial infarction and stroke, represent the most frequent causes of death worldwide. Atherosclerosis is a multifactorial pathology that involves traditional risk factors and chronic low-grade inflammation in the atherosclerotic plaque and systemically. This process is accompanied by a strong autoimmune response that involves autoreactive T cells in lymph nodes and atherosclerotic plaques, as well as autoantibodies that recognize low-density lipoprotein (LDL) and its main protein component apolipoprotein B (ApoB). In the past 60 years, numerous preclinical observations have suggested that immunomodulatory vaccination with LDL, ApoB, or its peptides has the potential to specifically dampen autoimmunity, enhance tolerance to atherosclerosis-specific antigens, and protect from experimental atherosclerosis in mouse models. Here, we summarize and discuss mechanisms, challenges, and therapeutic opportunities of immunomodulatory vaccination and other strategies to enhance protective immunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Tijani Abogunloko
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
84
|
Petersen SB, Gluud C. Was amorphous aluminium hydroxyphosphate sulfate adequately evaluated before authorisation in Europe? BMJ Evid Based Med 2021; 26:285-289. [PMID: 32763959 PMCID: PMC8639934 DOI: 10.1136/bmjebm-2020-111419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 11/03/2022]
Abstract
The Merck Sharp & Dohme Corp aluminium adjuvant 'amorphous aluminium hydroxyphosphate sulfate' (AAHS), primarily used in the Gardasil vaccines against human papilloma virus, has been criticised for lack of evidence for its safety. Documentation from Danish authorities and answers from the European Medicines Agency (EMA) suggest that AAHS may not have been sufficiently evaluated. Documentation from the Danish Medicines Agency shows discrepancies in the trial documents of two prelicensure clinical trials with Gardasil in 2002 and 2003. For both trials, the Agency seems to have authorised potassium aluminium sulfate as the adjuvant and not AAHS. In addition, the participants in the trial launched in 2002 were informed that the comparator was saline, even though the comparator was AAHS in an expedient consisting of L-histidine, polysorbate-80, sodium borate and sodium chloride. According to the EMA, AAHS was first introduced in Europe in 2004 as the adjuvant in Procomvax, a vaccine against the hepatitis B virus and Haemophilus influenza type b. The EMA reports that AAHS was introduced without any prelicensure safety evaluation. The adjuvant is described by the company to be both physically and functionally distinct from all other previously used aluminium adjuvants. There is a need for rigorous evaluation of benefits and harms of the adjuvant AAHS.
Collapse
Affiliation(s)
- Sesilje B Petersen
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gluud
- The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
85
|
Marfe G, Perna S, Shukla AK. Effectiveness of COVID-19 vaccines and their challenges (Review). Exp Ther Med 2021; 22:1407. [PMID: 34676000 PMCID: PMC8524740 DOI: 10.3892/etm.2021.10843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, a new disease recognized such as severe acute respiratory syndrome (SARS), was reported in Wuhan, China. This disease was caused by an unknown SARS coronavirus 2 (SARS-CoV-2); a virus is characterized by high infectivity among humans. In some cases, this disease can be asymptomatic, while in other cases can induce flu-like symptoms or acute respiratory distress syndrome, pneumonia and death. For this reason, the World Health Organization and Public Health Emergency of International Concern declared a pandemic status in January 2020. Currently, numerous countries have been involved in the development of effective vaccines to protect humans against SARS-CoV-2 infection. The present review will discuss the four vaccines, AZD1222 (AstraZeneca or Vaxzevria), Janssen (Ad26.COV2.S), Moderna/mRNA-1273 and BioNTech/Fosun/Pfizer BNT162b1, that are currently in use worldwide to understand their efficacy, but also evaluate the difficulties and challenges of vaccine development. Although several questions should be addressed regarding these vaccines, the current review will examine the viral elements used in the coronavirus-19 vaccine that can play a crucial role in inducing a strong immune response, as well as the different adverse effects that they can cause to individuals.
Collapse
Affiliation(s)
- Gabriella Marfe
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy
| | - Stefania Perna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy
| | - Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
- Inventra Medclin Biomedical Healthcare and Research Center, Katemanivli, Kalyan, Thane, Maharashtra 421306, India
| |
Collapse
|
86
|
Temiz SA, Abdelmaksoud A, Wollina U, Kutlu O, Dursun R, Patil A, Lotti T, Goldust M, Vestita M. Cutaneous and Allergic reactions due to COVID-19 vaccinations: A review. J Cosmet Dermatol 2021; 21:4-12. [PMID: 34791757 PMCID: PMC8661794 DOI: 10.1111/jocd.14613] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Introduction The pandemic caused by the novel coronavirus disease 2019 (COVID‐19) has had an unprecedented impact on the overall health and the global economy. Vaccination is currently the most dependable strategy to end the pandemic, despite the slower‐than‐hoped‐for rollout, particularly for low‐to‐middle‐income countries, and the uncertain duration of protection afforded by vaccination. The spike protein of the virus (immunodominant antigen of the virus) is the main target of the approved and candidate SARS‐CoV‐2 vaccines. This protein binds to the ACE2 receptor of the host cell, initiating the entry of the virus into the cell and the chain of subsequent events ending to Acute Respiratory Distress Syndrome. The safety profile of these vaccines needs is closely assessed. Methods This comprehensive review includes searching the PubMed, EMBASE, and Web of Science databases using the keywords “coronavirus”, “COVID‐19”, “vaccine”, “cutaneous reactions”, “allergic reactions”, and “SARS‐CoV‐2”. Manual searching of reference lists of included articles augmented the research. The research was updated in June 2021. Results In this narrative review, we tried to investigate and discuss the cutaneous and allergic reactions related to SARS‐CoV‐2 vaccines currently available in the literature. As a result, although COVID‐19 vaccines can be reported to develop allergic and anaphylactic reactions, especially after m‐RNA vaccines, they remain at a low rate, and it is observed that these reactions may develop more frequently, especially in patients with previous allergies and mast cell disorders. Fortunately, these reactions are generally transient, benign, self‐limited. Conclusion Although there is still no definitive evidence, as dermatologists, we must be aware of the possibility of cutaneous reactions, newly diagnosed dermatoses, or exacerbation of existing dermatoses that may develop after the COVID‐19 vaccinations.
Collapse
Affiliation(s)
| | - Ayman Abdelmaksoud
- Mansoura Dermatology, Venerology and Leprology Hospital, Mansoura, Egypt
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital, Dresden, Germany
| | - Omer Kutlu
- Department of Dermatology, Tokat Gaziosmanpsa University, Tokat, Turkey
| | - Recep Dursun
- Department of Dermatology, Necmettin Erbakan University Meram Medical Faculty, Konya, Turkey
| | - Anant Patil
- Department of Pharmacology, Dr. DY Patil Medical College, Navi Mumbai, India
| | - Torello Lotti
- University of Rome G. Marconi, Rome, Italy.,Department of Dermatology and Communicable Diseases, First Medical State Moscow University I. M. Sechenev, Moscow, Russia
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Michelangelo Vestita
- Unit of Plastic and Reconstructive Surgery, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
87
|
Abstract
Immune thrombocytopenic purpura (ITP) is a rare hematologic condition through to affect 3.3 in 100,000 adults per year in the United States. Many cases of immune thrombocytopenia are diagnosed incidentally with laboratory tests that reveal low platelet count, without a clear cause. However, when platelet counts are very low, patients may show signs of bleeding. Here we present the case of a 24-year-old female with mucocutaneous bleeding ten days after receiving her first dose of SARS-CoV-2 vaccine, who was subsequently found to have severe thrombocytopenia. Extensive work up for new thrombocytopenia was unremarkable suggesting a diagnosis of ITP, potentially secondary to vaccination. Empiric treatment with glucocorticoids was initiated without response prompting the use of intravenous immunoglobulin G. The patient was discharged on hospital day five with a platelet count over 20,000 platelets per microliter. In summary, ITP is a potential sequela of the SARS-CoV-2 vaccine, and otherwise healthy young individuals may be at risk for hematologic side effects.
Collapse
Affiliation(s)
| | - Bradley Switzer
- University of Massachusetts Medical School, Worcester, MA, USA.,Reliant Medical Group, Worcester, MA, USA
| |
Collapse
|
88
|
Bairwa SC, Shaw CA, Kuo M, Yoo J, Tomljenovic L, Eidi H. Cytokines profile in neonatal and adult wild-type mice post-injection of U. S. pediatric vaccination schedule. Brain Behav Immun Health 2021; 15:100267. [PMID: 34589773 PMCID: PMC8474652 DOI: 10.1016/j.bbih.2021.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Introduction A recent study from our laboratory demonstrated a number of neurobehavioral abnormalities in mice colony injected with a mouse-weight equivalent dose of all vaccines that are administered to infants in their first 18 months of life according to the U. S. pediatric vaccination schedule. Cytokines have been studied extensively as blood immune and inflammatory biomarkers, and their association with neurodevelopmental disorders. Given the importance of cytokines in early neurodevelopment, we aimed to investigate the potential post-administration effects of the U. S. pediatric vaccines on circulatory cytokines in a mouse model. In the current study, cytokines have been assayed at early and late time points in mice vaccinated early in postnatal life and compared with placebo controls. Materials and methods Newborn mouse pups were divided into three groups: i) vaccine (V1), ii) vaccine × 3 (V3) and iii) placebo control. V1 group was injected with mouse weight-equivalent of the current U. S. pediatric vaccine schedule. V3 group was injected with same vaccines but at triple the dose and the placebo control was injected with saline. Pups were also divided according to the sampling age into two main groups: acute- and chronic-phase group. Blood samples were collected at postnatal day (PND) 23, two days following vaccine schedule for the acute-phase group or at 67 weeks post-vaccination for the chronic-phase groups. Fifteen cytokines were analyzed: GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, MCP-1, TNF-α, and VEGF-A. Wilcoxon Rank Sum test or unpaired Student's t-test was performed where applicable. Results IL-5 levels in plasma were significantly elevated in the V1 and V3 group compared with the control only in the acute-phase group. The elevation of IL-5 levels in the two vaccine groups were significant irrespective of whether the sexes were combined or analyzed separately. Other cytokines (VEGF-A, TNF-α, IL-10, MCP-1, GM-CSF, IL-6, and IL-13) were also impacted, although to a lesser extent and in a sex-dependent manner. In the acute-phase group, females showed a significant increase in IL-10 and MCP-1 levels and a decrease in VEGF-A levels in both V1 and V3 group compared to controls. In the acute-phase, a significant increase in MCP-1 levels in V3 group and CM-CSF levels in V1 and V3 group and decrease in TNF-α levels in V1 group were observed in treated males as compared with controls. In chronic-phase females, levels of VEGF-A in V1 and V3 group, TNF-α in V3 group, and IL-13 in V1 group were significantly decreased in contrast with controls. In chronic-phase males, TNF-α levels were significantly increased in V1 group and IL-6 levels decreased in V3 group in comparison to controls. The changes in levels of most tested cytokines were altered between the early and the late postnatal assays. Conclusions IL-5 levels significantly increased in the acute-phase of the treatment in the plasma of both sexes that were subjected to V1 and V3 injections. These increases had diminished by the second test assayed at week 67. These results suggest that a profound, albeit transient, effect on cytokine levels may be induced by the whole vaccine administration supporting our recently published observations regarding the behavioral abnormalities in the same mice. These observations support the view that the administration of whole pediatric vaccines in a neonatal period may impact at least short-term CNS functions in mice.
Collapse
Affiliation(s)
- S C Bairwa
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C A Shaw
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.,Program in Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Kuo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - L Tomljenovic
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - H Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,French Agency for Veterinary Medicinal Products (ANMV) - French Agency for Food, Environmental and Occupational Health Safety (ANSES), Fougères, France
| |
Collapse
|
89
|
Zhou Q, Zhou R, Yang H, Yang H. To Be or Not To Be Vaccinated: That Is a Question in Myasthenia Gravis. Front Immunol 2021; 12:733418. [PMID: 34603311 PMCID: PMC8485039 DOI: 10.3389/fimmu.2021.733418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and abnormal fatigability due to the antibodies against postsynaptic receptors. Despite the individual discrepancy, patients with MG share common muscle weakness, autoimmune dysfunction, and immunosuppressive treatment, which predispose them to infections that can trigger or exacerbate MG. Vaccination, as a mainstay of prophylaxis, is a major management strategy. However, the past years have seen growth in vaccine hesitancy, owing to safety and efficacy concerns. Ironically, vaccines, serving as an essential and effective means of defense, may induce similar immune cross-reactivity to what they are meant to prevent. Herein, we outline the progress in vaccination, review the current status, and postulate the clinical association among MG, vaccination, and immunosuppression. We also address safety and efficacy concerns of vaccination in MG, in relation to COVID-19. Since only a handful of studies have reported vaccination in individuals with MG, we further review the current clinical studies and guidelines in rheumatic diseases. Overall, our reviews offer a reference to guide future vaccine clinical decision-making and improve the management of MG patients.
Collapse
Affiliation(s)
| | | | | | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
90
|
Claudino Formiga FF, Silva CA, Pedrosa TDN, Aikawa NE, Pasoto SG, Garcia CC, Capão ASV, Martins VADO, Proença ACTD, Fuller R, Yuki EFN, Vendramini MBG, Rosário DCD, Brandão LMKR, Sartori AMC, Antonangelo L, Bonfá E, Borba EF. Influenza A/Singapore (H3N2) component vaccine in systemic lupus erythematosus: A distinct pattern of immunogenicity. Lupus 2021; 30:1915-1922. [PMID: 34459317 DOI: 10.1177/09612033211040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Influenza A (H3N2) virus is the most important cause of seasonal influenza morbidity and mortality in the last 50 years, surpassing the impact of H1N1. Data assessing immunogenicity and safety of this virus component are lacking in systemic lupus erythematosus (SLE) and restricted to small reports with other H3N2 strains. OBJECTIVE This study aims to evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in SLE. METHODS 81 consecutive SLE patients and 81 age- and sex-matched healthy controls (HC) were vaccinated with the influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Seroprotection (SP) and seroconversion (SC) rates, geometric mean titers(GMT), and factor increase in GMT(FI-GMT) and adverse events were assessed before and 4 weeks post-vaccination. Disease activity and therapies were also evaluated. RESULTS Before immunization, SLE and HC groups had high SP rates (89% vs 77%, p = 0.061) and elevated GMT titer with higher levels in SLE (129.1(104.1-154.1) vs 54.8(45.0-64.6), p < 0.001). Frequency of two previous years' influenza vaccination was high and comparable in SLE and HC (89% vs 90%, p = 1.000). Four weeks post-vaccination, median GMT increased for both groups and remained higher in SLE compared to HC (239.9(189.5-290.4) vs 94.5(72.6-116.4), p < 0.0001) with a comparable FI-GMT (2.3(1.8-2.9) vs 1.9(1.5-2.3), p = 0.051). SC rates were low and comparable for both groups (16% vs 11%, respectively, p = 0.974). Disease activity scores remained stable throughout the study (p = 1.000) and severe adverse events were not identified. CONCLUSION Influenza A/Singapore (H3N2) vaccine has an adequate safety profile. The distinct immunogenicity pattern from other influenza A components characterized by a remarkably high pre- and post-vaccination SP rate and high GMT levels may be associated with previous influenza A vaccination. (www.clinicaltrials.gov, NCT03540823).
Collapse
Affiliation(s)
| | - Clovis Artur Silva
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tatiana do Nascimento Pedrosa
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sandra Gofinet Pasoto
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Artur Silva Vidal Capão
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Adriana Coracini Tonacio de Proença
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ricardo Fuller
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emily Figueiredo Neves Yuki
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Debora Cordeiro do Rosário
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Ana Marli Christovam Sartori
- Department of Infectious and Parasitic Diseases, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leila Antonangelo
- Clinical Laboratory Division - Department of Pathology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Eduardo Ferreira Borba
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
91
|
Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021; 158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
92
|
Mantej J, Bednarek M, Sitko K, Świętoń M, Tukaj S. Autoantibodies to heat shock protein 60, 70, and 90 are not altered in the anti-SARS-CoV-2 IgG-seropositive humans without or with mild symptoms. Cell Stress Chaperones 2021; 26:735-740. [PMID: 34080135 PMCID: PMC8172177 DOI: 10.1007/s12192-021-01215-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Highly conserved heat shock proteins (Hsps) are localized in the cytoplasm and cellular organelles, and act as molecular chaperones or proteases. Members of Hsp families are released into the extracellular milieu under both normal and stress conditions. It is hypothesized that the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) has the potential to elicit autoimmunity due to molecular mimicry between human extracellular Hsps and immunogenic proteins of the virus. To confirm the above hypothesis, levels of circulating autoantibodies directed to the key human chaperones i.e., Hsp60, Hsp70, and Hsp90 in the anti-SARS-CoV-2 IgG-seropositive participants have been evaluated. Twenty-six healthy volunteers who got two doses of the mRNA vaccine encoding the viral spike protein, anti-SARS-CoV-2 IgG-positive participants (n = 15), and healthy naïve (anti-SARS-CoV-2 IgG-negative) volunteers (n = 51) have been included in this study. We found that the serum levels of anti-Hsp60, anti-Hsp70, and anti-Hsp90 autoantibodies of the IgG, IgM, or IgA isotype remained unchanged in either the anti-COVID-19-immunized humans or the anti-SARS-CoV-2 IgG-positive participants when compared to healthy naïve volunteers, as measured by enzyme-linked immunosorbent assay. Our results showing that the humoral immune response to SARS-CoV-2 did not include the production of anti-SARS-CoV-2 antibodies that also recognized extracellular heat shock protein 60, 70, and 90 represent a partial evaluation of the autoimmunity hypothesis stated above. Further testing for cell-based immunity will be necessary to fully evaluate this hypothesis.
Collapse
Affiliation(s)
- Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Świętoń
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
93
|
Franza L, Cianci R. Pollution, Inflammation, and Vaccines: A Complex Crosstalk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126330. [PMID: 34208042 PMCID: PMC8296132 DOI: 10.3390/ijerph18126330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The importance of pollution in determining human health is becoming increasingly clear, also given the dramatic consequences it has had on recent geopolitical events. Yet, the consequences of contamination are not always straightforward. In this paper, we will discuss the effects of different pollutants on different aspects of human health, in particular on the immune system and inflammation. Different environmental pollutants can have different effects on the immune system, which can then promote complex pathologies, such as autoimmune disorders and cancer. The interaction with the microbiota also further helps to determine the consequences of contamination on wellbeing. The pollution can affect vaccination efficacy, given the widespread effects of vaccination on immunity. At the same time, some vaccinations also can exert protective effects against some forms of pollution.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy;
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| |
Collapse
|
94
|
Cavalcanti JFB, Silva MBA, Alves de Siqueira Carvalho A. Vaccination as a possible trigger for immune-mediated necrotising myopathy. BMJ Case Rep 2021; 14:e242095. [PMID: 33975845 PMCID: PMC8118038 DOI: 10.1136/bcr-2021-242095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/04/2022] Open
Abstract
Immune-mediated necrotising myopathy is a rare autoimmune myopathy characterised by severe progressive muscle weakness, elevated levels of creatine kinase (CK), and necrosis with minimal inflammatory cell infiltration on muscle biopsy. We report a case of a previously healthy 42-year-old woman who presented with progressive muscle weakness 2 weeks after immunisation for yellow fever, tetanus/diphtheria and hepatitis B. Her symptoms started from the lower limbs and progressed to the upper limbs and cervical region associated with dysphagia, making her wheelchair bound. Electromyography showed a myopathic pattern, with a CK level of 12.177 U/L (reference value: 26-190 U/L), and biceps brachial muscle biopsy confirmed necrosis and regeneration fibres. The immunoblot test was positive for antisignal recognition particle. She was successfully treated with prednisone (1 mg/kg/day). Although considered safe, vaccines may cause allergic reactions or trigger autoimmune disorders. Currently, a causal relationship between them cannot be established.
Collapse
|
95
|
Sartori GP, da Costa A, Macarini FLDS, Mariano DOC, Pimenta DC, Spencer PJ, Nali LHDS, Galisteo AJ. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200140. [PMID: 33995513 PMCID: PMC8092855 DOI: 10.1590/1678-9199-jvatitd-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.
Collapse
Affiliation(s)
- Giselle Pacifico Sartori
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | - Andréa da Costa
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute
(IPEN/CNEN/SP), São Paulo, SP, Brazil
| | | | - Andrés Jimenez Galisteo
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
- LIM49, Hospital das Clínicas HCFMUSP, School of Medicine, University
of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
96
|
Current Immunological and Clinical Perspective on Vaccinations in Multiple Sclerosis Patients: Are They Safe after All? Int J Mol Sci 2021; 22:ijms22083859. [PMID: 33917860 PMCID: PMC8068297 DOI: 10.3390/ijms22083859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines work by stimulating the immune system, and their immunogenicity is key in achieving protection against specific pathogens. Questions have been raised whether in Multiple Sclerosis (MS) patients they could induce disease exacerbation and whether vaccines could possibly act as a trigger in the onset of MS in susceptible populations. So far, no correlation has been found between the vaccinations against influenza, hepatitis B, tetanus, human papillomavirus, measles, mumps, rubella, varicella zoster, tuberculosis, yellow fever, or typhoid fever and the risk of MS. Further research is needed for the potential protective implications of the tetanus and Bacillus Calmette-Guerin vaccines in MS patients. Nowadays with the emerging coronavirus disease 2019 (COVID-19) and recent vaccinations approval and arrival, the risk-benefit in MS patients with regards to safety and efficacy of COVID-19 vaccination in those treated with immunosuppressive therapies is of paramount importance. In this manuscript, we demonstrate how different vaccine types could be related to the immunopathogenesis of MS and discuss the risks and benefits of different vaccinations in MS patients.
Collapse
|
97
|
Malayala SV, Mohan G, Vasireddy D, Atluri P. Purpuric Rash and Thrombocytopenia After the mRNA-1273 (Moderna) COVID-19 Vaccine. Cureus 2021; 13:e14099. [PMID: 33786251 PMCID: PMC7996471 DOI: 10.7759/cureus.14099] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mRNA-1273 vaccine, popularly called the "Moderna vaccine" is being widely administered in the United States for the prevention of COVID-19 infection since December 2020. Mild to moderate intensity side effects like low-grade fever, myalgia, chills and malaise were reported in the trials related to the vaccine. With this case report, we report a case of purpuric rash and thrombocytopenia after receiving the first dose of the m-RNA-1273 vaccine. The patient, in this case, is a 60-year-old male patient who received the first vaccine dose and within two days, he developed diffuse papular rash associated with some thrombocytopenia. He had a history of tobacco use, Hepatitis C liver cirrhosis, chronic kidney disease stage 4, untreated hypertension and systolic congestive heart failure at the baseline. With review of the limited literature related to the vaccine and its side effect profile and with no other etiology explaining the sudden onset of rash, we attribute this thrombocytopenia and purpuric rash as the side effects of the mRNA-1273 vaccine.
Collapse
Affiliation(s)
| | - Gisha Mohan
- Medical Research, Physicians of American Healthcare Access, Philadelphia, USA
| | | | | |
Collapse
|
98
|
Soy M, Keser G, Atagunduz P, Mutlu MY, Gunduz A, Koybaşi G, Bes C. A practical approach for vaccinations including COVID-19 in autoimmune/autoinflammatory rheumatic diseases: a non-systematic review. Clin Rheumatol 2021; 40:3533-3545. [PMID: 33751280 PMCID: PMC7982510 DOI: 10.1007/s10067-021-05700-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has occupied the world agenda since December 2019. With no effective treatment yet, vaccination seems to be the most effective method of prevention. Recently developed vaccines have been approved for emergency use only and are currently applied to large populations. Considering both the underlying pathogenic mechanisms of autoimmune/autoinflammatory rheumatological diseases (AIIRDs) and the immunosuppressive drugs used in treatment, vaccination for COVID-19 deserves special attention in such patients. In this article, we aimed to give simple messages to the clinicians for COVID-19 vaccination in patients with AIIRDs based upon the current evidence regarding the use of other vaccines in this patient group. For this purpose, we conducted a “Pubmed search” using the following keywords: Influenza, Hepatitis B, Pneumococcal, and Shingles vaccines and the frequently used conventional and biologic disease-modifying antirheumatic drugs (DMARDs). Likewise, an additional search was performed for the COVID-19 immunization in patients with AIIRDs and considering such drugs. In summary, patients with AIIRDs should also be vaccinated against COVID-19, preferably when disease activity is under control and when there is no concurrent infection. Low-degree immunosuppression does not appear to decrease antibody responses to vaccines. Ideally, vaccinations should be done before the initiation of any biological DMARDs. Patients receiving rituximab should be vaccinated at least 4 weeks before or 6 months after treatment. Since tofacitinib may also reduce antibody responses, especially in combination with methotrexate, it may be appropriate to discontinue this drug before vaccination and to restart after 14 days of immunization.
Key points • COVID-19 vaccinations should preferably be made during remission in patients with autoimmune/autoinflammatory rheumatological diseases. • Low-degree immunosuppression may not interfere with antibody response to vaccines. • Ideally, vaccinations should be made before the initiation of any biological DMARDs. • Timing of vaccination is especially important in the case of rituximab. |
Collapse
Affiliation(s)
- Mehmet Soy
- Altınbas University (previously Kemerbas University) Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Bahcelievler MedicalPark Hospital, Istanbul, Turkey. .,, Altunizade Mah. Atif Bey sk. Gokdeniz Sitesi, E-3; Usküdar, Istanbul, Turkey.
| | - Gökhan Keser
- Ege University Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Bornova, Izmir, Turkey
| | - Pamir Atagunduz
- Marmara University Faculty of Medicine Department of Internal Medicine, Division of Rheumatology, Istanbul, Turkey
| | - Melek Yalçin Mutlu
- University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Turkey.,Department of Rheumatology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Alper Gunduz
- Şişli Hamidiye Etfal Training and Research Hospital, Department of Infectious Diseases, İstanbul, Turkey
| | - Gizem Koybaşi
- Yedikule Chest Diseases and Chest Surgery Training and Research Hospital, İstanbul, Turkey
| | - Cemal Bes
- University of Health Sciences, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey.,Department of Rheumatology, University of Health Sciences, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
99
|
Wu Q, Lin Z, Wu J, Qian K, Shao H, Ye J, Qin A. Peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine. BMC Vet Res 2021; 17:51. [PMID: 33494765 PMCID: PMC7830047 DOI: 10.1186/s12917-021-02757-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV), a coronavirus, is one of the most important poultry pathogens worldwide due to its multiple serotypes and poor cross-protection. Vaccination plays a vital role in controlling the disease. The efficacy of vaccination in chicken flocks can be evaluated by detecting neutralizing antibodies with the neutralization test. However there are no simple and rapid methods for detecting the neutralizing antibodies. RESULTS In this study, a peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine was developed. The pELISA could indirect evaluate neutralizing antibody titers against different types of IBV in all tested sera. The titers measured with the pELISA had a coefficient of 0.83 for neutralizing antibody titers. CONCLUSIONS The pELISA could detect antibodies against different types of IBV in all tested sera. The pELISA has the potential to evaluate samples for IBV-specific neutralizing antibodies and surveillance the infection of IBV.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Zhixian Lin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Jinsen Wu
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Kun Qian
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Hongxia Shao
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Jianqiang Ye
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.
| | - Aijian Qin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.
| |
Collapse
|
100
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|