51
|
Xu L, Li Y, Sang Y, Li DJ, Du M. Crosstalk Between Trophoblasts and Decidual Immune Cells: The Cornerstone of Maternal-Fetal Immunotolerance. Front Immunol 2021; 12:642392. [PMID: 33717198 PMCID: PMC7947923 DOI: 10.3389/fimmu.2021.642392] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The success of pregnancy relies on the fine adjustment of the maternal immune system to tolerate the allogeneic fetus. Trophoblasts carrying paternal antigens are the only fetal-derived cells that come into direct contact with the maternal immune cells at the maternal–fetal interface. The crosstalk between trophoblasts and decidual immune cells (DICs) via cell–cell direct interaction and soluble factors such as chemokines and cytokines is a core event contributing to the unique immunotolerant microenvironment. Abnormal trophoblasts–DICs crosstalk can lead to dysregulated immune situations, which is well known to be a potential cause of a series of pregnancy complications including recurrent spontaneous abortion (RSA), which is the most common one. Immunotherapy has been applied to RSA. However, its development has been far less rapid or mature than that of cancer immunotherapy. Elucidating the mechanism of maternal–fetal immune tolerance, the theoretical basis for RSA immunotherapy, not only helps to understand the establishment and maintenance of normal pregnancy but also provides new therapeutic strategies and promotes the progress of immunotherapy against pregnancy-related diseases caused by disrupted immunotolerance. In this review, we focus on recent progress in the maternal–fetal immune tolerance mediated by trophoblasts–DICs crosstalk and clinical application of immunotherapy in RSA. Advancement in this area will further accelerate the basic research and clinical transformation of reproductive immunity and tumor immunity.
Collapse
Affiliation(s)
- Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
52
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
53
|
Ishimwe JA, Akinleye A, Johnson AC, Garrett MR, Sasser JM. Gestational gut microbial remodeling is impaired in a rat model of preeclampsia superimposed on chronic hypertension. Physiol Genomics 2021; 53:125-136. [PMID: 33491590 DOI: 10.1152/physiolgenomics.00121.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a progressive hypertensive disorder of pregnancy affecting 2%-8% of pregnancies globally. Preexisting chronic hypertension is a major risk factor associated with developing preeclampsia, and growing evidence suggests a role for the gut microbiome in the development of preeclampsia. However, neither alterations in the gut microbiome associated with preeclampsia nor the mechanisms involved are fully understood. In this study, we tested the hypothesis that normal gestational maternal gut microbiome remodeling is impaired in the Dahl salt-sensitive (Dahl S) rat model of superimposed preeclampsia. Gut microbiome profiles of pregnant Dahl S, normal pregnant Sprague-Dawley (SD), and matched virgin controls were assessed by 16S rRNA gene sequencing at baseline; during early, middle, and late pregnancy; and 1-wk postpartum. Dahl S rats had significantly higher abundance in Proteobacteria, and multiple genera were significantly different from SD rats at baseline. The pregnant SD displayed a significant increase in Proteobacteria and genera such as Helicobacter, but these were not different between pregnant and virgin Dahl S rats. By late pregnancy, Dahl S rats had significantly lower α-diversity and Firmicutes compared with their virgin Dahl S controls. β-diversity was significantly different among groups (P < 0.001). KEGG metabolic pathways including those associated with short-chain fatty acids were different in Dahl S pregnancy but not in SD pregnancy. These results reveal an association between chronic hypertension and gut microbiome dysbiosis which may hinder pregnancy-specific remodeling in the gut microbial composition during superimposed preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adesanya Akinleye
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
54
|
Rakner JJ, Silva GB, Mundal SB, Thaning AJ, Elschot M, Ostrop J, Thomsen LCV, Bjørge L, Gierman LM, Iversen AC. Decidual and placental NOD1 is associated with inflammation in normal and preeclamptic pregnancies. Placenta 2021; 105:23-31. [PMID: 33529885 DOI: 10.1016/j.placenta.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Inflammation is a normal physiological process that increases to harmful levels in preeclampsia. It affects the interaction between maternal immune cells and fetal trophoblasts at both sites of the maternal-fetal interface; decidua and placenta. The pattern recognition receptor nucleotide-binding oligomerization domain-containing protein (NOD)1 is expressed at both sites. This study aimed to characterize the cellular expression and functionality of NOD1 at the maternal-fetal interface of normal and preeclamptic pregnancies. METHODS Women with normal or preeclamptic pregnancies delivered by caesarean section were included. Decidual (n = 90) and placental (n = 91) samples were analyzed for NOD1 expression by immunohistochemistry and an automated image-based quantification method. Decidual and placental explants were incubated with or without the NOD1-agonist iE-DAP and cytokine responses measured by ELISA. RESULTS NOD1 was markedly expressed by maternal cells in the decidua and by fetal trophoblasts in both decidua and placenta, with trophoblasts showing the highest NOD1 expression. Preeclampsia with normal fetal growth was associated with a trophoblast-dependent increase in decidual NOD1 expression density. Compared to normal pregnancies, preeclampsia demonstrated stronger correlation between decidual and placental NOD1 expression levels. Increased production of interleukin (IL)-6 or IL-8 after in vitro explant stimulation confirmed NOD1 functionality. DISCUSSION These findings suggest that NOD1 contributes to inflammation at the maternal-fetal interface in normal pregnancies and preeclampsia and indicate a role in direct maternal-fetal communication. The strong expression of NOD1 by all trophoblast types highlights the importance of combined assessment of decidua and placenta for overall understanding of pathophysiological processes at the maternal-fetal interface.
Collapse
Affiliation(s)
- Johanne Johnsen Rakner
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Gabriela Brettas Silva
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Siv Boon Mundal
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Josefin Thaning
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, NTNU, Trondheim and Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
55
|
Vishnyakova P, Poltavets A, Nikitina M, Muminova K, Potapova A, Vtorushina V, Loginova N, Midiber K, Mikhaleva L, Lokhonina A, Khodzhaeva Z, Pyregov A, Elchaninov A, Fatkhudinov T, Sukhikh G. Preeclampsia: inflammatory signature of decidual cells in early manifestation of disease. Placenta 2021; 104:277-283. [PMID: 33472135 DOI: 10.1016/j.placenta.2021.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Preeclampsia is a pregnancy-specific complication characterized by hypertension in combination with proteinuria and/or various manifestations of multiple organ failure. It is believed that etiology of preeclampsia lies in dysfunction of the placenta and disorder of the maternal-fetal interactions. In preeclampsia decidual membrane, the maternal part of the placenta which normally supports immunological tolerance of the maternal organism to the semi-allogeneic fetus, becomes a site of inflammation. METHODS The aim of our study was to characterize the phenotype of decidual macrophages and plasma profiles in patients with late- and early-onset preeclampsia as compared with controls (n = 43). Decidual cells were obtained by enzymatic digestion method and characterized by flow cytometry analysis, real-time PCR, bioinformatics analysis, immunohistochemistry, and Western blot. Plasma samples were analyzed by multiplex assay. RESULTS The number of inflammation-associated CD86+ and CX3CR1+ cells was significantly higher in the early-onset preeclampsia while the portion of CD163+ cells was significantly higher among studied groups. We observed significant increase of endothelin-1 gene expression and a significant decrease in eNOS and GNB3 expression and TGFβ relative protein level in decidual cells of the early-onset preeclampsia samples. We also revealed elevation of pro- and anti-inflammatory cytokines in plasma of preeclampsia groups. DISCUSSION Our findings reflect profound early-onset preeclampsia-associated alterations in the decidua and emphasize the importance of the decidua as a link in the development of preeclampsia.
Collapse
Affiliation(s)
- P Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
| | - A Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - M Nikitina
- Scientific Research Institute of Human Morphology, 117418, Moscow, Russia
| | - K Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - A Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - V Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - N Loginova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - K Midiber
- Scientific Research Institute of Human Morphology, 117418, Moscow, Russia
| | - L Mikhaleva
- Scientific Research Institute of Human Morphology, 117418, Moscow, Russia
| | - A Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Z Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - A Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - A Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| | - T Fatkhudinov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia; Scientific Research Institute of Human Morphology, 117418, Moscow, Russia
| | - G Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Moscow, Russia
| |
Collapse
|
56
|
Cunningham MW, Amaral LM, Campbell NE, Cornelius DC, Ibrahim T, Vaka VR, LaMarca B. Investigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune activation in normal pregnant rats and in a preclinical rat model of preeclampsia. Biol Sex Differ 2021; 12:4. [PMID: 33407826 PMCID: PMC7789596 DOI: 10.1186/s13293-020-00345-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/06/2020] [Indexed: 01/16/2023] Open
Abstract
Two important clinical features of preeclampsia (PE) are hypertension and fetal growth restriction. The reduced uterine perfusion pressure (RUPP) preclinical rat model of PE exhibits both of these features. Moreover, RUPP and PE women have elevated vasoconstrictor peptide endothelin-1 (ET-1) and inflammation. Interleukin-2 (IL-2) is a cytokine that regulates NK cell activity and is elevated in miscarriage, PE, and RUPP rats. The objective of this study was to examine a role for IL-2 in NK cell activation, fetal growth restriction, and hypertension during pregnancy by either infusion of IL-2 or blockade of IL-2 (basiliximab) in normal pregnant (NP) and RUPP rats. On gestational day 14, NP and RUPP rats received low (LD), middle (MD), or high dose (HD) IL-2 (0.05, 0.10, or 0.20 ng/ml) IP or basiliximab (0.07 mg per rat) by IV infusion. On day 19, blood pressure (MAP), pup weights, and blood were collected. Basiliximab had no effect on blood pressure, however, significantly lowered NK cells and may have worsened overall fetal survival in RUPP rats. However, IL-2 LD (102 ± 4 mmHg) and IL-2 HD (105 ± 6 mmHg) significantly lowered blood pressure, ET-1, and activated NK cells compared to control RUPPs (124 ± 3 mmHg, p < 0.05). Importantly, IL-2 in RUPP rats significantly reduced fetal weight and survival. These data indicate that although maternal benefits may have occurred with low dose IL-2 infusion, negative effects were seen in the fetus. Moreover, inhibition of IL-2 signaling did not have favorable outcome for the mother or fetus.
Collapse
Affiliation(s)
- Mark W. Cunningham
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Lorena M. Amaral
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Nathan E. Campbell
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Denise C. Cornelius
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
- Department Of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS USA
| | - Tarek Ibrahim
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Venkata Ramana Vaka
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, Center for Excellence in Renal and Cardiovascular Research, University of Mississippi Medical Center, Jackson, MS 39216 USA
- Division of Maternal Fetal Medicine, Department Of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216 USA
| |
Collapse
|
57
|
Favaro RR, Murrieta-Coxca JM, Gutiérrez-Samudio RN, Morales-Prieto DM, Markert UR. Immunomodulatory properties of extracellular vesicles in the dialogue between placental and immune cells. Am J Reprod Immunol 2020; 85:e13383. [PMID: 33251688 DOI: 10.1111/aji.13383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicle (EV)-mediated communication has been implicated in the cooperative alliance between trophoblast and immune cells toward maternal tolerance and placentation. Syncytiotrophoblast cells secrete EVs directly into the maternal circulation, which are taken up by immune cells, endothelial cells, and other cell types. Initial evidence also shows that EVs produced by immune cells are, in turn, incorporated by trophoblast cells and modulate placental responses. Non-coding RNAs (ncRNAs), proteins, and lipid mediators transported in EVs are able to influence proliferation, differentiation, cytokine production, and immunological responses of recipient cells. The molecular alphabet and cellular targets involved in this dialogue are being revealed. Nevertheless, several questions regarding the whole content, surface markers, and biological functions of EVs still remain to be investigated in both physiological and pathological conditions. Analysis of circulating EVs in maternal blood has the potential to serve as a minimally invasive approach to monitoring placental functions and immunological features of pregnancy, aiding in the diagnostics of complications. This review addresses the immunomodulatory properties of EVs and their tasks in the communication between placental and immune cells.
Collapse
Affiliation(s)
- Rodolfo R Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Jose Martín Murrieta-Coxca
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.,RNA Bioinformatics, High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
58
|
Mendes J, Areia AL, Rodrigues-Santos P, Santos-Rosa M, Mota-Pinto A. Innate Lymphoid Cells in Human Pregnancy. Front Immunol 2020; 11:551707. [PMID: 33329512 PMCID: PMC7734178 DOI: 10.3389/fimmu.2020.551707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a new set of cells considered to be a part of the innate immune system. ILCs are classified into five subsets (according to their transcription factors and cytokine profile) as natural killer cells (NK cells), group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Functionally, these cells resemble the T helper population but lack the expression of recombinant genes, which is essential for the formation of T cell receptors. In this work, the authors address the distinction between peripheral and decidual NK cells, highlighting their diversity in ILC biology and its relevance to human pregnancy. ILCs are effector cells that are important in promoting immunity, inflammation, and tissue repair. Recent studies have directed their attention to ILC actions in pregnancy. Dysregulation or expansion of pro-inflammatory ILC populations as well as abnormal tolerogenic responses may directly interfere with pregnancy, ultimately resulting in pregnancy loss or adverse outcomes. In this review, we characterize these cells, considering recent findings and addressing knowledge gaps in perinatal medicine in the context of ILC biology. Moreover, we discuss the relevance of these cells not only to the process of immune tolerance, but also in disease.
Collapse
Affiliation(s)
- João Mendes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Areia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Obstetrics Department, Coimbra University Hospital Center, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
| | - Anabela Mota-Pinto
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, General Pathology Institute, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
59
|
PlGF Immunological Impact during Pregnancy. Int J Mol Sci 2020; 21:ijms21228714. [PMID: 33218096 PMCID: PMC7698813 DOI: 10.3390/ijms21228714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother’s immune system has to tolerate the persistence of paternal alloantigens without affecting the anti-infectious immune response. Consequently, several mechanisms aimed at preventing allograft rejection, occur during a pregnancy. In fact, the early stages of pregnancy are characterized by the correct balance between inflammation and immune tolerance, in which proinflammatory cytokines contribute to both the remodeling of tissues and to neo-angiogenesis, thus, favoring the correct embryo implantation. In addition to the creation of a microenvironment able to support both immunological privilege and angiogenesis, the trophoblast invades normal tissues by sharing the same behavior of invasive tumors. Next, the activation of an immunosuppressive phase, characterized by an increase in the number of regulatory T (Treg) cells prevents excessive inflammation and avoids fetal immuno-mediated rejection. When these changes do not occur or occur incompletely, early pregnancy failure follows. All these events are characterized by an increase in different growth factors and cytokines, among which one of the most important is the angiogenic growth factor, namely placental growth factor (PlGF). PlGF is initially isolated from the human placenta. It is upregulated during both pregnancy and inflammation. In this review, we summarize current knowledge on the immunomodulatory effects of PlGF during pregnancy, warranting that both innate and adaptive immune cells properly support the early events of implantation and placental development. Furthermore, we highlight how an alteration of the immune response, associated with PlGF imbalance, can induce a hypertensive state and lead to the pre-eclampsia (PE).
Collapse
|
60
|
Ali S, Majid S, Ali MN, Taing S, Rehman MU, Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol 2020; 90:107118. [PMID: 33191177 DOI: 10.1016/j.intimp.2020.107118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Recurrent pregnancy loss (RPL) is a prominent reproductive disease that distresses about 2%-5% of couples. RPL is the loss of two or more successive spontaneous pregnancies prior to the 20th week of embryo development. The commencement of pregnancy necessitates implantation of the embryo into responsive maternal decidua synchronized with the process of placentation, decidual and myometrial trophoblast incursion as well as refashioning of spiral blood arteries of uterus. The collapse of any of the processes fundamental for pregnancy success may result into an array of pregnancy problems including spontaneous pregnancy loss. Endometrium of human female manufactures an extensive range of cytokines during the proliferative and secretory stage of the menstrual cycle. These endometrial cytokines are thought as major players for making the uterus ready for embryo implantation and placental development during pregnancy. Decidual cytokines regulate the invasion of trophoblast and remodeling of spiral arteries as well as take part in immune suppression to accomplish the pregnancy. Deterrence of maternal rejection of embryo needs a regulated milieu, which takes place essentially at the embryo-maternal interface and the tissues of the uterus. The reasons of RPL remain anonymous in a large number of cases that lead to difficulties in management and severe trauma in couples. Cytokine modulatory therapies have been shown promising for preventing RPL. Further study of novel factors is wanted to establish more effective RPL treatment protocols. The present study aims to review the outcome of cytokine breach at materno-embryonic interface and the efficacy of cytokine modulatory therapies in RPL.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India; Department of Biochemistry, Government Medical College, Srinagar, J&K, India.
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Govt. Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
61
|
Mach P, Andrikos D, Schmidt B, Gellhaus A, Rusch P, Birdir C, Andrikos A, Schmitt V, Kimmig R, Singer BB, Köninger A. Evaluation of carcinoembryonic antigen-related cell adhesion molecule 1 blood serum levels in women at high risk for preeclampsia. Am J Reprod Immunol 2020; 85:e13375. [PMID: 33175421 DOI: 10.1111/aji.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
PROBLEM The aim of this study was to evaluate the sCEACAM1 concentrations in serum from patients in the first trimester who have a high risk for developing PE during pregnancy. METHOD OF THE STUDY Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) levels were determined with ELISA. The patients (n = 109) were divided into two groups: patients who have a high risk of developing PE early-onset and a control group. Patients who have a high risk of developing PE were then divided into two subgroups depending on PE development in third trimester of pregnancy: PE in third trimester versus no PE in third trimester. RESULTS sCEACAM1 concentrations in patients who were screened as having a high risk for developing PE were significantly higher than in healthy pregnant women in the first trimester (p = .03). The highest sCEACAM1 concentration was found in the high-risk group with PE development compared to the control group (p = .004). CONCLUSION Elevated sCEACAM1 blood serum levels in women with PE suggest that there is immune dysregulation in early pregnancy, which may be helpful in PE prediction and therapy.
Collapse
Affiliation(s)
- Pawel Mach
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Dimitrios Andrikos
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Boerge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Gellhaus
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Peter Rusch
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Cahit Birdir
- Medical Faculty, Department of Obstetrics and Gynecology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Argyrios Andrikos
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Verena Schmitt
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology, University Hospital of Essen, Essen, Germany.,Department of Obstetrics and Gynecology, Hospital of the Barmherzige Brueder, Clinic St Hedwig, University of Regensburg, Regensburg, Germany
| |
Collapse
|
62
|
Albrecht ED, Pepe GJ. Regulation of Uterine Spiral Artery Remodeling: a Review. Reprod Sci 2020; 27:1932-1942. [PMID: 32548805 PMCID: PMC7452941 DOI: 10.1007/s43032-020-00212-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.
Collapse
Affiliation(s)
- Eugene D Albrecht
- Bressler Research Laboratories, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD, USA.
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
63
|
Tsonis O, Karpathiou G, Tsonis K, Paschopoulos M, Papoudou-Bai A, Kanavaros P. Immune cells in normal pregnancy and gestational trophoblastic diseases. Placenta 2020; 101:90-96. [PMID: 32942146 DOI: 10.1016/j.placenta.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
A healthy pregnancy requires the development of maternal-fetal immune tolerance against the semi-allogeneic fetus. The interactions between the trophoblastic cells and the maternal immune cells (p.e., natural killer cells, T cells, macrophages, dendritic cells and B-cells) are important for the development of the maternal-fetal immune tolerance and the placental growth and function. These interactions are mediated by cell to cell contact and secreted molecules such as cytokines, chemokines, angiogenic factors and growth factors. The maternal immune cells are present in normal non-pregnant and pregnant endometrium and there are several lines of evidence based on immunohistochemical and RNA sequencing data that the decidual immune cells and immune-related pathways display alterations in GTD, which may have pathogenetic and clinical significance. The present review focuses on the usefulness of the immunohistochemical analysis which provides multiparametric in situ information regarding the numbers, the immunophenotypes and the immunotopographical distributions of the decidual immune cells in tissue sections from normal pregnancy and GTD. We also discuss the significance of the immunohistochemical information in order to gain insight in the putative mechanisms explaining the alterations of the decidual immune cells in GTD and the potential implications of these alterations in the pathogenesis and the clinical behavior of GTD.
Collapse
Affiliation(s)
- Orestis Tsonis
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece.
| | | | - Klarisa Tsonis
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Minas Paschopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
64
|
Leelawai S, Sathirapanya P, Suwanrath C. Bell's Palsy in Pregnancy: A Case Series. Case Rep Neurol 2020; 12:452-459. [PMID: 33442374 PMCID: PMC7772825 DOI: 10.1159/000509682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
The association between pregnancy-associated Bell's palsy (PABP) and gestational hypertension (GHT), preeclampsia (PE), and eclampsia (EC) remains inconclusive. We aimed to study the characteristics of PABP cases and the neonatal outcomes at our institution. All cases diagnosed with PABP from 2006 to 2016 were identified. Demographic and clinical characteristics including maternal age, previous medical and obstetric illnesses, gestational age at the onset of PABP, the development of PE/EC, GHT, gestational diabetes mellitus (GDM), treatment and outcomes, as well as neonatal health indices and anomalies were described. Eight patients with PABP were identified. Most of the cases were first- or second-gravidity pregnancies. PABP occurred during the third trimester except for one case in whom PABP developed 2 days postpartum. No PABP case associated with EC was found. PE was found in only one case in whom GHT occurred in a previous pregnancy. Moreover, GHT combined with GDM was found in a case with previous GHT. The recovery of PABP was satisfactory. Previous obstetric complications are associated with the current PE, GHT and GDM. Facial weakness recovers favorably regardless of treatment and the neonatal outcomes are overall satisfactory.
Collapse
Affiliation(s)
- Sumonthip Leelawai
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Pornchai Sathirapanya
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Chitkasaem Suwanrath
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
65
|
Aneman I, Pienaar D, Suvakov S, Simic TP, Garovic VD, McClements L. Mechanisms of Key Innate Immune Cells in Early- and Late-Onset Preeclampsia. Front Immunol 2020; 11:1864. [PMID: 33013837 PMCID: PMC7462000 DOI: 10.3389/fimmu.2020.01864] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia is a complex cardiovascular disorder of pregnancy with underlying multifactorial pathogeneses; however, its etiology is not fully understood. It is characterized by the new onset of maternal hypertension after 20 weeks of gestation, accompanied by proteinuria, maternal organ damage, and/or uteroplacental dysfunction. Preeclampsia can be subdivided into early- and late-onset phenotypes (EOPE and LOPE), diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Impaired placental development in early pregnancy and subsequent growth restriction is often associated with EOPE, while LOPE is associated with maternal endothelial dysfunction. The innate immune system plays an essential role in normal progression of physiological pregnancy and fetal development. However, inappropriate or excessive activation of this system can lead to placental dysfunction or poor maternal vascular adaptation and contribute to the development of preeclampsia. This review aims to comprehensively outline the mechanisms of key innate immune cells including macrophages, neutrophils, natural killer (NK) cells, and innate B1 cells, in normal physiological pregnancy, EOPE and LOPE. The roles of the complement system, syncytiotrophoblast extracellular vesicles and mesenchymal stem cells (MSCs) are also discussed in the context of innate immune system regulation and preeclampsia. The outlined molecular mechanisms, which represent potential therapeutic targets, and associated emerging treatments, are evaluated as treatments for preeclampsia. Therefore, by addressing the current understanding of innate immunity in the pathogenesis of EOPE and LOPE, this review will contribute to the body of research that could lead to the development of better diagnosis, prevention, and treatment strategies. Importantly, it will delineate the differences in the mechanisms of the innate immune system in two different types of preeclampsia, which is necessary for a more personalized approach to the monitoring and treatment of affected women.
Collapse
Affiliation(s)
- Ingrid Aneman
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Dillan Pienaar
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tatjana P. Simic
- Faculty of Medicine, Institute of Medical and Clinical Biochemistry, University of Belgrade, Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lana McClements
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
66
|
Singh R, Dubey V, Wolfson D, Ahmad A, Butola A, Acharya G, Mehta DS, Basnet P, Ahluwalia BS. Quantitative assessment of morphology and sub-cellular changes in macrophages and trophoblasts during inflammation. BIOMEDICAL OPTICS EXPRESS 2020; 11:3733-3752. [PMID: 33014563 PMCID: PMC7510918 DOI: 10.1364/boe.389350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/06/2023]
Abstract
In pregnancy during an inflammatory condition, macrophages present at the feto-maternal junction release an increased amount of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α and INF-γ, which can disturb the trophoblast functions and pregnancy outcome. Measurement of the cellular and sub-cellular morphological modifications associated with inflammatory responses are important in order to quantify the extent of trophoblast dysfunction for clinical implication. With this motivation, we investigated morphological, cellular and sub-cellular changes in externally inflamed RAW264.7 (macrophage) and HTR-8/SVneo (trophoblast) using structured illumination microscopy (SIM) and quantitative phase microscopy (QPM). We monitored the production of NO, changes in cell membrane and mitochondrial structure of macrophages and trophoblasts when exposed to different concentrations of pro-inflammatory agents (LPS and TNF-α). In vitro NO production by LPS-induced macrophages increased 22-fold as compared to controls, whereas no significant NO production was seen after the TNF-α challenge. Under similar conditions as with macrophages, trophoblasts did not produce NO following either LPS or the TNF-α challenge. Super-resolution SIM imaging showed changes in the morphology of mitochondria and the plasma membrane in macrophages following the LPS challenge and in trophoblasts following the TNF-α challenge. Label-free QPM showed a decrease in the optical thickness of the LPS-challenged macrophages while TNF-α having no effect. The vice-versa is observed for the trophoblasts. We further exploited machine learning approaches on a QPM dataset to detect and to classify the inflammation with an accuracy of 99.9% for LPS-challenged macrophages and 98.3% for TNF-α-challenged trophoblasts. We believe that the multi-modal advanced microscopy methodologies coupled with machine learning approach could be a potential way for early detection of inflammation.
Collapse
Affiliation(s)
- Rajwinder Singh
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Author with equal contribution
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Author with equal contribution
| | - Deanna Wolfson
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Ankit Butola
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ganesh Acharya
- Department of Clinical Science, Intervention and Technology Karolinska Univ. Hospital, Sweden
| | - Dalip Singh Mehta
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Purusotam Basnet
- Womeńs Health and Perinatology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway and Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
- Department of Clinical Science, Intervention and Technology Karolinska Univ. Hospital, Sweden
| |
Collapse
|
67
|
Anderson G, Betancort Medina SR. Autism Spectrum Disorders: Role of Pre- and Post-Natal GammaDelta (γδ) T Cells and Immune Regulation. Curr Pharm Des 2020; 25:4321-4330. [PMID: 31682211 DOI: 10.2174/1381612825666191102170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is widely accepted that alterations in immune functioning are an important aspect of the pathoetiology and pathophysiology of autism spectrum disorders (ASD). A relatively under-explored aspect of these alterations is the role of gammaDelta (γδ) T cells, prenatally and in the postnatal gut, which seem important hubs in driving the course of ASD. METHODS The present article describes the role of γδ T cells in ASD, including their interactions with other immune cells shown to be altered in this spectrum of conditions, including natural killer cells and mast cells. RESULTS Other risk factors in ASD, such as decreased vitamins A & D, as well as toxin-associated activation of the aryl hydrocarbon receptor, may also be intimately linked to γδ T cells, and alterations in the regulation of these cells. A growing body of data has highlighted an important role for alterations in mitochondria functioning in the regulation of immune cells, including natural killer cells and mast cells. This is an area that requires investigation in γδ T cells and their putative subtypes. CONCLUSION It is also proposed that maternal stress may act through alterations in the maternal microbiome, leading to changes in how the balance of short-chain fatty acids, such as butyrate, which may act to regulate the placenta and foetal development. Following an overview of previous research on immune, especially γδ T cells, effects in ASD, the future research implications are discussed in detail.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
68
|
Yang HL, Wang CJ, Lai ZZ, Yang SL, Zheng ZM, Shi JW, Li MQ, Shao J. Decidual stromal cells maintain decidual macrophage homeostasis by secreting IL-24 in early pregnancy. Am J Reprod Immunol 2020; 84:e13261. [PMID: 32356306 DOI: 10.1111/aji.13261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
PROBLEM The state of self-renewal and self-maintain of decidual macrophages would be important for immune homeostasis at the maternal-fetal interface. The roles of interleukin (IL)-24 derived from decidual stromal cells (DSCs) on decidual macrophages have not been explored. METHOD OF STUDY IL-24 expression in DSCs was interfered by lentivirus, and the transcription levels of IL-24 in DSCs were verified by real time (RT)-PCR. The levels of IL-24 receptors were determined by flow cytometry assays. The effect of recombination human IL-24 (rhIL-24) on the differentiation and apoptosis of macrophages was analyzed by flow cytometry in vitro. The viability of macrophages was detected by Cell Counting Kit-8 assays. RESULTS The growth of DSCs was not affected obviously only by IL-24 knockdown while the growth of knockdown DSCs was inhibited significantly after co-cultured with decidual macrophages. The levels of IL-24 receptors (IL-20R1 and IL-22R1) were moderately to highly expressed on decidual macrophages and human macrophage cell line U937. The differentiation of decidual macrophages treated by rhIL-24 or co-cultured with IL-24 knockdown DSCs was not affected. Both apoptosis and viability of U937 cells were promoted by rhIL-24. The ratio of Bcl-2/Bax was down-regulated and Ki-67 was up-regulated by IL-24 treatment. The expression of Bcl-2/Bax was up-regulated while Ki-67 was down-regulated in U937 cells after co-cultured by IL-24 knockdown DSCs. CONCLUSION IL-24 secreted by DSCs promotes the renewal and homeostasis of decidual macrophages possibly via down-regulating the ratio of Bcl-2/Bax and up-regulating of the expression of Ki-67 in early pregnancy.
Collapse
Affiliation(s)
- Hui-Li Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Cheng-Jie Wang
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhen-Zhen Lai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Shao-Liang Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jun Shao
- Insitute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
69
|
Rabelo K, Gonçalves AJDS, de Souza LJ, Sales AP, de Lima SMB, Trindade GF, Ciambarella BT, Amorim Tasmo NR, Diaz BL, de Carvalho JJ, Duarte MPDO, Paes MV. Zika Virus Infects Human Placental Mast Cells and the HMC-1 Cell Line, and Triggers Degranulation, Cytokine Release and Ultrastructural Changes. Cells 2020; 9:cells9040975. [PMID: 32316163 PMCID: PMC7227014 DOI: 10.3390/cells9040975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/22/2022] Open
Abstract
Zika virus (ZIKV) is an emergent arthropod-borne virus whose outbreak in Brazil has brought major public health problems. Infected individuals have different symptoms, including rash and pruritus, which can be relieved by the administration of antiallergics. In the case of pregnant women, ZIKV can cross the placenta and infect the fetus leading to congenital defects. We have identified that mast cells in the placentae of patients who had Zika during pregnancy can be infected. This led to our investigation on the possible role of mast cells during a ZIKV infection, using the HMC-1 cell line. We analyzed their permissiveness to infection, release of mediators and ultrastructural changes. Flow cytometry detection of ZIKV-NS1 expression 24 h post infection in 45.3% of cells showed that HMC-1 cells are permissive to ZIKV infection. Following infection, β-hexosaminidase was measured in the supernatant of the cells with a notable release at 30 min. In addition, an increase in TNF-α, IL-6, IL-10 and VEGF levels were measured at 6 h and 24 h post infection. Lastly, different intracellular changes were observed in an ultrastructural analysis of infected cells. Our findings suggest that mast cells may represent an important source of mediators that can activate other immune cell types during a ZIKV infection, which has the potential to be a major contributor in the spread of the virus in cases of vertical transmission.
Collapse
Affiliation(s)
- Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (B.T.C.); (J.J.d.C.)
- Correspondence: (K.R.); (M.P.d.O.D.); (M.V.P); Tel.: +55-21-25621038 (M.V.P.)
| | | | - Luiz José de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro 28035-581, Brazil; (L.J.d.S.); (A.P.S.)
| | - Anna Paula Sales
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Rio de Janeiro 28035-581, Brazil; (L.J.d.S.); (A.P.S.)
| | | | - Gisela Freitas Trindade
- Laboratório de Tecnologia Virológica, Biomanguinhos, Rio de Janeiro 21040-900, Brazil; (S.M.B.d.L.); (G.F.T.)
| | - Bianca Torres Ciambarella
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (B.T.C.); (J.J.d.C.)
| | - Natália Recardo Amorim Tasmo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (N.R.A.T.); (B.L.D.)
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (N.R.A.T.); (B.L.D.)
| | - Jorge José de Carvalho
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (B.T.C.); (J.J.d.C.)
| | - Márcia Pereira de Oliveira Duarte
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Correspondence: (K.R.); (M.P.d.O.D.); (M.V.P); Tel.: +55-21-25621038 (M.V.P.)
| | - Marciano Viana Paes
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Correspondence: (K.R.); (M.P.d.O.D.); (M.V.P); Tel.: +55-21-25621038 (M.V.P.)
| |
Collapse
|
70
|
Suvakov S, Richards C, Nikolic V, Simic T, McGrath K, Krasnodembskaya A, McClements L. Emerging Therapeutic Potential of Mesenchymal Stem/Stromal Cells in Preeclampsia. Curr Hypertens Rep 2020; 22:37. [PMID: 32291521 DOI: 10.1007/s11906-020-1034-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Preeclampsia is a dangerous pregnancy condition affecting both the mother and offspring. It is a multifactorial disease with poorly understood pathogenesis, lacking effective treatments. Maternal immune response, inflammation and oxidative stress leading to endothelial dysfunction are the most prominent pathogenic processes implicated in preeclampsia development. Here, we give a detailed overview of the therapeutic applications and mechanisms of mesenchymal stem/stromal cells (MSCs) as a potential new treatment for preeclampsia. RECENT FINDINGS MSCs have gained growing attention due to low immunogenicity, easy cultivation and expansion in vitro. Accumulating evidence now suggests that MSCs act primarily through their secretomes facilitating paracrine signalling that leads to potent immunomodulatory, pro-angiogenic and regenerative therapeutic effects. MSCs have been studied in different animal models of preeclampsia demonstrating promising result, which support further investigations into the therapeutic effects and mechanisms of MSC-based therapies in preeclampsia, steering these therapies into clinical trials.
Collapse
Affiliation(s)
- S Suvakov
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - C Richards
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - V Nikolic
- Department of Pharmacology and Toxicology, Medical Faculty, University of Nis, Nis, Serbia
| | - T Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - K McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - A Krasnodembskaya
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - L McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
71
|
Hamelin-Morrissette J, Dallagi A, Girouard J, Ravelojaona M, Oufqir Y, Vaillancourt C, Van Themsche C, Carrier C, Reyes-Moreno C. Leukemia inhibitory factor regulates the activation of inflammatory signals in macrophages and trophoblast cells. Mol Immunol 2020; 120:32-42. [PMID: 32045772 DOI: 10.1016/j.molimm.2020.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine leukemia inhibitory factor (LIF) is a key gestational factor known to establish dynamic cellular and molecular cross talk at the feto-maternal interface. Previously, we described the regulatory role of the LIF-trophoblast-IL10 axis in the process of macrophage deactivation in response to pro-inflammatory cytokines. However, the direct regulatory effects of LIF in macrophage and trophoblast cell function remains elusive. In this study, we aimed to examine whether and how LIF regulates the behavior of macrophages and trophoblast cells in response to pro-inflammatory stress factors. We found that LIF modulated the activating effects of interferon-gamma (IFNγ) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in macrophages and trophoblast cells by reducing the phosphorylation levels of signal transducer and activator of transcription-1 (Stat1) and -5 (Stat5). Cell activation with IFNγ inhibited cell invasion and migration but this immobilizing effect was abrogated when macrophages and trophoblast cells were deactivated with LIF; macrophage cell motility restitution could in part be explained by the positive effects of LIF in Stat3 activation and matrix metalloproteinase 9 (MMP-9) expression. Pharmacological inhibition of Stat1 and Stat3 indicated that IFNγ-induced Stat1 activation mediated macrophage motility inhibition, and that cell motility in IFNγ-activated macrophages is restored via LIF-induced Stat3 activation and Stat1 inhibition. Moreover, IFNγ-induced TNFα gene expression was also abrogated by LIF through Stat1 inhibition and Stat3 activation. Finally, we have found that cell invasion of trophoblast cells is inhibited when they were cocultured with GM-CSF-differentiated, IFNγ-stimulated macrophages. This effect, however, was inhibited when macrophages were exposed to LIF. Overall, this in vitro study reveals for the first time the anti-inflammatory and pro-gestational activities of LIF by acting directly on macrophages and trophoblast cells.
Collapse
Affiliation(s)
- Jovane Hamelin-Morrissette
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Angham Dallagi
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Julie Girouard
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Marion Ravelojaona
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Yassine Oufqir
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Cathy Vaillancourt
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, H7V 1B7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada
| | - Céline Van Themsche
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada
| | - Christian Carrier
- Centre Hospitalier Affilié Universitaire Régional de Trois-Rivières (CHAUR-TR), Service d'Hémato-Oncologie, Trois-Rivières, QC, G8Z 3R9, Canada
| | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Université du Québec à Trois-Rivières, département de biologie médicale, Trois-Rivières, QC, G8Z 4M3, Canada; Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Montréal, QC, H2X 3Y7, Canada; Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Laval, QC H7V 1B7, Canada.
| |
Collapse
|
72
|
Zhao L, Sun L, Zheng X, Liu J, Zheng R, Yang R, Wang Y. In vitro fertilization and embryo transfer alter human placental function through trophoblasts in early pregnancy. Mol Med Rep 2020; 21:1897-1909. [PMID: 32319609 PMCID: PMC7057775 DOI: 10.3892/mmr.2020.10971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/10/2019] [Indexed: 12/31/2022] Open
Abstract
The mechanism underlying the potential risk associated with in vitro fertilization and embryo transfer (IVF‑ET) has been previously investigated but remains to be fully elucidated. As the placenta is a critical organ that sustains and protects the fetus, this is an important area of research. The aim of the present study was to determine the difference in trophoblast cell function in the first trimester between naturally conceived pregnancies and pregnancies achieved via IVF‑ET therapy. A total of 20 placental villi in first trimester samples were obtained through fetal bud aspiration from patients undergoing IVF‑ET due to oviductal factors between January 2016 and August 2018. In addition, a further 20 placental villi were obtained from those who naturally conceived and had normal pregnancies but were undergoing artificial abortion; these patients were recruited as the controls. Reverse transcription‑quantitative (RT‑q)PCR and semi‑quantitative immunohistochemical methods were used to detect the mRNA and protein expression of α‑fetoprotein (AFP), vascular endothelial growth factor (VEGF), transferrin (TF), tubulin β1 class VI (TUBB1), metallothionein 1G (MT1G), BCL2, glial cells missing transcription factor 1 (GCM1), epidermal growth factor (EGF) receptor (EGFR), PTEN and leukocyte associated immunoglobulin like receptor 2 (LAIR2) in villi from both groups. Differentially expressed genes were analyzed using Search Tool for the Retrieval of Interacting Genes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted. The RT‑qPCR data revealed that the mRNA expression levels of AFP, VEGF and TF were significantly higher in the IVF‑ET group than in the control group (P<0.05), and those of TUBB1, MT1G, BCL2, GCM1, EGFR, PTEN and LAIR2 were significantly lower (P<0.05). These gene products were expressed in the placental villus tissues, either in the cytoplasm, or in the membrane of syncytiotrophoblast and cytotrophoblast cells. The immunohistochemistry results were in line with those observed using RT‑qPCR. KEGG pathway analysis indicated that the trophoblast cell function of the IVF‑ET group in the first trimester was different from naturally conceived pregnancies with regard to proliferation, invasion, apoptosis and vascular development. The IVF‑ET process may trigger adaptive placental responses, and these compensatory mechanisms could be a risk for certain diseases later in life.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Lifang Sun
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Xiuli Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Jingfang Liu
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Rong Zheng
- Department of Obstetrics and Gynecology, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
73
|
Tian X, Eikmans M, van der Hoorn ML. The Role of Macrophages in Oocyte Donation Pregnancy: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030939. [PMID: 32023856 PMCID: PMC7037275 DOI: 10.3390/ijms21030939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
The embryo of an oocyte donation (OD) pregnancy is completely allogeneic to the mother, which leads to a more serious challenge for the maternal immune system to tolerize the fetus. It is thought that macrophages are essential in maintaining a healthy pregnancy, by acting in immunomodulation and spiral arterial remodeling. OD pregnancies represent an interesting model to study complex immunologic interactions between the fetus and the pregnant woman since the embryo is totally allogeneic compared to the mother. Here, we describe a narrative review on the role of macrophages and pregnancy and a systematic review was performed on the role of macrophages in OD pregnancies. Searches were made in different databases and the titles and abstracts were evaluated by three independent authors. In total, four articles were included on OD pregnancies and macrophages. Among these articles, some findings are conflicting between studies, indicating that more research is needed in this area. From current research, we could identify that there are multiple subtypes of macrophages, having diverse biological effects, and that the ratio between subtypes is altered during gestation and in aberrant pregnancy. The study of macrophages’ phenotypes and their functions in OD pregnancies might be beneficial to better understand the maternal-fetal tolerance system.
Collapse
Affiliation(s)
- Xuezi Tian
- Department of Gynecology and Obstetrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Marie-Louise van der Hoorn
- Department of Gynecology and Obstetrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
74
|
Two patterns of cytokine production by placental macrophages. Placenta 2020; 91:1-10. [PMID: 31941612 DOI: 10.1016/j.placenta.2020.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Macrophages participate in the regulation immune and morphogenetic events in the placenta. However, these roles remain unclear for placental macrophages (Hofbauer cells). The aims of this study were to characterize the consecutive steps of cytokine production (intracellular synthesis and secretion) in placental macrophages in early and late gestation and to compare the secretory profiles of placental macrophages and villous tissue. METHODS Macrophages and villous tissue were isolated from placentas obtained from normal pregnancies at either 9-12 or 38-40 weeks of gestation. Intracellular cytokines were determined by flow cytometry after staining with monoclonal antibodies. Secreted cytokines were quantified by cytometric bead array and ELISA. RESULTS Two patterns of cytokine production were revealed in placental macrophages. Cytokines in the first group (IL-1, IL-6, IL-8, IL-10, TNFα) demonstrated low basal production and were stimulated by bacterial endotoxin. Cytokines in the second group (IL-11, IL-17A, IL-17F, TGF-β, VEGF) were characterized by constitutive production and did not respond to stimulation. Gestational age-dependent changes were observed: basal secretion of TNFα and IL-8 increased whereas IL-11 and IL-17 secretion decreased in third-trimester macrophages compared with the first-trimester cells. Comparison of cytokine production at the cellular and tissue levels suggested the contribution of the placental macrophages both in intraplacental and extraplacental cytokine production. DISCUSSION It would be safe to assume that the two patterns of cytokine production, revealed in our study, correspond to two regulatory roles of placental macrophages: "immune" and "morphogenetic". The inflammatory phenotype of macrophages is attenuated in early gestation and increases with the progression of pregnancy. The cytokines of the first group supposedly contribute to both local and extraplacental levels, whereas the cytokine effects of the second group are more likely confined to the placental tissue.
Collapse
|
75
|
Placental gene expression and antibody levels of mother-neonate pairs reveal an enhanced risk for inflammation in a helminth endemic country. Sci Rep 2019; 9:15776. [PMID: 31673046 PMCID: PMC6823435 DOI: 10.1038/s41598-019-52074-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
In utero exposure to environmental factors can modify the development of allergies later in life whereby the mechanisms of the feto-maternal crosstalk still remain largely unknown. Murine studies revealed that inflammatory maternal signals elicited by chronic helminth infection within the placenta imprint a distinct gene expression profile related to the Vitamin-D-receptor (VDR)-inflammation-axis. We thus investigated whether pro- or anti- inflammatory immune responses as well as VDR and related gene expression within the placenta differ between women from helminth-endemic and non-endemic areas. A prospective pilot study was conducted in Munich, Germany (helminth non-endemic) and Lambaréné, Gabon (helminth-endemic). At delivery, clinical information alongside placenta tissue samples and maternal and cord blood were obtained for further laboratory analysis. Schistosoma haematobium infection was detected in 13/54 (23%) Gabonese women. RT PCR revealed significantly lower gene expression of VDR, Cyp27b1, Foxp3 and IL10 in Gabonese compared to German placentae as well as significantly lower levels of plasma IgG4 in newborns resulting in a significantly higher IgE/IgG4 ratio. These findings demonstrate that exposure in utero to different environments alters placental gene expression and thus possibly plays a role in the development and modulation of the immune system of the offspring.
Collapse
|
76
|
Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci 2019; 20:E5332. [PMID: 31717776 PMCID: PMC6862690 DOI: 10.3390/ijms20215332] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also a significant reproductive disorder affecting around 5% of couples desiring a child. The current knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the correct immunologic dialogue between the mother and the conceptus, which is a condition essential for the proper establishment and maintenance of a successful pregnancy. The immunologic events occurring at the maternal-fetal interface within the endometrium in early pregnancy are extremely complex and involve a large array of immune cells and molecules with immunoregulatory properties. A growing body of experimental studies suggests that endometrial immune dysregulation could be responsible for several, if not many, cases of RPL of unknown origin. The present article reviews the major immunologic pathways, cells, and molecular determinants involved in the endometrial dysfunction observed with specific application to RPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Adalgisa Pietropolli
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Laego A. Gemelli, 8, 00168, Rome Italy;
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
77
|
Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol 2019; 10:2317. [PMID: 31681264 PMCID: PMC6813251 DOI: 10.3389/fimmu.2019.02317] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
A successful pregnancy requires a fine-tuned and highly regulated balance between immune activation and embryonic antigen tolerance. Since the fetus is semi-allogeneic, the maternal immune system should exert tolerant to the fetus while maintaining the defense against infection. The maternal-fetal interface consists of different immune cells, such as decidual natural killer (dNK) cells, macrophages, T cells, dendritic cells, B cells, and NKT cells. The interaction between immune cells, decidual stromal cells, and trophoblasts constitute a vast network of cellular connections. A cellular immunological imbalance may lead to adverse pregnancy outcomes, such as recurrent spontaneous abortion, pre-eclampsia, pre-term birth, intrauterine growth restriction, and infection. Dynamic changes in immune cells at the maternal-fetal interface have not been clearly stated. While many studies have described changes in the proportions of immune cells in the normal maternal-fetus interface during early pregnancy, few studies have assessed the immune cell changes in mid and late pregnancy. Research on pathological pregnancy has provided clues about these dynamic changes, but a deeper understanding of these changes is necessary. This review summarizes information from previous studies, which may lay the foundation for the diagnosis of pathological pregnancy and put forward new ideas for future studies.
Collapse
Affiliation(s)
- Fenglian Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106:1035-1050. [PMID: 31483523 DOI: 10.1002/jlb.3ri0619-181r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal pregravid obesity results in several adverse health outcomes during pregnancy, including increased risk of gestational diabetes, preeclampsia, placental abruption, and complications at delivery. Additionally, pregravid obesity and in utero exposure to high fat diet have been shown to have detrimental effects on fetal programming, predisposing the offspring to adverse cardiometabolic, endocrine, and neurodevelopmental outcomes. More recently, a deeper appreciation for the modulation of offspring immunity and infectious disease-related outcomes by maternal pregravid obesity has emerged. This review will describe currently available animal models for studying the impact of maternal pregravid obesity on fetal immunity and review the data from clinical and animal model studies. We also examine the burden of pregravid obesity on the maternal-fetal interface and the link between placental and systemic inflammation. Finally, we discuss future studies needed to identify key mechanistic underpinnings that link maternal inflammatory changes and fetal cellular reprogramming events.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
79
|
Thiele K, Ahrendt LS, Hecher K, Arck PC. The mnemonic code of pregnancy: Comparative analyses of pregnancy success and complication risk in first and second human pregnancies. J Reprod Immunol 2019; 134-135:11-20. [PMID: 31374263 DOI: 10.1016/j.jri.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 11/16/2022]
Abstract
Obstetrical complications such as spontaneous abortion/miscarriage, fetal growth restriction, preeclampsia or preterm birth occur in approx. 15% of human pregnancies. Clinical experts often state that a previous uncomplicated pregnancy reduces the risk for complications in subsequent pregnancies. Vice versa, a prior pregnancy affected by obstetrical complications increases the risk for reoccurrence. However, published evidence directly underpinning these clinical statements is sparse. Considering that the maternal immune adaptation may be causally involved in determining the outcome of subsequent pregnancies, a comprehensive analysis of clinical data was long overdue. We here present a systematic analysis of clinical data using a PubMed-based approach to identify human studies with relevant information on birth weight and incidences of pregnancy complications in first and second pregnancies. From initially 18,592 publications, 37 studies were included in the quantitative data analysis. Women with a previous pregnancy affected by complications where a derailed immune response can be inferred have a 2.2-3.2-fold increased risk to be affected again in a subsequent pregnancy. Conversely, a normally progressing primary pregnancy reduced the risk for complications in a subsequent pregnancy by 35-65%. Moreover, an uncomplicated primary pregnancy was associated with a 4.2% increased birth weight in a following pregnancy without a difference in gestational age at delivery. In conclusion, the increased birth weight after previously uncomplicated pregnancies suggests that an immune memory is mounted during primary pregnancies. This immune memory may promote the successful outcome of subsequent pregnancies or - if missing or compromised - account for a risk perpetuation of pregnancy complications.
Collapse
Affiliation(s)
- Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Lisa Sophie Ahrendt
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Clara Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
80
|
Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the
in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with
in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.
Collapse
Affiliation(s)
- Judith N Bulmer
- Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
81
|
Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK, Liu YY, Qiu JP, Li DJ, Zhu XY. Insights of efferocytosis in normal and pathological pregnancy. Am J Reprod Immunol 2019; 82:e13088. [PMID: 30614132 DOI: 10.1111/aji.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Efferocytosis, which is known as the phagocytic clearance of dying cells by professional as well as non-professional phagocytes, including a great number of intracellular/extracellular factors and signals, is interrelated with the immune system, contributing to local and systemic homeostasis, especially in tissues with high constitutive rates of apoptosis. Accumulating studies have indicated that immune dysregulation is associated with the pathogenesis of the female reproductive system, which causes preeclampsia (PE), recurrent spontaneous abortion (RSA), ruptured ectopic pregnancy, and so on. And some studies have revealed the pleiotropic and essential role of efferocytosis in these obstetrical disorders. More specifically, the occurrence and development of these diseases were in connection with some efferocytosis-related factors and signals, such as C1q, MBL, and IL-33/ST2. In this review, we systematically review the diverse impacts of efferocytosis in immune system and discuss its relevance to normal and pathological pregnancy. These findings may instruct future basic researches as well as clinical applications of efferocytosis-related factors and signals as latent predictors or therapeutic targets on the obstetrical disorders.
Collapse
Affiliation(s)
- Yan-Ran Sheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Wen-Ting Hu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Chun-Yan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ling-Li Tang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yu-Yin Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jian-Ping Qiu
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiao-Yong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
82
|
Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol 2019; 60:3-16. [PMID: 31285174 DOI: 10.1016/j.bpobgyn.2019.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
During human pregnancy, trophoblast cells, the main cellular component of the placenta, invade deeply into uterine blood vessels and the modified endometrium (decidua). Hence, the maternal immune system must adapt to it. A successful pregnancy requires the tolerance of genetically different (allogenic) cells while the mother's immune competence is maintained. This tolerance is ensured through multiple overlapping and occasionally redundant innate and adaptive immune mechanisms. The present article aims to provide a broad overview on uterine immune cell components and the phenotypical and functional changes that they experience during pregnancy. Particularly, we seek to highlight very recent findings in functional adaptations to pregnancy in immune cell populations encountered in the decidua. These adaptations not only ensure tolerance to allogenic trophoblast cells but also promote optimal placental and fetal growth, simultaneously endeavoring to maintain immune surveillance to provide defense against infections.
Collapse
Affiliation(s)
- Maria Emilia Solano
- Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg Germany.
| |
Collapse
|
83
|
Placental Origins of Preeclampsia: Potential Therapeutic Targets. Curr Med Sci 2019; 39:190-195. [PMID: 31016509 DOI: 10.1007/s11596-019-2018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/24/2019] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and perinatal morbidity and mortality in obstetrics worldwide. No effective treatments to reduce its incidence and severity in clinical practice are currently available. A variety of hypotheses have been generated aiming to explain the origins of PE, notably being the genetic predispositions and placental dysfunction. As regard to placental dysfunction, much progress has been made in basic research and several potential therapeutic targets have been identified. This review will discuss in detail the potential therapeutic targets in PE models including uteroplacental blood flow, oxidative stress, vasoactive factors and inflammation/immune response, and introduce the evolving technologies for placental research nowadays.
Collapse
|
84
|
Dunk C, Kwan M, Hazan A, Walker S, Wright JK, Harris LK, Jones RL, Keating S, Kingdom JCP, Whittle W, Maxwell C, Lye SJ. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front Endocrinol (Lausanne) 2019; 10:160. [PMID: 30949130 PMCID: PMC6436182 DOI: 10.3389/fendo.2019.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Failure of uterine vascular transformation is associated with pregnancy complications including Intra Uterine Growth Restriction (IUGR). The decidua and its immune cell populations play a key role in the earliest stages of this process. Here we investigate the hypothesis that abnormal decidualization and failure of maternal immune tolerance in the second trimester may underlie the uteroplacental pathology of IUGR. Placental bed biopsies were obtained from women undergoing elective caesarian delivery of a healthy term pregnancy, an IUGR pregnancy or a pregnancy complicated by both IUGR and preeclampsia. Decidual tissues were also collected from second trimester terminations from women with either normal or high uterine artery Doppler pulsatile index (PI). Immunohistochemical image analysis and flow cytometry were used to quantify vascular remodeling, decidual leukocytes and decidual status in cases vs. controls. Biopsies from pregnancies complicated by severe IUGR with a high uterine artery pulsatile index (PI) displayed a lack of: myometrial vascular transformation, interstitial, and endovascular extravillous trophoblast (EVT) invasion, and a lower number of maternal leukocytes. Apoptotic mural EVT were observed in association with mature dendritic cells and T cells in the IUGR samples. Second trimester pregnancies with high uterine artery PI displayed a higher incidence of small for gestational age fetuses; a skewed decidual immunology with higher numbers of; CD8 T cells, mature CD83 dendritic cells and lymphatic vessels that were packed with decidual leukocytes. The decidual stromal cells (DSCs) failed to differentiate into the large secretory DSC in these cases, remaining small and cuboidal and expressing lower levels of the nuclear progesterone receptor isoform B, and DSC markers Insulin Growth Factor Binding protein-1 (IGFBP-1) and CD10 as compared to controls. This study shows that defective progesterone mediated decidualization and a hostile maternal immune response against the invading endovascular EVT contribute to the failure of uterovascular remodeling in IUGR pregnancies.
Collapse
Affiliation(s)
- Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- *Correspondence: Caroline Dunk
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aleah Hazan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Sierra Walker
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Julie K. Wright
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Rebecca Lee Jones
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Sarah Keating
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C. P. Kingdom
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy Whittle
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Maxwell
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
85
|
|