51
|
Dupraz S, Grassi D, Karnas D, Nieto Guil AF, Hicks D, Quiroga S. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons. PLoS One 2013; 8:e54462. [PMID: 23349896 PMCID: PMC3548777 DOI: 10.1371/journal.pone.0054462] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal regeneration following trauma.
Collapse
Affiliation(s)
- Sebastián Dupraz
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diego Grassi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diana Karnas
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - David Hicks
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Santiago Quiroga
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
52
|
Dahlin LB. The Role of Timing in Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 109:151-64. [DOI: 10.1016/b978-0-12-420045-6.00007-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
53
|
Franco CF, Soares R, Pires E, Santos R, Coelho AV. Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 2012; 33:3764-78. [DOI: 10.1002/elps.201200274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/05/2012] [Accepted: 07/14/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Catarina F. Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| | | | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras; Portugal
| |
Collapse
|
54
|
Huang YJ, Wu HC, Tai NH, Wang TW. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2869-77. [PMID: 22753249 DOI: 10.1002/smll.201200715] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Indexed: 05/22/2023]
Abstract
In recent years, the utilization of nanomaterials such as carbon nanotubes (CNTs) in the field of neuroscience has forever changed the approach to nerve-related research. The array of novel properties CNTs possess allows them to interact with neurons at the nanodimensional scale. In this study, a CNT rope substrate is developed to allow the electrical stimulation of neural stem cells (NSCs) in culture medium and the in situ observation of the response of these stem cells after stimulation. CNTs are synthesized by chemical vapor deposition and prepared into a ropelike structure with a diameter of 1 mm and length of 1.5 cm. NSCs are differentiated on the CNT rope substrate while the direction of neurite outgrowth, phenotype, and maturity of the NSCs are analyzed. Fluorescence and scanning electron microscopy demonstrate that neurite extension favors the direction of the spiral topography on the CNT rope. NSCs plated on CNT ropes are boosted towards differentiated neurons in the early culture stage when compared to conventional tissue culture plates via the analysis of neuronal gene and protein expressions by quantitative polymerase chain reaction and immunostaining, respectively. Furthermore, a set of electrical stimulation parameters (5 mV, 0.5 mA, 25 ms intermittent stimulation) promotes neuronal maturity while also increasing the speed of neurite outgrowth. These results indicate that an electroconductive CNT rope substrate along with electrical stimulation may have a synergistic effect on promoting neurite elongation and boosting effects on the differentiation of NSCs into mature neuronal cells for therapeutic application in neural regeneration.
Collapse
Affiliation(s)
- Yu-Jie Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
55
|
Abstract
Axon regeneration is a medically relevant process that can repair damaged neurons. This review describes current progress in understanding axon regeneration in the model organism Caenorhabditis elegans. Factors that regulate axon regeneration in C. elegans have broadly similar roles in vertebrate neurons. This means that using C. elegans as a tool to leverage discovery is a legitimate strategy for identifying conserved mechanisms of axon regeneration.
Collapse
Affiliation(s)
- Rachid El Bejjani
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
56
|
Teng YD, Yu D, Ropper AE, Li J, Kabatas S, Wakeman DR, Wang J, Sullivan MP, Redmond DE, Langer R, Snyder EY, Sidman RL. Functional multipotency of stem cells: a conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr Neuropharmacol 2012; 9:574-85. [PMID: 22654717 PMCID: PMC3263453 DOI: 10.2174/157015911798376299] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/14/2022] Open
Abstract
We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.
Collapse
Affiliation(s)
- Yang D Teng
- Division of SCI Research, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian central nervous system do not regenerate, and even neurons in the peripheral nervous system often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, using single-neuron analysis of regeneration in vivo, we show that Notch/lin-12 signaling inhibits the regeneration of mature C. elegans neurons. Notch signaling suppresses regeneration by acting autonomously in the injured cell to prevent growth cone formation. The metalloprotease and gamma-secretase cleavage events that lead to Notch activation during development are also required for its activity in regeneration. Furthermore, blocking Notch activation immediately after injury improves regeneration. Our results define a postdevelopmental role for the Notch pathway as a repressor of axon regeneration in vivo.
Collapse
Affiliation(s)
- Rachid El Bejjani
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
58
|
Manassero G, Repetto IE, Cobianchi S, Valsecchi V, Bonny C, Rossi F, Vercelli A. Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse. Mol Pain 2012; 8:39. [PMID: 22616849 PMCID: PMC3436729 DOI: 10.1186/1744-8069-8-39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023] Open
Abstract
Background Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK) activity in cells of the dorsal root ganglia (DRGs) and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP)-43 and Calcitonin Gene Related Peptide (CGRP) in DRGs was used to relate injury related compensatory growth to altered sensory function. Results Peripheral nerve injury produced pain–related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR) neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. Conclusions JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.
Collapse
Affiliation(s)
- Giusi Manassero
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, I-10125, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
59
|
The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans. PLoS Biol 2012; 10:e1001331. [PMID: 22629231 PMCID: PMC3358320 DOI: 10.1371/journal.pbio.1001331] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/03/2012] [Indexed: 12/03/2022] Open
Abstract
Laser severing of individual axons in the nematode Caenorhabditis elegans revealed that the apoptotic executioner caspase CED-3 and its regulator CED-4/Apaf-1 play an unexpected beneficial role in promoting axonal regeneration. A critical accomplishment in the rapidly developing field of regenerative medicine will be the ability to foster repair of neurons severed by injury, disease, or microsurgery. In C. elegans, individual visualized axons can be laser-cut in vivo and neuronal responses to damage can be monitored to decipher genetic requirements for regeneration. With an initial interest in how local environments manage cellular debris, we performed femtosecond laser axotomies in genetic backgrounds lacking cell death gene activities. Unexpectedly, we found that the CED-3 caspase, well known as the core apoptotic cell death executioner, acts in early responses to neuronal injury to promote rapid regeneration of dissociated axons. In ced-3 mutants, initial regenerative outgrowth dynamics are impaired and axon repair through reconnection of the two dissociated ends is delayed. The CED-3 activator, CED-4/Apaf-1, similarly promotes regeneration, but the upstream regulators of apoptosis CED-9/Bcl2 and BH3-domain proteins EGL-1 and CED-13 are not essential. Thus, a novel regulatory mechanism must be utilized to activate core apoptotic proteins for neuronal repair. Since calcium plays a conserved modulatory role in regeneration, we hypothesized calcium might play a critical regulatory role in the CED-3/CED-4 repair pathway. We used the calcium reporter cameleon to track in vivo calcium fluxes in the axotomized neuron. We show that when the endoplasmic reticulum calcium-storing chaperone calreticulin, CRT-1, is deleted, both calcium dynamics and initial regenerative outgrowth are impaired. Genetic data suggest that CED-3, CED-4, and CRT-1 act in the same pathway to promote early events in regeneration and that CED-3 might act downstream of CRT-1, but upstream of the conserved DLK-1 kinase implicated in regeneration across species. This study documents reconstructive roles for proteins known to orchestrate apoptotic death and links previously unconnected observations in the vertebrate literature to suggest a similar pathway may be conserved in higher organisms. Clinical success in reconnecting neurons damaged by injury will require detailed molecular understanding of how mature axons respond to being severed. To decipher intrinsic molecular pathways that stimulate axon regeneration, we use the small transparent model, Caenorhabditis elegans, in which individual labeled axons can be laser-severed without damage to neighboring tissue, and regrowing axons can be observed directly in the living animal. We find that the apoptotic protein CED-3, well known for its developmental roles in cell death, also unexpectedly acts in a beneficial role to promote regeneration of severed axons. Initial post-surgery outgrowth is impaired in a ced-3 mutant, suggesting that CED-3 is involved in the early steps of axonal regeneration. The activation of CED-3 caspase in this context occurs independently of major cell death regulatory pathways, but efficient regeneration does require the caspase activator CED-4/Apaf-1, the conserved regeneration kinase DLK-1, and calreticulin-dependent calcium fluxes within the severed neuron. Our data suggest a novel conserved pathway for neuronal reconstruction, and call into question the practice of blocking caspases to treat neuronal injury in the clinic.
Collapse
|
60
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
61
|
Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci U S A 2012; 109:7517-22. [PMID: 22529377 DOI: 10.1073/pnas.1120684109] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor.
Collapse
|
62
|
Tonge DA, de Burgh HT, Docherty R, Humphries MJ, Craig SE, Pizzey J. Fibronectin supports neurite outgrowth and axonal regeneration of adult brain neurons in vitro. Brain Res 2012; 1453:8-16. [PMID: 22483961 PMCID: PMC3989037 DOI: 10.1016/j.brainres.2012.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/03/2012] [Accepted: 03/09/2012] [Indexed: 12/09/2022]
Abstract
The molecular basis of axonal regeneration of central nervous system (CNS) neurons remains to be fully elucidated. In part, this is due to the difficulty in maintaining CNS neurons in vitro. Here, we show that dissociated neurons from the cerebral cortex and hippocampus of adult mice may be maintained in culture for up to 9 days in defined medium without added growth factors. Outgrowth of neurites including axons was observed from both CNS sources and was significantly greater on plasma fibronectin than on other substrata such as laminin and merosin. Neurite outgrowth on fibronectin appears to be mediated by α5β1 integrin since a recombinant fibronectin fragment containing binding sites for this receptor was as effective as intact fibronectin in supporting neurite outgrowth. Conversely, function-blocking antibodies to α5 and β1 integrin sub-units inhibited neurite outgrowth on intact fibronectin. These results suggest that the axonal regeneration seen in in vivo studies using fibronectin-based matrices is due to the molecule itself and not a consequence of secondary events such as cellular infiltration. They also indicate the domains of fibronectin that may be responsible for eliciting this response.
Collapse
Affiliation(s)
- David A Tonge
- Wolfson-Centre for Age-Related Disease, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
63
|
Ben-Yaakov K, Dagan SY, Segal-Ruder Y, Shalem O, Vuppalanchi D, Willis DE, Yudin D, Rishal I, Rother F, Bader M, Blesch A, Pilpel Y, Twiss JL, Fainzilber M. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J 2012; 31:1350-63. [PMID: 22246183 DOI: 10.1038/emboj.2011.494] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/16/2011] [Indexed: 11/09/2022] Open
Abstract
Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.
Collapse
Affiliation(s)
- Keren Ben-Yaakov
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Verhaagen J, Van Kesteren RE, Bossers KAM, Macgillavry HD, Mason MR, Smit AB. Molecular target discovery for neural repair in the functional genomics era. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:595-616. [PMID: 23098739 DOI: 10.1016/b978-0-444-52137-8.00037-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A comprehensive understanding of the molecular pathways activated by traumatic neural injury is of major importance for the development of treatments for spinal cord injury (SCI). High-throughput gene expression profiling is a powerful approach to reveal genome-wide changes in gene expression during a specific biological process. Microarray analysis of injured nerves or neurons would ideally generate new hypotheses concerning the progression or deregulation of injury- and repair-related biological processes, such as neural scar formation and axon regeneration. These hypotheses should subsequently be tested experimentally and would eventually provide the molecular substrates for the development of novel therapeutics. Over the last decade, this approach has elucidated numerous extrinsic (mostly neural scar-associated) as well as neuron-intrinsic genes that are regulated following an injury. To date, the main challenge is to translate the observed injury-induced gene expression changes into a mechanistic framework to understand their functional implications. To achieve this, research on neural repair will have to adopt the conceptual advances and analytical tools provided by the functional genomics and systems biology revolution. Based on progress made in bioinformatics, high-throughput and high-content functional cellular screening, and in vivo gene transfer technology, we propose a multistep "roadmap" that provides an integrated strategy for molecular target discovery for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Joost Verhaagen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
65
|
Yoon C, Tuszynski MH. Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 760:1-15. [PMID: 23281510 DOI: 10.1007/978-1-4614-4090-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of injured CNS neurons was once thought to be an unachievable goal. Most patients with significant damage to the spinal cord suffer from permanently impaired neurological function. A century of research, however, has led to an understanding of multiple factors that limit CNS regeneration and from this knowledge experimental strategies have emerged for enhancing CNS repair. Some of these approaches have undergone human translation. Nevertheless, translating experimental findings to human trials has been more challenging than anticipated. In this chapter, we will review the current state of knowledge regarding central axonal growth failure after injury, and approaches taken to enhance recovery after SCI.
Collapse
Affiliation(s)
- Choya Yoon
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA.
| | | |
Collapse
|
66
|
Foscarin S, Rossi F, Carulli D. Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res 2011; 349:161-7. [PMID: 22143260 DOI: 10.1007/s00441-011-1293-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023]
Abstract
During developmental critical periods, external stimuli are crucial for information processing, acquisition of new functions or functional recovery after CNS damage. These phenomena depend on the capability of neurons to modify their functional properties and/or their connections, generally defined as "plasticity". Although plasticity decreases after the closure of critical periods, the adult CNS retains significant capabilities for structural remodelling and functional adaptation. At the molecular level, structural modifications of neural circuits depend on the balance between intrinsic growth properties of the involved neurons and growth-regulatory cues of the extracellular milieu. Interestingly, experience acts on this balance, so as to create permissive conditions for neuritic remodelling. Here, we present an overview of recent findings concerning the effects of experience on cellular and molecular processes responsible for producing structural plasticity of neural networks or functional recovery after an insult to the adult CNS (e.g. traumatic injury, ischemia or neurodegenerative disease). Understanding experience-dependent mechanisms is crucial for the development of tailored rehabilitative strategies, which can be exploited alone or in combination with specific therapeutic interventions to improve neural repair after damage.
Collapse
Affiliation(s)
- Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of Turin, Turin, Italy
| | | | | |
Collapse
|
67
|
Carulli D, Foscarin S, Rossi F. Activity-dependent plasticity and gene expression modifications in the adult CNS. Front Mol Neurosci 2011; 4:50. [PMID: 22144945 PMCID: PMC3226246 DOI: 10.3389/fnmol.2011.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 01/20/2023] Open
Abstract
Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| |
Collapse
|
68
|
Yu B, Zhou S, Qian T, Wang Y, Ding F, Gu X. Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats. Acta Biochim Biophys Sin (Shanghai) 2011; 43:909-15. [PMID: 21908854 DOI: 10.1093/abbs/gmr083] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs (∼22 nucleotides) that negatively regulate gene expression post-transcriptionally, either through translational inhibition or degradation of target mRNAs. We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1, 4, 7, and 14 days after resection of the sciatic nerve in rats using microarray analysis. Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury. The expression of four consecutively deregulated miRNAs, analyzed by real-time Taqman polymerase chain reaction, was in agreement with the microarray data (upregulated: miR-21, miR-221; downregulated: miR-500, miR-551b). The potential targets for these miRNAs, altered after sciatic nerve resection, are involved mainly in nervous system development, multi-cellular organismal development, and the regulation of cellular processes. This study demonstrated a different involvement of miRNAs in the DRG after resection of the sciatic nerve in a rat model, and it may also contribute in illustrating the molecular mechanisms responsible for nerve regeneration.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | | | | | | | | | | |
Collapse
|
69
|
Yang P, Yang Z. Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 2011; 312:1-6. [PMID: 21924742 DOI: 10.1016/j.jns.2011.08.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023]
Abstract
In the adult mammalian central nervous system (CNS), the axons do not spontaneously regenerate after injury due to the inhibitory extrinsic environment and a diminished intrinsic regenerative capability. Many previous studies focus largely on characterizing the hostile growth inhibitory molecules in the CNS. In fact, blocking such inhibitory activities by either genetic or pharmacological approaches only allows limited sprouting, and majority of the adult neurons fail to regenerate their axons even provided with permissive substrates. Upon the neural circuits established during development, the intrinsic neuronal growth activity is gradually repressed. Little is known to the mechanisms for transition from the robust growth mode of the immature neurons to the poor growth mode of the mature neurons and the way to reactivate the intrinsic growth capacity after injury. The primary sensory neurons with cell bodies in the dorsal root ganglion (DRG) provide a useful model to develop strategies to enhance the intrinsic growth capacity of neurons. The centrally projecting axons in the adult spinal cord do not regenerate, while the peripheral branches regenerate robustly after injury. Regeneration of the central branches can be significantly enhanced after a prior peripheral branch injury, which is defined as conditioning lesion. We reviewed the mode of conditioning lesion reactivating the intrinsic growth program. Importantly, we summarized the intrinsic neuronal determinants for neurite growth such as cAMP, PTEN/mTOR, APC-Cdh1, KLF4, etc., the mechanisms underlying development-dependent decline of CNS neurons growth ability, and procedures to enhance the intrinsic growth potential.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | | |
Collapse
|
70
|
Yu B, Zhou S, Wang Y, Ding G, Ding F, Gu X. Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One 2011; 6:e24612. [PMID: 21931774 PMCID: PMC3172250 DOI: 10.1371/journal.pone.0024612] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/14/2011] [Indexed: 12/16/2022] Open
Abstract
Unlike the central nervous system, peripheral nerves can regenerate when damaged. MicroRNA (miRNA) is a novel class of small, non-coding RNA that regulates gene expression at the post-transcriptional level. Here, we report regular alterations of miRNA expression following rat sciatic nerve injury using deep sequencing. We harvested dorsal root ganglia tissues and the proximal stumps of the nerve, and identified 201 and 225 known miRNAs with significant expression variance at five time points in these tissues after sciatic nerve transaction, respectively. Subsequently, hierarchical clustering, miRNA expression pattern and co-expression network were performed. We screened out specific miRNAs and further obtained the intersection genes through target analysis software (Targetscan and miRanda). Moreover, GO and KEGG enrichment analyses of these intersection genes were performed. The bioinformatics analysis indicated that the potential targets for these miRNAs were involved in nerve regeneration, including neurogenesis, neuron differentiation, vesicle-mediated transport, homophilic cell adhesion and negative regulation of programmed cell death that were known to play important roles in regulating nerve repair. Finally, we combined differentially expressed mRNA with the predicted targets for selecting inverse miRNA-target pairs. Our results show that the abnormal expression of miRNA may contribute to illustrate the molecular mechanisms of nerve regeneration and that miRNAs are potential targets for therapeutic interventions and may enhance intrinsic regenerative ability.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Guohui Ding
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
71
|
Patkar S, Tate R, Modo M, Plevin R, Carswell HVO. Conditionally immortalised neural stem cells promote functional recovery and brain plasticity after transient focal cerebral ischaemia in mice. Stem Cell Res 2011; 8:14-25. [PMID: 22099017 DOI: 10.1016/j.scr.2011.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/27/2011] [Accepted: 07/19/2011] [Indexed: 11/27/2022] Open
Abstract
Cell therapy has enormous potential to restore neurological function after stroke. The present study investigated effects of conditionally immortalised neural stem cells (ciNSCs), the Maudsley hippocampal murine neural stem cell line clone 36 (MHP36), on sensorimotor and histological outcome in mice subjected to transient middle cerebral artery occlusion (MCAO). Adult male C57BL/6 mice underwent MCAO by intraluminal thread or sham surgery and MHP36 cells or vehicle were implanted into ipsilateral cortex and caudate 2 days later. Functional recovery was assessed for 28 days using cylinder and ladder rung tests and tissue analysed for plasticity, differentiation and infarct size. MHP36-implanted animals showed accelerated and augmented functional recovery and an increase in neurons (MAP-2), synaptic plasticity (synaptophysin) and axonal projections (GAP-43) but no difference in astrocytes (GFAP), oligodendrocytes (CNPase), microglia (IBA-1) or lesion volumes when compared to vehicle group. This is the first study showing a potential functional benefit of the ciNSCs, MHP36, after focal MCAO in mice, which is probably mediated by promoting neuronal differentiation, synaptic plasticity and axonal projections and opens up opportunities for future exploitation of genetically altered mice for dissection of mechanisms of stem cell based therapy.
Collapse
Affiliation(s)
- Shalmali Patkar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | | | | | | | | |
Collapse
|
72
|
Jaerve A, Schiwy N, Schmitz C, Mueller HW. Differential effect of aging on axon sprouting and regenerative growth in spinal cord injury. Exp Neurol 2011; 231:284-94. [PMID: 21806987 DOI: 10.1016/j.expneurol.2011.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 12/22/2022]
Abstract
The demographics of acute spinal cord injury (SCI) are changing with an increased incidence in older age. However, the influence of aging on the regenerative growth potential of central nervous system (CNS) axons following SCI is not known. We investigated axonal sprouting along with the efficiency of the infusion of the stromal cell-derived growth factor-1 (SDF-1/CXCL12) and regenerative growth along with the anti-scarring treatment (AST) in young (2-3 months) and geriatric (22-28 months) female rats following SCI. AST included local injection of iron chelator (2,2'-dipyridine-5,5'-dicarboxylic acid) and 8-bromo-cyclic adenosine monophosphate solution into the lesion core. Axon outgrowth was investigated by immunohistological methods at 5 weeks after a partial dorsal hemisection at thoracic level T8. We found that aging significantly reduces spontaneous axon sprouting of corticospinal (CST), serotonergic (5-HT) raphespinal and catecholaminergic (TH) coerulospinal tracts in distinct regions of the spinal cord rostral to the lesion. However, impairment of axon sprouting could be markedly attenuated in geriatric animals by local infusion of SDF-1. Unexpectedly and in contrast to rostral sprouting, aging does not diminish the regenerative growth capacity of 5-HT-, TH- and calcitonin gene-related peptide (CGRP)-immunoreactive axons at 5 weeks after SCI. Moreover, 5-HT and TH axons maintain the ability to react upon AST with significantly enhanced regeneration in aged animals. These data are the first to demonstrate, that old age compromises axonal plasticity, but not regenerative growth, after SCI in a fiber tract-specific manner. Furthermore, AST and SDF-1 infusions remain efficient, which implicates that therapy in elderly patients is still feasible.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
73
|
Yu P, Zhang YP, Shields LBE, Zheng Y, Hu X, Hill R, Howard R, Gu Z, Burke DA, Whittemore SR, Xu XM, Shields CB. Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Exp Neurol 2011; 231:38-44. [PMID: 21679705 DOI: 10.1016/j.expneurol.2011.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 12/16/2022]
Abstract
This study investigated whether neuronal inhibitor of DNA binding 2 (Id2), a regulator of basic helix-loop-helix (bHLH) transcription factors, can activate the intrinsic neuritogenetic mode of dorsal root ganglion (DRG) neurons in adult mice following spinal cord injury (SCI). First, the Id2 developmental expression profile of DRG neurons, along with the correlated activity of Cdh1-anaphase promoting complex (Cdh1-APC), was characterized. Next, a D-box mutant Id2 (Id2DBM) adenoviral vector, resistant to Cdh1-APC degradation, was developed to enhance neuronal Id2 expression. After the vector was introduced into DRG neurons, the effect of Id2 on neurite outgrowth of cultured DRG neurons and sensory axonal regeneration following spinal cord dorsal hemisection was evaluated. The expression of Id2 in DRG neurons was high in the embryonic stage, downregulated after birth, and significantly reduced in the adult. Expression of Cdh1-APC was opposite to Id2, which may be responsible for Id2 degradation during DRG maturation. Overexpression of Id2DBM in DRG neurons enhanced neuritogenesis on both permissive and inhibitory substrates. Following spinal cord dorsal hemisection, overexpression of Id2DBM reduced axon dieback and increased the number and length of regenerative fibers into the lesion gap. Reprogramming the intrinsic growth status of quiescent adult DRG neurons by enhancing Id2 expression results in active neuritogenesis following SCI. Id2 may be a novel target for enhancing sensory axonal regeneration following injuries to the adult spinal cord.
Collapse
Affiliation(s)
- Panpan Yu
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A 2011; 108:E99-107. [PMID: 21518886 DOI: 10.1073/pnas.1100426108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axon growth potential is highest in young neurons but diminishes with age, thus becoming a significant obstacle to axonal regeneration after injury in maturity. The mechanism for the decline is incompletely understood, and no effective clinical treatment is available to rekindle innate growth capability. Here, we show that Smad1-dependent bone morphogenetic protein (BMP) signaling is developmentally regulated and governs axonal growth in dorsal root ganglion (DRG) neurons. Down-regulation of the pathway contributes to the age-related decline of the axon growth potential. Reactivating Smad1 selectively in adult DRG neurons results in sensory axon regeneration in a mouse model of spinal cord injury (SCI). Smad1 signaling can be effectively manipulated by an adeno-associated virus (AAV) vector encoding BMP4 delivered by a clinically applicable and minimally invasive technique, an approach devoid of unwanted abnormalities in mechanosensation or pain perception. Importantly, transected axons are able to regenerate even when the AAV treatment is delivered after SCI, thus mimicking a clinically relevant scenario. Together, our results identify a therapeutic target to promote axonal regeneration after SCI.
Collapse
|
75
|
In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 2011; 108:6282-7. [PMID: 21447717 DOI: 10.1073/pnas.1015239108] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the peripheral nervous system (PNS), damaged axons regenerate successfully, whereas axons in the CNS fail to regrow. In neurons of the dorsal root ganglia (DRG), which extend branches to both the PNS and CNS, only a PNS lesion but not a CNS lesion induces axonal growth. How this differential growth response is regulated in vivo is only incompletely understood. Here, we combine in vivo time-lapse fluorescence microscopy with genetic manipulations in mice to reveal how the transcription factor STAT3 regulates axonal regeneration. We show that selective deletion of STAT3 in DRG neurons of STAT3-floxed mice impairs regeneration of peripheral DRG branches after a nerve cut. Further, overexpression of STAT3 induced by viral gene transfer increases outgrowth and collateral sprouting of central DRG branches after a dorsal column lesion by more than 400%. Notably, repetitive in vivo imaging of individual fluorescently labeled PNS and CNS axons reveals that STAT3 selectively regulates initiation but not later perpetuation of axonal growth. With STAT3, we thus identify a phase-specific regulator of axonal outgrowth. Activating STAT3 might provide an opportunity to "jumpstart" regeneration, and thus prime axons in the injured spinal cord for application of complementary therapies that improve axonal elongation.
Collapse
|
76
|
Pickard MR, Barraud P, Chari DM. The transfection of multipotent neural precursor/stem cell transplant populations with magnetic nanoparticles. Biomaterials 2011; 32:2274-84. [PMID: 21193228 DOI: 10.1016/j.biomaterials.2010.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/01/2010] [Indexed: 01/18/2023]
Abstract
Multipotent neural precursor/stem cells (NPCs) are a major transplant population with key properties to promote repair in several neuropathological conditions. Magnetic nanoparticle (MNP)-based vector systems, in turn, offer a combination of key benefits for cell therapies including (i) safety (ii) delivery of therapeutic biomolecules (DNA/siRNA) enhanceable by 'magnetofection' approaches (iii) magnetic cell targeting of MNP-labelled cells to injury sites and (iv) non-invasive imaging of MNP-labelled transplant populations for cell tracking. However, the applications of the versatile MNP platform for NPC transplantation therapies have received limited attention so far. We have evaluated the potential of MNP vectors for gene transfer to NPCs using a neurosphere culture model system; we also assessed repeat transfection ("multifection") and repeat transfection plus applied magnetic field ("magneto-multifection") strategies [to enhance transfection efficiency]. We show for the first time that MNPs can safely mediate single/combinatorial gene delivery to NPCs. Multifection approaches significantly enhanced transfection with negligible toxicity; no adverse effects were observed on stem cell proliferation/differentiation. "Multifected" NPCs survived and differentiated in 3D neural tissue arrays post-transplantation. Our findings demonstrate that MNPs offer a simple and robust alternative to the viral vector systems currently used widely to transfect neural stem cells in neurobiology/neural transplantation research.
Collapse
Affiliation(s)
- Mark R Pickard
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | | | |
Collapse
|
77
|
Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 2011; 6:e16666. [PMID: 21304956 PMCID: PMC3031615 DOI: 10.1371/journal.pone.0016666] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/10/2011] [Indexed: 12/29/2022] Open
Abstract
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues.
Collapse
Affiliation(s)
- Simona Foscarin
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Danilo Ponchione
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ermira Pajaj
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ketty Leto
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Maciej Gawlak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ferdinando Rossi
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
- * E-mail:
| | - Daniela Carulli
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
78
|
Michaelevski I, Segal-Ruder Y, Rozenbaum M, Medzihradszky KF, Shalem O, Coppola G, Horn-Saban S, Ben-Yaakov K, Dagan SY, Rishal I, Geschwind DH, Pilpel Y, Burlingame AL, Fainzilber M. Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal 2010; 3:ra53. [PMID: 20628157 DOI: 10.1126/scisignal.2000952] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retrograde signaling from axon to soma activates intrinsic regeneration mechanisms in lesioned peripheral sensory neurons; however, the links between axonal injury signaling and the cell body response are not well understood. Here, we used phosphoproteomics and microarrays to implicate approximately 900 phosphoproteins in retrograde injury signaling in rat sciatic nerve axons in vivo and approximately 4500 transcripts in the in vivo response to injury in the dorsal root ganglia. Computational analyses of these data sets identified approximately 400 redundant axonal signaling networks connected to 39 transcription factors implicated in the sensory neuron response to axonal injury. Experimental perturbation of individual overrepresented signaling hub proteins, including Abl, AKT, p38, and protein kinase C, affected neurite outgrowth in sensory neurons. Paradoxically, however, combined perturbation of Abl together with other hub proteins had a reduced effect relative to perturbation of individual proteins. Our data indicate that nerve injury responses are controlled by multiple regulatory components, and suggest that network redundancies provide robustness to the injury response.
Collapse
Affiliation(s)
- Izhak Michaelevski
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Mokalled MH, Johnson A, Kim Y, Oh J, Olson EN. Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development 2010; 137:2365-74. [PMID: 20534669 DOI: 10.1242/dev.047605] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Numerous motile cell functions depend on signaling from the cytoskeleton to the nucleus. Myocardin-related transcription factors (MRTFs) translocate to the nucleus in response to actin polymerization and cooperate with serum response factor (Srf) to regulate the expression of genes encoding actin and other components of the cytoskeleton. Here, we show that MRTF-A (Mkl1) and MRTF-B (Mkl2) redundantly control neuronal migration and neurite outgrowth during mouse brain development. Conditional deletion of the genes encoding these Srf coactivators disrupts the formation of multiple brain structures, reflecting a failure in neuronal actin polymerization and cytoskeletal assembly. These abnormalities were accompanied by dysregulation of the actin-severing protein gelsolin and Pctaire1 (Cdk16) kinase, which cooperates with Cdk5 to initiate a kinase cascade that governs cytoskeletal rearrangements essential for neuron migration and neurite outgrowth. Thus, the MRTF/Srf partnership interlinks two key signaling pathways that control actin treadmilling and neuronal maturation, thereby fulfilling a regulatory loop that couples cytoskeletal dynamics to nuclear gene transcription during brain development.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Molecular Biology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | |
Collapse
|
80
|
Siebert JR, Middelton FA, Stelzner DJ. Intrinsic response of thoracic propriospinal neurons to axotomy. BMC Neurosci 2010; 11:69. [PMID: 20525361 PMCID: PMC2894843 DOI: 10.1186/1471-2202-11-69] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 06/04/2010] [Indexed: 11/25/2022] Open
Abstract
Background Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI) and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS) neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury. Results Utilizing laser microdissection, gene-microarray, qRT-PCR, and immunohistochemistry, we focused on the intrinsic post-axotomy response of specifically labelled thoracic propriospinal neurons at periods from 3-days to 1-month following T9 spinal cord injury. We found a strong and early (3-days post injury, p.i) upregulation in the expression of genes involved in the immune/inflammatory response that returned towards normal by 1-week p.i. In addition, several regeneration associated and cell survival/neuroprotective genes were significantly up-regulated at the earliest p.i. period studied. Significant upregulation of several growth factor receptor genes (GFRa1, Ret, Lifr) also occurred only during the initial period examined. The expression of a number of pro-apoptotic genes up-regulated at 3-days p.i. suggest that changes in gene expression after this period may have resulted from analyzing surviving TPS neurons after the cell death of the remainder of the axotomized TPS neuronal population. Conclusions Taken collectively these data demonstrate that thoracic propriospinal (TPS) neurons mount a very dynamic response following low thoracic axotomy that includes a strong regenerative response, but also results in the cell death of many axotomized TPS neurons in the first week after spinal cord injury. These data also suggest that the immune/inflammatory response may have an important role in mediating the early strong regenerative response, as well as the apoptotic response, since expression of all of three classes of gene are up-regulated only during the initial period examined, 3-days post-SCI. The up-regulation in the expression of genes for several growth factor receptors during the first week post-SCI also suggest that administration of these factors may protect TPS neurons from cell death and maintain a regenerative response, but only if given during the early period after injury.
Collapse
Affiliation(s)
- Justin R Siebert
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse New York, USA.
| | | | | |
Collapse
|
81
|
Rishal I, Fainzilber M. Retrograde signaling in axonal regeneration. Exp Neurol 2010; 223:5-10. [DOI: 10.1016/j.expneurol.2009.08.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 11/16/2022]
|
82
|
Ziegler L, Segal-Ruder Y, Coppola G, Reis A, Geschwind D, Fainzilber M, Goldstein RS. A human neuron injury model for molecular studies of axonal regeneration. Exp Neurol 2010; 223:119-27. [DOI: 10.1016/j.expneurol.2009.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/30/2022]
|
83
|
Harris NG, Mironova YA, Hovda DA, Sutton RL. Pericontusion axon sprouting is spatially and temporally consistent with a growth-permissive environment after traumatic brain injury. J Neuropathol Exp Neurol 2010; 69:139-54. [PMID: 20084019 PMCID: PMC2821052 DOI: 10.1097/nen.0b013e3181cb5bee] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously reported that pericontusional extracellular chondroitin sulfate proteoglycans (CSPGs) are profoundly reduced for 3 weeks after experimental traumatic brain injury, indicating a potential growth-permissive window for plasticity. Here, we investigate the extracellular environment of sprouting neurons after controlled cortical impact injury in adult rats to determine the spatial and temporal arrangement of inhibitory and growth-promoting molecules in relation to growth-associated protein 43-positive (GAP43+) neurons. Spontaneous cortical sprouting was maximal in pericontused regions at 7 and 14 days after injury but absent by 28 days. Perineuronal nets containing CSPGs were reduced at 7 days after injury in the pericontused region (p < 0.05), which was commensurate with a reduction in extracellular CSPGs. Sprouting was restricted to the perineuronal nets and CSPG-deficient regions at 7 days, indicating that the pericontused region is temporarily and spatially permissive to new growth. At this time point,GAP43+ neurons were associated with brain regions containing cells positive for polysialic acid neural cell adhesion molecule but not with fibronectin-positive cells. Brain-derived neurotrophic factor was reduced in the immediate pericontused region at 7 days. Along with prior Western blot evidence, these data suggest that a lowered intrinsic growth stimulus, together with a later return of growth-inhibitory CSPGs, may contribute to the ultimate disappearance of sprouting neurons after traumatic brain injury.
Collapse
Affiliation(s)
- Neil G Harris
- UCLA Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA.
| | | | | | | |
Collapse
|
84
|
Kalous A, Keast JR. Conditioning lesions enhance growth state only in sensory neurons lacking calcitonin gene-related peptide and isolectin B4-binding. Neuroscience 2009; 166:107-21. [PMID: 20006678 DOI: 10.1016/j.neuroscience.2009.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 12/31/2022]
Abstract
A conditioning lesion improves regeneration of central and peripheral axons of dorsal root ganglion (DRG) neurons after a subsequent injury by enhancing intrinsic growth capacity. This enhanced growth state is also observed in cultured DRG neurons, which support a more sparsely and rapidly elongating mode of growth after a prior conditioning lesion in vivo. Here we examined differences in the capacity or requirements of specific types of sensory neurons for regenerative growth, which has important consequences for development of strategies to improve recovery after injury. We showed that after partial or complete injury of the sciatic nerve in mice, an elongating mode of growth in vitro was activated only in DRG neurons that did not express calcitonin gene-related peptide (CGRP) or bind Bandeiraea simplicifolia I-isolectin B4 (IB4). We also directly examined the response of conditioned sensory neurons to nerve growth factor (NGF), which does not enhance growth in injured peripheral nerves in vivo. We showed that after partial injury, NGF stimulated a highly branched and linearly restricted rather than elongating mode of growth. After complete injury, the function of NGF was impaired, which immunohistochemical studies of DRG indicated was at least partly due to downregulation of the NGF receptor, tropomyosin-related kinase A (TrkA). These results suggest that, regardless of the type of conditioning lesion, each type of DRG neuron has a distinct intrinsic capacity or requirement for the activation of rapidly elongating growth, which does not appear to be influenced by NGF.
Collapse
Affiliation(s)
- A Kalous
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | | |
Collapse
|
85
|
Giovanni SD. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009; 13:1387-98. [DOI: 10.1517/14728220903307517] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
86
|
Michaelevski I, Medzihradszky KF, Lynn A, Burlingame AL, Fainzilber M. Axonal transport proteomics reveals mobilization of translation machinery to the lesion site in injured sciatic nerve. Mol Cell Proteomics 2009; 9:976-87. [PMID: 19955087 DOI: 10.1074/mcp.m900369-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles transported in both anterograde and retrograde directions. Variability of replicates did not allow straightforward assignment of proteins to functional transport categories; hence, we performed principal component analysis and factor analysis with subsequent clustering to determine the most prominent injury-related transported proteins. This strategy circumvented experimental variability and allowed the extraction of biologically meaningful information from the quantitative neuroproteomics experiments. 299 proteins were highlighted by principal component analysis and factor analysis, 145 of which correlate with retrograde and 154 of which correlate with anterograde transport after injury. The analyses reveal extensive changes in both anterograde and retrograde transport proteomes in injured peripheral axons and emphasize the importance of RNA binding and translational machineries in the axonal response to injury.
Collapse
Affiliation(s)
- Izhak Michaelevski
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | | | | | |
Collapse
|
87
|
Boulenguez P, Vinay L. Strategies to restore motor functions after spinal cord injury. Curr Opin Neurobiol 2009; 19:587-600. [PMID: 19896827 DOI: 10.1016/j.conb.2009.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/23/2009] [Accepted: 10/12/2009] [Indexed: 12/20/2022]
Abstract
This review presents recent advances in the development of strategies to restore posture and locomotion after spinal cord injury (SCI). A set of strategies focusing on the lesion site includes prevention of secondary damages, promotion of axonal sprouting/regeneration, and replacement of lost cells. Other strategies focus on spinal central pattern generators (CPGs). Training promotes functional recovery by enhancing the plasticity of CPGs and these sublesional networks can be reactivated by means of pharmacological or electrical stimulation. It is now clear that substantial functional recovery will require a combination of strategies adapted to each phase following SCI. Finally, improvements in the understanding of the mechanisms underlying spasticity may lead to new treatments of this disabling complication affecting patients with SCI.
Collapse
Affiliation(s)
- Pascale Boulenguez
- Laboratoire Plasticité et Physio-Pathologie de Motricité (UMR6196), Centre National de Recherche Scientifique (CNRS) & Aix-Marseille Université, CNRS, 31 chemin Joseph Aiguier, F-13402 Marseille cx 20, France
| | | |
Collapse
|
88
|
Foscarin S, Gianola S, Carulli D, Fazzari P, Mi S, Tamagnone L, Rossi F. Overexpression of GAP-43 modifies the distribution of the receptors for myelin-associated growth-inhibitory proteins in injured Purkinje axons. Eur J Neurosci 2009; 30:1837-48. [PMID: 19895561 DOI: 10.1111/j.1460-9568.2009.06985.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract Neurons with enhanced intrinsic growth capabilities can elongate their axons into non-permissive territories, but the mechanisms that enable the outgrowing processes to overcome environmental inhibition are largely unknown. To address this issue, we examined adult mouse Purkinje cells that overexpress the axonal growth-associated protein GAP-43. After injury, these neurons exhibit sprouting along the intracortical neuritic course and at the severed stump in the white matter. To determine whether GAP-43-overexpressing Purkinje cells are responsive to extrinsic inhibitory cues, we investigated the content and subcellular localization of major receptors for myelin-associated inhibitory proteins, PlexinB1 and the Nogo receptor (NgR) with the related co-receptors LINGO-1 and p75. Expression of these molecules, estimated by measuring perikaryal immunostaining intensity and Western blot, was not different in wild-type or transgenic mice, and it was not overtly modified after axotomy. Following injury, however, the content of PlexinB1 was significantly reduced in GAP-43-overexpressing neurites. Furthermore, in the same axons the distribution of both PlexinB1 and NgR was altered, being inverse to that of GAP-43. Labelling for the two receptors was conspicuously reduced on the axonal surface and it was almost undetectable in the outgrowing sprouts, which showed strong GAP-43 immunoreactivity. These observations indicate that although GAP-43 overexpression does not modify the expression of receptors for myelin-associated inhibitory factors, it interferes with their subcellular localization and exposure on the neuritic membrane. Therefore, GAP-43 promotes axon growth by multiple synergistic mechanisms that potentiate the intrinsic motility of the elongating processes, while reducing their sensitivity to environmental inhibition.
Collapse
Affiliation(s)
- Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
89
|
Li F, Li L, Song XY, Zhong JH, Luo XG, Xian CJ, Zhou XF. Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats - possible roles of brain-derived
neurotrophic factor, TrkB and p75 neurotrophin receptor. Eur J Neurosci 2009; 30:1280-96. [DOI: 10.1111/j.1460-9568.2009.06920.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
Kamber D, Erez H, Spira ME. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp Neurol 2009; 219:112-25. [DOI: 10.1016/j.expneurol.2009.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 12/19/2022]
|
91
|
de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One 2009; 4:e6848. [PMID: 19718257 PMCID: PMC2729392 DOI: 10.1371/journal.pone.0006848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. Methodology/Principal Findings When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. Conclusions/Significance Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinando Rossi
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- Rita Levi-Montalcini Center for Brain Repair, National Institute of Neuroscience, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- * E-mail:
| |
Collapse
|
92
|
Kam N, Pilpel Y, Fainzilber M. Can molecular motors drive distance measurements in injured neurons? PLoS Comput Biol 2009; 5:e1000477. [PMID: 19696880 PMCID: PMC2718615 DOI: 10.1371/journal.pcbi.1000477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/20/2009] [Indexed: 11/18/2022] Open
Abstract
Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury–a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes. Neurons have extremely long axonal processes that can reach lengths of up to 1 meter in human peripheral nerves. The neuronal cell body response to nerve injury is dependent on signals carried by molecular motors from the lesion site in the axon. The distance between the injury site and the cell body influences the type of response, suggesting that neurons must be able to estimate the distance of an axonal injury site, although how they do this is unknown. We have used a computational approach to model intracellular distance measurement after nerve injury. The models show the feasibility of a mechanism based on a rapid, near instantaneous, signal carried by action potentials in the nerve, followed by multiple slower signals carried on molecular motors. Such a mechanism can enable a neuron to discriminate between distances as close as 10% of total axon length. The model provides insights on retrograde injury signaling in neurons, including the biological relevance of the mechanism over different scales of nerves and organisms. Moreover, if similar mechanisms function in synapse to nucleus signaling in uninjured neurons, this could enable estimation of relative process lengths, thus guiding metabolic output from cell bodies to axons.
Collapse
Affiliation(s)
- Naaman Kam
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
93
|
Ascoli GA, Brown KM, Calixto E, Card JP, Galván EJ, Perez-Rosello T, Barrionuevo G. Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. J Comp Neurol 2009; 515:677-95. [PMID: 19496174 PMCID: PMC2827149 DOI: 10.1002/cne.22082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The morphological and electrophysiological diversity of inhibitory cells in hippocampal area CA3 may underlie specific computational roles and is not yet fully elucidated. In particular, interneurons with somata in strata radiatum (R) and lacunosum-moleculare (L-M) receive converging stimulation from the dentate gyrus and entorhinal cortex as well as within CA3. Although these cells express different forms of synaptic plasticity, their axonal trees and connectivity are still largely unknown. We investigated the branching and spatial patterns, plus the membrane and synaptic properties, of rat CA3b R and L-M interneurons digitally reconstructed after intracellular labeling. We found considerable variability within but no difference between the two layers, and no correlation between morphological and biophysical properties. Nevertheless, two cell types were identified based on the number of dendritic bifurcations, with significantly different anatomical and electrophysiological features. Axons generally branched an order of magnitude more than dendrites. However, interneurons on both sides of the R/L-M boundary revealed surprisingly modular axodendritic arborizations with consistently uniform local branch geometry. Both axons and dendrites followed a lamellar organization, and axons displayed a spatial preference toward the fissure. Moreover, only a small fraction of the axonal arbor extended to the outer portion of the invaded volume, and tended to return toward the proximal region. In contrast, dendritic trees demonstrated more limited but isotropic volume occupancy. These results suggest a role of predominantly local feedforward and lateral inhibitory control for both R and L-M interneurons. Such a role may be essential to balance the extensive recurrent excitation of area CA3 underlying hippocampal autoassociative memory function.
Collapse
Affiliation(s)
- Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int 2009; 16:175-89. [DOI: 10.1002/oti.275] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
95
|
Dallo JGM, Reichert BV, Valladão Júnior JBR, Silva C, Luca BAD, Levy BDFA, Chadi G. Differential astroglial responses in the spinal cord of rats submitted to a sciatic nerve double crush treated with local injection of cultured Schwann cell suspension or lesioned spinal cord extract: implications on cell therapy for nerve repair. Acta Cir Bras 2009; 22:485-94. [PMID: 18235939 DOI: 10.1590/s0102-86502007000600013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/18/2007] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Reactive astrocytes are implicated in several mechanisms after central or peripheral nervous system lesion, including neuroprotection, neuronal sprouting, neurotransmission and neuropathic pain. Schwann cells (SC), a peripheral glia, also react after nerve lesion favoring wound/repair, fiber outgrowth and neuronal regeneration. We investigated herein whether cell therapy for repair of lesioned sciatic nerve may change the pattern of astroglial activation in the spinal cord ventral or dorsal horn of the rat. METHODS Injections of a cultured SC suspension or a lesioned spinal cord homogenized extract were made in a reservoir promoted by a contiguous double crush of the rat sciatic nerve. Local injection of phosphate buffered saline (PBS) served as control. One week later, rats were euthanized and spinal cord astrocytes were labeled by immunohistochemistry and quantified by means of quantitative image analysis. RESULTS In the ipsilateral ventral horn, slight astroglial activations were seen after PBS or SC injections, however, a substantial activation was achieved after cord extract injection in the sciatic nerve reservoir. Moreover, SC suspension and cord extract injections were able to promote astroglial reaction in the spinal cord dorsal horn bilaterally. CONCLUSION Spinal cord astrocytes react according to repair processes of axotomized nerve, which may influence the functional outcome. The event should be considered during the neurosurgery strategies.
Collapse
|
96
|
Thomas M, Tyers P, Lazic SE, Barker RA, Beazley L, Ziman M. Graft outcomes influenced by co-expression of Pax7 in graft and host tissue. J Anat 2009; 214:396-405. [PMID: 19245506 PMCID: PMC2673790 DOI: 10.1111/j.1469-7580.2009.01049.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2008] [Indexed: 11/26/2022] Open
Abstract
Cell replacement therapies offer promise in the treatment of neurotrauma and neurodegenerative disorders and have concentrated on the use of primary fetal brain tissue. However, there is a growing promise of using neural stem cells, in which case other factors may be important in their successful engraftment. We therefore investigated whether the co-expression of the major developmental transcription factor (Pax7 in this study) of donor tissue to graft site influences transplant survival and differentiation in the rat midbrain. Neural progenitor cells were prepared from either the Pax7-expressing dorsal (DM) or non-Pax7-expressing ventral mesencephalon (VM) of embryonic EGFP(+/+) rats. Cells were dissociated and grafted into the adult rat superior colliculus (SC) lesioned with quinolinic acid 3 days previously, a time shown to be associated with the up-regulation of Pax7. Grafts were then examined 4 weeks later. Our results suggest the origin of the graft tissue did not alter graft survival in the SC; however, dorsal grafts appear to have a higher incidence of neuronal survival, whereas ventral grafts have a higher incidence of astrocytic survivors.
Collapse
Affiliation(s)
- Meghan Thomas
- School of Biomedical Science, Edith Cowan University, Joondalup DriveWestern Australia, Australia
- School of Surgery and PathologyPerth, Australia
- School of Animal Biology, University of Western AustraliaPerth, Australia
| | - Pam Tyers
- Centre for Brain Repair, Cambridge UniversityCambridge, UK
| | | | - Roger A Barker
- School of Biomedical Science, Edith Cowan University, Joondalup DriveWestern Australia, Australia
- Centre for Brain Repair, Cambridge UniversityCambridge, UK
| | - Lyn Beazley
- School of Animal Biology, University of Western AustraliaPerth, Australia
- Western Australian Institute for Medical Research, University of Western AustraliaPerth, Australia
| | - Mel Ziman
- School of Biomedical Science, Edith Cowan University, Joondalup DriveWestern Australia, Australia
- School of Surgery and PathologyPerth, Australia
| |
Collapse
|
97
|
Giraldi-Guimardes A, Rezende-Lima M, Bruno FP, Mendez-Otero R. Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Res 2009; 1266:108-20. [PMID: 19368806 DOI: 10.1016/j.brainres.2009.01.062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 12/17/2022]
Abstract
We evaluated the beneficial effect of treatment with bone marrow mononuclear cells(BMMC) in a rat model of focal ischemia induced by thermocoagulation of the blood vessels in the left sensorimotor cortex. BMMC were obtained from donor rats and injected into the femoral vein one day after ischemia. BMMC-treated animals received approx. 3×10⁷ cells and control animals received PBS. Animals were evaluated for functional sensorimotor recovery weekly with behavioral tests and for changes in neurodegeneration and structural plasticity with histochemical and immunostaining techniques, respectively. The BMMC-treated group showed a significant recovery of function in the cylinder test 14, 21 and 28 days after ischemia. In the beam test, both groups showed improvement, with a tendency for faster recovery in the BMMC-treated group. In the adhesive test, both groups did not show significant recovery of function. FJC+ cell counting revealed significant decrease in the neurodegeneration in the periphery of the lesion in the BMMC-treated group. The analyses by immunoblotting revealed no significant difference in the expression of GAP-43 and synaptophysin between the groups. Thus, our results showed beneficial effects of the treatment with BMMC, which promoted significant functional recovery and decreased neurodegeneration. These results suggest that the therapy with BMMC is effective and might be a protocol of treatment for stroke in humans, alternative to the therapy proposed with the bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Arthur Giraldi-Guimardes
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
| | | | | | | |
Collapse
|
98
|
Abstract
Regeneration of injured neurons can restore function, but most neurons regenerate poorly or not at all. The failure to regenerate in some cases is due to a lack of activation of cell-intrinsic regeneration pathways. These pathways might be targeted for the development of therapies that can restore neuron function after injury or disease. Here, we show that the DLK-1 mitogen-activated protein (MAP) kinase pathway is essential for regeneration in Caenorhabditis elegans motor neurons. Loss of this pathway eliminates regeneration, whereas activating it improves regeneration. Further, these proteins also regulate the later step of growth cone migration. We conclude that after axon injury, activation of this MAP kinase cascade is required to switch the mature neuron from an aplastic state to a state capable of growth.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | |
Collapse
|
99
|
Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics. Brain Res 2009; 1251:65-79. [DOI: 10.1016/j.brainres.2008.10.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 11/20/2022]
|
100
|
Abstract
The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter includes, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target, and, on the other hand, activated proteins originating from the injury site. This chapter reviews the progress on understanding the different mechanistic aspects of the axonal response to injury, and how the information is conveyed from the injury site to the cell body to initiate regeneration.
Collapse
Affiliation(s)
- Keren Ben-Yaakov
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|