51
|
Xia X, Guo W, Ma X, Liang N, Duan X, Zhang P, Zhang Y, Chang Z, Zhang X. Reproductive toxicity and cross-generational effect of polyethylene microplastics in Paramisgurnus dabryanus. CHEMOSPHERE 2023; 313:137440. [PMID: 36460160 DOI: 10.1016/j.chemosphere.2022.137440] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pollution of microplastics (MPs) has become a global environmental issue due to the difficulty in its degradation and may cause unexpected ecological effects. Nevertheless, little is known about the potential effects of MPs on reproduction toxicity in aquatic species. In this study, adult loach (Paramisgurnus dabryanus, F0 generation) were exposed to two concentrations (1 and 10 mg/L) of polyethylene MPs (PE-MPs) for 15 or 30 days, and the toxic effects in parental loach and the offspring (F1 generation) were examined. Our results showed that PE-MPs exposure could change the indicators content of antioxidant system in the brain, liver, and gonad. PE-MPs can accumulate in the gonads, disrupt the transcription of HPG-axis related genes, alter sex hormone levels, increase cell apoptosis and gonadal pathological lesions, lead to the damage of biological characteristics of semen, and affect the reproduction in F0 generation. PE-MPs remaining in the parental gonads can be transferred to the F1 generation embryos and accumulated on the embryonic chorionic membrane, increasing mortality and malformation rates, accelerating hatching time, and decreasing hatching rate and body length. These results suggest that PE-MPs leads to a potential adverse influence on reproduction and serious impacts on population sustainability. This work provides a new perspective into the effects of MPs on reproductive damage and cross-generational effects in teleost fish, which have implications in fields of freshwater ecology and environmental toxicology.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ning Liang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiangyu Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Peihan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Ying Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaowen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
52
|
Cao J, Xu R, Wang F, Geng Y, Xu T, Zhu M, Lv H, Xu S, Guo MY. Polyethylene microplastics trigger cell apoptosis and inflammation via inducing oxidative stress and activation of the NLRP3 inflammasome in carp gills. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108470. [PMID: 36470402 DOI: 10.1016/j.fsi.2022.108470] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics cause varying degrees of damage to aquatic organisms. Exposure to microplastics contaminated water, the gills are among the first tissues, after the skin, to be affected by microplastics. As an essential immune organ, prolonged stimulation by microplastics disrupts immune function not only in the gills but throughout the body, yet the underlying mechanisms remain elusive. A model of gill injury from exposure to polyethylene (PE) microplastics was developed in this study. H&E staining revealed that polyethylene microplastics caused gill inflammation, vascular remodeling, and mucous cell proliferation. An increase in collagen indicates severe tissue damage. Additional analysis showed that polyethylene microplastics profoundly exacerbated oxidative stress in the gills. TUNEL assay demonstrated cell apoptosis induced by polyethylene microplastic. The mRNA levels were subsequently quantified using RT-PCR. The results showed that polyethylene microplastics increased the expression of the nuclear factor-κB (NF-κB) pathway (NF-κB p65, IKKα, IKKβ) and apoptosis biomarkers (p53, caspase-3, caspase-9, and Bax). Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasomes, which is an influential component of innate immunity, were overactive. What's more, the pro-inflammatory factors (TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-1β) that induce immune disorder also increased significantly, while the anti-inflammatory factors (IL-4, IL-10) decreased significantly. These results suggested that oxidative stress acted as an activation signal of apoptosis triggered by the NF-κB pathway and activating the NLRP3 inflammasome to promote inflammatory immune responses. The present study provided a different target for the prevention of toxin-induced gill injury under polyethylene microplastics.
Collapse
Affiliation(s)
- Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fuhan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuan Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tianchao Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mengran Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongli Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
53
|
Zhong Y, Ding Q, Huang Z, Xiao X, Han X, Su Y, Wang D, You J. Influence of ultraviolet-aging and adsorbed pollutants on toxicological effects of polyvinyl chloride microplastics to zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120617. [PMID: 36356886 DOI: 10.1016/j.envpol.2022.120617] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) undergo various aging processes and interact with diverse pollutants in the environment. In the present study, we investigated the influence of ultraviolet (UV) aging on the adsorption of organic pollutants by polyvinyl chloride microplastics (mPVC) and explored toxicity variations among pristine, aged, and pollutant-loaded mPVCs to zebrafish. Irradiation of UV for 30 d significantly changed the physiochemical properties of mPVC, leading to more oxygen-containing groups and free radicals (1O2, ·O2-, and ·OH) on mPVC surfaces. The aging process reduced the adsorption of mPVC against a hydrophobic compound chlorpyrifos (CPF) but enhanced the adsorption against a moderately hydrophilic compound erythromycin (ERY). Ingestion of CPF- and ERY-loaded mPVCs resulted in bioaccumulation of the two compounds in zebrafish, suggesting a carrier effect of mPVCs. In toxicity tests, the aged mPVC caused severer gut damages, stronger oxidative stresses, and greater interference with the gut microbiota in zebrafish than the pristine mPVC. The CPF and ERY-loaded mPVCs produced lower oxidative stresses in zebrafish than mPVCs alone, due to fewer radicals on mPVC surfaces after the adsorption of organic contaminants. Notably, the CPF and ERY-loaded mPVCs presented greater effects on fish swimming behaviors and gut microbial compositions, which was associated with the released CPF and ERY from mPVCs within the zebrafish. Overall, the present study demonstrated significant influences of UV-aging and the adsorbed pollutants on the toxicological effects of MPs and highlighted the necessity to perform toxicity studies of MPs using more environmentally relevant MPs.
Collapse
Affiliation(s)
- Yuheng Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qi Ding
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhiyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiangxiang Xiao
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaofeng Han
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yanrong Su
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Dali Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, Center for Environmental Microplastics Studies, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
54
|
Blanco-Orta MF, González-Penagos CE, Cañizares-Martínez MA, Ardisson PL, Montero-Muñoz JL, Pérez-Vega JA, Zamora-Briseño JA, Fernández-Herrera MA, Jiménez-Contreras LF, Aldana-Aranda D, Rodríguez-Canul R. Morphological Alterations in the Early Developmental Stages of Zebrafish (Danio rerio; Hamilton 1822) Induced by Exposure to Polystyrene Microparticles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:22. [PMID: 36547728 DOI: 10.1007/s00128-022-03676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants of widespread concern in aquatic environments. The aim of this study was to evaluate the negative impact of pristine MPs of polystyrene of 100 μm on embryo and larvae of Danio rerio exposed to three environmentally relevant concentrations of polystyrene (3.84 × 10- 6, 3.84 × 10- 7, and 3.84 × 10- 8 g/mL). The exposure effect was evaluated through the general morphology score, biometrics, and integrated biomarker response version 2 index. No mortality was observed but the anatomical structure of fishes was affected showing pigmentation deficiency and alterations in the head region as the main affected endpoints. The general morphology score and the integrated biomarker response values were highly sensitive to address the effect of the three concentrations of MPs used here. Our results provide solid evidence of the negative impact of 100 μm pristine polystyrene MPs exposure on early stages of zebrafish.
Collapse
Affiliation(s)
- María Fernanda Blanco-Orta
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Mayra Alejandra Cañizares-Martínez
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Pedro-Luis Ardisson
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Jorge Luis Montero-Muñoz
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Jesús Alejandro Zamora-Briseño
- Laboratorio de Entomología Molecular. Red de Estudios Moleculares Avanzados. Campus III, Clúster Científico Biomimic ®. Instituto de Ecología, Xalapa, Veracruz, México
| | - María A Fernández-Herrera
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Luis F Jiménez-Contreras
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Dalila Aldana-Aranda
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar. Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) - Unidad Mérida, Carretera Antigua a Progreso km. 6, CP 97310, Mérida, Yucatán, México.
- Departamento de Recursos del Mar - Laboratorio de Inmunología y Biología Molecular Antigua Carretera a Progreso, CINVESTAV-IPN Unidad Mérida, Km 6. CP 97310, Mérida, Yucatán, México.
| |
Collapse
|
55
|
Ragavendran C, Balasubramani G, Tijo C, Manigandan V, Kweka EJ, Karthika P, Sivasankar P, Thomas A, Natarajan D, Nakouti I, Malafaia G. Cladophialophora bantiana metabolites are efficient in the larvicidal and ovicidal control of Aedes aegypti, and Culex quinquefasciatus and have low toxicity in zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158502. [PMID: 36058332 DOI: 10.1016/j.scitotenv.2022.158502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 μg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 μg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 μg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 μg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 μg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 μg/mL.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India; Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Govindasamy Balasubramani
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Cherian Tijo
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair Campus, Brookshabad, Port Blair, Andamans 744112, India
| | | | - Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania; Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Pandi Karthika
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Ismini Nakouti
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
56
|
Luo H, Du Q, Zhong Z, Xu Y, Peng J. Protein-coated microplastics corona complex: An underestimated risk of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157948. [PMID: 35963400 DOI: 10.1016/j.scitotenv.2022.157948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Traditionally, toxicity of microplastics is ascribed to the chemicals adsorbed on them. However, microplastics can also interact with biomolecules, such as secretory proteins from aquatic organisms, and form protein-coated microplastics corona complex with unknown toxic effects. Here, we investigated the toxic effects of polystyrene microplastics (PS) and bovine serum albumin (BSA) coated PS corona complex (PS + BSA) on adult zebrafish (Danio rerio) intestines. The food intake ratio, accumulation and distribution of microplastics, histopathological changes, and molecular effects related to the antioxidant system in the intestine were studied. For the first time, we observed that PS + BSA aggregated on the inner surface of the zebrafish intestine, whereas PS dispersed. The aggregation of PS + BSA resulted in increased microplastics accumulation and longer residence time in the zebrafish intestine, which inhibited food intake and generated reactive oxygen species (ROS) in the intestine. Furthermore, the functions of the Keap1-Nrf2-ARE antioxidant signaling pathway and the activation of antioxidant enzymes were significantly affected by PS + BSA after a 21-day exposure. Ultimately, a higher accumulation of ROS and stronger inhibition of antioxidants led to more severe intestinal injury. These results suggest that the increased toxicity of protein-coated microplastics corona complex may be affected by oxidative damage and can result in the inhibition of digestion due to their aggregation and longer residence time in the intestine. Therefore, the ecological risk of microplastics may be underestimated owing to the interactive mechanisms of microplastics and protein coronas.
Collapse
Affiliation(s)
- Hongwei Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zuanjia Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
57
|
DiBona E, Haley C, Geist S, Seemann F. Developmental Polyethylene Microplastic Fiber Exposure Entails Subtle Reproductive Impacts in Juvenile Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2848-2858. [PMID: 35942914 DOI: 10.1002/etc.5456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution has been recognized as a potential threat to environmental and human health. Recent studies have shown that microplastics reside in all ecosystems and contaminate human food/water sources. Microplastic exposure has been shown to result in adverse effects related to endocrine disruption; however, data are limited regarding how exposure to current environmental levels of microplastics during development may impact reproductive health. To determine the impact of environmentally relevant, chronic, low-dose microplastic fibers on fish reproductive health, juvenile Japanese medaka were exposed to five concentrations of polyethylene fibers for 21 days, and reproductive maturity was examined to assess the later life consequences. Fecundity, fertility, and hatching rate were evaluated to determine the organismal level impacts. Gonadal tissue integrity and stage were assessed to provide insights into potential tissue level changes. Expression of key reproductive genes in male and female gonads provided a molecular level assessment. A significant delay in hatching was observed, indicating cross-generational and organismal level impacts. A significant decrease in 11-beta-dehydrogenase isozyme 2 (HSD11 β 2) gene expression in male medaka indicated adverse effects at the molecular level. A decrease in male expression of HSD11 β 2 could have an impact on sperm quality because this enzyme is crucial for conversion of testosterone into the androgen 11-ketotestosterone. Our study is one of the first to demonstrate subtle impacts of virgin microplastic exposure during development on later life reproductive health. The results suggest a possible risk of polyethylene fiber exposure for wild fish during reproductive development, and populations should be monitored closely, specifically in spawning and nursery regions. Environ Toxicol Chem 2022;41:2848-2858. © 2022 SETAC.
Collapse
Affiliation(s)
- Elizabeth DiBona
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Carol Haley
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Simon Geist
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Life Sciences, Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
58
|
Nie H, Liu H, Shi Y, Lai W, Liu X, Xi Z, Lin B. Effects of Different Concentrations of Oil Mist Particulate Matter on Pulmonary Fibrosis In Vivo and In Vitro. TOXICS 2022; 10:647. [PMID: 36355939 PMCID: PMC9695344 DOI: 10.3390/toxics10110647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Oil-mist particulate matter (OMPM) refers to oily particles with a small aerodynamic equivalent diameter in ambient air. Since the pathogenesis of pulmonary fibrosis (PF) has not been fully elucidated, this study aims to explore the potential molecular mechanisms of the adverse effects of exposure to OMPM at different concentrations in vivo and in vitro on PF. In this study, rats and cell lines were treated with different concentrations of OMPM in vivo and in vitro. Sirius Red staining analysis shows that OMPM exposure could cause pulmonary lesions and fibrosis symptoms. The expression of TGF-β1, α-SMA, and collagen I was increased in the lung tissue of rats. The activities of MMP2 and TIMP1 were unbalanced, and increased N-Cadherin and decreased E-Cadherin upon OMPM exposure in a dose-dependent manner. In addition, OMPM exposure could activate the TGF-β1/Smad3 and TGF-β1/MAPK p38 signaling pathways, and the differentiation of human lung fibroblast HFL-1 cells. Therefore, OMPM exposure could induce PF by targeting the lung epithelium and fibroblasts, and activating the TGF-β1/Smad3 and TGF-β1/MAPK p38 signaling pathways.
Collapse
|
59
|
Jeong S, Jang S, Kim SS, Bae MA, Shin J, Lee KB, Kim KT. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129616. [PMID: 36104895 DOI: 10.1016/j.jhazmat.2022.129616] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The effects of polystyrene microplastic (PS-MP) size on neurotoxicity remain to be evaluated at various microsizes, and the seizurogenic effects of PS-MPs are unknown. This study aimed to evaluate the swimming behavior of zebrafish larvae under light-dark transitions after exposure to four PS-MP sizes (i.e., 1, 6, 10, and 25 μm) at concentrations of 500, 5,000, and 50,000 particles/mL. Changes in electroencephalographic signals, seizure-related gene expression, and neurochemical concentrations were measured. Locomotor activity was inhibited only by 10-μm PS-MPs. According to electroencephalographic signals, the number and total duration of seizure-like events significantly increased by 10-μm PS-MPs, which was confirmed by the altered expression of seizure-related genes c-fos and pvalb5. Additionally, an increase in the levels of neurochemicals choline, betaine, dopamine, 3-methoxytyramine, and gamma-aminobutyric acid indicated that the observed hypoactivity and seizure-like behavior were associated with the dysregulation of the cholinergic, dopaminergic, and GABAergic systems. Overall, these findings demonstrate that exposure to PS-MPs can potentially cause seizurogenic effects in developing zebrafish embryos, and we highlight that PS-MPs 10 µm in size dominantly affect neurotoxicity.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Soogyeong Jang
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, the Republic of Korea
| | | | - Ki-Baek Lee
- Zefit Inc., Daegu 42988, the Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, the Republic of Korea.
| |
Collapse
|
60
|
Feng M, Luo J, Wan Y, Zhang J, Lu C, Wang M, Dai L, Cao X, Yang X, Wang Y. Polystyrene Nanoplastic Exposure Induces Developmental Toxicity by Activating the Oxidative Stress Response and Base Excision Repair Pathway in Zebrafish ( Danio rerio). ACS OMEGA 2022; 7:32153-32163. [PMID: 36119974 PMCID: PMC9476205 DOI: 10.1021/acsomega.2c03378] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.
Collapse
Affiliation(s)
- Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Juanjuan Luo
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Yiping Wan
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Chunjiao Lu
- Guangdong
Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Maya Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Lu Dai
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou 515041,China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| |
Collapse
|
61
|
Tarasco M, Gavaia PJ, Bensimon-Brito A, Cordelières FP, Santos T, Martins G, de Castro DT, Silva N, Cabrita E, Bebianno MJ, Stainier DYR, Cancela ML, Laizé V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. CHEMOSPHERE 2022; 303:135198. [PMID: 35660050 DOI: 10.1016/j.chemosphere.2022.135198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 μm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; INSERM, ATIP-Avenir, Aix Marseille University, Marseille Medical Genetics, Marseille, France
| | - Fabrice P Cordelières
- Bordeaux Imaging Center (BIC), UMS 3420 CNRS - Université de Bordeaux - US4 INSERM, Pôle d'imagerie Photonique, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Tamára Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Daniela T de Castro
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Nádia Silva
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Maria J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; S2AQUA, Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal.
| |
Collapse
|
62
|
Yaripour S, Huuskonen H, Kipriianov PV, Kekäläinen J, Herz L, Akkanen J, Vainikka A, Janhunen M, Kortet R. Exposure of gametes to aged nano-sized plastic particles during fertilization can influence early larval development in the European whitefish (Coregonus lavaretus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106264. [PMID: 35970114 DOI: 10.1016/j.aquatox.2022.106264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution has been a growing environmental concern for decades, increasingly affecting both marine and freshwater ecosystems worldwide. Nano-sized plastic particles (NPs) potentially have various toxicological impacts on aquatic organisms and the ecosystem; however, less is known about their possible adverse effects on the reproductive biology and offspring traits of fishes. The present study investigated whether an acute exposure of gametes to aged NPs during fertilization affects offspring early mortality, hatching time, body size at hatching or swimming performance of larvae in a common freshwater fish, the European whitefish (Coregonus lavaretus). Using a replicated full-factorial breeding design, we fertilized the eggs of seven females with the milt of seven males both under exposure medium containing aged 270 nm polystyrene NPs and under control medium. In comparison with the control group, exposure of gametes to NPs increased larval body length slightly but significantly, whereas the embryo mortality, hatching time, and larval swimming performance were not affected. Maternal identity affected significantly all the studied offspring traits while paternal identity only affected the offspring length. Our results suggest that the studied acute exposure of gametes to aged NPs might have interfered normal embryonic development by affecting larval size, but this did not seemingly compromise offspring performance.
Collapse
Affiliation(s)
- Sareh Yaripour
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland.
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Pavel Vladimirovich Kipriianov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Lena Herz
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Anssi Vainikka
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, Joensuu FI-80100, Finland
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland
| |
Collapse
|
63
|
Dubey I, Khan S, Kushwaha S. Developmental and reproductive toxic effects of exposure to microplastics: A review of associated signaling pathways. FRONTIERS IN TOXICOLOGY 2022; 4:901798. [PMID: 36119356 PMCID: PMC9471315 DOI: 10.3389/ftox.2022.901798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 01/12/2023] Open
Abstract
Microplastics (MPs), small pieces of plastic (∼5 mm), are released into the environment not only as a result of the decomposition of large-sized plastics but also from day-to-day use of plastic products. Chronic exposure to MPs has been attributed to harmful effects on aquatic organisms and rodents. Effects include gastrointestinal toxicity, hepatotoxicity, neurotoxicity, and reproductive and developmental toxicities. Exposure to MPs may also potentially affect human health. Herein, we reviewed the impact of MPs on male and female reproductive systems and the associated mechanisms involved in the reproductive and developmental toxicities of MPs. We performed a literature search in Google Scholar and PubMed using the following keywords: MPs and reproductive toxicity; MPs and developmental studies; MPs and infertility; MPs and aquatics; and MPs and rodents. Evidence of MPs accumulation has been reported in many organs of humans and experimental models. The harmful effects of MPs have been manifested in male and female reproductive systems of mammalian and aquatic animals, including developmental effects on gametes, embryos, and their offspring. This review describes various signaling pathways involved in MPs-associated male and female reproductive and developmental toxicities.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Raebareli, India
| | - Sabbir Khan
- Department of Neuro-Oncology The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Raebareli, India
| |
Collapse
|
64
|
Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. MARINE POLLUTION BULLETIN 2022; 181:113832. [PMID: 35716489 DOI: 10.1016/j.marpolbul.2022.113832] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand.
| | - Orasai Faikhaw
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Pornpun Sakunkoo
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Muang District, Khon Kaen 40002, Thailand.
| | - Chumlong Arunlertaree
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science and Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| |
Collapse
|
65
|
Bobori DC, Dimitriadi A, Feidantsis K, Samiotaki A, Fafouti D, Sampsonidis I, Kalogiannis S, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Koumoundouros G, Bikiaris DN, Kaloyianni M. Differentiation in the expression of toxic effects of polyethylene-microplastics on two freshwater fish species: Size matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154603. [PMID: 35337874 DOI: 10.1016/j.scitotenv.2022.154603] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 05/12/2023]
Abstract
The built up of microplastic (MPs) remains is shaping a new aquatic habitat and imposes the necessity for research of the effects that these relatively new pollutants exert on organisms, environment, and human health. The purpose of the present study was to verify if there is a particle-size dependence of fish response to MPs. Thus, we exposed two freshwater fish species, the zebrafish (Danio rerio) and perch (Perca fluviatilis) for 21 days to polyethylene microplastics (PE-MPs) sized 10-45 μm and 106-125 μm. Thereafter, in the liver and gills tissues, biochemical and molecular parameters and the metabolic profile were examined. Ex-vivo characterization by ATR-FTIR spectroscopy exhibited increased concentration of 10-45 μm PE-MPs in the liver of the two fish species while 106-125 μm PE-MPs mostly concentrated in fish gills. The penetration of PE-MPs to fish and the induced oxidative stress triggered changes in lipid peroxidation, DNA damage and ubiquitination and furthermore stimulated signal transduction pathways leading to autophagy and apoptosis. The smaller PE-MPs were more potent in inducing alterations to all the latter parameters measured than the larger ones. Tissue response in both fish seems to depend on the parameter measured and does not seem to follow a specific pattern. Our results showed that there is no clear sensitivity of one fish species versus the other, against both sizes of PE-MPs they were exposed. In perch the metabolic changes in gills were distinct to the ones observed in liver, following a size dependent pattern, indicating that stress conditions are generated through different mechanisms. All the parameters employed can be suggested further as biomarkers in biomonitoring studies against PE-MPs.
Collapse
Affiliation(s)
- Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | | | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Athina Samiotaki
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Danai Fafouti
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, GR-57400 Thessaloniki, Greece
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, GR-570 01 Thessaloniki, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
66
|
Kantha P, Liu ST, Horng JL, Lin LY. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106203. [PMID: 35617773 DOI: 10.1016/j.aquatox.2022.106203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The presence of nanoplastics in aquatic environments is a global problem. Accumulating evidence shows that nanoplastics can accumulate in fish and influence internal organs. However, it is still unknown if nanoplastics can impair skin cells (keratinocytes and ionocytes), which play critical roles in maintaining body fluid homeostasis. In the present study, zebrafish embryos were exposed to polystyrene nanoplastics (PS-NPs; 25 nm in size, at 0, 10, 25, and 50 mg/L) for 96 h to test the effects of PS-NPs on skin functions. After exposure to 50 mg/L, the survival rate, ion (Na+, K+, and Ca2+) contents, and acid/ammonia excretion by skin cells of embryos significantly declined. The apical structure of skin keratinocytes was damaged at 10, 25, and 50 mg/L. The number and mitochondrial activity of ionocytes were reduced at 25 and 50 mg/L. Reactive oxygen species (ROS) levels indicated by CellROX staining showed that both ionocytes and keratinocytes were under oxidative stress. PS-NPs reduced the mRNA expression of antioxidant genes (sod1, sod2, cat, and gpx1a), and promoted apoptosis-related genes (casp3a). Taken together, this study suggests that PS-NPs might suppress antioxidative reactions and induce oxidative stress, leading to mitochondrial damage and cell death of ionocytes, eventually impairing skin functions including ion uptake, pH regulation, and ammonia excretion.
Collapse
Affiliation(s)
- Phunsin Kantha
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
67
|
Wang Q, Li Y, Chen Y, Tian L, Gao D, Liao H, Kong C, Chen X, Junaid M, Wang J. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 126:21-33. [PMID: 35597397 DOI: 10.1016/j.fsi.2022.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Nanoplastics (NPs) are good carriers of persistent organic pollutants (POPs) such as polybrominated diphenyl ethers (PBDEs), and can alter their bioavailability and toxic impacts to aquatic organisms. This study highlights the single and combined toxic effects of polystyrene nanoplastics (PS-NPs) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, one of the dominant congeners of PBDEs) on zebrafish embryos after an exposure duration of up to 120 hpf. Results showed that PS-NPs and BDE-47 co-exposure exacerbated the morphological deformities in terms of pericardial edema, yolk sac edema and curved tail in zebrafish larvae. Compared to BDE-47 single exposure, the combined exposure caused lower survival rates, shorter body lengths, and accelerated spontaneous movements. Further, PS-NPs were quickly aggregated on the surface of the embryonic chorions covered almost the entire membrane at 12 and 48 hpf, and concentration dependent accumulation was also found in the brain, mouth, trunk, gills, heart, liver and gastrointestinal tract at the larval stages. During the recovery period (7 days), PS-NPs were released from all the organs, with the highest elimination from the gastrointestinal tract. Histopathological examination revealed that co-exposure caused greater damage to retinal structures, muscle fibers and cartilage tissues. Responses of hypothalamic-pituitary-thyroid axis (CRH, TSHβ, NIS, TTR, Dio2, TG, TRα and TRβ) and reproduction (Esr2 and Vtg1) related genes were also investigated, and results showed that the co-exposure induced more significant upregulated expressions of TSHβ, TG, Doi 2, and TRβ, compared to BDE-47 single exposure. In conclusion, co-exposure to NPs and BDE-47 exacerbated developmental and thyroid toxicity in zebrafish, generally elucidating the toxicological effects mediated by complex chemical interactions between NPs with POPs in the freshwater environment.
Collapse
Affiliation(s)
- Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yurou Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liyan Tian
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510006, China.
| |
Collapse
|
68
|
Araújo APDC, Luz TMD, Rocha TL, Ahmed MAI, Silva DDME, Rahman MM, Malafaia G. Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128691. [PMID: 35334274 DOI: 10.1016/j.jhazmat.2022.128691] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite the toxicity of microplastics (MPs) in freshwater fish has been demonstrated in previous studies, their effects when mixed with other pollutants (organic and inorganic) are poorly understood. Thus, we aimed to test the hypothesis that the association of polyethylene MPs (PE-MPs) to a mix of emerging pollutants induces more adverse genotoxic, mutagenic, and redox unbalance effects in adult zebrafish (Danio rerio), after 15 days of exposure. Although the accumulation of MPs in animals was greater in animals exposed to PE-MPs alone, erythrocyte DNA damage (comet assay) and the frequency of erythrocytic nuclear abnormalities (ENAs) evidenced in zebrafish exposed to PE-MPs alone were as pronounced as those observed in animals exposed to the mix of pollutant (alone or in combination with MPs), which constitutes the big picture of the current study. Moreover, we noticed that such effects were associated with an imbalance between pro-and antioxidant metabolism in animals, whose activity of superoxide dismutase (SOD) and catalase (CAT) was assessed in different organs which were not sufficient to counterbalance the production of reactive oxygen species [hydrogen peroxide (H2O2)] and nitrogen [nitric oxide (NO)] evaluated. The principal component analysis (PCA) also revealed that while the antioxidant activity was more pronounced in the brain and liver of animals, the highest production of H2O2 was perceived in the gills and muscles, suggesting that the biochemical response of the animals was organ-dependent. Thus, the present study did not demonstrate antagonistic, synergistic, or additive effects on animals exposed to the combination between PE-MPs and a mix of pollutants in the zebrafish, which reinforces the theory that interactions between pollutants in aquatic ecosystems may be as complex as their effects on freshwater ichthyofauna.
Collapse
Affiliation(s)
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
69
|
Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ 2022; 10:e13503. [PMID: 35722253 PMCID: PMC9205308 DOI: 10.7717/peerj.13503] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background The environmental pollution by microplastics is a global problem arising from the extensive production and use of plastics. Small particles of different plastics, measured less than 5 mm in diameter, are found in water, air, soil, and various living organisms around the globe. Humans constantly inhale and ingest these particles. The associated health risks raise major concerns and require dedicated evaluation. Objectives In this review we systematize and summarize the effects of microplastics on the health of different animals. The article would be of interest to ecologists, experimental biologists, environmental physicians, and all those concerned with anthropogenic environmental changes. Methodology We searched PubMed and Scopus from the period of 01/2010 to 09/2021 for peer-reviewed scientific publications focused on (1) environmental pollution with microplastics; (2) uptake of microplastics by humans; and (3) the impact of microplastics on animal health. Results The number of published studies considering the effects of microplastic particles on aquatic organisms is considerable. In aquatic invertebrates, microplastics cause a decline in feeding behavior and fertility, slow down larval growth and development, increase oxygen consumption, and stimulate the production of reactive oxygen species. In fish, the microplastics may cause structural damage to the intestine, liver, gills, and brain, while affecting metabolic balance, behavior, and fertility; the degree of these harmful effects depends on the particle sizes and doses, as well as the exposure parameters. The corresponding data for terrestrial mammals are less abundant: only 30 papers found in PubMed and Scopus deal with the effects of microplastics in laboratory mice and rats; remarkably, about half of these papers were published in 2021, indicating the growing interest of the scientific community in this issue. The studies demonstrate that in mice and rats microplastics may also cause biochemical and structural damage with noticeable dysfunctions of the intestine, liver, and excretory and reproductive systems. Conclusions Microplastics pollute the seas and negatively affect the health of aquatic organisms. The data obtained in laboratory mice and rats suggest a profound negative influence of microplastics on human health. However, given significant variation in plastic types, particle sizes, doses, models, and modes of administration, the available experimental data are still fragmentary and controversial.
Collapse
Affiliation(s)
- Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia,Medical Institute, RUDN University, Moscow, Russia
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| |
Collapse
|
70
|
De Marco G, Conti GO, Giannetto A, Cappello T, Galati M, Iaria C, Pulvirenti E, Capparucci F, Mauceri A, Ferrante M, Maisano M. Embryotoxicity of polystyrene microplastics in zebrafish Daniorerio. ENVIRONMENTAL RESEARCH 2022; 208:112552. [PMID: 34929188 DOI: 10.1016/j.envres.2021.112552] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In the recent years, increasing scientific and societal concern has been raised over the presence and accumulation of plastic debris in the environment and the effects of microplastics (MPs) that can easily interact with biota. In order to elucidate the impact of MPs at the critical development stages of freshwater fish species, a fish embryo toxicity test was herein performed on the zebrafish Danio rerio, exposed to 10 μm polystyrene MPs at 200 particles/mL for 120 hpf. After exposure, accumulation of MPs in larvae was measured, survival, hatching and larvae development were monitored and the oxidant/anti-oxidant responses and cellular detoxification evaluated. No impact on survival of developing zebrafish was revealed, but a moderate delay in hatching was observed. Alterations in larvae development were recorded with zebrafish exhibiting serious deformities, mainly at the level of column and tail, as well as a compromised integrity of the visual structure of the eyes. Moreover, increased levels of gene transcription involved in the oxidative stress (sod1, sod2 and cat) and in cellular detoxification (gst and cyp) were also detected in MPs-exposed zebrafish larvae. Overall, this research work provides new insights on the ecotoxicological impact of polystyrene MPs on the critical developmental stages of a freshwater fish species, therefore enhancing the current knowledge of the environmental risk posed by MPs to the aquatic ecosystem.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Eloise Pulvirenti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123, Catania, Italy.
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
71
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
72
|
Im J, Eom HJ, Choi J. Effect of Early-Life Exposure of Polystyrene Microplastics on Behavior and DNA Methylation in Later Life Stage of Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:558-568. [PMID: 35469368 DOI: 10.1007/s00244-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastic contamination has received increasing attention in recent years, and concern regarding the toxicity of microplastics to the environment and humans has increased. In this study, we investigated the neurodevelopmental toxicity of polystyrene microplastics (PSMPs) in the zebrafish Danio rerio under different exposure scenarios. Zebrafish were exposed to PSMPs during embryonic stage and then allowed the fish to recover. The neurodevelopmental toxic responses were investigated using fish behavior and behavior-related gene expression. Early-life exposure to PSMPs did not alter fish behavior at the early stage; however, it led to hyperactivity later life stage. Generally, oxidative stress (i.e., sod2 and nrf2a)- and nervous system (i.e., slc6a4b, npy, and nrbf2)-related gene expression increased in all PSMPs-exposed fish. DNA hypomethylation was observed in fish challenged for a second time using the same PSMPs. Taken together, the current results imply that PSMPs have neurodevelopmental toxic potential when introduced early in life.
Collapse
Affiliation(s)
- Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
73
|
Orona-Návar C, García-Morales R, Loge FJ, Mahlknecht J, Aguilar-Hernández I, Ornelas-Soto N. Microplastics in Latin America and the Caribbean: A review on current status and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114698. [PMID: 35183939 DOI: 10.1016/j.jenvman.2022.114698] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A literature review was carried out to analyze the current status of microplastic research in Latin America and the Caribbean (LAC). Specifically, this work focused on publications pertaining to (1) occurrence and distribution of microplastics in the environment, including water, sediments, and soil and (2) the environmental impact of MPs, particularly their presence and effects on aquatic and terrestrial organisms. The review included peer-reviewed articles from Scopus, Science Direct, Web of Science, Google Scholar and two iberoamerican open access databases (Redalyc and SciELO). It was found that LAC has only contributed to 5% of the global scientific output on microplastics, and overall the highest contributor within the region was Brazil (52%), followed by Chile (16%) and Mexico (13%). An additional section analyzing the barriers to conducting microplastic research in LAC and their exacerbation by the current COVID-19 pandemic was included to provide additional context behind the relatively low scientific production and improve recommendations encouraging research in this region.
Collapse
Affiliation(s)
- Carolina Orona-Návar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Raul García-Morales
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico; Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carretera Tijuana-Ensenada Km. 107, C.P. 22860, Ensenada, B.C., Mexico
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Iris Aguilar-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| | - Nancy Ornelas-Soto
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico.
| |
Collapse
|
74
|
Castro GB, Bernegossi AC, Felipe MC, Ogura AP, de Lima E Silva MR, Corbi JJ. Polyethylene microplastics and substrate availability can affect emergence responses of the freshwater insect Chironomus sancticaroli. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:679-688. [PMID: 35305165 DOI: 10.1007/s10646-022-02536-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Pollution caused by polyethylene microplastics (MP) has been reported for aquatic environments worldwide. However, despite recurrent research for several aquatic organisms, the effects of MP on the emergence stage of freshwater insects from tropical environments are little known. This study is the first to assess the emergence of the Brazilian native species Chironomus sancticaroli Strixino & Strixino, 1981 when exposed to primary polyethylene microplastics (size 40-48 µm). We performed two exposure scenarios, with a substrate (standard assays) and without substrate (as a stressful experience), and recorded emergence responses. The MP did not affect the species' emergence rate, but these rates were statistically different for the standard and stressful exposure scenarios. In bioassays without substrate, the high concentrations of MP caused anticipation of the insect's emergence (5-6 days). On the other hand, female emergence time was longer than males in standard bioassays. The substrate absence caused a slight increase in the left female wing's length and the potential female fecundity. These findings suggest that the polyethylene microplastics and substrate availability can affect the emergence dynamics of the tropical insect C. sancticaroli.
Collapse
Affiliation(s)
- Gleyson B Castro
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil.
| | - Aline C Bernegossi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Mayara C Felipe
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Allan P Ogura
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | | | - Juliano J Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
75
|
Prata JC, Venâncio C, Girão AV, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Effects of virgin and weathered polystyrene and polypropylene microplastics on Raphidocelis subcapitata and embryos of Danio rerio under environmental concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151642. [PMID: 34822904 DOI: 10.1016/j.scitotenv.2021.151642] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Microplastics are ubiquitous contaminants of freshwater ecosystems. However, few ecotoxicity assays have been conducted on freshwater organisms using environmentally relevant concentrations of virgin and weathered microplastics. This work assessed the adverse effects of virgin and artificially weathered fragments of polystyrene and polypropylene on the microalga Raphidocelis subcapitata (72 h growth inhibition assay) and on embryos of the fish Danio rerio (96 h fish embryo assay) under environmentally relevant concentrations (2000-200,000 MP L-1) and high concentrations (12.5-100 mg L-1). Sizes of microplastics were measured as tens (polystyrene) to hundreds (polypropylene) of micrometers, while aging was assessed by measuring the carbonyl index. In the microalga, the tested high concentrations promoted growth, while environmentally relevant concentration induced either growth inhibition or promotion. In zebrafish embryos, environmentally relevant concentrations decreased body length and heart rates. No relevant effects were observed in organisms exposed to high concentrations for mortality, malformations, hatching rates, and swimming bladder inflation. Virgin microplastics presented slightly higher toxicity but direct comparison was hindered by the lack of a linear dose-response curve. Despite the lack of a clear pattern, adverse effects were often observed in the lowest environmentally relevant concentrations, raising concerns over the impacts of microplastics on freshwater ecosystems.
Collapse
Affiliation(s)
- Joana C Prata
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cátia Venâncio
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana V Girão
- Department of Materials Engineering and Ceramics (DEMaC) & Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P da Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
76
|
Malafaia G, Nóbrega RH, Luz TMD, Araújo APDC. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127873. [PMID: 34863562 DOI: 10.1016/j.jhazmat.2021.127873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of nanoplastics (NPs) has already been reported in experimental aquatic models, their possible effects on the reproductive performance of viviparous freshwater fish and their consequences for embryos, so far, are unknown. Thus, we aimed to evaluate whether the gestational exposure of Poecilia reticulata to polystyrene NPs (PS NPs) impacts the reproductive performance of females, induces teratogenic effects and/or predictive alterations of redox unbalance and cholinesterasic effect. Our results demonstrate that gestational exposure of P. reticulata females (for 30 days) to PS NPs (50 µg/L) affected reproductive aspects of the animals, inferred by the lower percentage of pregnancy and reduced offspring quantity. Although we did not observe teratogenic effect, we observed that the accumulation of PS NPs in embryos was significantly correlated with a redox unbalance, without, however, having a cholinesterasic effect (via evaluation of AChE and BChE activity) in embryos. Thus, by evidencing the accumulation of PS NPs in embryos of P. reticulata females exposed to the pollutant during the gestational period, we confirm not only the plausibility of the maternal transfer of these nanomaterials, but also their consequent physiological impacts on the offspring, which has not yet been demonstrated in live-bearing freshwater fish.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia (MG/Brasil), Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás and Instituto Federal Goiano (GO/Brasil), Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil.
| | - Rafael Henrique Nóbrega
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goias - Campus Samambaia (GO/Brasil), Brazil
| |
Collapse
|
77
|
Rangasamy B, Malafaia G, Maheswaran R. Evaluation of antioxidant response and Na +-K +-ATPase activity in zebrafish exposed to polyethylene microplastics: Shedding light on a physiological adaptation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127789. [PMID: 34801306 DOI: 10.1016/j.jhazmat.2021.127789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics has already been demonstrated in different animal models, our knowledge about the response of freshwater fish to this pollutant is still limited. Thus, we aimed to evaluate the impact of exposure of zebrafish adults (Danio rerio) to environmentally relevant concentrations of polyethylene microplastics (PE-MPs) (5 and 50 µg/L) and at different times of exposure (10 and 20 days). Initially, scanning electron microscope image illustrated size and format of the particle and FTIR analysis confirmed the presence of PE-MPs in the gastrointestinal tract of fish (at both concentrations tested). Subsequently, an alteration of oxidative and antioxidant responses was evaluated in the liver and brain. The results showed that catalase (CAT) activity, in liver, was significantly decreased, as was glutathione S-transferases (GSTs) activity (on the 10th experimental day). However, after 20 days of exposure, we observed a concentration-dependent increase in GST activity in liver of the animals exposed to PE-MPs. Furthermore, the lipid peroxidation (LPO) level was significantly increased by exposure to MPs, especially in the brain, after 20 days of exposure. The increase in Na+-K+-ATPase activity in the animals' gills was correlated with the increased production of malondialdehyde (MDA), which suggests the existence of a compensatory mechanism in which the high activity of this enzyme would be necessary to regulate the loss of ions caused by the increase in the processes of LPO, which has never been previously demonstrated. Thus, our study sheds light on a new physiological adaptation to deal with the oxidative effects of PE-MPs, in addition to supporting the future use of the assessment of Na+/K+-ATPase activity as a biomarker of the toxicity of these pollutants.
Collapse
Affiliation(s)
- Basuvannan Rangasamy
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil. Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil
| | - Rajan Maheswaran
- Entomology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu 636 011, India.
| |
Collapse
|
78
|
Lu J, Wu J, Gong L, Cheng Y, Yuan Q, He Y. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19273-19282. [PMID: 34714475 DOI: 10.1007/s11356-021-17198-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive investigation on the toxicity of microplastics (MPs), an emerging global concern, little is known about the combined toxicity of MPs and co-occurring pollutants in aquatic environments. In this study, the combined toxicity of polystyrene MPs and sulfamethoxazole (SMZ) antibiotics was explored in zebrafish embryos in terms of the developmental, physiological, and endocrine toxicities. Exposure to PS and SMZ induced mortality (rate: 25.0 ± 7.5%) and malformation (rate: 20~35%) at multiple regions and stages of zebrafish development. Physiological toxicity was also induced as shown by the significant decrease in fetal movement (by 31.1~37.0%) and swimming frequency (by 26.9~36.8%) and the increase in heartbeat rate (by 19.0~20.9%). Finally, PS and SMZ exposure also induced extensive endocrine toxicities in zebrafish as confirmed by increases in various biomarkers including vitellogenin, 17β-estradiol, testosterone, and triiodothyronine. The combination index showed that antagonistic effects were present between PS and SMZ toxicity, which slightly decreased their combined toxicity. This study aims to further understand the combined toxicity of MPs and co-occurring pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jiarui Lu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Jie Wu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lulin Gong
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yide He
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
79
|
Jakubowska M, Białowąs M, Stankevičiūtė M, Chomiczewska A, Jonko-Sobuś K, Pažusienė J, Hallmann A, Bučaitė A, Urban-Malinga B. Effects of different types of primary microplastics on early life stages of rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151909. [PMID: 34838922 DOI: 10.1016/j.scitotenv.2021.151909] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is recognized as serious threat to aquatic organisms. The aim of this research was to determine the effect of environmentally realistic concentrations of various microplastics (MPs) on survival, growth, development and induction of endocrine, geno- and cytotoxic responses in the early life stages of rainbow trout Oncorhynchus mykiss. Fish were exposed for 69-days, from embryos at eyed-stage to mobile yolk-sac larvae, to pre-production pellets (3000 μm; polystyrene - PS and polyethylene terephthalate - PET). Additionally, since salmonid larvae are particularly exposed to light polymers after swimming up from the bottom, fish were also treated with PE microspheres (150-180 μm; polyethylene - PE) for both long (69-days, from embryos at eyed-stage) and short period (29 days, from larvae 3 weeks after hatching) to test the development stage-related effect on the growth parameters and fitness. Hatching success, rate and the survival of larvae did not differ among treatments. Although some alterations were found in the length gain after the long-term exposure and in the yolk-sac exhaustion rate in all PE treatments, the final size of larvae did not differ from the respective controls. PE-treated larvae have shown elevated corticosterone concentrations being significantly higher in fish exposed from the embryo stage. It was indicated for the first time that mobile yolk-sac larvae ingested MPs (up to 24% of larvae contained microspheres). No changes were recorded in cytotoxicity endpoints in any of the treatments, but exposure to PS pellets resulted in significantly higher frequencies of genotoxicity endpoints compared to the control treatment. This effect and aforementioned alterations in PE-treated larvae might result from the exposure to toxic MPs leaches. The fact that selected PAHs' levels reached the highest values in PS pellets and PE microspheres must be underlined.
Collapse
Affiliation(s)
- Magdalena Jakubowska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland.
| | - Marcin Białowąs
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Agnieszka Chomiczewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Karolina Jonko-Sobuś
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Janina Pažusienė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Agnė Bučaitė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | | |
Collapse
|
80
|
Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127421. [PMID: 34653869 DOI: 10.1016/j.jhazmat.2021.127421] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Irregular-shaped and partially degraded secondary microplastics (SMP) account for the majority of MPs in marine environments, yet little is known about their effects on marine organisms. In this study, we investigated the embryotoxicity of polyvinyl chloride SMP and primary microplastics (PMP) to the marine medaka Oryzias melastigma. This study aimed to determine the physical impacts of MPs and, for the first time, elucidate the underlying mechanisms of physical toxicity. SMP shortened hatching time and induced higher teratogenic effects on larvae relative to PMP, indicating a higher toxicity from SMP. Physical damage from SMP to the chorion surface appears to be the main toxicity mechanism, caused by their irregular shape and reduced aggregation relative to PMP. In contrast, real-time changes in oxygen demonstrated that hypoxia caused by greater PMP adsorption to the chorion surface contributes to the toxicological responses of this material relative to SMP. Modulation of genes involved in hypoxia-response, cardiac development and hatching confirmed the toxicity mechanisms of PMP and SMP. The chemical contribution to observed toxicity was negligible, confirming impacts derived from physical toxicity. Our findings highlight the negative effects of environmentally relevant SMP on the marine ecosystems.
Collapse
Affiliation(s)
- Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yushan Du
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Wang
- SINTEF Energy Research, Trondheim, 7034, Norway
| | - Jing Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway.
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
81
|
Santana LMBM, Rodrigues ACM, Campos D, Kaczerewska O, Figueiredo J, Silva S, Sousa I, Maia F, Tedim J, Abessa DMS, Pousão-Ferreira P, Candeias-Mendes A, Soares F, Castanho S, Soares AMVM, Rocha RJM, Gravato C, Patrício Silva AL, Martins R. Can the toxicity of polyethylene microplastics and engineered nanoclays on flatfish (Solea senegalensis) be influenced by the presence of each other? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150188. [PMID: 34798736 DOI: 10.1016/j.scitotenv.2021.150188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanomaterials are applied in a myriad of commercial and industrial applications. When leaked to natural environments, such small particles might threaten living organisms' health, particularly when considering their potential combination that remains poorly investigated. This study investigated the physiological and biochemical effects of polyethylene (PE; 64-125 μm in size, 0.1, 1.0, and 10.0 mg·L-1) single and combined with an engineered nanomaterial applied in antifouling coatings, the copper-aluminium layered double hydroxides (Cu-Al LDH; 0.33, 1.0, and 3.33 mg·L-1) in the flatfish Solea senegalensis larvae (8 dph) after 3 h exposure, in a full factorial design. Particles ingestion, histopathology, and biochemical biomarkers were assessed. Fish larvae presented <1 PE particles in their gut, independently of their concentration in the medium. The histological health index showed minimal pathological alterations at PE combined exposure, with a higher value observed at 1 mg LDH·L-1 × 0.1 mg PE·L-1. Gut deformity and increased antioxidant defences (catalase), neurotransmission (acetylcholinesterase), and aerobic energy production (electron transport system) were observed at PE ≥ 1.0 mg·L-1. No oxidative damage (lipid peroxidation) or alterations in the detoxification capacity (glutathione-S-transferase) was observed on single and combined exposures. PE, combined or not with Cu-Al LDH, does not seem to compromise larvae's homeostasis considering levels reported so far in the marine and aquaculture environments. However, harsh effects are expected with MP contamination rise, as projections suggest.
Collapse
Affiliation(s)
- Lígia M B M Santana
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Andreia C M Rodrigues
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Kaczerewska
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Figueiredo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Sousa
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek-Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis M S Abessa
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Candeias-Mendes
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Sara Castanho
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui J M Rocha
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana L Patrício Silva
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
82
|
Park SH, Kim K. Microplastics induced developmental toxicity with microcirculation dysfunction in zebrafish embryos. CHEMOSPHERE 2022; 286:131868. [PMID: 34399253 DOI: 10.1016/j.chemosphere.2021.131868] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted worldwide attention as potential environmental pollutants. However, toxic effects of exposure to MPs and NPs on organisms at developmental stages have not been elucidated yet. In this study, zebrafish embryos at early stage were used to evaluate potential toxic effects of exposure to MPs with diameter of 1 μm and NPs with diameter of 0.4 μm. Solution containing NPs was optically more transparent than solution containing MPs at the same mass concentration. However, exposure to NPs induced significantly higher mortality rate of zebrafish embryos than exposure to MPs. Exposure to MPs or NPs caused pathological changes of caudal vein plexus. In addition, caudal tissues were impaired with inhibition of intact growth of zebrafish embryos. Peripheral microcirculation at caudal region was significantly deteriorated by exposure to MPs or NPs. However, systematic perfusion was still maintained with preservation of RBC velocity profiles regardless of exposure to MPs or NPs. This study provides a new insight to the use of plastics, demonstrating that exposure to MPs or NPs can lead to developmental disorder with significant impairment of growth and peripheral microcirculation dysfunction.
Collapse
Affiliation(s)
- Sung Ho Park
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kiwoong Kim
- Mechanical Engineering, Hannam University, Daejeon, 34430, South Korea.
| |
Collapse
|
83
|
Yaripour S, Huuskonen H, Rahman T, Kekäläinen J, Akkanen J, Magris M, Kipriianov PV, Kortet R. Pre-fertilization exposure of sperm to nano-sized plastic particles decreases offspring size and swimming performance in the European whitefish (Coregonus lavaretus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118196. [PMID: 34555795 DOI: 10.1016/j.envpol.2021.118196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Exposure of aquatic organisms to micro- and nano-sized plastic debris in their environment has become an alarming concern. Besides having a number of potentially harmful impacts for individual organisms, plastic particles can also influence the phenotype and performance of their offspring. We tested whether the sperm pre-fertilization exposure to nanoplastic particles could affect offspring survival, size, and swimming performance in the European whitefish Coregonus lavaretus. We exposed sperm of ten whitefish males to three concentrations (0, 100 and 10 000 pcs spermatozoa-1) of 50 nm carboxyl-coated polystyrene spheres, recorded sperm motility parameters using computer assisted sperm analysis (CASA) and then fertilized the eggs of five females in all possible male-female combinations. Finally, we studied embryonic mortality, hatching time, size, and post-hatching swimming performance of the offspring. We found that highest concentration of plastic particles decreased sperm motility and offspring hatching time. Furthermore, sperm exposure to highest concentration of plastics reduced offspring body mass and impaired their swimming ability. This suggests that sperm pre-fertilization exposure to plastic pollution may decrease male fertilization potential and have important transgenerational impacts for offspring phenotype and performance. Our findings indicate that nanoplastics pollution may have significant ecological and evolutionary consequences in aquatic ecosystems.
Collapse
Affiliation(s)
- Sareh Yaripour
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland.
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Tawfiqur Rahman
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Pavel Vladimirovich Kipriianov
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101, Joensuu, Finland
| |
Collapse
|
84
|
Bhagat J, Zang L, Nakayama H, Nishimura N, Shimada Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149463. [PMID: 34399343 DOI: 10.1016/j.scitotenv.2021.149463] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/17/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The ubiquity of nanoplastics (NPs) raises concerns about their interactions and combined toxicity with other common contaminants. Although azoles are present throughout the natural environment, their interactions with NP are not well known. We investigated the effects of polystyrene (PS) NP on the toxicity of ketoconazole (KCZ) and fluconazole (FCZ) in zebrafish embryos using the developmental toxicity, oxidative-stress-related biochemical parameters, and expression of genes related to neurotoxicity (ache), cardiotoxicity (gata4, bmp4), inflammation (il1b), oxidative stress (sod1, sod2, cyp1a), and apoptosis (bax, bcl2). Co-exposure to NP (1 mg/L) and KCZ/FCZ (1 mg/L) for 96 h reduced the hatching rate, survival rate, and heart rate and increased the malformation rate and catalase activity. The bax/bcl2 ratio, an apoptosis indicator, was higher after NP, KCZ, or FCZ treatment. However, the bax/bcl2 ratio after exposure to NP + KCZ or NP + FCZ was much higher than that after single exposure. Overall, the results indicated that NP aggravated the toxicity of azole by significantly increasing the reactive oxygen species, lipid peroxidation and altering the expression of oxidative-stress- and apoptosis-related genes. The interactive toxicity of PS NP with KCZ/FCZ reported in this study emphasises the need for caution in the release of azole fungicides in the environment.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
85
|
Mendonça-Gomes JM, Charlie-Silva I, Guimarães ATB, Estrela FN, Calmon MF, Miceli RN, Sanches PRS, Bittar C, Rahal P, Cilli EM, Ahmed MAI, Vogel CFA, Malafaia G. Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117818. [PMID: 34333265 PMCID: PMC8291650 DOI: 10.1016/j.envpol.2021.117818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Knowledge about how the COVID-19 pandemic can affect aquatic wildlife is still extremely limited, and no effect of SARS-CoV-2 or its structural constituents on invertebrate models has been reported so far. Thus, we investigated the presence of the 2019-new coronavirus in different urban wastewater samples and, later, evaluated the behavioral and biochemical effects of the exposure of Culex quinquefasciatus larvae to two SARS-CoV-2 spike protein peptides (PSPD-2002 and PSPD-2003) synthesized in our laboratory. Initially, our results show the contamination of wastewater by the new coronavirus, via RT-qPCR on the viral N1 gene. On the other hand, our study shows that short-term exposure (48 h) to a low concentration (40 μg/L) of the synthesized peptides induced changes in the locomotor and the olfactory-driven behavior of the C. quinquefascitus larvae, which were associated with increased production of ROS and AChE activity (cholinesterase effect). To our knowledge, this is the first study that reports the indirect effects of the COVID-19 pandemic on the larval phase of a freshwater invertebrate species. The results raise concerns at the ecological level where the observed biological effects may lead to drastic consequences.
Collapse
Affiliation(s)
| | - Ives Charlie-Silva
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo; São Paulo, SP, Brazil
| | | | - Fernanda Neves Estrela
- Programa de Pós-Graduação Em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano; Urutaí, GO, Brazil
| | - Marilia Freitas Calmon
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Rafael Nava Miceli
- SeMAE - Serviço Municipal Autonômo de Água e Esgoto, São José do Rio Preto; São Paulo, SP, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista; Araraquara, SP, Brazil
| | - Cíntia Bittar
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Paula Rahal
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho"; São José do Rio Preto, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista; Araraquara, SP, Brazil
| | | | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA, 95616, USA
| | - Guilherme Malafaia
- Programa de Pós-Graduação Em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano; Urutaí, GO, Brazil; Programa de Pós-Graduação Em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil; Programa de Pós-Graduação Em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlância, Uberlândia, MG, Brazil.
| |
Collapse
|
86
|
Hsieh SL, Wu YC, Xu RQ, Chen YT, Chen CW, Singhania RR, Dong CD. Effect of polyethylene microplastics on oxidative stress and histopathology damages in Litopenaeus vannamei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117800. [PMID: 34329062 DOI: 10.1016/j.envpol.2021.117800] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
There has been a significant increase in the microplastic (MP) polluting the ocean in recent time which is regarded as toxic for living organisms. In this study, Fluorescent red polyethylene microspheres (FRPE) were administered intramuscularly to Litopenaeus vannamei juveniles at the concentration of 0.1, 0.2, 0.5 and 1.0 μg (g shrimp)-1, and the survival rate was recorded. Analysis of the hepatopancreas for antioxidant enzyme activity and gene expression were done after seven days. Further tissue morphology and accumulation of FRPE was analysed. The results showed that FRPE at 0.5 and 1.0 μg (g shrimp)-1 reduce the survival rate of L. vannamei. FRPE at 0.5 and 1.0 μg (g shrimp)-1 reduced superoxide dismutase (SOD) activity; FRPE at different concentrations reduced catalase (CAT) activity; FRPE at 0.2, 0.5 and 1.0 μg (g shrimp)-1 increased the lipid peroxide thiobarbituric acid (TBARS) content. FRPE at 0.1, 0.2, and 0.5 μg (g shrimp)-1 significantly affect the performance of SOD and CAT genes; FRPE at 0.2 and 0.5 μg (g shrimp)-1 significantly improves GPx gene performance; FRPE at 1.0 μg (g shrimp)-1 significantly reduced the expression of GPx genes. Analysis of tissue morphology shows that FRPE cause muscle, midgut gland, and hepatopancreas, and gill damage at different concentrations. In the results of accumulation of microplastic, FRPE accumulated in gill tissue at 0.2 and 0.5 μg (g shrimp)-1; FRPE accumulated in gill, muscle and hepatopancreas tissue at 1.0 μg (g shrimp)-1. Based on the above results, FRPE at 0.5 and 1.0 μg (g shrimp)-1 can regulate the antioxidant enzymes of L. vannamei, increase lipid peroxide content, cause tissue damage by accumulating in the tissues. The rate of survival decreased in L. vannamei, and the impact of FRPE at 1.0 μg (g shrimp)-1 was significant.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yi-Chen Wu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
87
|
Xie S, Zhou A, Wei T, Li S, Yang B, Xu G, Zou J. Nanoplastics Induce More Serious Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish than Microplastics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:640-650. [PMID: 34379141 DOI: 10.1007/s00128-021-03348-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Microplastics (MPs) (< 5 mm) and nanoplastics (NPs) (< 100 nm) are emerging environmental pollutants and have been proved could cause a series of toxicity in aquatic organisms. In this study, the effects on gut microbiota of adult zebrafish exposed for 21 days to 10 μg/L and 1 mg/L of MPs (8 μm) and NPs (80 nm) were evaluated. We analyzed the intestinal microbial community of zebrafish using high throughput sequencing of the 16S rRNA gene V3-V4 region and also performed transcriptional profiling of the inflammation pathway related genes in the intestinal tissues. Our results showed that both spherical polystyrene MPs and NPs could induce microbiota dysbiosis in the gut of zebrafish. The flora diversity of gut microbiota significantly increased under a high concentration of NPs. At the phylum level, the abundance of Proteobacteria increased significantly and the abundance of Fusobacteria, Firmicutes and Verrucomicrobiota decreased significantly in the gut after 21-day exposure to 1 mg/L of both MPs and NPs. Furthermore, interestingly, the abundance of Actinobacteria decreased in the MPs treatment groups but increased in the NPs treatment groups. At the genus level, revealed that the relative abundance of Aeromonas significantly increased both in the MPs and NPs treatment groups. Moreover, it was observed that NPs increased mRNA levels of il8, il10, il1β and tnfα in the gut, but not in MPs exposure group, indicating that the NPs may have a more serious effect on the gut of zebrafish than MPs to induce microbiota dysbiosis and inflammation in the gut.
Collapse
Affiliation(s)
- Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tianli Wei
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Siying Li
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Bing Yang
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
88
|
Liao CP, Chiu CC, Huang HW. Assessment of microplastics in oysters in coastal areas of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117437. [PMID: 34126518 DOI: 10.1016/j.envpol.2021.117437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Microplastic contamination in ecosystems has emerged as an environmental issue of global significance. This research quantified microplastics in oysters from 22 sites along Taiwan coastlines. In total, 6630 microplastic items were found in 660 oysters of two genera (Crassostrea and Saccostrea). The average content of microplastics was 3.24 ± 1.02 items/g (wet weight), ranging from 0.63 ± 0.52 items/g to 37.94 ± 19.22 items/g. Over half of the microplastics were smaller than 100 μm, and the most common shape was fragments (67%), followed by fibers (29%). The dominant color was transparent (49.76%), followed by black (25.66%). Polymer types were identified using a μRaman microscope, and the major component was polyethylene terephthalate (PET) (69.54%). Microplastic contamination was higher overall in wild than in farmed oysters. In addition, the microplastic content of oysters from northeastern waters was significantly greater than that of other oysters; this result is similar to the findings of previous research on floating marine litter and beach cleaning data. The results indicated that the average content of microplastic in oysters along the Taiwan coastline was similar to that in oysters in adjacent regions. This study suggests that innovative technologies should be implemented for monitoring and removing pollution, tracking marine pollution origins, and improving accountability and that plastic limitation strategies should be strengthened.
Collapse
Affiliation(s)
- Chun-Pei Liao
- Department of Environmental Biology and Fishery Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Ching-Chun Chiu
- Institute of Marine Affairs and Resources Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Hsiang-Wen Huang
- Institute of Marine Affairs and Resources Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| |
Collapse
|
89
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
90
|
Zhao Y, Qin Z, Huang Z, Bao Z, Luo T, Jin Y. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117039. [PMID: 33838439 DOI: 10.1016/j.envpol.2021.117039] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/07/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Various microplastics (MPs) are found in the environment and organisms. MP residues in organisms can affect health; however, their impacts on metabolism in aquatic organisms remain unclear. In this study, zebrafish embryos were exposed to polyethylene MPs with sizes ranging from 1 to 4 μm at concentrations of 0, 10, 100, and 1000 μg/L for 7 days. Through qPCR technology, the results indicated that zebrafish exposed to polyethylene MPs exhibited significant change in microbes of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, etc. Moreover, 16S RNA gene sequencing revealed that there was a significant difference in alpha diversity between the control and 1000 μg/L MP-treated groups. At the genus level, the abundance of Aeromonas, Shewanella, Microbacterium, Nevskia and Methyloversatilis have increased remarkably. Conversely, the abundance of Pseudomonas, Ralstonia and Stenotrophomonas were significant reduction after MPs exposure. In addition, the levels of TG (triglyceride), TCHO (total cholesterol), NEFA (nonesterified fatty acid), TBA (total bile acid), GLU (glucose) and pyruvic acid significantly changed in MP-treated larval zebrafish, indicating that their metabolism was disturbed by MPs. Transcriptional levels of glucose and lipid metabolism-related genes showed a decreasing trend. Furthermore, LC/MS-based nontargeted metabolomics analysis demonstrated that a total of 59 phospholipid-related substances exhibited significant changes in larval fish treated with 1000 μg/L MPs. The mRNA levels of phospholipid metabolism-related genes were also obviously changed. Pearson correlation analysis indicated that the abundance of Aeromonas, Shewanella and Chitinibacter bacteria showed a negative correlation with most phospholipids, while Nevskia, Parvibacter and Lysobacter showed a positive correlation with most phospholipids. Based on these results, it is suggested that 1-4 μm PE-MPs could impact the microbiome and metabolism of larval zebrafish. All of these results indicated that the health risk of MPs cannot be ignored.
Collapse
Affiliation(s)
- Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
91
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
92
|
Wang J, Zheng M, Lu L, Li X, Zhang Z, Ru S. Adaptation of life-history traits and trade-offs in marine medaka (Oryzias melastigma) after whole life-cycle exposure to polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125537. [PMID: 33676243 DOI: 10.1016/j.jhazmat.2021.125537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are ubiquitous in marine environments and may cause unexpected ecological effects. This study adopted a whole life-cycle exposure to illuminate the impact of polystyrene microplastics on life-history strategies of marine medaka (Oryzias melastigma), including the hatching of embryos, growth and reproduction of F0 generation, and embryonic and larval development of F1 offspring. Microplastics accumulated on the eggshell and reduced embryonic hatching rate and larval body length and weight. Similarly, 150 days of microplastic exposure decreased body mass and gonadosomatic index of adult fish, but accelerated sexual maturity of female fish, showing a trade-off between growth and reproduction. Microplastic exposure also caused obvious histopathological damages to gonads and decreased egg productions and fertilization rates. Moreover, parental microplastic exposure induced elevated heartbeats, premature hatching, and slow growth in F1 offspring. Anti-oxidative stress response, sex hormone disruption, and disturbed transcription of steroidogenic genes in the reproductive axis could partially explain the reproduction impairment and transgenerational trade-offs. Furthermore, transcriptome analysis revealed that the steroid hormone biosynthesis and cytochrome P450 pathways in the testes of male fish were significantly affected after 20 μg/L microplastic exposure. These findings suggest that microplastic pollution may be an emerging threat to the sustainability of marine fish population.
Collapse
Affiliation(s)
- Jun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Mingyi Zheng
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao 266021, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
93
|
Wang Z, Fan L, Wang J, Zhou J, Ye Q, Zhang L, Xu G, Zou J. Impacts of microplastics on three different juvenile shrimps: Investigating the organism response distinction. ENVIRONMENTAL RESEARCH 2021; 198:110466. [PMID: 33189744 DOI: 10.1016/j.envres.2020.110466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on aquaculture animals have raised increasing concern, but studies on MPs contamination in cultured shrimp are still limited. Therefore, the responses of three widely farmed shrimp species to MPs, including Penaeus monodon (P. monodon), Marsupenaeus japonicas (M. japonicus) and Litopenaeus vannamei (L. vannamei), were investigated in this study. The results showed that the mortality of P. monodon, M. japonicus and L. vannamei were 47%, 53% and 20% respectively after 48 h of 300 mg/L MPs exposure. After 48 h of 100 mg/L MPs exposure, for P. monodon, the MPs content in water and excreta were significantly different from that in M. japonicus and L. vannamei. For genes expressions, the expression of catalase (Cat) was significantly increased and the expression of apoptosis protein (IAP) was inhibited in these three shrimps, but only the expression of Lysozyme (Lys) was increased in L. vannamei after MPs exposure. After 48 h of depuration, the Cat and IAP expression of P. monodon and M. japonicus was significant decreased while the IAP and Lys expression of L. vannamei still maintained at a high level. The results suggested that the metabolic rate of MPs in P. monodon was significantly higher than that in M. japonicus and L. vannamei. The tolerance of L. vannamei to MPs was higher than that of P. monodon and M. japonicas and their different responses in anti-microbial gene might be one of the reasons for the difference of their mortality. This study provides the first report comparing the organism response distinction in cultured shrimp and enriching to the understanding of the impact of MPs on ecosystem.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiao Ye
- College of Life Sciences, Huizhou University, Huizhou, 516007, Guangdong, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
94
|
Wang Z, Fan L, Wang J, Xie S, Zhang C, Zhou J, Zhang L, Xu G, Zou J. Insight into the immune and microbial response of the white-leg shrimp Litopenaeus vannamei to microplastics. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105377. [PMID: 34087762 DOI: 10.1016/j.marenvres.2021.105377] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are a new type of environmental pollutant. To investigate the response of shrimp and their microflora to MPs, Litopenaeus vannamei (L. vannamei) was exposed to different concentrations of MPs (0, 50, 500, and 5000 μg/L, i.e., C, L, M and H groups) for 48 h. The survival rate, intake of MPs, immune-related gene expression and microbial response under MP exposure were detected. The results showed that the survival rate in the H group was significantly lower than those in the C, L and M groups, while the relative expression levels of proPO, TLR and ALF in the M and H groups were significantly higher than those in the C and L groups. For the microbial response, microbial community richness in the L group was significantly decreased, while community richness and diversity in the H group were significantly increased compared with those in the C group. The relative abundances of 3, 4 and 11 taxa were significantly changed after MP treatment at the phylum, class and genus levels, respectively. The results suggested that short-term exposure to low concentrations of MPs did not cause immune defense responses or death but affected the balance of bacterial composition in shrimp. Exposure to high concentrations of MPs can induce immune responses and microbial changes and can even cause death in shrimp. These findings increase our understanding of MP impacts on aquatic organisms.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
95
|
Magni S, Nigro L, Della Torre C, Binelli A. Characterization of plastics and their ecotoxicological effects in the Lambro River (N. Italy). JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125204. [PMID: 33513553 DOI: 10.1016/j.jhazmat.2021.125204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This study had the dual objective of both the qualitative and quantitative assessment of plastic mixtures sampled in 5 different sites located along the Lambro River (northern Italy), and the contemporarily determination of the ecotoxicological effects of the same mixtures sampled, through 21-day laboratory exposures of the freshwater bivalve Dreissena polymorpha. The monitoring survey was carried out by a Fourier Transform Infrared Microscope System, while the ecotoxicological assessment was performed by the mussel mortality, a biomarker suite and the proteomics. The main results of the monitoring have highlighted some critical points, related to the concentration of plastics detected at Milan and, especially at the southernmost sampling station, where a daily flow of more than 6 million plastic debris has been estimated, ending directly into the Po River, the main Italian river. The ecotoxicological analysis highlighted how the toxicity is not exclusively due to the plastic concentration, but that the different characteristics of the polymers probably become more important. Furthermore, we observed an extensive mortality of bivalves exposed to the sampled mixtures in the two southernmost sampling stations, while the battery of biomarkers and the results of proteomics have highlighted how the sampled plastic mixtures caused an imbalance in the redox state, already indicated as a classic effect due to plastic exposure, but also an impact on energy stock and on some fundamental cellular pathways always linked to energy metabolism.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
96
|
Wei XF, Bohlén M, Lindblad C, Hedenqvist M, Hakonen A. Microplastics generated from a biodegradable plastic in freshwater and seawater. WATER RESEARCH 2021; 198:117123. [PMID: 33865028 DOI: 10.1016/j.watres.2021.117123] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable polymers have been regarded as a promising solution to tackle the pollutions caused by the wide use of conventional polymers. However, during the biodegradation process, the material fragmentation leads to microplastics. In this work, the formation of microplastics from biodegradable poly (butylene adipate-co-terephthalate) (PBAT) in different aquatic environments was investigated and compared with the common non-biodegradable low-density polyethylene (LDPE). The results showed that a much larger quantity of plastic fragments/particles were formed in all aquatic environments from PBAT than from LDPE. In addition, UV-A pretreatment, simulating the exposure to sunlight, increased the rate of PBAT microplastic formation significantly. The size distribution and shapes of the formed microplastics were systematically studied, along with changes in the polymer physicochemical properties such as molecular weight, thermal stability, crystallinity, and mechanical properties, to reveal the formation process of microplastics. This study shows that the microplastic risk from biodegradable polymers is high and needs to be further evaluated with regards to longer timeframes, the biological fate of intermediate products, and final products in freshwater, estuarine and seawater natural habitats. Especially, considering that these microplastics may have good biodegradability in warmer 20 - 25° water but will most likely be highly persistent in the world's cold deep seas.
Collapse
Affiliation(s)
- Xin-Feng Wei
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Martin Bohlén
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| | - Catrin Lindblad
- Department of Polymers and Composites, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden
| | - Mikael Hedenqvist
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Aron Hakonen
- Department of Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, SE-501 15 Borås, Sweden.
| |
Collapse
|
97
|
Macêdo AKS, de Melo Costa P, Salgado MAR, de Ribeiro RIMA, Dos Santos HB, Thomé RG. Can the exposure system adopted influence the results of the atrazine toxicity in hepatic tissue of fish? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:512-521. [PMID: 33949805 DOI: 10.1002/jez.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 11/06/2022]
Abstract
The widespread use of atrazine, a herbicide used to control weeds, has contributed to the increased contamination of aquatic environments. To assess the toxicological effects of a xenobiotic on a nontarget organism in the laboratory, different models of toxicological exposure systems have been widely used. Therefore, the aim of this study was to evaluate and compare the action of sublethal concentrations of atrazine on the hepatic histology of Oreochromis niloticus, considering two models of exposure: static (where atrazine was only added once) and semi-static (where atrazine was periodically renewed). Fish were exposed to a concentration of 2 ppm atrazine for 15 days, which was verified by high-performance liquid chromatography. The livers were stained with hematoxylin and eosin and histopathological data were collected. In addition, they were submitted to immunohistochemistry for inducible nitric oxide synthase (iNOS). A maximum variation of 45% (static) and 12.5% (semi-static) was observed between the observed and nominal atrazine concentration. Nuclear and cytoplasmic changes were observed in both experimental models. Hepatocytes from the livers of the static system showed a degenerative appearance, while in the semi-static system, intense cytoplasmic vacuolization and necrosis were observed. iNOS positive cells were identified only in macrophages in the hepatocytes of fish in the semi-static system. These results directly showed how the choice of exposure system can influence the results of toxicological tests. However, future analysis investigating the by-products and nitrogen products should be carried out since the histopathological findings revealed the possibility of these compounds serving as secondary contamination routes.
Collapse
Affiliation(s)
- Anderson K S Macêdo
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Pauliane de Melo Costa
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Mariana A R Salgado
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Rosy I M A de Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Hélio B Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Ralph G Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
98
|
Yan M, Li W, Chen X, He Y, Zhang X, Gong H. A preliminary study of the association between colonization of microorganism on microplastics and intestinal microbiota in shrimp under natural conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124882. [PMID: 33370700 DOI: 10.1016/j.jhazmat.2020.124882] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The microplastics pollution in wild aquatic organisms has been described by many studies. However, few studies focused on the farmed ones and MPs impacts on their gut microbiota under natural conditions. Here, we present the first detection of MPs in shrimp ponds and Litopenaeus vannamei. We also globally, firstly and preliminarily investigate the association between colonization of microorganism on MPs and intestinal microbiota under natural conditions. Microplastics (5129 ± 1176 items/kg d.w.) in sediments were mainly pellets, mostly white and blue, and in size less than 1 mm. Microplastics (14.08 ± 5.70 items/g w.w.) in shrimps were higher than that in mostly wild aquatic organisms and positively correlated with that in sediments. Blue fibers in small size (<0.5 mm) were dominant in shrimps. The bacterial communities and their microbial function on MPs were similar with that in shrimp gut, with higher diversity and richness in bacteria communities colonized on MPs. Network analysis demonstrated that the colonization of microorganism on MPs were associated with shrimp intestinal microbiota. Results suggest that except for toxicity reported previously, the effects on intestinal microbiota induced by MPs were possibly because of the biofilm on their surfaces as well, causing notable impacts on aquatic animals.
Collapse
Affiliation(s)
- Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China
| | - Xiaofeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China
| | - Yuhui He
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural Universtiy, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
99
|
Guimarães ATB, Charlie-Silva I, Malafaia G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124833. [PMID: 33352420 DOI: 10.1016/j.jhazmat.2020.124833] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
We aim at evaluating the toxicity of naturally-aged polystyrene microplastics (MPs) in Danio rerio at intermediate development stage. Animal models were stactically exposed to 4 × 104 and 4 × 106 microparticles/m3 for five days - this concentration is environmentally relevant. We evaluated MP's impact on animals' nutritional status and REDOX balance, as well as its potential neuro- and cytotoxic action on them. Initially, MPs did not induce any change in total carbohydrates, triglycerides and total cholesterol levels. MP accumulation was associated with oxidative stress induction, which was inferred by the nitrite and thiobarbituric acid reactive substances levels. Furthermore, we observed that such stress was not counterbalanced by increase in the assessed enzymatic (total glutathione, catalase and superoxide dismutase) and non-enzymatic (total thiols, reduced glutathione and DPPH radical scavenging activity) antioxidants. The association between high acetylcholinesterase activity and numerical changes in neuroblasts distributed on animals' body surface confirmed MP's neurotoxic potential. MP's ability to induce apoptosis and necrosis processes in animals' erythrocytes suggested its cytotoxic action; therefore, the present study is pioneer in providing insight on how MPs can affect young freshwater fish at environmental concentrations. It is essential knowing the magnitude of these pollutants' impact on the ichthyofauna.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Goiás, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil.
| |
Collapse
|
100
|
Li H, Gu X, Chen H, Mao Z, Zeng Q, Yang H, Kan K. Comparative toxicological effects of planktonic Microcystis and benthic Oscillatoria on zebrafish embryonic development: Implications for cyanobacteria risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115852. [PMID: 33246764 DOI: 10.1016/j.envpol.2020.115852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Planktonic and benthic cyanobacteria blooms are increasing in frequency in recent years. Although many studies have focused on the effects of purified toxins or cyanobacteria extracts on fish developments, the more complex impacts of cyanobacteria cells on fish populations are still considered insufficient. This study compared the toxicological effects of harmful planktonic Microcystis and benthic Oscillatoria on zebrafish (Danio rerio) early stages of development. Zebrafish embryos, at 1-2 h post fertilization (hpf), were exposed to 5, 10, and 20 × 105 cells/mL Microcystis (producing microcystins) or Oscillatoria (producing cylindrospermopsins) until 96 hpf. The results indicated that the effects of benthic Oscillatoria on embryonic development of zebrafish were different from those of planktonic Microcystis. Reduced hatching rates, increased mortality, depressed heart rates and elevated malformation rates were observed following exposures to increased concentrations of Microcystis, whilst Oscillatoria exposures only caused yolk sac edemas. Exposure to a high concentration of Microcystis induced severe oxidative damage, growth inhibition and transcriptional downregulations of genes (GH, GHR1, IGF1, IGF1rb) associated with the growth hormone/insulin-like growth factor (GH/IGF) axis. Although Oscillatoria exposure did not affect the body growth, it obviously enhanced the antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and up-regulated the expressions of several oxidative stress-related genes. Discrepancies in the developmental toxicity caused by Microcystis and Oscillatoria may not only attributed to the different secondary metabolites they secrete, but also to the different adhesion behaviors of algal cells on embryonic chorion. These results suggested that harmful cyanobacteria cells could influence the successful recruitment of fish, while the effects of benthic cyanobacteria should not be ignored. It also highlighted that the necessity for further investigating the ecotoxicity of intact cyanobacterial samples when assessing the risk of cyanobacterial blooms.
Collapse
Affiliation(s)
- Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Kecong Kan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|