51
|
Hayase S, Katayama YA, Hatta T, Iwamoto R, Kuroita T, Ando Y, Okuda T, Kitajima M, Natsume T, Masago Y. Near full-automation of COPMAN using a LabDroid enables high-throughput and sensitive detection of SARS-CoV-2 RNA in wastewater as a leading indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163454. [PMID: 37061063 PMCID: PMC10098305 DOI: 10.1016/j.scitotenv.2023.163454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year. The automation line employed the Maholo LabDroid and an automated-pipetting device to achieve a high-throughput sample-processing capability of 576 samples per week. SARS-CoV-2 RNA was quantified with the automated COPMAN using samples collected from two wastewater treatment plants in the Sagami River basin in Japan between 1 November 2021 and 24 May 2022, when the numbers of daily reported COVID-19 cases ranged from 0 to 130.3 per 100,000 inhabitants. The automated COPMAN detected SARS-CoV-2 RNA from 81 out of 132 samples at concentrations of up to 2.8 × 105 copies/L. These concentrations showed direct correlations with subsequently reported clinical cases (5-13 days later), as determined by Pearson's and Spearman's cross-correlation analyses. To compare the results, we also conducted testing with the EPISENS-S (Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids, Ando et al., 2022), a previously reported detection method. SARS-CoV-2 RNA detected with EPISENS-S correlated with clinical cases only when using Spearman's method. Our automated COPMAN was shown to be an efficient method for timely and large-scale monitoring of viral RNA, making WBE more feasible for community surveillance.
Collapse
Affiliation(s)
- Shin Hayase
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Yuka Adachi Katayama
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohisa Hatta
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Tomohiro Kuroita
- AdvanSentinel Inc., 3-1-8 Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tohru Natsume
- Robotic Biology Institute, Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yusaku Masago
- Shionogi & Co., Ltd., Pharmaceutical Research Center, 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
52
|
Ashraf MA, Nawaz M, Asif A, Ali MA, Mehmood A, Aziz MW, Shabbir MZ, Mukhtar N, Shabbir MAB, Raza S, Yaqub T. Temporal study of wastewater surveillance from September 2020 to March 2021: an estimation of COVID-19 patients in Lahore, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80855-80862. [PMID: 37308626 DOI: 10.1007/s11356-023-28041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
The first aim of study was to quantify the viral load in the wastewater samples by RT-qPCR testing in Lahore population to estimate the number of patients affected and predict the next resurgence of COVID-19 wave in the city. The second aim of the study was to determine the hotspot areas of Lahore which remained positive more often for virus with high viral load. In this study, n = 420 sewage samples were collected on an average of two weeks intervals from 30 different sewage water disposal stations (14 sampling events) from Sept 2020 to March 2021. RNA was extracted and quantified by RT-qPCR without concentrating the virus in samples. Number of positive disposal sites (7-93%), viral load from sewage samples (100.296 to 103.034), and estimated patients (660-17,030) ranged from low to high according to the surge and restrain of 2nd and 3rd COVID-19 waves in the country. The viral load and estimated patients were reported high in January 2021 and March 2021 which were similar to the peak of 2nd and 3rd waves in Pakistan. Site 18 (Niaz Baig village DS) showed the highest viral load among all sites. Findings of the present study helped to estimate the number of patients and track the resurgence in COVID-19 waves in Lahore particularly, and in Punjab generally. Furthermore, it emphasizes the role of wastewater-based epidemiology to help policymakers strengthen the quarantine measures along with immunization to overcome enteric viral diseases. Local and national stake holders should work in collaboration to improve the environmental hygiene to control the disease.
Collapse
Affiliation(s)
- Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Ali Asif
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Asad Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Adnan Mehmood
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
53
|
Gupta P, Liao S, Ezekiel M, Novak N, Rossi A, LaCross N, Oakeson K, Rohrwasser A. Wastewater Genomic Surveillance Captures Early Detection of Omicron in Utah. Microbiol Spectr 2023; 11:e0039123. [PMID: 37154725 PMCID: PMC10269515 DOI: 10.1128/spectrum.00391-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Wastewater-based epidemiology has emerged as a powerful public health tool to trace new outbreaks, detect trends in infection, and provide an early warning of COVID-19 community spread. Here, we investigated the spread of SARS-CoV-2 infections across Utah by characterizing lineages and mutations detected in wastewater samples. We sequenced over 1,200 samples from 32 sewersheds collected between November 2021 and March 2022. Wastewater sequencing confirmed the presence of Omicron (B.1.1.529) in Utah in samples collected on November 19, 2021, up to 10 days before its corresponding detection via clinical sequencing. Analysis of diversity of SARS-CoV-2 lineages revealed Delta as the most frequently detected lineage during November 2021 (67.71%), but it started declining in December 2021 with the onset of Omicron (B.1.1529) and its sublineage BA.1 (6.79%). The proportion of Omicron increased to ~58% by January 4, 2022, and completely displaced Delta by February 7, 2022. Wastewater genomic surveillance revealed the presence of Omicron sublineage BA.3, a lineage that was not identified from Utah's clinical surveillance. Interestingly, several Omicron-defining mutations began to appear in early November 2021 and increased in prevalence across sewersheds from December to January, aligning with the surge in clinical cases. Our study highlights the importance of tracking epidemiologically relevant mutations in detecting emerging lineages in the early stages of an outbreak. Wastewater genomic epidemiology provides an unbiased representation of community-wide infection dynamics and is an excellent complementary tool to SARS-CoV-2 clinical surveillance, with the potential of guiding public health action and policy decisions. IMPORTANCE SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has had a significant impact on public health. Global emergence of novel SARS-CoV-2 variants, shift to at-home tests, and reduction in clinical tests demonstrate the need for a reliable and effective surveillance strategy to contain COVID-19 spread. Monitoring of SARS-CoV-2 viruses in wastewater is an effective way to trace new outbreaks, establish baseline levels of infection, and complement clinical surveillance efforts. Wastewater genomic surveillance, in particular, can provide valuable insights into the evolution and spread of SARS-CoV-2 variants. We characterized the diversity of SARS-CoV-2 mutations and lineages using whole-genome sequencing to trace the introduction of lineage B.1.1.519 (Omicron) in Utah. Our data showed that Omicron appeared in Utah on November 19, 2021, up to 10 days prior to its detection in patient samples, indicating that wastewater surveillance provides an early warning signal. Our findings are important from a public health perspective as timely identification of communities with high COVID-19 transmission could help guide public health interventions.
Collapse
Affiliation(s)
- Pooja Gupta
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Stefan Liao
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Maleea Ezekiel
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Nicolle Novak
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Alessandro Rossi
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Nathan LaCross
- Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Kelly Oakeson
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| | - Andreas Rohrwasser
- Utah Public Health Laboratory, Utah Department of Health and Human Services, Salt Lake City, Utah, USA
| |
Collapse
|
54
|
Gentry Z, Zhao L, Faust RA, David RE, Norton J, Xagoraraki I. Wastewater surveillance beyond COVID-19: a ranking system for communicable disease testing in the tri-county Detroit area, Michigan, USA. Front Public Health 2023; 11:1178515. [PMID: 37333521 PMCID: PMC10272568 DOI: 10.3389/fpubh.2023.1178515] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been utilized to monitor the disease in the United States through routine national, statewide, and regional monitoring projects. A significant canon of evidence was produced showing that wastewater surveillance is a credible and effective tool for disease monitoring. Hence, the application of wastewater surveillance can extend beyond monitoring SARS-CoV-2 to encompass a diverse range of emerging diseases. This article proposed a ranking system for prioritizing reportable communicable diseases (CDs) in the Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance applications at the Great Lakes Water Authority's Water Reclamation Plant (GLWA's WRP). Methods The comprehensive CD wastewater surveillance ranking system (CDWSRank) was developed based on 6 binary and 6 quantitative parameters. The final ranking scores of CDs were computed by summing the multiplication products of weighting factors for each parameter, and then were sorted based on decreasing priority. Disease incidence data from 2014 to 2021 were collected for the TCDA. Disease incidence trends in the TCDA were endowed with higher weights, prioritizing the TCDA over the state of Michigan. Results Disparities in incidences of CDs were identified between the TCDA and state of Michigan, indicating epidemiological differences. Among 96 ranked CDs, some top ranked CDs did not present relatively high incidences but were prioritized, suggesting that such CDs require significant attention by wastewater surveillance practitioners, despite their relatively low incidences in the geographic area of interest. Appropriate wastewater sample concentration methods are summarized for the application of wastewater surveillance as per viral, bacterial, parasitic, and fungal pathogens. Discussion The CDWSRank system is one of the first of its kind to provide an empirical approach to prioritize CDs for wastewater surveillance, specifically in geographies served by centralized wastewater collection in the area of interest. The CDWSRank system provides a methodological tool and critical information that can help public health officials and policymakers allocate resources. It can be used to prioritize disease surveillance efforts and ensure that public health interventions are targeted at the most potentially urgent threats. The CDWSRank system can be easily adopted to geographical locations beyond the TCDA.
Collapse
Affiliation(s)
- Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Randy E. David
- Wayne State University School of Medicine, Detroit, MI, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
55
|
Gh Jeelani P, Muzammil Munawar S, Khaleel Basha S, Krishna P G, Joshua Sinclair B, Dharshini Jenifer A, Ojha N, Mossa AT, Chidambaram R. Exploring possible strategies for treating SARS-CoV-2 in sewage wastewater: A review of current research and future directions. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100056. [PMID: 37131485 PMCID: PMC10088352 DOI: 10.1016/j.heha.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The advent of acute respiratory coronavirus disease (COVID-19) is convoyed by the shedding of the virus in stool. Although inhalation from person-to-person and aerosol/droplet transmission are the main modes of SARS-Coronavirus-2 (SARS-CoV-2) transmission, currently available evidence indicates the presence of viral RNA in the sewerage wastewater, which highlights the need for more effective corona virus treatment options. In the existing COVID-19 pandemic, a substantial percentage of cases shed SARS-CoV-2 viral RNA in their faeces. Hence the treating this sewerage wastewater with proper surveillance is essential to contain this deadly pathogen from further transmission. Since, the viral disinfectants will not be very effective on sewerage waste as organic matter, and suspended solids in water can protect viruses that adsorb to these particles. More effective methods and measures are needed to prevent this virus from spreading. This review will explore some potential methods to treat the SARS-CoV-2 infected sewerage wastewater, current research and future directions.
Collapse
Affiliation(s)
- Peerzada Gh Jeelani
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Syed Muzammil Munawar
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - S Khaleel Basha
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - Gopi Krishna P
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - A Dharshini Jenifer
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Nupur Ojha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036 Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St 'Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Ramalingam Chidambaram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu, India
| |
Collapse
|
56
|
Jiang G, Liu Y, Tang S, Kitajima M, Haramoto E, Arora S, Choi PM, Jackson G, D'Aoust PM, Delatolla R, Zhang S, Guo Y, Wu J, Chen Y, Sharma E, Prosun TA, Zhao J, Kumar M, Honda R, Ahmed W, Meiman J. Moving forward with COVID-19: Future research prospects of wastewater-based epidemiology methodologies and applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100458. [PMID: 37034453 PMCID: PMC10065412 DOI: 10.1016/j.coesh.2023.100458] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Chaoyang District, Beijing 100021, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Phil M Choi
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanjila Alam Prosun
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiawei Zhao
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Jon Meiman
- Wisconsin Department of Health Services, Madison, WI 53701, USA
| |
Collapse
|
57
|
Maida CM, Tramuto F, Giammanco GM, Palermo R, Priano W, De Grazia S, Purpari G, La Rosa G, Suffredini E, Lucentini L, Palermo M, Pollina Addario W, Graziano G, Immordino P, Vitale F, Mazzucco W. Wastewater-Based Epidemiology as a Tool to Detect SARS-CoV-2 Circulation at the Community Level: Findings from a One-Year Wastewater Investigation Conducted in Sicily, Italy. Pathogens 2023; 12:748. [PMID: 37375438 PMCID: PMC10305655 DOI: 10.3390/pathogens12060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Wastewater-based epidemiology is a well-established tool for detecting and monitoring the spread of enteric pathogens and the use of illegal drugs in communities in real time. Since only a few studies in Italy have investigated the correlation between SARS-CoV-2 in wastewater and the prevalence of COVID-19 cases from clinical testing, we conducted a one-year wastewater surveillance study in Sicily to correlate the load of SARS-CoV-2 RNA in wastewater and the reported cumulative prevalence of COVID-19 in 14 cities from October 2021 to September 2022. Furthermore, we investigated the role of SARS-CoV-2 variants and subvariants in the increase in the number of SARS-CoV-2 infections. Our findings showed a significant correlation between SARS-CoV-2 RNA load in wastewater and the number of active cases reported by syndromic surveillance in the population. Moreover, the correlation between SARS-CoV-2 in wastewater and the active cases remained high when a lag of 7 or 14 days was considered. Finally, we attributed the epidemic waves observed to the rapid emergence of the Omicron variant and the BA.4 and BA.5 subvariants. We confirmed the effectiveness of wastewater monitoring as a powerful epidemiological proxy for viral variant spread and an efficient complementary method for surveillance.
Collapse
Affiliation(s)
- Carmelo Massimo Maida
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Fabio Tramuto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Giovanni Maurizio Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Roberta Palermo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Walter Priano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Simona De Grazia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Marinuzzi, 90129 Palermo, Italy;
| | - Giuseppina La Rosa
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Luca Lucentini
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy; (G.L.R.)
| | - Mario Palermo
- Regional Health Authority of Sicily, Via Vaccaro 5, 90145 Palermo, Italy
| | | | - Giorgio Graziano
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | - Palmira Immordino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| | | | - Walter Mazzucco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
- Clinical Epidemiology Unit, Regional Reference Laboratory of Western Sicily for the Emergence of COVID-19, University Hospital “P. Giaccone”, Via del Vespro 133, 90127 Palermo, Italy
| |
Collapse
|
58
|
Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, Podadera A, Ng KKS, Porter LA, Tong Y, Dixon JC, Menard SL, Seth R, McKay RM. Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Front Public Health 2023; 11:1139423. [PMID: 37265515 PMCID: PMC10230041 DOI: 10.3389/fpubh.2023.1139423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Wastewater surveillance has gained traction during the COVID-19 pandemic as an effective and non-biased means to track community infection. While most surveillance relies on samples collected at municipal wastewater treatment plants, surveillance is more actionable when samples are collected "upstream" where mitigation of transmission is tractable. This report describes the results of wastewater surveillance for SARS-CoV-2 at residence halls on a university campus aimed at preventing outbreak escalation by mitigating community spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2 in a non-clinical setting. Passive sampling devices were deployed in sewer laterals originating from residence halls at a frequency of twice weekly during fall 2021 as the Delta variant of concern continued to circulate across North America. A positive detection as part of routine sampling in late November 2021 triggered daily monitoring and further isolated the signal to a single wing of one residence hall. Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive days led to a coordinated rapid antigen testing campaign targeting the residence hall occupants and the identification and isolation of infected individuals. With knowledge of the number of individuals testing positive for COVID-19, fecal shedding rates were estimated to range from 3.70 log10 gc ‧ g feces-1 to 5.94 log10 gc ‧ g feces-1. These results reinforce the efficacy of wastewater surveillance as an early indicator of infection in congregate living settings. Detections can trigger public health measures ranging from enhanced communications to targeted coordinated testing and quarantine.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Abdul Monem Al Riahi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr Labak
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Jess C. Dixon
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | | | - Rajesh Seth
- Civil and Environmental Engineering, University of Windsor, Windsor, ON, Canada
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
59
|
Lanzarini NM, Mannarino CF, Ribeiro AVC, Prado T, Vahia LS, Siqueira MM, Resende PC, Quintaes BR, Miagostovich MP. SARS-CoV-2 surveillance-based on municipal solid waste leachate in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67368-67377. [PMID: 37101215 PMCID: PMC10132925 DOI: 10.1007/s11356-023-27019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Municipal solid waste leachate-based epidemiology is an alternative viral tracking tool that applies fresh truck leachate as an early warning of public health emergencies. This study aimed to investigate the potential of SARS-CoV-2 surveillance based on solid waste fresh truck leachate. Twenty truck leachate samples were ultracentrifugated, nucleic acid extracted, and real-time RT-qPCR SARS-CoV-2 N1/N2 applied. Viral isolation, variant of concern (N1/N2) inference, and whole genome sequencing were also performed. SARS-CoV-2 was detected on 40% (8/20) of samples, with a concentration from 2.89 to 6.96 RNA Log10 100 mL-1. The attempt to isolate SARS-CoV-2 and recover the whole genome was not successful; however, positive samples were characterized as possible pre-variant of concern (pre-VOC), VOC Alpha (B.1.1.7) and variant of interest Zeta (P.2). This approach revealed an alternative tool to infer SARS-CoV-2 in the environment and may help the management of local surveillance, health, and social policies.
Collapse
Affiliation(s)
- Natália Maria Lanzarini
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Camille Ferreira Mannarino
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Leonardo Saboia Vahia
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
60
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Green BM, Kara-Murdoch F, Swift CM, Hazen TC. Decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA in raw sewage from university dormitories. Front Microbiol 2023; 14:1144026. [PMID: 37187532 PMCID: PMC10175580 DOI: 10.3389/fmicb.2023.1144026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA has been frequently detected in sewage from many university dormitories to inform public health decisions during the COVID-19 pandemic, a clear understanding of SARS-CoV-2 RNA persistence in site-specific raw sewage is still lacking. To investigate the SARS-CoV-2 RNA persistence, a field trial was conducted in the University of Tennessee dormitories raw sewage, similar to municipal wastewater. Methods The decay of enveloped SARS-CoV-2 RNA and non-enveloped Pepper mild mottle virus (PMMoV) RNA was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in raw sewage at 4°C and 20°C. Results Temperature, followed by the concentration level of SARS-CoV-2 RNA, was the most significant factors that influenced the first-order decay rate constants (k) of SARS-CoV-2 RNA. The mean k values of SARS-CoV-2 RNA were 0.094 day-1 at 4°C and 0.261 day-1 at 20°C. At high-, medium-, and low-concentration levels of SARS-CoV-2 RNA, the mean k values were 0.367, 0.169, and 0.091 day-1, respectively. Furthermore, there was a statistical difference between the decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA at different temperature conditions. Discussion The first decay rates for both temperatures were statistically comparable for SARS-CoV-2 RNA, which showed sensitivity to elevated temperatures but not for PMMoV RNA. This study provides evidence for the persistence of viral RNA in site-specific raw sewage at different temperature conditions and concentration levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - K. T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Department of Facilities Services, The University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
61
|
Barnes K, Levy J, Andersen K, Gauld J, Rigby J, Kanjerwa O, Uzzell C, Chilupsya C, Anscombe C, Tomkins-Tinch C, Mbeti O, Cairns E, Thole H, McSweeney S, Chibwana M, Ashton P, Jere K, Meschke J, Diggle P, Cornick J, Jambo K, Kawalazira G, Paterson S, Nyirenda T, Feasey N, Chilima B. Utilizing river and wastewater as a SARS-CoV-2 surveillance tool to predict trends and identify variants of concern in settings with limited formal sewage systems. RESEARCH SQUARE 2023:rs.3.rs-2801767. [PMID: 37090541 PMCID: PMC10120776 DOI: 10.21203/rs.3.rs-2801767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The COVID-19 pandemic continues to impact health systems globally and robust surveillance is critical for pandemic control, however not all countries can sustain community surveillance programs. Wastewater surveillance has proven valuable in high-income settings, but little is known about how river and informal sewage in low-income countries can be used for environmental surveillance of SARS-CoV-2. In Malawi, a country with limited community-based COVID-19 testing capacity, we explored the utility of rivers and wastewater for SARS-CoV-2 surveillance. From May 2020 - January 2022, we collected water from up to 112 river or informal sewage sites/month, detecting SARS-CoV-2 in 8.3% of samples. Peak SARS-CoV-2 detection in water samples predated peaks in clinical cases. Sequencing of water samples identified the Beta, Delta, and Omicron variants, with Delta and Omicron detected well in advance of detection in patients. Our work highlights wastewater can be used for detecting emerging waves, identifying variants of concern and function as an early warning system in settings with no formal sewage systems.
Collapse
Affiliation(s)
| | | | - Kristian Andersen
- Department of Immunology and Microbiology The Scripps Research Institute La Jolla CA USA
| | - Jillian Gauld
- Institute for Disease Modeling, Bill & Melinda Gates Foundation
| | - Jonathan Rigby
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Chisomo Chilupsya
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | - Edward Cairns
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool
| | - Herbert Thole
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences
| | - Shannon McSweeney
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Marah Chibwana
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences
| | | | | | | | | | - Jennifer Cornick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool
| | | | | | | | - Tonney Nyirenda
- Department of Pathology, Kamuzu University of Health Sciences
| | | | | |
Collapse
|
62
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
63
|
Langeveld J, Schilperoort R, Heijnen L, Elsinga G, Schapendonk CEM, Fanoy E, de Schepper EIT, Koopmans MPG, de Graaf M, Medema G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161196. [PMID: 36581271 PMCID: PMC9791714 DOI: 10.1016/j.scitotenv.2022.161196] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 05/12/2023]
Abstract
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Collapse
Affiliation(s)
- Jeroen Langeveld
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands.
| | - Remy Schilperoort
- Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Claudia E M Schapendonk
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ewout Fanoy
- GGD Department public health, municipality Rotterdam, Schiedamsedijk 95, 3000 LP Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Natural resources, Michigan State University, 1405 S Harrison Rd, East-Lansing 48823, MI, USA
| |
Collapse
|
64
|
Zhao L, Zou Y, David RE, Withington S, McFarlane S, Faust RA, Norton J, Xagoraraki I. Simple methods for early warnings of COVID-19 surges: Lessons learned from 21 months of wastewater and clinical data collection in Detroit, Michigan, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161152. [PMID: 36572285 PMCID: PMC9783093 DOI: 10.1016/j.scitotenv.2022.161152] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology (WBE) has drawn great attention since the Coronavirus disease 2019 (COVID-19) pandemic, not only due to its capability to circumvent the limitations of traditional clinical surveillance, but also due to its potential to forewarn fluctuations of disease incidences in communities. One critical application of WBE is to provide "early warnings" for upcoming fluctuations of disease incidences in communities which traditional clinical testing is incapable to achieve. While intricate models have been developed to determine early warnings based on wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly applicable methods for health departments and partner agencies to implement. Our purpose in this study is to develop and evaluate such early-warning methods and clinical-case peak-detection methods based on WBE data to mount an informed public health response. Throughout an extended wastewater surveillance period across Detroit, MI metropolitan area (the entire study period is from September 2020 to May 2022) we designed eight early-warning methods (three real-time and five post-factum). Additionally, we designed three peak-detection methods based on clinical epidemiological data. We demonstrated the utility of these methods for providing early warnings for COVID-19 incidences, with their counterpart accuracies evaluated by hit rates. "Hit rates" were defined as the number of early warning dates (using wastewater surveillance data) that captured defined peaks (using clinical epidemiological data) divided by the total number of early warning dates. Hit rates demonstrated that the accuracy of both real-time and post-factum methods could reach 100 %. Furthermore, the results indicate that the accuracy was influenced by approaches to defining peaks of disease incidence. The proposed methods herein can assist health departments capitalizing on WBE data to assess trends and implement quick public health responses to future epidemics. Besides, this study elucidated critical factors affecting early warnings based on WBE amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Randy E David
- Detroit Health Department, 100 Mack Ave, Detroit, MI 48201, USA
| | | | - Stacey McFarlane
- Macomb County Health Division, 43525 Elizabeth Rd, Mount Clemens, MI 48043, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI 48341, USA
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA.
| |
Collapse
|
65
|
Ahmed W, Bivins A, Stephens M, Metcalfe S, Smith WJM, Sirikanchana K, Kitajima M, Simpson SL. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161023. [PMID: 36539100 PMCID: PMC9759456 DOI: 10.1016/j.scitotenv.2022.161023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 05/07/2023]
Abstract
The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Mikayla Stephens
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | | |
Collapse
|
66
|
Van Poelvoorde LAE, Picalausa C, Gobbo A, Verhaegen B, Lesenfants M, Herman P, Van Hoorde K, Roosens NHC. Development of a Droplet Digital PCR to Monitor SARS-CoV-2 Omicron Variant BA.2 in Wastewater Samples. Microorganisms 2023; 11:microorganisms11030729. [PMID: 36985302 PMCID: PMC10059707 DOI: 10.3390/microorganisms11030729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Wastewater-based surveillance can be used as a complementary method to other SARS-CoV-2 surveillance systems. It allows the emergence and spread of infections and SARS-CoV-2 variants to be monitored in time and place. This study presents an RT-ddPCR method that targets the T19I amino acid mutation in the spike protein of the SARS-CoV-2 genomes, which is specific to the BA.2 variant (omicron). The T19I assay was evaluated both in silico and in vitro for its inclusivity, sensitivity, and specificity. Moreover, wastewater samples were used as a proof of concept to monitor and quantify the emergence of the BA.2 variant from January until May 2022 in the Brussels-Capital Region which covers a population of more than 1.2 million inhabitants. The in silico analysis showed that more than 99% of the BA.2 genomes could be characterized using the T19I assay. Subsequently, the sensitivity and specificity of the T19I assay were successfully experimentally evaluated. Thanks to our specific method design, the positive signal from the mutant probe and wild-type probe of the T19I assay was measured and the proportion of genomes with the T19I mutation, characteristic of the BA.2 mutant, compared to the entire SARS-CoV-2 population was calculated. The applicability of the proposed RT-ddPCR method was evaluated to monitor and quantify the emergence of the BA.2 variant over time. To validate this assay as a proof of concept, the measurement of the proportion of a specific circulating variant with genomes containing the T19I mutation in comparison to the total viral population was carried out in wastewater samples from wastewater treatment plants in the Brussels-Capital Region in the winter and spring of 2022. This emergence and proportional increase in BA.2 genomes correspond to what was observed in the surveillance using respiratory samples; however, the emergence was observed slightly earlier, which suggests that wastewater sampling could be an early warning system and could be an interesting alternative to extensive human testing.
Collapse
Affiliation(s)
| | - Corinne Picalausa
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | - Andrea Gobbo
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | | - Marie Lesenfants
- Epidemiology of Infectious Diseases, Sciensano, 1050 Brussels, Belgium
| | | | | | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
67
|
Bhattacharya S, Abhishek K, Samiksha S, Sharma P. Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100221. [PMID: 36818681 PMCID: PMC9762044 DOI: 10.1016/j.hazadv.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/18/2023]
Abstract
This paper explains the transmission of SARS-CoV and influences of several environmental factors in the transmission process. The article highlighted several methods of collection, sampling and monitoring/estimation as well as surveillance tool for detecting SARS-CoV in wastewater streams. In this context, WBE (Wastewater based epidemiology) is found to be the most effective surveillance tool. Several methods of genomic sequencing are discussed in the paper, which are applied in WBE, like qPCR-based wastewater testing, metagenomics-based analysis, next generation sequencing etc. Additionally, several types of biosensors (colorimetric biosensor, mobile phone-based biosensors, and nanomaterials-based biosensors) showed promising results in sensing SARS-CoV in wastewater. Further, this review paper outlined the gaps in assessing the factors responsible for transmission and challenges in detection and monitoring along with the remediation and disinfection methods of this virus in wastewater. Various methods of disinfection of SARS-CoV-2 in wastewater are discussed (primary, secondary, and tertiary phases) and it is found that a suite of disinfection methods can be used for complete disinfection/removal of the virus. Application of ultraviolet light, ozone and chlorine-based disinfectants are also discussed in the context of treatment methods. This study calls for continuous efforts to gather more information about the virus through continuous monitoring and analyses and to address the existing gaps and identification of the most effective tool/ strategy to prevent SARS-CoV-2 transmission. Wastewater surveillance can be very useful in effective surveillance of future pandemics and epidemics caused by viruses, especially after development of new technologies in detecting and disinfecting viral pathogens more effectively.
Collapse
Affiliation(s)
- Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Kumar Abhishek
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
- Department of Environment Forest and Climate Change, Government of Bihar, Patna, 800015, Bihar, India
| | - Shilpi Samiksha
- Bihar State Pollution Control Board, Patna, 800015, Bihar, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| |
Collapse
|
68
|
Wannigama DL, Amarasiri M, Hongsing P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Phattharapornjaroen P, S M AHR, Fernandez S, Huang AT, Kueakulpattana N, Tanasatitchai C, Vatanaprasan P, Saethang T, Luk-In S, Storer RJ, Ounjai P, Ragupathi NKD, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Hirankarn N, Higgins PG, Kicic A, Chatsuwan T, McLellan AD, Abe S. Multiple traces of monkeypox detected in non-sewered wastewater with sparse sampling from a densely populated metropolitan area in Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159816. [PMID: 36461562 PMCID: PMC9620434 DOI: 10.1016/j.scitotenv.2022.159816] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/10/2023]
Abstract
The monkeypox virus is excreted in the feces of infected individuals. Therefore, there is an interest in using viral load detection in wastewater for sentinel early surveillance at a community level and as a complementary approach to syndromic surveillance. We collected wastewater from 63 sewered and non-sewered locations in Bangkok city center between May and August 2022. Monkeypox viral DNA copy numbers were quantified using real-time polymerase chain reaction (PCR) and confirmed positive by Sanger sequencing. Monkeypox viral DNA was first detected in wastewater from the second week of June 2022, with a mean copy number of 16.4 copies/ml (n = 3). From the first week of July, the number of viral DNA copies increased to a mean copy number of 45.92 copies/ml. Positive samples were Sanger sequenced and confirmed the presence of the monkeypox virus. Our study is the first to detect monkeypox viral DNA in wastewater from various locations within Thailand. Results suggest that this could be a complementary source for detecting viral DNA and predicting upcoming outbreaks.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia; Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, United Kingdom; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia; Statistics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand; Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S M
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Naris Kueakulpattana
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanikan Tanasatitchai
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia; Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia; School of Population Health, Curtin University, Bentley 6102, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands 6009, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand; Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9010, Otago, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan; Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| |
Collapse
|
69
|
Perez-Zabaleta M, Archer A, Khatami K, Jafferali MH, Nandy P, Atasoy M, Birgersson M, Williams C, Cetecioglu Z. Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: What lessons can be learned from the Swedish perspective? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160023. [PMID: 36356735 PMCID: PMC9640212 DOI: 10.1016/j.scitotenv.2022.160023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study presents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples). This spans five major SARS-CoV-2 waves, where WBE data provided early warning signals for each wave. Further, the measured SARS-CoV-2 content in the wastewater correlated significantly with the level of positive COVID-19 tests (r = 0.86; p << 0.0001) measured by widespread testing of the population. Moreover, as a proof-of-concept, six SARS-CoV-2 variants of concern were monitored using hpPCR assay, demonstrating that variants can be traced through wastewater monitoring. During this long-term surveillance, two sampling protocols, two RNA concentration/extraction methods, two calculation approaches, and normalization to the RNA virus Pepper mild mottle virus (PMMoV) were evaluated. In addition, a study of storage conditions was performed, demonstrating that the decay of viral RNA was significantly reduced upon the addition of glycerol to the wastewater before storage at -80 °C. Our results provide valuable information that can facilitate the incorporation of WBE as a prediction tool for possible future outbreaks of SARS-CoV-2 and preparations for future pandemics.
Collapse
Affiliation(s)
- Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Kasra Khatami
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Mohammed Hakim Jafferali
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Prachi Nandy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden.
| |
Collapse
|
70
|
Lott MEJ, Norfolk WA, Dailey CA, Foley AM, Melendez-Declet C, Robertson MJ, Rathbun SL, Lipp EK. Direct wastewater extraction as a simple and effective method for SARS-CoV-2 surveillance and COVID-19 community-level monitoring. FEMS MICROBES 2023; 4:xtad004. [PMID: 37333441 PMCID: PMC10117872 DOI: 10.1093/femsmc/xtad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 10/22/2023] Open
Abstract
Wastewater surveillance has proven to be an effective tool to monitor the transmission and emergence of infectious agents at a community scale. Workflows for wastewater surveillance generally rely on concentration steps to increase the probability of detection of low-abundance targets, but preconcentration can substantially increase the time and cost of analyses while also introducing additional loss of target during processing. To address some of these issues, we conducted a longitudinal study implementing a simplified workflow for SARS-CoV-2 detection from wastewater, using a direct column-based extraction approach. Composite influent wastewater samples were collected weekly for 1 year between June 2020 and June 2021 in Athens-Clarke County, Georgia, USA. Bypassing any concentration step, low volumes (280 µl) of influent wastewater were extracted using a commercial kit, and immediately analyzed by RT-qPCR for the SARS-CoV-2 N1 and N2 gene targets. SARS-CoV-2 viral RNA was detected in 76% (193/254) of influent samples, and the recovery of the surrogate bovine coronavirus was 42% (IQR: 28%, 59%). N1 and N2 assay positivity, viral concentration, and flow-adjusted daily viral load correlated significantly with per-capita case reports of COVID-19 at the county-level (ρ = 0.69-0.82). To compensate for the method's high limit of detection (approximately 106-107 copies l-1 in wastewater), we extracted multiple small-volume replicates of each wastewater sample. With this approach, we detected as few as five cases of COVID-19 per 100 000 individuals. These results indicate that a direct-extraction-based workflow for SARS-CoV-2 wastewater surveillance can provide informative and actionable results.
Collapse
Affiliation(s)
- Megan E J Lott
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - William A Norfolk
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Cody A Dailey
- Department of Epidemiology and Biostatistics, University of Georgia, 101 Buck Road, Athens, GA 30606, United States
| | - Amelia M Foley
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Carolina Melendez-Declet
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Megan J Robertson
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Stephen L Rathbun
- Department of Epidemiology and Biostatistics, University of Georgia, 101 Buck Road, Athens, GA 30606, United States
| | - Erin K Lipp
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
71
|
Naughton CC, Roman FA, Alvarado AGF, Tariqi AQ, Deeming MA, Kadonsky KF, Bibby K, Bivins A, Medema G, Ahmed W, Katsivelis P, Allan V, Sinclair R, Rose JB. Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS MICROBES 2023; 4:xtad003. [PMID: 37333436 PMCID: PMC10117741 DOI: 10.1093/femsmc/xtad003] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 08/10/2023] Open
Abstract
A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.
Collapse
Affiliation(s)
- Colleen C Naughton
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Fernando A Roman
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Ana Grace F Alvarado
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Arianna Q Tariqi
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Matthew A Deeming
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Krystin F Kadonsky
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
- Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Michigan State University, 1405 S Harrison Rd, East-Lansing, MI 48823, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | | | - Vajra Allan
- PATH 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, United States
| | - Ryan Sinclair
- Schools of Public Health and Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
72
|
Kotlarz N, Holcomb DA, Tanvir Pasha ABM, Reckling S, Kays J, Lai YC, Daly S, Palani S, Bailey E, Guidry VT, Christensen A, Berkowitz S, Hoppin JA, Mitasova H, Engel LS, Reyes FLDL, Harris A. Timing and Trends for Municipal Wastewater, Lab-Confirmed Case, and Syndromic Case Surveillance of COVID-19 in Raleigh, North Carolina. Am J Public Health 2023; 113:79-88. [PMID: 36356280 PMCID: PMC9755929 DOI: 10.2105/ajph.2022.307108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
Objectives. To compare 4 COVID-19 surveillance metrics in a major metropolitan area. Methods. We analyzed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater influent and primary solids in Raleigh, North Carolina, from April 10 through December 13, 2020. We compared wastewater results with lab-confirmed COVID-19 cases and syndromic COVID-like illness (CLI) cases to answer 3 questions: (1) Did they correlate? (2) What was the temporal alignment of the different surveillance systems? (3) Did periods of significant change (i.e., trends) align? Results. In the Raleigh sewershed, wastewater influent, wastewater primary solids, lab-confirmed cases, and CLI were strongly or moderately correlated. Trends in lab-confirmed cases and wastewater influent were observed earlier, followed by CLI and, lastly, wastewater primary solids. All 4 metrics showed sustained increases in COVID-19 in June, July, and November 2020 and sustained decreases in August and September 2020. Conclusions. In a major metropolitan area in 2020, the timing of and trends in municipal wastewater, lab-confirmed case, and syndromic case surveillance of COVID-19 were in general agreement. Public Health Implications. Our results provide evidence for investment in SARS-CoV-2 wastewater and CLI surveillance to complement information provided through lab-confirmed cases. (Am J Public Health. 2023;113(1):79-88. https://doi.org/10.2105/AJPH.2022.307108).
Collapse
Affiliation(s)
- Nadine Kotlarz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - David A Holcomb
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - A B M Tanvir Pasha
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Stacie Reckling
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Judith Kays
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Yi-Chun Lai
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sean Daly
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sivaranjani Palani
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Erika Bailey
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Virginia T Guidry
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Ariel Christensen
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Steven Berkowitz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Jane A Hoppin
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Helena Mitasova
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Lawrence S Engel
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Francis L de Los Reyes
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Angela Harris
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| |
Collapse
|
73
|
Bowes DA, Driver EM, Kraberger S, Fontenele RS, Holland LA, Wright J, Johnston B, Savic S, Engstrom Newell M, Adhikari S, Kumar R, Goetz H, Binsfeld A, Nessi K, Watkins P, Mahant A, Zevitz J, Deitrick S, Brown P, Dalton R, Garcia C, Inchausti R, Holmes W, Tian XJ, Varsani A, Lim ES, Scotch M, Halden RU. Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: a population-based study. THE LANCET. MICROBE 2023; 4:e29-e37. [PMID: 36493788 PMCID: PMC9725778 DOI: 10.1016/s2666-5247(22)00289-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to showcase how wastewater monitoring, once established and accepted by a community, could readily be adapted to respond to newly emerging public health priorities. METHODS In this population-based study in Greater Tempe, Arizona, an existing opioid monitoring WBE network was modified to track SARS-CoV-2 transmission through the analysis of 11 contiguous wastewater catchments. Flow-weighted and time-weighted 24 h composite samples of untreated wastewater were collected at each sampling location within the wastewater collection system for 3 days each week (Tuesday, Thursday, and Saturday) from April 1, 2020, to March 31, 2021 (Area 7 and Tempe St Luke's Hospital were added in July, 2020). Reverse transcription quantitative PCR targeting the E gene of SARS-CoV-2 isolated from the wastewater samples was used to determine the number of genome copies in each catchment. Newly detected clinical cases of COVID-19 by zip code within the City of Tempe, Arizona were reported daily by the Arizona Department of Health Services from May 23, 2020. Maricopa County-level new positive cases, COVID-19-related hospitalisations, deaths, and long-term care facility deaths per day are publicly available and were collected from the Maricopa County Epidemic Curve Dashboard. Viral loads of SARS-CoV-2 (genome copies per day) measured in wastewater from each catchment were aggregated at the zip code level and city level and compared with the clinically reported data using root mean square error to investigate early warning capability of WBE. FINDINGS Between April 1, 2020, and March 31, 2021, 1556 wastewater samples were analysed. Most locations showed two waves in viral levels peaking in June, 2020, and December, 2020-January, 2021. An additional wave of viral load was seen in catchments close to Arizona State University (Areas 6 and 7) at the beginning of the fall (autumn) semester in late August, 2020. Additionally, an early infection hotspot was detected in the Town of Guadalupe, Arizona, starting the week of May 4, 2020, that was successfully mitigated through targeted interventions. A shift in early warning potential of WBE was seen, from a leading (mean of 8·5 days [SD 2·1], June, 2020) to a lagging (-2·0 days [1·4], January, 2021) indicator compared with newly reported clinical cases. INTERPRETATION Lessons learned from leveraging an existing neighbourhood-level WBE reporting dashboard include: (1) community buy-in is key, (2) public data sharing is effective, and (3) sub-ZIP-code (postal code) data can help to pinpoint populations at risk, track intervention success in real time, and reveal the effect of local clinical testing capacity on WBE's early warning capability. This successful demonstration of transitioning WBE efforts from opioids to COVID-19 encourages an expansion of WBE to tackle newly emerging and re-emerging threats (eg, mpox and polio). FUNDING National Institutes of Health's RADx-rad initiative, National Science Foundation, Virginia G Piper Charitable Trust, J M Kaplan Fund, and The Flinn Foundation.
Collapse
Affiliation(s)
- Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Erin M Driver
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Simona Kraberger
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Rafaela S Fontenele
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - LaRinda A Holland
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Jillian Wright
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Bridger Johnston
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Sonja Savic
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Melanie Engstrom Newell
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sangeet Adhikari
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rahul Kumar
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Hanah Goetz
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Allison Binsfeld
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Kaxandra Nessi
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Payton Watkins
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Akhil Mahant
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Jacob Zevitz
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | | | | | - Rosa Inchausti
- Strategic Management and Diversity Office, Tempe, AZ, USA
| | - Wydale Holmes
- Strategic Management and Diversity Office, Tempe, AZ, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Arvind Varsani
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Efrem S Lim
- The Biodesign Institute Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Matthew Scotch
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Global Futures Laboratory, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
74
|
Cancela F, Ramos N, Smyth DS, Etchebehere C, Berois M, Rodríguez J, Rufo C, Alemán A, Borzacconi L, López J, González E, Botto G, Thornhill SG, Mirazo S, Trujillo M. Wastewater surveillance of SARS-CoV-2 genomic populations on a country-wide scale through targeted sequencing. PLoS One 2023; 18:e0284483. [PMID: 37083889 PMCID: PMC10121012 DOI: 10.1371/journal.pone.0284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Claudia Etchebehere
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mabel Berois
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jesica Rodríguez
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alicia Alemán
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julieta López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth González
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Germán Botto
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Starla G Thornhill
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Santiago Mirazo
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, New York, United States of America
| |
Collapse
|
75
|
McMinn BR, Korajkic A, Pemberton AC, Kelleher J, Ahmed W, Villegas EN, Oshima K. Assessment of two volumetrically different concentration approaches to improve sensitivities for SARS-CoV-2 detection during wastewater monitoring. J Virol Methods 2023; 311:114645. [PMID: 36332716 PMCID: PMC9624105 DOI: 10.1016/j.jviromet.2022.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Wastewater monitoring for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the virus responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has highlighted the need for methodologies capable of assessing viral prevalence during periods of low population infection. To address this need, two volumetrically different, methodologically similar concentration approaches were compared for their abilities to detect viral nucleic acid and infectious SARS-CoV-2 signal from primary influent samples. For Method 1, 2 L of SARS-CoV-2 seeded wastewater was evaluated using a dead-end hollow fiber ultrafilter (D-HFUF) for primary concentration, followed by the CP Select™ for secondary concentration. For Method 2, 100 mL of SARS-CoV-2 seeded wastewater was evaluated using the CP Select™ procedure. Following D-HFUF concentration (Method 1), significantly lower levels of infectious SARS-CoV-2 were lost (P value range: 0.0398-0.0027) compared to viral gene copy (GC) levels detected by the US Centers for Disease Control (CDC) N1 and N2 reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. Subsamples at different steps in the concentration process were also taken to better characterize the losses of SARS-CoV-2 during the concentration process. During the centrifugation step (prior to CP Select™ concentration), significantly higher losses (P value range: 0.0003 to <0.0001) occurred for SARS-CoV-2 GC levels compared to infectious virus for Method 1, while between the methods, significantly higher infectious viral losses were observed for Method 2 (P = 0.0002). When analyzing overall recovery of endogenous SARS-CoV-2 in wastewater samples, application of Method 1 improved assay sensitivities (P = <0.0001) compared with Method 2; this was especially evident during periods of lower COVID-19 case rates within the sewershed. This study describes a method which can successfully concentrate infectious SARS-CoV-2 and viral RNA from wastewater. Moreover, we demonstrated that large volume wastewater concentration provides additional sensitivity needed to improve SARS-CoV-2 detection, especially during low levels of community disease prevalence.
Collapse
Affiliation(s)
- Brian R. McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States,Corresponding author
| | - Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Adin C. Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Eric N. Villegas
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Kevin Oshima
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
76
|
Li Y, Miyani B, Zhao L, Spooner M, Gentry Z, Zou Y, Rhodes G, Li H, Kaye A, Norton J, Xagoraraki I. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158350. [PMID: 36041621 PMCID: PMC9419442 DOI: 10.1016/j.scitotenv.2022.158350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Wastewater-based epidemiology (WBE) has been suggested as a useful tool to predict the emergence and investigate the extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we screened appropriate population biomarkers for wastewater SARS-CoV-2 normalization and compared the normalized SARS-CoV-2 values across locations with different demographic characteristics in southeastern Michigan. Wastewater samples were collected between December 2020 and October 2021 from nine neighborhood sewersheds in the Detroit Tri-County area. Using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR), concentrations of N1 and N2 genes in the studied sites were quantified, with N1 values ranging from 1.92 × 102 genomic copies/L to 6.87 × 103 gc/L and N2 values ranging from 1.91 × 102 gc/L to 6.45 × 103 gc/L. The strongest correlations were observed with between cumulative COVID-19 cases per capita (referred as COVID-19 incidences thereafter), and SARS-CoV-2 concentrations normalized by total Kjeldahl nitrogen (TKN), creatinine, 5-hydroxyindoleacetic acid (5-HIAA) and xanthine when correlating the per capita SARS-CoV-2 and COVID-19 incidences. When SARS-CoV-2 concentrations in wastewater were normalized and compared with COVID-19 incidences, the differences between neighborhoods of varying demographics were reduced as compared to differences observed when comparing non-normalized SARS-CoV-2 with COVID-19 cases. This indicates when studying the disease burden in communities of different demographics, accurate per capita estimation is of great importance. The study suggests that monitoring selected water quality parameters or biomarkers, along with RNA concentrations in wastewater, will allow adequate data normalization for spatial comparisons, especially in areas where detailed sanitary sewage flows and contributing populations in the catchment areas are not available. This opens the possibility of using WBE to assess community infections in rural areas or the developing world where the contributing population of a sample could be unknown.
Collapse
Affiliation(s)
- Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America.
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Maddie Spooner
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Zach Gentry
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, United States of America
| | - Andrew Kaye
- CDM Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| |
Collapse
|
77
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
78
|
Eaton CJ, Coxon S, Pattis I, Chappell A, Hewitt J, Gilpin BJ. A Framework for Public Health Authorities to Evaluate Health Determinants for Wastewater-Based Epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125001. [PMID: 36520537 PMCID: PMC9754092 DOI: 10.1289/ehp11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is rapidly developing as a powerful public health tool. It can provide information about a wide range of health determinants (HDs), including community exposure to environmental hazards, trends in consumption of licit and illicit substances, spread of infectious diseases, and general community health. As such, the list of possible candidate HDs for WBE is almost limitless. Consequently, a means to evaluate and prioritize suitable candidates for WBE is useful, particularly for public health authorities, who often face resource constraints. OBJECTIVES We have developed a framework to assist public health authorities to decide what HDs may be appropriate for WBE and what biomarkers could be used. This commentary reflects the experience of the authors, who work at the interface of research and public health implementation. DISCUSSION To be suitable for WBE, a candidate HD should address a public health or scientific issue that would benefit from better understanding at the population level. For HDs where information on individual exposures or stratification by population subgroups is required, WBE is less suitable. Where other methodologies are already used to monitor the candidate HD, consideration must be given to whether WBE could provide better or complementary information to the current approach. An essential requirement of WBE is a biomarker specific for the candidate HD. A biomarker in this context refers to any human-excreted chemical or biological that could act as an indicator of consumption or exposure to an environmental hazard or of the human health state. Suitable biomarkers should meet several criteria outlined in this commentary, which requires background knowledge for both the biomarker and the HD. An evaluation tree summarizing key considerations for public health authorities when assessing the suitability of candidate HDs for WBE and an example evaluation are presented. https://doi.org/10.1289/EHP11115.
Collapse
Affiliation(s)
- Carla J. Eaton
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Sarah Coxon
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Andrew Chappell
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd., Porirua, New Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| |
Collapse
|
79
|
Dimitrakopoulos L, Kontou A, Strati A, Galani A, Kostakis M, Kapes V, Lianidou E, Thomaidis N, Markou A. Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100224. [PMID: 37520924 PMCID: PMC9222221 DOI: 10.1016/j.cscee.2022.100224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
The ongoing pandemic caused by the emergence of SARS-CoV-2 has resulted in millions of deaths worldwide despite the various measures announced by the authorities. Wastewater-based epidemiology has the ability to provide a day-to-day estimation of the number of infected people in a fast and cost-effective manner. However, owing to the complex nature of wastewater, wastewater monitoring for viral genome copies is affected by the extensive viral fragmentation that takes place all the way to the sewage and the analytical lab. The aim of this study was to evaluate different methodologies for the concentration and extraction of viruses in wastewaters and to select and improve an option that maximizes the recovery of SARS-CoV-2. We compare 5 different concentration methods and 4 commercially available kits for the RNA extraction. To evaluate the performance and the recovery of these, SARS-CoV-2 isolated from patients was used as a spike control. Additionally, the presence of SARS-CoV-2 in all wastewater samples was determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and N3). Using spiked samples, recoveries were estimated 2.1-37.6% using different extraction kits and 0.1-2.1% using different concentration kits. It was found that a direct capture-based method, evaluated against a variety of concentration methods, is the best in terms of recovery, time and cost. Interestingly, we noticed a good agreement between the results provided by RT-qPCR and RT-ddPCR in terms of recovery. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2. Overall, data presented here reinforces the validity of WBE for SARS-CoV-2 surveillance, uncovers potential caveats in the selection of concentration and extraction protocols and points towards optimal solutions to maximize its potential.
Collapse
Affiliation(s)
- Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Areti Strati
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Evrikleia Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| |
Collapse
|
80
|
Magateshvaren Saras MA, Patro LPP, Uttamrao PP, Rathinavelan T. SARS-CoV-2 whole-proteome sequences from environment as an indicator of community viral distribution, evolution and epidemiological dynamics: A cohort analysis of Austria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:850-855. [PMID: 35718540 PMCID: PMC9350003 DOI: 10.1111/1758-2229.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Several investigations have been carried out to detect SARS-CoV-2 samples from the environment such as sewage waters and surface swabs. Whole-proteome sequence analysis of 847 SARS-CoV-2 genome sequences collected from the environment in Austria during 2021 and deposited in GISAID indicates that alpha and delta are two dominant variants, coinciding with the human clinical samples with a Pearson correlation coefficient in the range of 0.58 (alpha variant) to 0.82 (delta variant). Both environmental and human samples show that Austrian SARS-CoV-2 alpha variant is found to possess N protein R203K and G204R/P mutations, whereas they are absent in the delta variant. SARS-CoV-2 delta variant is continuously seen in both the environmental and human clinical samples from the month of September 2021 and it spiked in November 2021, which is directly reflected in the increase of the number of SARS-CoV-2 infections and deaths in Austria during November 2021. Thus, the results presented here indicate that the environmental SARS-CoV-2 whole-genome sequences collected from Austria reflect the community viral distribution, evolution and the concomitant epidemiological dynamics. Since SARS-CoV-2 keeps evolving, the results presented here further suggest the need to monitor the environment for the early detection of SARS-CoV-2 variants to take appropriate precautionary measures.
Collapse
Affiliation(s)
| | - L. Ponoop Prasad Patro
- Department of Biotechnology, Indian Institute of Technology HyderabadKandiTelanganaIndia
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology HyderabadKandiTelanganaIndia
| | | |
Collapse
|
81
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
82
|
Philo SE, Ong AQW, Keim EK, Swanstrom R, Kossik AL, Zhou NA, Beck NK, Meschke JS. Development and Validation of the Skimmed Milk Pellet Extraction Protocol for SARS-CoV-2 Wastewater Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:355-363. [PMID: 35143035 PMCID: PMC8830996 DOI: 10.1007/s12560-022-09512-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/21/2022] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance for SARS-CoV-2 may serve as a useful source of data for public health departments as the virus is shed in the stool of infected individuals. However, for wastewater data to be actionable, wastewater must be collected, concentrated, and analyzed in a timely manner. This manuscript presents modifications on a skimmed milk concentration protocol to reduce processing time, increase the number of samples that can be processed at once, and enable use in resource-limited settings. Wastewater seeded with Human coronavirus OC43 (OC43) was concentrated using a skimmed milk flocculation protocol, and then pellets were directly extracted with the QIAamp Viral RNA Mini kit. This protocol has a higher average effective volume assayed (6.35 mL) than skimmed milk concentration methods, with and without Vertrel XF™, which involve resuspension of the pellets in PBS extraction prior to nucleic acid extraction (1.28 mL, 1.44 mL, respectively). OC43 was selected as a recovery control organism because both it and SARS-CoV-2 are enveloped respiratory viruses that primarily infect humans resulting in respiratory symptoms. The OC43 percent recovery for the direct extraction protocol (3.4%) is comparable to that of skimmed milk concentration with and without Vertrel XF™ extraction (4.0%, 2.6%, respectively). When comparing SARS-CoV-2 detection using McNemar's chi-square test, the pellet extraction method is not statistically different from skimmed milk concentration, with and without Vertrel XF™ extraction. This suggests that the method performs equally as well as existing methods. Added benefits include reduced time spent per sample and the ability to process more samples at a single time. Direct extraction of skimmed milk pellets is a viable method for quick turnaround of wastewater data for public health interventions.
Collapse
Affiliation(s)
- Sarah E Philo
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Angelo Q W Ong
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Erika K Keim
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Rachael Swanstrom
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Alexandra L Kossik
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Nicolette A Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - Nicola K Beck
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 2338 Roosevelt One Building, 4225 Roosevelt Way NE, Seattle, WA, 98105, USA.
| |
Collapse
|
83
|
Jin D, Lv Y, He D, Zhang D, Liu Y, Zhang T, Cheng F, Zhang YN, Sun J, Qu J. Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti 3C 2 MXene/supramolecular g-C 3N 4 Schottky junction photocatalyst. CHEMOSPHERE 2022; 308:136461. [PMID: 36122752 PMCID: PMC9477648 DOI: 10.1016/j.chemosphere.2022.136461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/05/2023]
Abstract
Because of the current COVID-19 outbreak all over the world, the problem of antiviral drugs entering water has become increasingly serious. Arbidol hydrochloride (ABLH) is one of the most widely used drugs against COVID-19, which has been detected in sewage treatment plant sediments after the COVID-19 outbreak. However, there has been no report on the degradation of ABLH. In order to remove ABLH we prepared a novel photocatalyst composed of Ti3C2 MXene and supramolecular g-C3N4 (TiC/SCN) via a simple method. The properties of the material were studied by a series of characterizations (SEM, TEM, EDS, XRD, FTIR, UV-vis, DRS, XPS, TPC, PL, EIS and UPS), indicating the successful preparation of TiC/SCN. Results show that 99% of ABLH was removed within 150 min under visible light illumination by the 0.5TiC/SCN (containing 0.5% of TiC). The performance of 0.5TiC/SCN was about 2.66 times that of SCN resulting from the formation of Schottky junction. Furthermore, under real sunlight illumination, 99.2% of ABLH could be removed by 0.5TiC/SCN within 120 min, which was better than that of commercial P25 TiO2. The pH, anions (NO3- and SO42-) and dissolved organic matter (fulvic acid) could significantly affect the ABLH degradation. Moreover, three possible degradation pathways of ABLH were proposed, and the toxicities of the corresponding by-products were less toxic than ABLH. Meanwhile, findings showed that the superoxide radicals played a major role in the photocatalytic degradation of ABLH by 0.5TiC/SCN. This study provides a well understanding of the mechanism of ABLH degradation and provides a valuable reference for the treatment of ABLH in water.
Collapse
Affiliation(s)
- Dexin Jin
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yihan Lv
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Dongmei Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Yue Liu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
84
|
Freitas ÍN, Dourado AV, da Silva Matos SG, de Souza SS, da Luz TM, Rodrigues ASDL, Guimarães ATB, Mubarak NM, Rahman MM, Arias AH, Malafaia G. Short-term exposure of the mayfly larvae (Cloeon dipterum, Ephemeroptera: Baetidae) to SARS-CoV-2-derived peptides and other emerging pollutants: A new threat for the aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157813. [PMID: 35931160 PMCID: PMC9345649 DOI: 10.1016/j.scitotenv.2022.157813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 05/09/2023]
Abstract
The input of SARS-CoV-2 or its fragments into freshwater ecosystems (via domestic or hospital sewage) has raised concerns about its possible impacts on aquatic organisms. Thus, using mayfly larvae [Cloeon dipterum (L.), Ephemeroptera: Baetidae] as a model system, we aimed to evaluate the possible effects of the combined short exposure of SARS-CoV-2-derived peptides (named PSPD-2001, PSPD-2002, and PSPD-2003 - at 266.2 ng/L) with multiple emerging pollutants at ambient concentrations. After six days of exposure, we observed higher mortality of larvae exposed to SARS-CoV-2-derived peptides (alone or in combination with the pollutant mix) and a lower-body condition index than those unexposed larvae. In the "PSPD" and "Mix+PSPD" groups, the activity of superoxide dismutase, catalase, DPPH radical scavenging activity, and the total thiol levels were also lower than in the "control" group. In addition, we evidenced the induction of nitrosative stress (inferred by increased nitrite production) and reduced acetylcholinesterase activity by SARS-CoV-2-derived peptides. On the other hand, malondialdehyde levels in larvae exposed to treatments were significantly lower than in unexposed larvae. The values of the integrated biomarker response index and the principal component analysis (PCA) results confirmed the similarity between the responses of animals exposed to SARS-CoV-2-derived peptides (alone and in combination with the pollutant mix). Although viral peptides did not intensify the effects of the pollutant mix, our study sheds light on the potential ecotoxicological risk associated with the spread of the new coronavirus in aquatic environments. Therefore, we recommend exploring this topic in other organisms and experimental contexts.
Collapse
Affiliation(s)
- Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Amanda Vieira Dourado
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Bahía Blanca, Argentina
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
85
|
Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, Azevedo M. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157546. [PMID: 35914602 PMCID: PMC9338166 DOI: 10.1016/j.scitotenv.2022.157546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Although SARS-CoV-2 can cause severe illness and death, a percentage of the infected population is asymptomatic. This, along with other factors, such as insufficient diagnostic testing and underreporting due to self-testing, contributes to the silent transmission of SARS-CoV-2 and highlights the importance of implementing additional surveillance tools. The fecal shedding of the virus from infected individuals enables its detection in community wastewater, and this has become a valuable public health tool worldwide as it allows the monitoring of the disease on a populational scale. Here, we monitored the presence of SARS-CoV-2 and its dynamic genomic changes in wastewater sampled from two metropolitan areas in Arkansas during major surges of COVID-19 cases and assessed how the viral titers in these samples related to the clinical case counts between late April 2020 and January 2022. The levels of SARS-CoV-2 RNA were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) using a set of TaqMan assays targeting three different viral genes (encoding ORF1ab polyprotein, surface glycoprotein, and nucleocapsid phosphoprotein). An allele-specific RT-qPCR approach was used to screen the samples for SARS-CoV-2 mutations. The identity and genetic diversity of the virus were further investigated through amplicon-based RNA sequencing, and SARS-CoV-2 variants of concern were detected in wastewater samples throughout the duration of this study. Our data show how changes in the virus genome can affect the sensitivity of specific RT-qPCR assays used in COVID-19 testing with the surge of new variants. A significant association was observed between viral titers in wastewater and recorded number of COVID-19 cases in the areas studied, except when assays failed to detect targets due to the presence of particular variants. These findings support the use of wastewater surveillance as a reliable complementary tool for monitoring SARS-CoV-2 and its genetic variants at the community level.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohammed S Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for the Studies of Tobacco, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Austin Porter
- Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Kelley Garner
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Lisa Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Marli Azevedo
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
86
|
Hayes EK, Stoddart AK, Gagnon GA. Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157548. [PMID: 35882338 PMCID: PMC9308143 DOI: 10.1016/j.scitotenv.2022.157548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina K Stoddart
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
87
|
Ahmed W, Smith WJM, Metcalfe S, Jackson G, Choi PM, Morrison M, Field D, Gyawali P, Bivins A, Bibby K, Simpson SL. Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T WATER 2022; 2:1871-1880. [PMID: 36380768 PMCID: PMC8848507 DOI: 10.1021/acsestwater.1c00387] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J. M. Smith
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Greg Jackson
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Phil M. Choi
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Mary Morrison
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Daniel Field
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Pradip Gyawali
- Institute
of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand
| | - Aaron Bivins
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Bibby
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | |
Collapse
|
88
|
Duvallet C, Wu F, McElroy KA, Imakaev M, Endo N, Xiao A, Zhang J, Floyd-O’Sullivan R, Powell MM, Mendola S, Wilson ST, Cruz F, Melman T, Sathyanarayana CL, Olesen SW, Erickson TB, Ghaeli N, Chai P, Alm EJ, Matus M. Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater Concentrations in the United States. ACS ES&T WATER 2022; 2:1899-1909. [PMID: 36380771 PMCID: PMC9092192 DOI: 10.1021/acsestwater.1c00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.
Collapse
Affiliation(s)
- Claire Duvallet
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Fuqing Wu
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Kyle A. McElroy
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Maxim Imakaev
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Noriko Endo
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Amy Xiao
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jianbo Zhang
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
| | | | - Morgan M. Powell
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel Mendola
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Shane T. Wilson
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Francis Cruz
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Tamar Melman
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Scott W. Olesen
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Timothy B. Erickson
- Department
of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division
of Medical Toxicology, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Harvard
Humanitarian Initiative, Cambridge, Massachusetts 02138, United States
| | - Newsha Ghaeli
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Peter Chai
- Division
of Medical Toxicology, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- The
Fenway Institute, Boston, Massachusetts 02215, United States
- The
Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Eric J. Alm
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
- Center
for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT
Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mariana Matus
- Biobot
Analytics, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
89
|
Cohen A, Maile-Moskowitz A, Grubb C, Gonzalez RA, Ceci A, Darling A, Hungerford L, Fricker R, Finkielstein CV, Pruden A, Vikesland PJ. Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T WATER 2022; 2:2047-2059. [PMID: 37552724 PMCID: PMC9128018 DOI: 10.1021/acsestwater.2c00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 08/10/2023]
Abstract
To evaluate the use of wastewater-based surveillance and epidemiology to monitor and predict SARS-CoV-2 virus trends, over the 2020-2021 academic year we collected wastewater samples twice weekly from 17 manholes across Virginia Tech's main campus. We used data from external door swipe card readers and student isolation/quarantine status to estimate building-specific occupancy and COVID-19 case counts at a daily resolution. After analyzing 673 wastewater samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), we reanalyzed 329 samples from isolation and nonisolation dormitories and the campus sewage outflow using reverse transcription digital droplet polymerase chain reaction (RT-ddPCR). Population-adjusted viral copy means from isolation dormitory wastewater were 48% and 66% higher than unadjusted viral copy means for N and E genes (1846/100 mL to 2733/100 mL/100 people and 2312/100 mL to 3828/100 mL/100 people, respectively; n = 46). Prespecified analyses with random-effects Poisson regression and dormitory/cluster-robust standard errors showed that the detection of N and E genes were associated with increases of 85% and 99% in the likelihood of COVID-19 cases 8 days later (incident-rate ratio (IRR) = 1.845, p = 0.013 and IRR = 1.994, p = 0.007, respectively; n = 215), and one-log increases in swipe card normalized viral copies (copies/100 mL/100 people) for N and E were associated with increases of 21% and 27% in the likelihood of observing COVID-19 cases 8 days following sample collection (IRR = 1.206, p < 0.001, n = 211 for N; IRR = 1.265, p < 0.001, n = 211 for E). One-log increases in swipe normalized copies were also associated with 40% and 43% increases in the likelihood of observing COVID-19 cases 5 days after sample collection (IRR = 1.403, p = 0.002, n = 212 for N; IRR = 1.426, p < 0.001, n = 212 for E). Our findings highlight the use of building-specific occupancy data and add to the evidence for the potential of wastewater-based epidemiology to predict COVID-19 trends at subsewershed scales.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ayella Maile-Moskowitz
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Christopher Grubb
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Raul A. Gonzalez
- Hampton Roads Sanitation
District, Virginia Beach, Virginia 23455, United
States
| | - Alessandro Ceci
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
| | - Amanda Darling
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Laura Hungerford
- Department of Population Health Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Ronald
D. Fricker
- Department of Statistics, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Carla V. Finkielstein
- Molecular Diagnostics Laboratory, Fralin Biomedical
Research Institute, Virginia Tech, Roanoke, Virginia 24016,
United States
- Integrated Cellular Responses Laboratory, Fralin
Biomedical Research Institute at VTC, Roanoke, Virginia 24016,
United States
- Department of Biological Sciences,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Amy Pruden
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering,
Virginia Tech, Blacksburg, Virginia 24061, United
States
| |
Collapse
|
90
|
Vadde KK, Al-Duroobi H, Phan DC, Jafarzadeh A, Moghadam SV, Matta A, Kapoor V. Assessment of Concentration, Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS ES&T WATER 2022; 2:2060-2069. [PMID: 37552728 PMCID: PMC9128005 DOI: 10.1021/acsestwater.2c00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl2, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (ρ = 0.75, p < 0.001) and Martinez II (ρ = 0.68, p < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Haya Al-Duroobi
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Duc C. Phan
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Sina V. Moghadam
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Akanksha Matta
- Department of Chemistry, University of
Texas at San Antonio, San Antonio, Texas 78249, United
States
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| |
Collapse
|
91
|
Xie Y, Challis JK, Oloye FF, Asadi M, Cantin J, Brinkmann M, McPhedran KN, Hogan N, Sadowski M, Jones PD, Landgraff C, Mangat C, Servos MR, Giesy JP. RNA in Municipal Wastewater Reveals Magnitudes of COVID-19 Outbreaks across Four Waves Driven by SARS-CoV-2 Variants of Concern. ACS ES&T WATER 2022; 2:1852-1862. [PMID: 37552734 PMCID: PMC8887651 DOI: 10.1021/acsestwater.1c00349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 05/07/2023]
Abstract
There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.
Collapse
Affiliation(s)
- Yuwei Xie
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Jonathan K. Challis
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Femi F. Oloye
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
| | - Jenna Cantin
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Markus Brinkmann
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Kerry N. McPhedran
- Department of Civil, Geological and Environmental
Engineering, College of Engineering, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5A9,
Canada
- Global Institute for Water Security,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5,
Canada
| | - Natacha Hogan
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- College of Agriculture and Bioresources, Department of
Animal and Poultry Sciences, University of Saskatchewan,
Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Mike Sadowski
- Wastewater Treatment Plant, Saskatoon Water Department,
City of Saskatoon, Saskatoon, Saskatchewan S7M 1X5,
Canada
| | - Paul D. Jones
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- School of Environment and Sustainability,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology
Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
R3E 3R2, Canada
- Food Science Department, University of
Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Chand Mangat
- Antimicrobial Resistance and Nosocomial Infections,
National Microbiology Laboratory, Public Health Agency of
Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Mark R. Servos
- Department of Biology, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - John P. Giesy
- Toxicology Centre, University of
Saskatchewan, Saskatoon, Saskatchewan S7N 5B3,
Canada
- Department of Veterinary Biomedical Sciences,
University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4,
Canada
- Department of Environmental Sciences,
Baylor University, Waco, Texas 76706, United
States
- Department of Zoology and Center for Integrative
Toxicology, Michigan State University, East Lansing, Michigan
48824, United States
| |
Collapse
|
92
|
Pang X, Gao T, Ellehoj E, Li Q, Qiu Y, Maal-Bared R, Sikora C, Tipples G, Diggle M, Hinshaw D, Ashbolt NJ, Talbot J, Hrudey SE, Lee BE. Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS ES&T WATER 2022; 2:2243-2254. [PMID: 36380772 PMCID: PMC9514327 DOI: 10.1021/acsestwater.2c00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The correlations between SARS-CoV-2 RNA levels in wastewater from 12 wastewater treatment plants and new COVID-19 cases in the corresponding sewersheds of 10 communities were studied over 17 months. The analysis from the longest continuous surveillance reported to date revealed that SARS-CoV-2 RNA levels correlated well with temporal changes of COVID-19 cases in each community. The strongest correlation was found during the third wave (r = 0.97) based on the population-weighted SARS-CoV-2 RNA levels in wastewater. Different correlations were observed (r from 0.51 to 0.86) in various sizes of communities. The population in the sewershed had no observed effects on the strength of the correlation. Fluctuation of SARS-CoV-2 RNA levels in wastewater mirrored increases and decreases of COVID-19 cases in the corresponding community. Since the viral shedding to sewers from all infected individuals is included, wastewater-based surveillance provides an unbiased and no-discriminate estimation of the prevalence of COVID-19 compared with clinical testing that was subject to testing-seeking behaviors and policy changes. Wastewater-based surveillance on SARS-CoV-2 represents a temporal trend of COVID-19 disease burden and is an effective and supplementary monitoring when the number of COVID-19 cases reaches detectable thresholds of SARS-CoV-2 RNA in wastewater of treatment facilities serving various sizes of populations.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Tiejun Gao
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Erik Ellehoj
- Ellehoj
Redmond Consulting, Edmonton, Alberta T6G 0Y4, Canada
| | - Qiaozhi Li
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Yuanyuan Qiu
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - Christopher Sikora
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Graham Tipples
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Mathew Diggle
- Alberta
Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Deena Hinshaw
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | | | - James Talbot
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Steve E. Hrudey
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| | - Bonita E. Lee
- Department
of Laboratory Medicine and Pathology, School of Public Health, Department of Medicine, and Department of
Pediatrics, University of Alberta, Edmonton, Alberta T6G 2E2, Canada
| |
Collapse
|
93
|
Zhan Q, Babler KM, Sharkey ME, Amirali A, Beaver CC, Boone MM, Comerford S, Cooper D, Cortizas EM, Currall BB, Foox J, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Mantero AM, Mason CE, Reding BD, Robertson M, Roca MA, Ryon K, Schürer SC, Shukla BS, Solle NS, Stevenson M, Tallon Jr JJ, Thomas C, Thomas T, Vidović D, Williams SL, Yin X, Solo-Gabriele HM. Relationships between SARS-CoV-2 in Wastewater and COVID-19 Clinical Cases and Hospitalizations, with and without Normalization against Indicators of Human Waste. ACS ES&T WATER 2022; 2:1992-2003. [PMID: 36398131 PMCID: PMC9664448 DOI: 10.1021/acsestwater.2c00045] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater has been used to track community infections of coronavirus disease-2019 (COVID-19), providing critical information for public health interventions. Since levels in wastewater are dependent upon human inputs, we hypothesize that tracking infections can be improved by normalizing wastewater concentrations against indicators of human waste [Pepper Mild Mottle Virus (PMMoV), β-2 Microglobulin (B2M), and fecal coliform]. In this study, we analyzed SARS-CoV-2 and indicators of human waste in wastewater from two sewersheds of different scales: a University campus and a wastewater treatment plant. Wastewater data were combined with complementary COVID-19 case tracking to evaluate the efficiency of wastewater surveillance for forecasting new COVID-19 cases and, for the larger scale, hospitalizations. Results show that the normalization of SARS-CoV-2 levels by PMMoV and B2M resulted in improved correlations with COVID-19 cases for campus data using volcano second generation (V2G)-qPCR chemistry (r s = 0.69 without normalization, r s = 0.73 with normalization). Mixed results were obtained for normalization by PMMoV for samples collected at the community scale. Overall benefits from normalizing with measures of human waste depend upon qPCR chemistry and improves with smaller sewershed scale. We recommend further studies that evaluate the efficacy of additional normalization targets.
Collapse
Affiliation(s)
- Qingyu Zhan
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Kristina M. Babler
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Mark E. Sharkey
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| | - Ayaaz Amirali
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Cynthia C. Beaver
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Melinda M. Boone
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Samuel Comerford
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| | - Daniel Cooper
- DataGrade
Solutions, LLC, Miami, Florida 33173, United
States
| | - Elena M. Cortizas
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Benjamin B. Currall
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Jonathan Foox
- Department
of Physiology and Biophysics, Weill Cornell
Medical College, New York
City, New York 10021, United States
| | - George S. Grills
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Erin Kobetz
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Naresh Kumar
- Department
of Public Health Sciences, University of
Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Jennifer Laine
- Environmental
Health and Safety, University of Miami, Miami, Florida 33146, United States
| | - Walter E. Lamar
- Facilities
Safety & Compliance, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Alejandro M.A. Mantero
- Department
of Public Health Sciences, University of
Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Christopher E. Mason
- Department
of Physiology and Biophysics and the WorldQuant Initiative for Quantitative
Prediction, Weill Cornell Medical College, New York City, New York 10021, United States
| | - Brian D. Reding
- Environmental
Health and Safety, University of Miami, Miami, Florida 33146, United States
| | - Maria Robertson
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Matthew A. Roca
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Krista Ryon
- Department
of Physiology and Biophysics, Weill Cornell
Medical College, New York
City, New York 10021, United States
| | - Stephan C. Schürer
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
- Department
of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, Florida 33136, United States
- Institute
for Data Science & Computing, University
of Miami, Coral Gables, Florida 33146, United
States
| | - Bhavarth S. Shukla
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| | - Natasha Schaefer Solle
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Mario Stevenson
- Department
of Medicine, University of Miami Miller
School of Medicine, Miami, Florida 33136, United States
| | - John J. Tallon Jr
- Facilities
and Operations, University of Miami, Coral Gables, Florida 33146, United States
| | - Collette Thomas
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Tori Thomas
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Dušica Vidović
- Department
of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, Florida 33136, United States
| | - Sion L. Williams
- Sylvester
Comprehensive Cancer Center, University
of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Xue Yin
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| | - Helena M. Solo-Gabriele
- Department
of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
94
|
Duvallet C, Wu F, McElroy KA, Imakaev M, Endo N, Xiao A, Zhang J, Floyd-O'Sullivan R, Powell MM, Mendola S, Wilson ST, Cruz F, Melman T, Sathyanarayana CL, Olesen SW, Erickson TB, Ghaeli N, Chai P, Alm EJ, Matus M. Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater Concentrations in the United States. ACS ES&T WATER 2022; 2:1899-1909. [PMID: 36380771 DOI: 10.1101/2021.09.08.21263283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Wastewater-based epidemiology has emerged as a promising technology for population-level surveillance of COVID-19. In this study, we present results of a large nationwide SARS-CoV-2 wastewater monitoring system in the United States. We profile 55 locations with at least six months of sampling from April 2020 to May 2021. These locations represent more than 12 million individuals across 19 states. Samples were collected approximately weekly by wastewater treatment utilities as part of a regular wastewater surveillance service and analyzed for SARS-CoV-2 RNA concentrations. SARS-CoV-2 RNA concentrations were normalized to pepper mild mottle virus, an indicator of fecal matter in wastewater. We show that wastewater data reflect temporal and geographic trends in clinical COVID-19 cases and investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences of the virus.
Collapse
Affiliation(s)
- Claire Duvallet
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Fuqing Wu
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Kyle A McElroy
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Maxim Imakaev
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Noriko Endo
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Amy Xiao
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Jianbo Zhang
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | | | - Morgan M Powell
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Samuel Mendola
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Shane T Wilson
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Francis Cruz
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Tamar Melman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Scott W Olesen
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Timothy B Erickson
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Harvard Humanitarian Initiative, Cambridge, Massachusetts 02138, United States
| | - Newsha Ghaeli
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| | - Peter Chai
- Division of Medical Toxicology, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- The Fenway Institute, Boston, Massachusetts 02215, United States
- The Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Eric J Alm
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Mariana Matus
- Biobot Analytics, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
95
|
Birnbaum DP, Vilardi KJ, Anderson CL, Pinto AJ, Joshi NS. Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T WATER 2022; 2:1836-1843. [PMID: 36778666 PMCID: PMC9916486 DOI: 10.1021/acsestwater.1c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.
Collapse
Affiliation(s)
- Daniel P Birnbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher L Anderson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
96
|
Cutrupi F, Cadonna M, Manara S, Postinghel M, La Rosa G, Suffredini E, Foladori P. The wave of the SARS-CoV-2 Omicron variant resulted in a rapid spike and decline as highlighted by municipal wastewater surveillance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102667. [PMID: 35615435 PMCID: PMC9122782 DOI: 10.1016/j.eti.2022.102667] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d- 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Maria Cadonna
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Mattia Postinghel
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
97
|
Leifels M, Khalilur Rahman O, Sam IC, Cheng D, Chua FJD, Nainani D, Kim SY, Ng WJ, Kwok WC, Sirikanchana K, Wuertz S, Thompson J, Chan YF. The one health perspective to improve environmental surveillance of zoonotic viruses: lessons from COVID-19 and outlook beyond. ISME COMMUNICATIONS 2022; 2:107. [PMID: 36338866 PMCID: PMC9618154 DOI: 10.1038/s43705-022-00191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them-the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.
Collapse
Affiliation(s)
- Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Omar Khalilur Rahman
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dhiraj Nainani
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Se Yeon Kim
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Jie Ng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wee Chiew Kwok
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Centre of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore
| | - Janelle Thompson
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
98
|
Zhao L, Zou Y, Li Y, Miyani B, Spooner M, Gentry Z, Jacobi S, David RE, Withington S, McFarlane S, Faust R, Sheets J, Kaye A, Broz J, Gosine A, Mobley P, Busch AWU, Norton J, Xagoraraki I. Five-week warning of COVID-19 peaks prior to the Omicron surge in Detroit, Michigan using wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157040. [PMID: 35779714 PMCID: PMC9239917 DOI: 10.1016/j.scitotenv.2022.157040] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 04/14/2023]
Abstract
Wastewater-based epidemiology (WBE) is useful in predicting temporal fluctuations of COVID-19 incidence in communities and providing early warnings of pending outbreaks. To investigate the relationship between SARS-CoV-2 concentrations in wastewater and COVID-19 incidence in communities, a 12-month study between September 1, 2020, and August 31, 2021, prior to the Omicron surge, was conducted. 407 untreated wastewater samples were collected from the Great Lakes Water Authority (GLWA) in southeastern Michigan. N1 and N2 genes of SARS-CoV-2 were quantified using RT-ddPCR. Daily confirmed COVID-19 cases for the City of Detroit, and Wayne, Macomb, Oakland counties between September 1, 2020, and October 4, 2021, were collected from a public data source. The total concentrations of N1 and N2 genes ranged from 714.85 to 7145.98 gc/L and 820.47 to 6219.05 gc/L, respectively, which were strongly correlated with the 7-day moving average of total daily COVID-19 cases in the associated areas, after 5 weeks of the viral measurement. The results indicate a potential 5-week lag time of wastewater surveillance preceding COVID-19 incidence for the Detroit metropolitan area. Four statistical models were established to analyze the relationship between SARS-CoV-2 concentrations in wastewater and COVID-19 incidence in the study areas. Under a 5-week lag time scenario with both N1 and N2 genes, the autoregression model with seasonal patterns and vector autoregression model were more effective in predicting COVID-19 cases during the study period. To investigate the impact of flow parameters on the correlation, the original N1 and N2 gene concentrations were normalized by wastewater flow parameters. The statistical results indicated the optimum models were consistent for both normalized and non-normalized data. In addition, we discussed parameters that explain the observed lag time. Furthermore, we evaluated the impact of the omicron surge that followed, and the impact of different sampling methods on the estimation of lag time.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Brijen Miyani
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Maddie Spooner
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Zachary Gentry
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Sydney Jacobi
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America
| | - Randy E David
- Detroit Health Department, 100 Mack Ave, Detroit, MI 48201, United States of America
| | - Scott Withington
- Detroit Health Department, 100 Mack Ave, Detroit, MI 48201, United States of America
| | - Stacey McFarlane
- Macomb County Health Division, 43525 Elizabeth Rd, Mount Clemens, MI 48043, United States of America
| | - Russell Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI 48341, United States of America
| | - Johnathon Sheets
- CDM-Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - Andrew Kaye
- CDM-Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - James Broz
- CDM-Smith, 535 Griswold St, Detroit, MI 48226, United States of America
| | - Anil Gosine
- Detroit Water and Sewerage Department, 735 Randolph Street building, Detroit, MI 48226, United States of America
| | - Palencia Mobley
- Detroit Water and Sewerage Department, 735 Randolph Street building, Detroit, MI 48226, United States of America
| | - Andrea W U Busch
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, United States of America
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, United States of America.
| |
Collapse
|
99
|
Zheng X, Li S, Deng Y, Xu X, Ding J, Lau FTK, In Yau C, Poon LLM, Tun HM, Zhang T. Quantification of SARS-CoV-2 RNA in wastewater treatment plants mirrors the pandemic trend in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157121. [PMID: 35787900 PMCID: PMC9249664 DOI: 10.1016/j.scitotenv.2022.157121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) for the SARS-CoV-2 virus in wastewater treatment plants (WWTPs) has emerged as a cost-effective and unbiased tool for population-level testing in the community. In the present study, we conducted a 6-month wastewater monitoring campaign from three WWTPs of different flow rates and catchment area characteristics, which serve 28 % (2.1 million people) of Hong Kong residents in total. Wastewater samples collected daily or every other day were concentrated using ultracentrifugation and the SARS-CoV-2 virus RNA in the supernatant was detected using the N1 and E primer sets. The results showed significant correlations between the virus concentration and the number of daily new cases in corresponding catchment areas of the three WWTPs when using 7-day moving average values (Kendall's tau-b value: 0.227-0.608, p < 0.001). SARS-CoV-2 virus concentration was normalized to a fecal indicator using PMMoV concentration and daily flow rates, but the normalization did not enhance the correlation. The key factors contributing to the correlation were also evaluated, including the sampling frequency, testing methods, and smoothing days. This study demonstrates the applicability of wastewater surveillance to monitor overall SARS-CoV-2 pandemic dynamics in a densely populated city like Hong Kong, and provides a large-scale longitudinal reference for the establishment of the long-term sentinel surveillance in WWTPs for WBE of pathogens which could be combined into a city-wide public health observatory.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Frankie T K Lau
- Drainage Services Department, The Government of the Hong Kong Special Administrative Region of the People's Republic of China, Wanchai, Hong Kong, China
| | - Chung In Yau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Hein M Tun
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
100
|
Murni IK, Oktaria V, Handley A, McCarthy DT, Donato CM, Nuryastuti T, Supriyati E, Putri DAD, Sari HM, Laksono IS, Thobari JA, Bines JE. The feasibility of SARS-CoV-2 surveillance using wastewater and environmental sampling in Indonesia. PLoS One 2022; 17:e0274793. [PMID: 36240187 PMCID: PMC9565423 DOI: 10.1371/journal.pone.0274793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) surveillance as an early warning system (EWS) for monitoring community transmission of SARS-CoV-2 in low- and middle-income country (LMIC) settings, where diagnostic testing capacity is limited, needs further exploration. We explored the feasibility to conduct a WBE surveillance in Indonesia, one of the global epicenters of the COVID-19 pandemic in the middle of 2021, with the fourth largest population in the world where sewer and non-sewered sewage systems are implemented. The feasibility and resource capacity to collect samples on a weekly or fortnightly basis with grab and/or passive sampling methods, as well as to conduct qualitative and quantitative identification of SARS-CoV-2 ribonucleic acid (RNA) using real-time RT-PCR (RT-qPCR) testing of environmental samples were explored. MATERIALS AND METHODS We initiated a routine surveillance of wastewater and environmental sampling at three predetermined districts in Special Region of Yogyakarta Province. Water samples were collected from central and community wastewater treatment plants (WWTPs), including manholes flowing to the central WWTP, and additional soil samples were collected for the near source tracking (NST) locations (i.e., public spaces where people congregate). RESULTS We began collecting samples in the Delta wave of the COVID-19 pandemic in Indonesia in July 2021. From a 10-week period, 54% (296/544) of wastewater and environmental samples were positive for SARS-CoV-2 RNA. The sample positivity rate decreased in proportion with the reported incidence of COVID-19 clinical cases in the community. The highest positivity rate of 77% in week 1, was obtained for samples collected in July 2021 and decreased to 25% in week 10 by the end of September 2021. CONCLUSION A WBE surveillance system for SARS-CoV-2 in Indonesia is feasible to monitor the community burden of infections. Future studies testing the potential of WBE and EWS for signaling early outbreaks of SARS-CoV-2 transmissions in this setting are required.
Collapse
Affiliation(s)
- Indah K. Murni
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Child Health Department, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- * E-mail: (IKM); (VO)
| | - Vicka Oktaria
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Department of Biostatistics, Epidemiology and Population Health, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- * E-mail: (IKM); (VO)
| | - Amanda Handley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Medicines Development for Global Health, Southbank, Victoria, Australia
| | - David T. McCarthy
- Department of Civil Engineering, Environmental and Public Health Microbiology Lab (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Titik Nuryastuti
- Faculty of Medicine, Department of Microbiology, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endah Supriyati
- Faculty of Medicine, Center for Tropical Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Astuti Dharma Putri
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendri Marinda Sari
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ida Safitri Laksono
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Child Health Department, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Jarir At Thobari
- Faculty of Medicine, Center for Child Health–Pediatric Research Office, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|