51
|
Ferreira RO, Aragão WAB, Bittencourt LO, Fernandes LPM, Balbinot KM, Alves-Junior SM, Pinheiro JDJV, Maia CDSF, Crespo-Lopez ME, Lima RR. Ethanol binge drinking during pregnancy and its effects on salivary glands of offspring rats: oxidative stress, morphometric changes and salivary function impairments. Biomed Pharmacother 2020; 133:110979. [PMID: 33190033 DOI: 10.1016/j.biopha.2020.110979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To investigate the biochemical and morphological effects of ethanol (EtOH) binge drinking during pregnancy on parotid glands (PG), submandibular glands (SMG), and saliva of offspring rats. METHODS Pregnant Wistar rats (n = 8) were exposed to EtOH consumption (3 g/kg/day - 20 % w/v) for three consecutive days. The saliva of 40-day-old offspring rats was collected to determine amylase activity and total protein concentration. PG and SMG were collected to performe oxidative biochemistry, morphometric and immunohistochemistry analyses (Student's t-test, p < .05). RESULTS EtOH consumption during pregnancy significantly decreased the total protein concentration and decreased amylase activity. In the PG, the EtOH group showed increased lipid peroxidation and decreased antioxidant capacity against peroxyl. In the SMG, the EtOH group showed increased lipid peroxidation and NOx metabolite levels. PG exposed to EtOH showed a decrease of acini, ducts, and total parenchymal area. SMG exposed to EtOH showed an increase in the total stromal area. The expression of CK-19 and Vimentin were found not different between groups. CONCLUSIONS For the first time, a three-day EtOH binge-drinking protocol during pregnancy is associated with oxidative stress and morphometric alterations in the salivary glands of offspring rats and with the functional reduction of the main salivary enzyme (amylase). CLINICAL RELEVANCE EtOH consumption during pregnancy altered the morphology and physiology of the salivary glands of offspring rats.
Collapse
Affiliation(s)
- Railson O Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Walessa A B Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo O Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Luanna P M Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Karolyny M Balbinot
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Sérgio M Alves-Junior
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - João de Jesus V Pinheiro
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria E Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
52
|
Marrosu V, Carta F, Quartu D, Tatti M, Mariani C, De Seta D, Puxeddu R, Angeletti D, Campo F, Petrone P, Spinato G, Scarpa A, Molteni G, Mannelli G, Capasso P, Ralli M, Casoli V, Salzano FA, Mocella SA, Barbara F, Dadduzio S, Berardi A, Berardi C. The secretory senescence in otorhinolaryngology: principles of treatment. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Abstract
ABSTRACT
Over the past 5 years, several studies have begun to uncover the links between the classical signal transduction pathways and the physical mechanisms that are used to sculpt branched tissues. These advances have been made, in part, thanks to innovations in live imaging and reporter animals. With modern research tools, our conceptual models of branching morphogenesis are rapidly evolving, and the differences in branching mechanisms between each organ are becoming increasingly apparent. Here, we highlight four branched epithelia that develop at different spatial scales, within different surrounding tissues and via divergent physical mechanisms. Each of these organs has evolved to employ unique branching strategies to achieve a specialized final architecture.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
54
|
Re K, Patel S, Gandhi J, Suh Y, Reid I, Joshi G, Smith NL, Khan SA. Clinical utility of hyperbaric oxygen therapy in dentistry. Med Gas Res 2020; 9:93-100. [PMID: 31249258 PMCID: PMC6607863 DOI: 10.4103/2045-9912.260651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This fuller impact of the use of hyperbaric oxygen therapy within dentistry is taking greater notice with newer research findings. There are new advancements in research regarding postradiotherapy cases, osteonecrosis of the jaw, osteomyelitis, periodontal disease, and dental implants. Hyperbaric oxygen therapy can even be used in conjunction with other procedures such as bone grafting. Although the research and clinical utility has come a long way, there are several complications to be mindful of during the application of hyperbaric oxygen therapy.
Collapse
Affiliation(s)
- Kaitlyn Re
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Shrey Patel
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Jason Gandhi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA; Medical Student Research Institute, St. George's University School of Medicine, Grenada, West Indies
| | - Yiji Suh
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Inefta Reid
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA
| | - Gunjan Joshi
- Department of Internal Medicine, Stony Brook Southampton Hospital, Southampton, NY, USA
| | | | - Sardar Ali Khan
- Department of Physiology and Biophysics; Department of Urology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
55
|
Aota K, Ono S, Yamanoi T, Kani K, Momota Y, Azuma M. MMP-9 Inhibition Suppresses Interferon-γ-Induced CXCL10 Production in Human Salivary Gland Ductal Cells. Inflammation 2020; 42:2148-2158. [PMID: 31440939 DOI: 10.1007/s10753-019-01079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gene expression profiling of lip salivary gland (LSG) has shown that C-X-C motif chemokine 10 (CXCL10) and matrix metalloproteinase 9 (MMP9) expression is upregulated in primary Sjögren's syndrome (pSS) patients. Although CXCL10 and MMP-9 are both associated with pSS pathogenesis, the potential relationship between these two factors has not been investigated. In this study, we used LSG sections from pSS patients and human salivary gland cell lines to investigate the relationship between CXCL10 and MMP-9. Immunofluorescence analyses revealed that CXCL10 and MMP-9 were co-expressed in the LSG of pSS patients, particularly in expanded ductal cells. Furthermore, RT-qPCR analyses on human salivary gland ductal NS-SV-DC cells confirmed that CXCL10 expression was induced by interferon (IFN)-γ, whereas that of MMP9 was stimulated by IFN-α, tumor necrosis factor-α, and interleukin-1β. Remarkably, MMP-9 inhibition in IFN-γ-stimulated NS-SV-DC cells significantly decreased CXCL10 mRNA and secreted protein levels. Further analyses established that MMP-9 inhibition in IFN-γ-stimulated NS-SV-DC cells decreased STAT1 phosphorylation and hence suppressed IFN-γ signaling. Collectively, these results suggest that in addition to its reported role in the destruction of acinar structures, MMP-9 is involved in the IFN-γ-induced production of CXCL10 in pSS lesions. We believe that our findings open the door to the development of novel treatments for pSS, based on the modulation of MMP-9 activity.
Collapse
Affiliation(s)
- Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Shinji Ono
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Tomoko Yamanoi
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Koichi Kani
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Yukihiro Momota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Masayuki Azuma
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| |
Collapse
|
56
|
Sui Y, Zhang S, Li Y, Zhang X, Hu W, Feng Y, Xiong J, Zhang Y, Wei S. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res Ther 2020; 11:127. [PMID: 32197647 PMCID: PMC7083056 DOI: 10.1186/s13287-020-01628-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Organ replacement regenerative therapy based on human adult stem cells may be effective for salivary gland hypofunction. However, the generated tissues are immature because the signaling factors that induce the differentiation of human salivary gland stem cells into salivary glands are unknown. Methods Isolated human submandibular gland stem/progenitor cells (hSMGepiS/PCs) were characterized and three-dimensionally (3D) cultured to generate organoids and further induced by fibroblast growth factor 10 (FGF10) in vitro. The induced spheres alone or in combination with embryonic day 12.5 (E12.5) mouse salivary gland mesenchyme were transplanted into the renal capsules of nude mice to assess their development in vivo. Immunofluorescence, quantitative reverse transcriptase-polymerase chain reaction, calcium release analysis, western blotting, hematoxylin–eosin staining, Alcian blue–periodic acid-Schiff staining, and Masson’s trichrome staining were performed to assess the structure and function of generated tissues in vitro and in vivo. Results The isolated hSMGepiS/PCs could be long-term cultured with a stable genome. The organoids treated with FGF10 [FGF10 (+) group] exhibited higher expression of salivary gland–specific markers; showed spatial arrangement of AQP5+, K19+, and SMA+ cells; and were more sensitive to the stimulation by neurotransmitters than untreated organoids [FGF10 (−) group]. After heterotopic transplantation, the induced cell spheres combined with mouse embryonic salivary gland mesenchyme showed characteristics of mature salivary glands, including a natural morphology and saliva secretion. Conclusion FGF10 promoted the development of the hSMGepiS/PC-derived salivary gland organoids by the expression of differentiation markers, structure formation, and response to neurotransmitters in vitro. Moreover, the hSMGepiS/PCs responded to the niche in mouse embryonic mesenchyme and further differentiated into salivary gland tissues with mature characteristics. Our study provides a foundation for the regenerative therapy of salivary gland diseases.
Collapse
Affiliation(s)
- Yi Sui
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yongliang Li
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Xin Zhang
- Biomedical Pioneering Innovation Center, and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Waner Hu
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Yanrui Feng
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China
| | - Jingwei Xiong
- Institute of Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, USA
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery and Central Laboratory, School and Hospital of Stomatology, Peking University, No. 22 Zhong-Guan-Cun South Road, Hai-Dian District, Beijing, 100081, China. .,Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
57
|
Hanke R, Comba I, Henriquez R, W Crespo M, Bhatia L. Salivary Gland Choristoma: A Rare Finding at the Gastroesophageal Junction. Cureus 2020; 12:e7138. [PMID: 32257683 PMCID: PMC7105256 DOI: 10.7759/cureus.7138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A choristoma is a tumor-like outgrowth consisting of heterotopic, histologically mature tissue located at an anatomically unusual part of the body. Salivary gland choristoma at the gastrointestinal junction (GEJ) is an extremely rare entity with only one other case reported in the literature. In this report, we present the case of an 87-year-old female with long-standing gastroesophageal reflux disease (GERD) history who was incidentally found to have salivary gland choristoma at GEJ through an upper endoscopy-guided biopsy. We suggest that the finding of salivary gland choristoma at the GEJ could be metaplasia secondary to the patient’s long-standing history of GERD with esophagitis.
Collapse
Affiliation(s)
- Rachel Hanke
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Isin Comba
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| | - Richard Henriquez
- Internal Medicine, University of Central Florida/HCA Healthcare GME, Orlando, USA
| | - Maria W Crespo
- Pathology, Osceola Regional Medical Center, Kissimmee, USA
| | - Lakhinder Bhatia
- Internal Medicine, University of Central Florida College of Medicine, Orlando, USA
| |
Collapse
|
58
|
Wu S, Wang B, Yu C, Wang Z, Xie L, Fu J, Shi H, Zheng L. Juvenile recurrent parotitis: Soft foods contribute to the delayed development of salivary glands. J Oral Rehabil 2019; 47:485-493. [PMID: 31828830 DOI: 10.1111/joor.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/29/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Juvenile recurrent parotitis (JRP) is the second-most common childhood disease of the salivary glands after mumps. Since popularisation of mumps vaccination, children suffered from JRP more often, and the aetiology remains unclear. Chinese children had the habit of soft foods due to the special dietary habit of Asia. OBJECTIVES To clarify whether mastication was related to the pathogenesis of JRP and whether the growth of salivary glands was influenced by soft diet. METHODS Investigation of dietary habit and masticatory efficiency from 2015 to 2018 of children diagnosed with JRP compared with the normal children by the dentition. Mice had been fed a soft diet beginning in their development phase. The gland weight, amount of saliva, salivary amylase, histological and ultrastructural observation and the expression levels of EGF, FGFr2 and Wnt3a had been tested. RESULTS The JRP children preferred soft foods and had a significantly lower masticatory efficiency than do normal children. When normalised by body weight, the gland weight, amount of saliva and amount of salivary amylase in the experimental group were significantly lower. The ultrastructural results showed that the acinar cells in the experimental groups were smaller and contained fewer electron-dense secretory granules than those in the control groups. The expression levels of EGF, FGFr2 and Wnt3a in the salivary glands of mice in the experimental groups were significantly lower than those of mice in the control groups. CONCLUSION The soft diet indeed influenced the salivary gland through insufficient mastication, which could be one of the primary factors inducing JRP.
Collapse
Affiliation(s)
- Shufeng Wu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhijun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lisong Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
59
|
Lv YQ, Wu J, Li XK, Zhang JS, Bellusci S. Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Front Cell Dev Biol 2019; 7:326. [PMID: 31921841 PMCID: PMC6914673 DOI: 10.3389/fcell.2019.00326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
During embryonic development, the rudimentary digestive tract is initially a tube-like structure. It is composed of epithelial cells surrounded by mesenchymal cells. Reciprocal epithelial–mesenchymal interactions progressively subdivide this primitive tube into distinct functional regions: the tongue, the pharynx, the esophagus, the stomach, the duodenum, the small intestine, the cecum, the large intestine, the colon, and the anus as well as the pancreas and the liver. Fibroblast growth factors (Fgfs) constitute a family of conserved small proteins playing crucial roles during organogenesis, homeostasis, and repair after injury. Among them, fibroblast growth factor 10 (Fgf10) has been reported to orchestrate epithelial–mesenchymal interactions during digestive tract development. In mice, loss of function of Fgf10 as well as its receptor fibroblast growth factor receptor 2b (Fgfr2b) lead to defective taste papillae in the tongue, underdeveloped and defective differentiation of the stomach, duodenal, cecal, and colonic atresias, anorectal malformation, as well as underdeveloped pancreas and liver. Fgf signaling through Fgfr2b receptor is also critical for the repair process after gut injury. In the adult mice, a malabsorption disorder called small bowel syndrome is triggered after massive small bowel resection (SBR). In wild-type mice, SBR leads to a regenerative process called gut adaptation characterized by an increase in the diameter of the remaining small intestine as well as by the presence of deeper crypts and longer villi, altogether leading to increased intestinal surface. Intestinal stem cells are key for this regeneration process. Induction of Fgf10 expression in the Paneth cells located in the crypt following SBR suggests a critical role for this growth factor in the process of gut adaptation.
Collapse
Affiliation(s)
- Yu-Qing Lv
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China.,Department of Internal Medicine II, Cardio-Pulmonary Institute, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
60
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
61
|
Mitroulia A, Gavriiloglou M, Athanasiadou P, Bakopoulou A, Poulopoulos A, Panta P, Patil S, Andreadis D. Salivary Gland Stem Cells and Tissue Regeneration: An Update on Possible Therapeutic Application. J Contemp Dent Pract 2019; 20:978-986. [PMID: 31797858 DOI: 10.5005/jp-journals-10024-2620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The aim of this review is to combine literature and experimental data concerning the impact of salivary gland (SG) stem cells (SCs) and their therapeutic prospects in tissue regeneration. So far, SCs were isolated from human and rodent major and minor SGs that enabled their regeneration. Several scaffolds were also combined with "SCs" and different "proteins" to achieve guided differentiation, although none have been proven as ideal. A new aspect of SC therapy aims to establish a vice versa relationship between SG and other ecto- or endodermal organs such as the pancreas, liver, kidneys, and thyroid. SC therapy could be a cheap and simple, non-traumatic, and individualized therapy for medically challenging cases like xerostomia and major organ failures. Functional improvement has been achieved in these organs, but till date, the whole organ in vivo regeneration was not achieved. Concerns about malignant formations and possible failures are yet to be resolved. In this review article, we highlight the basic embryology of SGs, existence of SG SCs with a detailed exploration of various cellular markers, scaffolds for tissue engineering, and, in the later part, cover potential therapeutic applications with a special focus on the pancreas and liver. Keywords: Salivary gland stem cells, Stem cell therapy, Tissue regeneration.
Collapse
Affiliation(s)
- Aikaterini Mitroulia
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Marianna Gavriiloglou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Poluxeni Athanasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics and Implantology-Tissue Regeneration Unit, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Athanasios Poulopoulos
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Prashanth Panta
- Department of Oral Medicine and Radiology, MNR Dental College and Hospital, Sangareddy, Telangana, India, Phone: +91 9701806830, e-mail:
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Dimitrios Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
62
|
Teshima THN, Tucker AS, Lourenço SV. Dual Sympathetic Input into Developing Salivary Glands. J Dent Res 2019; 98:1122-1130. [PMID: 31356755 DOI: 10.1177/0022034519865222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal signaling is known to be required for salivary gland development, with parasympathetic nerves interacting with the surrounding tissues from early stages to maintain a progenitor cell population and control morphogenesis. In contrast, postganglionic sympathetic nerves arrive late in salivary gland development to perform a secretory function; however, no previous report has shown their role during development. Here, we show that a subset of neuronal cells within the parasympathetic submandibular ganglion (PSG) express the catecholaminergic marker tyrosine hydroxylase (TH) in developing murine and human submandibular glands. This sympathetic phenotype coincided with the expression of transcription factor Hand2 within the PSG from the bud stage (E12.5) of mouse embryonic salivary gland development. Hand2 was previously associated with the decision of neural crest cells to become sympathetic in other systems, suggesting a role in controlling neuronal fate in the salivary gland. The PSG therefore provides a population of TH-expressing neurons prior to the arrival of the postganglionic sympathetic axons from the superior cervical ganglion at E15.5. In culture, in the absence of nerves from the superior cervical ganglion, these PSG-derived TH neurons were clearly evident forming a network around the gland. Chemical ablation of dopamine receptors in explant culture with the neurotoxin 6-hydroxydopamine at early stages of gland development resulted in specific loss of the TH-positive neurons from the PSG, and subsequent branching was inhibited. Taken altogether, these results highlight for the first time the detailed developmental time course of TH-expressing neurons during murine salivary gland development and suggest a role for these neurons in branching morphogenesis.
Collapse
Affiliation(s)
- T H N Teshima
- 1 Department of Stomatology, Dental School, University of São Paulo, São Paulo, Brazil.,2 Centre for Craniofacial and Regenerative Biology, Guy's Hospital, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - A S Tucker
- 2 Centre for Craniofacial and Regenerative Biology, Guy's Hospital, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - S V Lourenço
- 1 Department of Stomatology, Dental School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
63
|
Abstract
The past decade has seen an explosion in the field of in vitro disease modelling, in particular the development of organoids. These self-organizing tissues derived from stem cells provide a unique system to examine mechanisms ranging from organ development to homeostasis and disease. Because organoids develop according to intrinsic developmental programmes, the resultant tissue morphology recapitulates organ architecture with remarkable fidelity. Furthermore, the fact that these tissues can be derived from human progenitors allows for the study of uniquely human processes and disorders. This article and accompanying poster highlight the currently available methods, particularly those aimed at modelling human biology, and provide an overview of their capabilities and limitations. We also speculate on possible future technological advances that have the potential for great strides in both disease modelling and future regenerative strategies. Summary: Human organoids are important tools for modelling disease. This At a Glance article summarises the current organoid models of several human diseases, and discusses future prospects for these technologies.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
64
|
Submandibular Gland Reduction Using Botulinum Toxin Type A for a Smooth Jawline. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2192. [PMID: 31321186 PMCID: PMC6554156 DOI: 10.1097/gox.0000000000002192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
65
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
66
|
Expression patterns of genes critical for SHH, BMP, and FGF pathways during the lumen formation of human salivary glands. J Mol Histol 2019; 50:217-227. [PMID: 30895425 DOI: 10.1007/s10735-019-09819-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Sjögren's syndrome or radiotherapy for head and neck cancer leads to the irreversible hypofunction of salivary gland (SG). The stem/progenitor cell-based regenerative strategy has been proven to be the most promising approach to repair the function of SG. The molecular mechanisms that regulate SG morphogenesis, especially during lumen formation, provide valuable hints for establishment of such regenerative strategies. It has been demonstrated that numerous growth factors particularly belonging to SHH, BMP, and FGF signaling pathway are involved in the regulation of lumen formation and have shown protective effects on the SG from irradiation in mouse models. However, it remains elusive whether the expression pattern and function of these signaling molecules are conserved in humans. In this study, we examined the expression patterns of the molecules critical for SHH, BMP, and FGF signaling cascades from the canalicular stage to the terminal bud stage, the key stages for lumen formation, in human SG and compared them with the expression data observed in mice. Our results manifested that genes involved in SHH signaling pathway showed identical expression patterns, while genes involved in BMP as well as FGF pathway exhibited similar but distinct expression patterns in humans to those in the mouse. We concluded that the expression patterns of genes involved in SHH, BMP, and FGF pathways in the development of human SG exhibit high similarity to that in the development of mouse SG during lumen formation, suggesting that the molecular mechanism regulating the morphogenesis of SG during lumen formation may be conserved in mice and humans. Our results will have an implication in the future establishment of stem-cell based approaches for the repair of SG function.
Collapse
|
67
|
|
68
|
Tanaka J, Ogawa M, Hojo H, Kawashima Y, Mabuchi Y, Hata K, Nakamura S, Yasuhara R, Takamatsu K, Irié T, Fukada T, Sakai T, Inoue T, Nishimura R, Ohara O, Saito I, Ohba S, Tsuji T, Mishima K. Generation of orthotopically functional salivary gland from embryonic stem cells. Nat Commun 2018; 9:4216. [PMID: 30310071 PMCID: PMC6181987 DOI: 10.1038/s41467-018-06469-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Organoids generated from pluripotent stem cells are used in the development of organ replacement regenerative therapy by recapitulating the process of organogenesis. These processes are strictly regulated by morphogen signalling and transcriptional networks. However, the precise transcription factors involved in the organogenesis of exocrine glands, including salivary glands, remain unknown. Here, we identify a specific combination of two transcription factors (Sox9 and Foxc1) responsible for the differentiation of mouse embryonic stem cell-derived oral ectoderm into the salivary gland rudiment in an organoid culture system. Following orthotopic transplantation into mice whose salivary glands had been removed, the induced salivary gland rudiment not only showed a similar morphology and gene expression profile to those of the embryonic salivary gland rudiment of normal mice but also exhibited characteristics of mature salivary glands, including saliva secretion. This study suggests that exocrine glands can be induced from pluripotent stem cells for organ replacement regenerative therapy.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
- Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - Hironori Hojo
- Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Koki Takamatsu
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Tarou Irié
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Iwate, 028-3694, Japan
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Takayoshi Sakai
- Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN IMS, Yokohama, Kanagawa, 230-0045, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, 292-0818, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Kanagawa, 230-8501, Japan
| | - Shinsuke Ohba
- Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
- Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, 142-8555, Japan.
| |
Collapse
|
69
|
Metzler MA, Raja S, Elliott KH, Friedl RM, Tran NQH, Brugmann SA, Larsen M, Sandell LL. RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation. Development 2018; 145:dev.164822. [PMID: 29986869 DOI: 10.1242/dev.164822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
In mammals, the epithelial tissues of major salivary glands generate saliva and drain it into the oral cavity. For submandibular salivary glands (SMGs), the epithelial tissues arise during embryogenesis from naïve oral ectoderm adjacent to the base of the tongue, which begins to thicken, express SOX9 and invaginate into underlying mesenchyme. The developmental mechanisms initiating salivary gland development remain unexplored. In this study, we show that retinoic acid (RA) signaling activity at the site of gland initiation is colocalized with expression of retinol metabolic genes Rdh10 and Aldh1a2 in the underlying SMG mesenchyme. Utilizing a novel ex vivo assay for SMG initiation developed for this study, we show that RDH10 and RA are required for salivary gland initiation. Moreover, we show that the requirement for RA in gland initiation involves canonical signaling through retinoic acid receptors (RAR). Finally, we show that RA signaling essential for gland initiation is transduced specifically through RARα, with no contribution from other RAR isoforms. This is the first study to identify a molecular signal regulating mammalian salivary gland initiation.
Collapse
Affiliation(s)
- Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - N Q H Tran
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
70
|
Kishimoto K, Tamura M, Nishita M, Minami Y, Yamaoka A, Abe T, Shigeta M, Morimoto M. Synchronized mesenchymal cell polarization and differentiation shape the formation of the murine trachea and esophagus. Nat Commun 2018; 9:2816. [PMID: 30026494 PMCID: PMC6053463 DOI: 10.1038/s41467-018-05189-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Tube morphogenesis is essential for internal-organ development, yet the mechanisms regulating tube shape remain unknown. Here, we show that different mechanisms regulate the length and diameter of the murine trachea. First, we found that trachea development progresses via sequential elongation and expansion processes. This starts with a synchronized radial polarization of smooth muscle (SM) progenitor cells with inward Golgi-apparatus displacement regulates tube elongation, controlled by mesenchymal Wnt5a-Ror2 signaling. This radial polarization directs SM progenitor cell migration toward the epithelium, and the resulting subepithelial morphogenesis supports tube elongation to the anteroposterior axis. This radial polarization also regulates esophageal elongation. Subsequently, cartilage development helps expand the tube diameter, which drives epithelial-cell reshaping to determine the optimal lumen shape for efficient respiration. These findings suggest a strategy in which straight-organ tubulogenesis is driven by subepithelial cell polarization and ring cartilage development.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Masaru Tamura
- RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Takaya Abe
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Genetic Engineering, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Mayo Shigeta
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Life Science Technologies and Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan.
| |
Collapse
|
71
|
Adhikari N, Neupane S, Roh J, Aryal YP, Lee ES, Jung JK, Yamamoto H, Lee Y, Sohn WJ, Kim JY, Kim JY. Gene profiling involved in fate determination of salivary gland type in mouse embryogenesis. Genes Genomics 2018; 40:10.1007/s13258-018-0715-z. [PMID: 29934934 DOI: 10.1007/s13258-018-0715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Salivary gland (SG) development involves dynamic epithelial-mesenchymal interactions resulting in the formation of highly branched epithelial structures that produce and secrete saliva. The SG epithelium differentiates into saliva-producing terminal buds, i.e., acini, and transporting ducts. Most studies on the salivary gland have focused on branching morphogenesis; however, acinar cell differentiation underlying the determination of serous or mucous salivary glands is unclear. The objective of this study was to identify the mesenchymal signaling molecules involved in the epithelial differentiation of the salivary gland type as serous or mucous. Salivary glands undergoing stage-specific development, including the parotid gland (PG) and the sublingual gland (SLG) at embryonic day 14.5 (E14.5) were dissected. The glands were treated with dispase II to separate the epithelium and the mesenchyme. RNA from mesenchyme was processed for microarray analysis. Thereafter, microarray data were analyzed to identify putative candidate molecules involved in salivary gland differentiation and confirmed via quantitative reverse transcription polymerase chain reaction. The microarray analysis revealed the expression of 31,873 genes in the PG and SLG mesenchyme. Of the expressed genes 21,026 genes were found to be equally expressed (Fold change 1.000) in both PG and SLG mesenchyme. The numbers of genes expressed over onefold in the PG and SLG mesenchyme were found to be 5247 and 5600 respectively. On limiting the fold-change cut off value over 1.5 folds, only 214 and 137 genes were expressed over 1.5 folds in the PG and the SLG mesenchyme respectively. Our findings suggest that differential expression patterns of the mesenchymal signaling molecules are involved in fate determination of the salivary acinar cell types during mouse embryogenesis. In the near future, functional evaluation of the candidate genes will be performed using gain- and loss-of-function mutation studies during in vitro organ cultivation.
Collapse
Affiliation(s)
- Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jiyeon Roh
- Department of Dental Hygiene, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Dental Hygiene, College of Health Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Division of Biotechnology and Convergence, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea.
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
72
|
Kourouklis AP, Nelson CM. Modeling branching morphogenesis using materials with programmable mechanical instabilities. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:66-73. [PMID: 30345410 PMCID: PMC6193561 DOI: 10.1016/j.cobme.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The architectural features of branching morphogenesis demonstrate exquisite reproducibility among various organs and species despite the unique functionality and biochemical differences of their microenvironment. The regulatory networks that drive branching morphogenesis employ cell-generated and passive mechanical forces, which integrate extracellular signals from the microenvironment into morphogenetic movements. Cell-generated forces function locally to remodel the extracellular matrix (ECM) and control interactions among neighboring cells. Passive mechanical forces are the product of in situ mechanical instabilities that trigger out-of-plane buckling and clefting deformations of adjacent tissues. Many of the molecular and physical signals that underlie buckling and clefting morphogenesis remain unclear and require new experimental strategies to be uncovered. Here, we highlight soft material systems that have been engineered to display programmable buckles and creases. Using synthetic materials to model physicochemical and spatiotemporal features of buckling and clefting morphogenesis might facilitate our understanding of the physical mechanisms that drive branching morphogenesis across different organs and species.
Collapse
Affiliation(s)
- Andreas P. Kourouklis
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
73
|
Emmerson E, Knox SM. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018; 56:e23211. [PMID: 29663717 PMCID: PMC5980780 DOI: 10.1002/dvg.23211] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators. In this review we discuss our current knowledge on salivary stem cells and their regulators during organ development, homeostasis and regeneration. As increasing evidence in other systems suggests that progenitor cells may be a source of cancer, we also review whether these same salivary stem cells may also be cancer initiating cells.
Collapse
Affiliation(s)
- Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
74
|
aPKCζ-dependent Repression of Yap is Necessary for Functional Restoration of Irradiated Salivary Glands with IGF-1. Sci Rep 2018; 8:6347. [PMID: 29679075 PMCID: PMC5910385 DOI: 10.1038/s41598-018-24678-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Xerostomia and salivary hypofunction often result as a consequence of radiation therapy for head and neck cancers, which are diagnosed in roughly 60,000 individuals every year in the U.S. Due to the lack of effective treatments for radiation-induced salivary hypofunction, stem cell-based therapies have been suggested to regenerate the irradiated salivary glands. Pharmacologically, restoration of salivary gland function has been accomplished in mice by administering IGF-1 shortly after radiation treatment, but it is not known if salivary stem and progenitor cells play a role. We show that radiation inactivates aPKCζ and promotes nuclear redistribution of Yap in a population of label-retaining cells in the acinar compartment of the parotid gland (PG)- which comprises a heterogeneous pool of salivary progenitors. Administration of IGF-1 post-radiation maintains activation of aPKCζ and partially rescues Yap's cellular localization in label retaining cells, while restoring salivary function. Finally, IGF-1 fails to restore saliva production in mice lacking aPKCζ, demonstrating the importance of the kinase as a potential therapeutic target.
Collapse
|
75
|
Nam K, Maruyama CL, Wang CS, Trump BG, Lei P, Andreadis ST, Baker OJ. Laminin-111-derived peptide conjugated fibrin hydrogel restores salivary gland function. PLoS One 2017; 12:e0187069. [PMID: 29095857 PMCID: PMC5667805 DOI: 10.1371/journal.pone.0187069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022] Open
Abstract
Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral health. Current treatments for hyposalivation are limited to medications such as the muscarinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide temporary relief. Therefore, alternative therapies are essential to restore salivary gland function. An option is to use bioengineered scaffolds to promote functional salivary gland regeneration. Previous studies demonstrated that the laminin-111 protein is critical for intact salivary gland cell cluster formation and organization. However, laminin-111 protein as a whole is not suitable for clinical applications as some protein domains may contribute to unwanted side effects such as degradation, tumorigenesis and immune responses. Conversely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as compared to animal-derived proteins. Therefore, the goal of this study was to demonstrate whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel promotes tissue regeneration in submandibular glands of a wound healing mouse model. In this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated formation of salivary gland tissue. The regenerated gland tissues displayed not only structural but also functional restoration.
Collapse
Affiliation(s)
- Kihoon Nam
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Christina L. Maruyama
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Ching-Shuen Wang
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bryan G. Trump
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- Center of Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Olga J. Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
76
|
Abstract
Epithelial-mesenchymal interactions are required to coordinate cell proliferation, patterning, and functional differentiation of multiple cell types in a developing organ. This exquisite coordination is dependent on various secreted molecules that provide developmental signals to mediate these tissue interactions. Recently, it was reported that mature mesenchymal-derived microRNAs (miRNAs) in the fetal mouse salivary gland are loaded into exosomes, and transported to the epithelium where they influence progenitor cell proliferation. The exosomal miRNAs regulated epithelial expression of genes involved in DNA methylation in progenitor cells to influence morphogenesis. Thus, exosomal miRNAs are mobile genetic signals that cross tissue boundaries within an organ. These findings raise many questions about how miRNA signals are initiated to coordinate organogenesis and whether they are master regulators of epithelial-mesenchymal interactions. The development of therapeutic applications using exosomal miRNAs for the regeneration of damaged adult organs is a promising area of research.
Collapse
Affiliation(s)
- Toru Hayashi
- a Department of Anatomical Science , Kitasato University School of Allied Health Sciences , Sagamihara , Kanagawa , Japan
| | - Matthew P Hoffman
- b Matrix and Morphogenesis Section , National Institute of Dental and Craniofacial Research, National Institutes of Health, DHHS , Bethesda , Maryland , USA
| |
Collapse
|
77
|
Metwalli KA, Do MA, Nguyen K, Mallick S, Kin K, Farokhnia N, Jun G, Fakhouri WD. Interferon Regulatory Factor 6 Is Necessary for Salivary Glands and Pancreas Development. J Dent Res 2017; 97:226-236. [PMID: 28898113 DOI: 10.1177/0022034517729803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interferon regulatory factor 6 ( IRF6) acts as a tumor suppressor and controls cell differentiation in ectodermal and craniofacial tissues by regulating expression of target genes. Haploinsufficiency of IRF6 causes Van der Woude and popliteal pterygium syndrome, 2 syndromic forms of cleft lip and palate. Around 85% of patients with Van der Woude express pits on the lower lip that continuously or intermittently drain saliva, and patients with the common cleft lip and palate have a higher prevalence of dental caries and gingivitis. This study aims to identify the role of IRF6 in development of exocrine glands, specifically the major salivary glands. Our transgenic mouse model that expresses LacZ reporter under the control of the human IRF6 enhancer element showed high expression of IRF6 in major and minor salivary glands and ducts. Immunostaining data also confirmed the endogenous expression of IRF6 in the developing ductal, serous, and mucous acinar cells of salivary glands. As such, we hypothesized that Irf6 is important for proper development of salivary glands and potentially other exocrine glands. Loss of Irf6 in mice causes an increase in the proliferation level of salivary cells, disorganized branching morphogenesis, and a lack of differentiated mucous acinar cells in submandibular and sublingual glands. Expression and localization of the acinar differentiation marker MIST1 were altered in Irf6-null salivary gland and pancreas. The RNA-Seq analysis demonstrated that 168 genes are differentially expressed and confer functions associated with transmembrane transporter activity, spliceosome, and transcriptional regulation. Furthermore, expression of genes involved in the EGF pathway-that is, Ereg, Ltbp4, Matn1, Matn3, and Tpo-was decreased at embryonic day 14.5, while levels of apoptotic proteins were elevated at postnatal day 0. In conclusion, our data report a novel role of Irf6 in exocrine gland development and support a rationale for performing exocrine functional tests for patients with IRF6-damaging mutations.
Collapse
Affiliation(s)
- K A Metwalli
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M A Do
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K Nguyen
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S Mallick
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K Kin
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - N Farokhnia
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - G Jun
- 2 Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - W D Fakhouri
- 1 Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA.,3 Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
78
|
Gao P, Qiao XH, Gou LM, Huang Y, Li QH, Li LJ, Wang XY, Li CJ. TGF-β1 attenuated branching morphogenesis of embryonic murine submandibular gland through Smad3 activation. Anat Histol Embryol 2017; 46:600-605. [PMID: 28884513 DOI: 10.1111/ahe.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/31/2017] [Indexed: 02/05/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) plays several crucial regulatory roles in multiple physiological and pathological processes. The aim of this work was to investigate the role of TGF-β1 in branching morphogenesis of salivary gland. We harvested and cultured submandibular salivary glands (SMGs) from murine embryos, which were then treated with exogenous TGF-β1, or its neutralized antibody, Smad3 inhibitor, or Smad3 small interfering RNA (siRNA). Our results suggested that TGF-β1 attenuated branching morphogenesis of embryonic murine SMG via Smad3 activation, thus playing a negative regulatory role in salivary gland development.
Collapse
Affiliation(s)
- P Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X-H Qiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L-M Gou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Huang
- Department of Oral and Maxillofacial Surgery, Sichuan Provincial Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Q-H Li
- Chinese and Western Medicine Hospital of Panzhihua, Panzhihua, China
| | - L-J Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X-Y Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C-J Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
79
|
Comella K, Bell W. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study. Int Med Case Rep J 2017; 10:295-299. [PMID: 28860871 PMCID: PMC5566327 DOI: 10.2147/imcrj.s142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) is a mixture of cells which can be isolated from a mini-lipoaspirate of fat tissue. Platelet-rich plasma (PRP) is a mixture of growth factors and other nutrients which can be obtained from peripheral blood. Adipose-derived stem/stromal cells (ADSCs) can be isolated from fat tissue and expanded in culture. The SVF includes a variety of different cells such as ADSCs, pericytes, endothelial/progenitor cells, and a mix of different growth factors. The adipocytes (fat cells) can be removed via centrifugation. Here, we describe the rationale and, to our knowledge, the first clinical implementation of SVF and PRP followed by repeat dosing of culture-expanded ADSCs into a patient with severe xerostomia postirradiation. METHODS Approximately 120 mLs of adipose tissue was removed via mini-lipoaspirate procedure under local anesthetic. The SVF was prepared from half of the fat and resuspended in PRP. The mixture was delivered via ultrasound directly into the submandibular and parotid glands on both the right and left sides. The remaining 60 mLs of fat was processed to culture-expand ADSCs. The patient received seven follow-up injections of the ADSCs plus PRP at 5, 8, 16, 18, 23, 28, and 31 months postliposuction. The subject was monitored over a period of 31 months for safety (adverse events), glandular size via ultrasound and saliva production. RESULTS Throughout the 31-month monitoring period, no safety events such as infection or severe adverse events were reported. The patient demonstrated an increase in gland size as measured by ultrasound which corresponded to increased saliva production. CONCLUSION Overall, the patient reported improved quality of life and willingness to continue treatments. The strong safety profile and preliminary efficacy results warrant larger studies to determine if this is a feasible treatment plan for patients postradiation.
Collapse
Affiliation(s)
| | - Walter Bell
- South African Stem Cell Institute, Parys, South Africa
| |
Collapse
|
80
|
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 2017; 144:3177-3188. [PMID: 28705898 DOI: 10.1242/dev.149112] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Branching morphogenesis creates arborized epithelial networks. In the mammalian kidney, an epithelial progenitor pool at ureteric branch tips (UBTs) creates the urine-transporting collecting system. Using region-specific mouse reporter strains, we performed an RNA-seq screen, identifying tip- and stalk-enriched gene sets in the developing collecting duct system. Detailed in situ hybridization studies of tip-enriched predictions identified UBT-enriched gene sets conserved between the mouse and human kidney. Comparative spatial analysis of their UBT niche expression highlighted distinct patterns of gene expression revealing novel molecular heterogeneity within the UBT progenitor population. To identify kidney-specific and shared programs of branching morphogenesis, comparative expression studies on the developing mouse lung were combined with in silico analysis of the developing mouse salivary gland. These studies highlight a shared gene set with multi-organ tip enrichment and a gene set specific to UBTs. This comprehensive analysis extends our current understanding of the ureteric branch tip niche.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
81
|
Togarrati PP, Sasaki RT, Abdel-Mohsen M, Dinglasan N, Deng X, Desai S, Emmerson E, Yee E, Ryan WR, da Silva MCP, Knox SM, Pillai SK, Muench MO. Identification and characterization of a rich population of CD34 + mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7:3484. [PMID: 28615711 PMCID: PMC5471181 DOI: 10.1038/s41598-017-03681-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs.
Collapse
Affiliation(s)
| | - Robson T Sasaki
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Shivani Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Elizabeth Yee
- Blood Systems Research Institute, San Francisco, CA, USA
| | - William R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo C P da Silva
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA. .,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
82
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
83
|
Patil SV, Nanduri LSY. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview. Int J Biol Macromol 2017; 104:1398-1406. [PMID: 28315439 DOI: 10.1016/j.ijbiomac.2017.03.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 01/26/2023]
Abstract
Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells.
Collapse
Affiliation(s)
| | - Lalitha S Y Nanduri
- Centre for Nanosciences and Molecular Medicine, Amrita University, Kochi, Kerala 682041, India.
| |
Collapse
|
84
|
Shubin AD, Felong TJ, Schutrum BE, Joe DSL, Ovitt CE, Benoit DSW. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomater 2017; 50:437-449. [PMID: 28039063 PMCID: PMC5455143 DOI: 10.1016/j.actbio.2016.12.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Radiation therapy for head and neck cancers leads to permanent xerostomia due to the loss of secretory acinar cells in the salivary glands. Regenerative treatments utilizing primary submandibular gland (SMG) cells show modest improvements in salivary secretory function, but there is limited evidence of salivary gland regeneration. We have recently shown that poly(ethylene glycol) (PEG) hydrogels can support the survival and proliferation of SMG cells as multicellular spheres in vitro. To further develop this approach for cell-based salivary gland regeneration, we have investigated how different modes of PEG hydrogel degradation affect the proliferation, cell-specific gene expression, and epithelial morphology within encapsulated salivary gland spheres. Comparison of non-degradable, hydrolytically-degradable, matrix metalloproteinase (MMP)-degradable, and mixed mode-degradable hydrogels showed that hydrogel degradation by any mechanism is required for significant proliferation of encapsulated cells. The expression of acinar phenotypic markers Aqp5 and Nkcc1 was increased in hydrogels that are MMP-degradable compared with other hydrogel compositions. However, expression of secretory acinar proteins Mist1 and Pip was not maintained to the same extent as phenotypic markers, suggesting changes in cell function upon encapsulation. Nevertheless, MMP- and mixed mode-degradability promoted organization of polarized cell types forming tight junctions and expression of the basement membrane proteins laminin and collagen IV within encapsulated SMG spheres. This work demonstrates that cellularly remodeled hydrogels can promote proliferation and gland-like organization by encapsulated salivary gland cells as well as maintenance of acinar cell characteristics required for regenerative approaches. Investigation is required to identify approaches to further enhance acinar secretory properties. STATEMENT OF SIGNIFICANCE Regenerative strategies to replace damaged salivary glands require the function and organization of acinar cells. Hydrogel-based approaches have shown promise to control cell function and phenotype. However, little is known about how specific parameters, such as the mechanism of hydrogel degradation (e.g., hydrolytic or enzymatic), influence the viability, proliferation, organization, and phenotype of salivary gland cells. In this work, it is shown that hydrogel-encapsulated primary salivary gland cell proliferation is dependent upon hydrogel degradation. Hydrogels crosslinked with enzymatically degradable peptides promoted the expression of critical acinar cell markers, which are typically downregulated in primary cultures. Furthermore, salivary gland cells encapsulated in enzymatically- but not hydrolytically-degradable hydrogels displayed highly organized and polarized salivary gland cell markers, which mimics characteristics found in native gland tissue. In sum, results indicate that salivary gland cells respond to cellularly remodeled hydrogels, resulting in self-assembly and organization akin to acini substructures of the salivary gland.
Collapse
Affiliation(s)
- Andrew D Shubin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Timothy J Felong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Brittany E Schutrum
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Debria S L Joe
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, Rochester, NY, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
85
|
de Paula F, Teshima THN, Hsieh R, Souza MM, Nico MMS, Lourenco SV. Overview of Human Salivary Glands: Highlights of Morphology and Developing Processes. Anat Rec (Hoboken) 2017; 300:1180-1188. [DOI: 10.1002/ar.23569] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/13/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Fernanda de Paula
- Department of Dermatology; School of Medicine, University of Sao Paulo; Sao Paulo Brazil
| | | | - Ricardo Hsieh
- Department of Stomatology; School of Dentistry, University of Sao Paulo; Sao Paulo Brazil
| | - Milena Monteiro Souza
- Department of Dermatology; School of Medicine, University of Sao Paulo; Sao Paulo Brazil
| | | | | |
Collapse
|
86
|
Patel VN, Pineda DL, Hoffman MP. The function of heparan sulfate during branching morphogenesis. Matrix Biol 2017; 57-58:311-323. [PMID: 27609403 PMCID: PMC5329135 DOI: 10.1016/j.matbio.2016.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
Branching morphogenesis is a fundamental process in the development of diverse epithelial organs such as the lung, kidney, liver, pancreas, prostate, salivary, lacrimal and mammary glands. A unifying theme during organogenesis is the importance of epithelial cell interactions with the extracellular matrix (ECM) and growth factors (GFs). The diverse developmental mechanisms giving rise to these epithelial organs involve many organ-specific GFs, but a unifying paradigm during organogenesis is the regulation of GF activity by heparan sulfates (HS) on the cell surface and in the ECM. This primarily involves the interactions of GFs with the sulfated side-chains of HS proteoglycans. HS is one of the most diverse biopolymers and modulates GF binding and signaling at the cell surface and in the ECM of all tissues. Here, we review what is known about how HS regulates branching morphogenesis of epithelial organs with emphasis on the developing salivary gland, which is a classic model to investigate epithelial-ECM interactions. We also address the structure, biosynthesis, turnover and function of HS during organogenesis. Understanding the regulatory mechanisms that control HS dynamics may aid in the development of therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
87
|
Joo E, Lombaert I, Yamada K. Hyperacetylation of Microtubules in Mesenchymal Cells Increases Cytokeratin 14-Positive Epithelial Progenitors in Developing Salivary Glands. J Dent Res 2016; 95:1518-1527. [PMID: 27542391 PMCID: PMC5119680 DOI: 10.1177/0022034516662450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cells engage in bidirectional communication with their surroundings. This reciprocal dialogue between cells and their cellular microenvironments often governs the maintenance and differentiation of stem/progenitor cells. Here, the authors present evidence that in developing salivary gland explants, a single posttranslational change in microtubules in mesenchymal cells alters the mesenchymal microenvironment and promotes the maintenance and differentiation of a subset of epithelial progenitor cells that impairs branching morphogenesis. Specifically, the authors report that hyperacetylation of microtubules in mesenchymal cells increased cytokeratin 14-positive (K14+) progenitors and their differentiated progeny, myoepithelial cells, in epithelial basal and suprabasal layers in the distal endbud region of developing salivary glands. Mechanistically, this process engages the transforming growth factor β1 protein and Notch signaling pathways. This report establishes that a simple posttranslational change in the cytoskeletal system of mesenchyme dictates the maintenance and differentiation of adjacent epithelial progenitor cells to alter branching morphogenesis of the epithelium.
Collapse
Affiliation(s)
- E.E. Joo
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I.M.A. Lombaert
- Laboratory of Cell and Developmental Biology, Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K.M. Yamada
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
88
|
Rêgo MJBM, Silva Filho AF, Sobral APV, Beltrão EIC. Glycomic profile of the human parotid gland between 18th and 26th week of fetal development. J Oral Sci 2016; 58:353-60. [PMID: 27665974 DOI: 10.2334/josnusd.15-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The formation of new and functional structural components of several organs, such as parotid glands, can be influenced by the glycocode. This study analyzed the glycobiology of parotid salivary gland tissue during fetal development using specific biochemical probes (lectins and antibodies). Eleven parotid gland samples from human fetuses were obtained from spontaneous abortions at 14-28 weeks of gestation, and tissue sections were analyzed for lectin histochemistry and immunohistochemistry. From the 18th to 26th week, Canavalia ensiformis agglutinin, wheat germ agglutinin, Ulex europaeus agglutinin-I, peanut agglutinin, Sambucus nigra agglutinin, and Vicia villosa agglutinin lectin staining were predominantly observed in the apical and/or basement membranes of the ducts and tubulo-acinar units. Moreover, the presence of galectin-1 was found in the membrane, cytoplasm, and nucleus of both structures. Conversely, Gal-3 and mucin-1 were restricted to the glandular ducts. The lectin staining pattern changed during the weeks evaluated. Nevertheless, the carbohydrate subcellular localization represented a key factor in the investigation of structural distribution profiles and possible roles of these glycans in initial parotid gland development. These findings are defined by their high biological value and provide an important base for the development of subsequent studies. (J Oral Sci 58, 353-360, 2016).
Collapse
Affiliation(s)
- Moacyr J B M Rêgo
- Laboratory of Immunomodulation and New Therapeutic Approaches, Center for Research on Therapeutic Innovation Suelly Galdino
| | | | | | | |
Collapse
|
89
|
Matsumoto S, Kurimoto T, Taketo MM, Fujii S, Kikuchi A. The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development 2016; 143:2311-24. [PMID: 27161149 DOI: 10.1242/dev.134486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/04/2016] [Indexed: 01/08/2023]
Abstract
Growth factor signaling is involved in the development of various organs, but how signaling regulates organ morphogenesis and differentiation in a coordinated manner remains to be clarified. Here, we show how WNT signaling controls epithelial morphogenetic changes and differentiation using the salivary gland as a model. Experiments using genetically manipulated mice and organ cultures revealed that WNT signaling at an early stage (E12-E15) of submandibular salivary gland (SMG) development inhibits end bud morphogenesis and differentiation into proacini by suppressing Kit expression through the upregulation of the transcription factor MYB, and concomitantly increasing the expression of distal progenitor markers. In addition, WNT signaling at the early stage of SMG development promoted end bud cell proliferation, leading to duct formation. WNT signaling reduction at a late stage (E16-E18) of SMG development promoted end bud maturation and suppressed duct formation. Thus, WNT signaling controls the timing of SMG organogenesis by keeping end bud cells in an undifferentiated bipotent state.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kurimoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo, Kyoto 606-8501, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
90
|
Xerostomia: current streams of investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:53-60. [PMID: 27189896 DOI: 10.1016/j.oooo.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Xerostomia is the subjective feeling of dry mouth, and it is often related to salivary hypofunction. Besides medication-related salivary hypofunction, Sjögren syndrome and head-and-neck radiation are two common etiologies that have garnered considerable attention. Approaches to treating and/or preventing salivary hypofunction in patients with these conditions will likely incorporate gene therapy, stem cell therapy, and tissue engineering. Advances in these disciplines are central to current research in the cure for xerostomia and will be key to eventual treatment.
Collapse
|
91
|
Ozdemir T, Fowler EW, Hao Y, Ravikrishnan A, Harrington DA, Witt RL, Farach-Carson MC, Pradhan-Bhatt S, Jia X. Biomaterials-based strategies for salivary gland tissue regeneration. Biomater Sci 2016; 4:592-604. [PMID: 26878077 DOI: 10.1039/c5bm00358j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.
Collapse
Affiliation(s)
- Tugba Ozdemir
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Júnior AMC, de Amorim Carvalho FA, de Oliveira Dantas W, Gomes LCL, da Silva ABS, de Sousa Cavalcante MMA, de Oliveira IM, de Deus Moura de Lima M, Rizzo MDS, de Carvalho Leite CM, Moura SMDS, de Deus Moura LDFA, da Silva BB. Does Leishmaniasis disease alter the parenchyma and protein expression in salivary glands? Exp Biol Med (Maywood) 2016; 241:359-66. [PMID: 26568331 PMCID: PMC4935414 DOI: 10.1177/1535370215614658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is considered a serious public health problem in several regions in Brazil and worldwide. This research aimed to perform a histopathological and proteomic study of parotid, submandibular and sublingual glands of BALB/c mice infected by Leishmania (L) infantum chagasi using histological, immunohistochemical and epifluorescence techniques. Twelve isogenic BALB/c male mice, around six- to eight-weeks old, were separated into two groups: the animals of the control group were injected with 0.15 ml of NaCl, while those in the experimental group were inoculated with 5 × 10(6) amastigote forms of Leishmania (L) infantum chagasi by the ip route. After 50 days, animals were euthanized and major salivary glands were collected to perform histological, immunohistochemical and epifluorescence techniques using anti-Caspase-2, anti-Ki-67 and anti-β-catenin antibodies, respectively. The histological and morphometric evaluation showed clusters of mononuclear inflammatory cells and a higher area and perimeter of the parotid gland. However, none of the salivary glands had morphophysiological impairment. There was no immunoreactivity to the anti-caspase-2 antibody and Ki67 expression in acinar and ductal cells in both groups. According to the immunofluorescence staining, the β-catenin antibodies did not show nuclear expression, suggesting no uncontrolled proliferation. The data obtained in this study showed population and morphological stability of major salivary glands after 50 days post-infection by Leishmania (L) infantum chagasi.
Collapse
Affiliation(s)
- Aírton M C Júnior
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | | | - Luana C L Gomes
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | - Andrezza B S da Silva
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | - Ingrid M de Oliveira
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | - Márcia Dos Santos Rizzo
- Department of Clinical and Veterinary Surgery, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | | | | | - Benedito B da Silva
- Maternal Child Departament, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| |
Collapse
|
93
|
|
94
|
García-Gallastegui P, Luzuriaga J, Aurrekoetxea M, Baladrón V, Ruiz-Hidalgo MJ, García-Ramírez JJ, Laborda J, Unda F, Ibarretxe G. Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice. Cell Tissue Res 2015; 364:513-525. [DOI: 10.1007/s00441-015-2344-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/10/2015] [Indexed: 01/23/2023]
|
95
|
Teshima T, Wells K, Lourenço S, Tucker A. Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation. J Dent Res 2015; 95:277-83. [DOI: 10.1177/0022034515619581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts.
Collapse
Affiliation(s)
- T.H.N. Teshima
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - K.L. Wells
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| | - S.V. Lourenço
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - A.S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| |
Collapse
|
96
|
Acauan MD, Figueiredo MAZ, Cherubini K, Gomes APN, Salum FG. Radiotherapy-induced salivary dysfunction: Structural changes, pathogenetic mechanisms and therapies. Arch Oral Biol 2015; 60:1802-10. [DOI: 10.1016/j.archoralbio.2015.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023]
|
97
|
Abstract
Salivary glands develop as highly branched structures designed to produce and secrete saliva. Advances in mouse genetics, stem cell biology, and regenerative medicine are having a tremendous impact on our understanding of salivary gland organogenesis. Understanding how submandibular gland (SMG) initiation, branching morphogenesis, and cell differentiation occur, as well as defining the progenitor/stem cells and cell and tissue interactions that drive SMG development will help guide regenerative approaches for patients suffering from loss of salivary gland function. This review focuses on recent literature from the past 5 years investigating the regulatory mechanisms driving SMG organogenesis.
Collapse
Affiliation(s)
- Belinda R Hauser
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
98
|
Wright DM, Buenger DE, Abashev TM, Lindeman RP, Ding J, Sandell LL. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands. Dev Biol 2015; 407:57-67. [PMID: 26278034 DOI: 10.1016/j.ydbio.2015.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 01/09/2023]
Abstract
Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis.
Collapse
Affiliation(s)
- Diana M Wright
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA
| | - Deanna E Buenger
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA
| | - Timur M Abashev
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA
| | - Robert P Lindeman
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA
| | - Jixiang Ding
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA
| | - Lisa L Sandell
- University of Louisville School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, KY 40201, USA.
| |
Collapse
|
99
|
Regenerating Salivary Glands in the Microenvironment of Induced Pluripotent Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293570. [PMID: 26185754 PMCID: PMC4491559 DOI: 10.1155/2015/293570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022]
Abstract
This report describes our initial attempt to regenerate salivary glands using induced pluripotent stem (iPS) cells in vivo and in vitro. Glandular tissues that were similar to the adult submandibular glands (SMGs) and sublingual glands could be partially produced by the transplantation of iPS cells into mouse salivary glands. However, the tumorigenicity of iPS cells has not been resolved yet. It is well known that stem cells affect their microenvironment, known as a stem cell niche. We focused on the niche and the interaction between iPS cells and salivary gland cells in our study on salivary gland regeneration. Coculture of embryonic SMG cells and iPS cells have better-developed epithelial structures and fewer undifferentiated specific markers than monoculture of embryonic SMG cells in vitro. These results suggest that iPS cells have a potential ability to accelerate differentiation for salivary gland development and regeneration.
Collapse
|
100
|
Yang TL, Hsiao YC. Chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components. Biomaterials 2015; 66:29-40. [PMID: 26189212 DOI: 10.1016/j.biomaterials.2015.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
Tissue structure is important for inherent physiological function and should be recapitulated during tissue engineering for regenerative purposes. The salivary gland is a branched organ that is responsible for saliva secretion and regulation. The salivary glands develop from epithelial-mesenchymal interactions, and depend on the support of the basement membrane (BM). Chitosan-based biomaterials have been demonstrated to be competent in facilitating the formation of salivary gland tissue structure. However, the underlying mechanisms have remained elusive. In the developing submandibular gland (SMG), the chitosan effect was found to diminish when collagen and laminin were removed from cultured SMG explants. Chitosan increased the expression of BM components including collagen, laminin, and heparan sulfate proteoglycan, and also facilitated BM components and the corresponding receptors to be expressed in tissue-specific patterns beneficial for SMG branching. The chitosan effect decreased when either laminin components or receptors were inhibited, as well when the downstream signaling was blocked. Our results revealed that chitosan promotes salivary glands branching through the BM. By regulating BM components and receptors, chitosan efficiently stimulated downstream signaling to facilitate salivary gland branching. The present study revealed the underlying mechanism of the chitosan effect in engineering SMG structure formation.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ya-Chuan Hsiao
- Department of Ophthalmology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan; Department of Ophthalmology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|