51
|
Shen H, Cai Y, Zhu K, Wang D, Yu R, Chen X. Enniatin B1 induces damage to Leydig cells via inhibition of the Nrf2/HO-1 and JAK/STAT3 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116116. [PMID: 38387140 DOI: 10.1016/j.ecoenv.2024.116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.
Collapse
Affiliation(s)
- Hongping Shen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yili Cai
- Department of Acupuncture, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Keqi Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Dong Wang
- Shanghai Houyu Medical Equiment Co., Ltd, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Ningbo University, China.
| | - Xueqin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China.
| |
Collapse
|
52
|
Li Y, Liu Y, Chen Y, Yao C, Yu S, Qu J, Chen G, Wei H. Combined effects of polystyrene nanoplastics and lipopolysaccharide on testosterone biosynthesis and inflammation in mouse testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116180. [PMID: 38458071 DOI: 10.1016/j.ecoenv.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs), as a source and vector of pathogenic bacteria, are widely distributed in the natural environments. Here, we investigated the combined effects of polystyrene NPs (PS-NPs) and lipopolysaccharides (LPS) on testicular function in mice for the first time. 24 male mice were randomly assigned into 4 groups, control, PS-NPs, LPS, and PS-NPs + LPS, respectively. Histological alterations of the testes were observed in mice exposed to PS-NPs, LPS or PS-NPs + LPS. Total sperm count, the levels of testosterone in plasma and testes, the expression levels of steroidogenic acute regulatory (StAR) decreased more remarkable in testes of mice treated with PS-NPs and LPS than the treatment with LPS or PS-NPs alone. Compared with PS-NPs treatment, LPS treatment induced more sever inflammatory response in testes of mice. Moreover, PS-NPs combined with LPS treatment increased the expression of these inflammatory factors more significantly than LPS treatment alone. In addition, PS-NPs or LPS treatment induced oxidative stress in testes of mice, but their combined effect is not significantly different from LPS treatment alone. These results suggest that PS-NPs exacerbate LPS-induced testicular dysfunction. Our results provide new evidence for the threats to male reproductive function induced by both NPs and bacterial infection in human health.
Collapse
Affiliation(s)
- Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China; Wujiang Center for Disease Control and Prevention, Suzhou, Jiangsu 215299, China
| | - Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
53
|
Liu M, He Q, Yuan Z, Chen N, Ren S, Du Q, Wang Y, Han S, Xu C, Lu L, Sun Z, Guan Y, Xie J, Guan Y, Ye L. HDAC3 promotes Sertoli cell maturation and maintains the blood-testis barrier dynamics. FASEB J 2024; 38:e23526. [PMID: 38430456 DOI: 10.1096/fj.202301349rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.
Collapse
Affiliation(s)
- Mengrou Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Niuniu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qian Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Luyang Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yongjuan Guan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
54
|
Rodprasert W, Virtanen HE, Toppari J. Cryptorchidism and puberty. Front Endocrinol (Lausanne) 2024; 15:1347435. [PMID: 38532895 PMCID: PMC10963523 DOI: 10.3389/fendo.2024.1347435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
Cryptorchidism is the condition in which one or both testes have not descended adequately into the scrotum. The congenital form of cryptorchidism is one of the most prevalent urogenital anomalies in male newborns. In the acquired form of cryptorchidism, the testis that was previously descended normally is no longer located in the scrotum. Cryptorchidism is associated with an increased risk of infertility and testicular germ cell tumors. However, data on pubertal progression are less well-established because of the limited number of studies. Here, we aim to review the currently available data on pubertal development in boys with a history of non-syndromic cryptorchidism-both congenital and acquired cryptorchidism. The review is focused on the timing of puberty, physical changes, testicular growth, and endocrine development during puberty. The available evidence demonstrated that the timing of the onset of puberty in boys with a history of congenital cryptorchidism does not differ from that of non-cryptorchid boys. Hypothalamic-pituitary-gonadal hormone measurements showed an impaired function or fewer Sertoli cells and/or germ cells among boys with a history of cryptorchidism, particularly with a history of bilateral cryptorchidism treated with orchiopexy. Leydig cell function is generally not affected in boys with a history of cryptorchidism. Data on pubertal development among boys with acquired cryptorchidism are lacking; therefore, more research is needed to investigate pubertal progression among such boys.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
55
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
56
|
Shi M, Li T, Zhao Y, He Z, Zong Y, Chen W, Du R. Comparative studies on the chemical composition and pharmacological effects of vinegar-processed antler glue modified from Lei Gong Pao Zhi Lun and traditional water-processed antler glue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117508. [PMID: 38065351 DOI: 10.1016/j.jep.2023.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antler glue is a classic medicinal to enhance sexual function in traditional Chinese medicine (TCM), which was first recorded in Shen Nong Ben Cao Jing (Shennong's Classic of the Materia Medica). Vinegar-processing is a classic method of processing traditional Chinese medicine. The method of preparing antler glue by boiling antlers in vinegar and then concentrating them is recorded in Lei Gong Pao Zhi Lun (Master Lei's Discourse on Medicinal Processing). In modern times, the typical processing method of antler glue is water extraction and concentration. However, it is not clear whether there is a difference in the effect of these two processing methods on the chemical composition and pharmacological activity of antler glue. AIM OF THE STUDY The Chinese Pharmacopoeia (2020) records that the processing method of antler glue is water extraction and concentration. But Lei Gong Pao Zhi Lun differs in Chinese Pharmacopoeia (2020), which records the processing method of vinegar extraction and concentration. The effect of the two processing methods on antler glue's chemical composition and pharmacological activity is unknown. So this study aimed to elucidate the difference between different processing methods on the chemical composition and the treatment effect on oligoasthenospermia of antler glue. MATERIALS AND METHODS So the automatic amino acid analyzer is used to determine the amino acid content of two different processing methods of antler glue. Proteomics was performed to detect the protein components of two different processing methods of antler glue and analyze them. Cyclophosphamide-induced mice models of oligoasthenospermia were used to study the different pharmacological effects of antler glue in two different processing methods. An automatic sperm analyzer observed the quantity and quality of sperm in mice epididymis. Serum sex hormone testosterone (T), luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels in mice were tested using the enzyme-linked immunosorbent assay (ELISA) kits. Hematoxylin-eosin (H&E) staining was used to analyze pathological alterations in mouse testicular tissue. The transcriptome has been used to reveal the potential mechanism of antler glue in treating oligoasthenospermia. Mitochondrial complex activity assay kits were used to assay the activity of mitochondrial respiratory chain complex I-V in mouse testicular tissue. Western blot was used to determine the expression of related proteins in mouse testicular tissue. RESULTS Vinegar-processing can increase the alanine, proline, and glycine content in antler glue, reduce the length of protein peptides in antler glue, and produce a variety of unique proteins. Vinegar-processed antler glue (VAG) increased sperm density, sperm survival, sperm viability, and serum sex hormone levels in oligozoospermic mice. It reversed testicular damage caused by cyclophosphamide, and the effects were differently superior to those of water-processed antler glue (WAG). In addition, transcriptomics and related experiments have shown that VAG can increase the expression of Ndufa2, Uqcr11, Cox6b1, and Atp5i genes and proteins in mouse testis, thus promoting adenosine diphosphate (ATP) synthesis by increasing the activity of mitochondrial respiratory chain complexes I, III, IV and V. By promoting the oxidative phosphorylation process to produce more ATP, VAG can achieve the therapeutic effect of oligoasthenospermia. CONCLUSION Vinegar-processing method can increase the content of active ingredients in antler glue. VAG increases ATP levels in the testes by promoting the process of oxidative phosphorylation to treat oligozoospermia.
Collapse
Affiliation(s)
- Mengqi Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Tianshi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China.
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China.
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China.
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China; Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun, 130118, China.
| |
Collapse
|
57
|
Silveira JM, Cesar Dos Santos A, Calado de Brito DC, de Oliveira MF, Conley AJ, de Assis Neto AC. Morphohistometric and steroidogenic parameters during testicular and epididymal differentiation in cavy (Galea spixii) fetuses. Reprod Biol 2024; 24:100829. [PMID: 38039944 DOI: 10.1016/j.repbio.2023.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Sexual differentiation and steroidogenic mechanisms have an important impact on postnatal gonadal phenotypic development. Thus, establishing the activities that lead to male phenotypic development can provide a better understanding of this process. This study examined the prenatal development of cavies to establish morphological and histometric development patterns and protein and enzyme immunolocalization processes that are responsible for androgen synthesis in the testes and epididymis. Histological and histometric analyses of the diameter of the seminiferous cords and epididymal ducts of male fetuses on Days 25, 30, 40, and 50 were performed, as well as immunohistochemistry of the steroidogenic enzymes 5α-reductase and 17β-HSD, the androgen receptor, and the anti-Müllerian hormone (AMH). Our findings showed a cellular grouping of gonocytes from Day 30 onward that was characteristic of the seminiferous cord, which was not present in the lumen at any of the studied dates. From Day 50 onward, the differentiation of the three anatomical regions of the epididymis was evident, the head (caput), body (corpus), and tail (cauda), with tissue distinctions. Furthermore, the diameters of the seminiferous cords and epididymal ducts significantly increased with age. On Day 50, the tail showed the greatest diameter of the three regions. The Sertoli and Leydig cells exhibited AMH immunoreactivity at all dates. In addition, the Leydig cells and epididymal epithelial tissue were immunopositive for 5α-reductase, 17β-HSD, and the androgen receptor; therefore, these factors influenced the development and maintenance of the testis and epididymis during cavy prenatal development.
Collapse
Affiliation(s)
- Júlia Moreira Silveira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amilton Cesar Dos Santos
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Alan James Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, UC, Davis, CA, USA
| | - Antonio Chaves de Assis Neto
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
58
|
Darmani H, Alkhatib MMA. Non-monotonic effects of Bisphenol A Dimethacrylate on male mouse reproductive system and fertility leads to impaired conceptive performance. Toxicol Mech Methods 2024; 34:262-270. [PMID: 37967523 DOI: 10.1080/15376516.2023.2279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
As an estrogenic agent, Bisphenol A Dimethacrylate (Bis-DMA) may incite alterations in both the reproductive tract and the neuroendocrine axis, and thus have the potential to affect the proper development, maturity and conceptive performance in animals. We investigated the consequences of 14 weeks of exposure to different concentrations of Bis-DMA on male mouse conceptive performance. Male mice were exposed to Bis-DMA (0, 0.1 mg/L, 1.0 mg/L or 10 mg/L) via drinking water, and the effects on fertility, reproductive organ weights, reproductive hormone levels, sperm counts and testicular histology were assessed. We clearly demonstrate that prolonged exposure of male mice to Bis-DMA negatively affects fertility and reproduction causing significant reductions in sperm counts, non-monotonic effects on serum LH and testosterone levels, increased seminal vesicle weights, lower number of embryonic implantations and viable fetuses, as well as, increased embryonal resorptions in females mated by Bis-DMA treated males. Furthermore, Bis-DMA caused abnormalities in testicular infrastructure with atrophic seminiferous tubules exhibiting intraepithelial vacuolization and disorganization, loss and shedding of germ cells into the lumen, and presence of apoptotic cells. Our data collectively suggest that Bis-DMA adversely affects male fertility and reproduction by interference with normal hormone signaling in the testis, inducing changes in testicular infrastructure and ultimately leading to impaired reproductive function and fertility.
Collapse
Affiliation(s)
- Homa Darmani
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Maysoon M A Alkhatib
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
59
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
60
|
Hariti M, Kamel A, Ghozlani A, Djennane N, Djenouhat K, Aksas K, Hamouli-Saïd Z. Disruption of spermatogenesis in testicular adult Wistar rats after short-term exposure to high dose of glyphosate based-herbicide: Histopathological and biochemical changes. Reprod Biol 2024; 24:100865. [PMID: 38402720 DOI: 10.1016/j.repbio.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Glyphosate is an endocrine disruptor and can act on the activity of certain enzymes of metabolism subsequently altering some functions such as reproduction. The goal of the present study is to evaluate the involvement of glyphosate based-herbicide (GBH) in spermatogenesis disruption and to investigate which cells of the adult Wistar rat testis are most affected by short-term exposure to GBH. Treated groups received a diluted solution of GBH orally for 21 days (D1: 102.5 mg/Kg; D2: 200 mg/Kg; D3: 400 mg/Kg). The control group (C) received water in the same manner. Hormone levels, oxidative stress markers were evaluated, histological and morphometric analysis were performed, AR and p53 expression was conducted. Seminiferious epithelium sloughing associated to erosion of Sertoli and spermatogonia from the basement of the seminiferous tubules, with intraluminal exfoliated cells among with immature spermatids were observed. A significant change in morphometric measurement and significant decrease in AR expression in Sertoli cells were noted for all treated groups. A significant increase in NO level and p53 expression in Leydig cells were showed for animals treated with 200 and 400 mg/kg BW/day. These data demonstrate that short-term exposure to high doses of GBH has led to a disruption of certain parameters that could disturb spermatogenesis. The treatment showed that both Leydig and Sertoli cells are affected in the same manner by GBH, the activation of p53 expression in both Leydig cells and peritubular myloid cells nuclei, and the reduction in AR expression in Sertoli cells, which resulted in important testicular damage.
Collapse
Affiliation(s)
- Meriem Hariti
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria.
| | - Assia Kamel
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Amel Ghozlani
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Nacima Djennane
- Faculty of Medicine - University of Algiers1 / Pathological Anatomy and Cytology Department, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Kamel Djenouhat
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Public Hospital Etablishment of Rouiba, Algeria
| | - Kahina Aksas
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Zohra Hamouli-Saïd
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| |
Collapse
|
61
|
Lu S, Ma Z, Zhou W, Zeng H, Ma J, Deng H, Zhang P. Association of sleep traits with male fertility: a two-sample Mendelian randomization study. Front Genet 2024; 15:1353438. [PMID: 38456015 PMCID: PMC10917924 DOI: 10.3389/fgene.2024.1353438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Background: Previous observational studies have investigated the association between sleep-related traits and male fertility; however, conclusive evidence of a causal connection is lacking. This study aimed to explore the causal relationship between sleep and male fertility using Mendelian randomisation. Methods: Eight sleep-related traits (chronotype, sleep duration, insomnia, snoring, dozing, daytime nap, oversleeping, and undersleeping) and three descriptors representing male fertility (male infertility, abnormal sperm, and bioavailable testosterone levels) were selected from published Genome-Wide Association Studies. The causal relationship between sleep-related traits and male fertility was evaluated using multiple methods, including inverse variance weighting (IVW), weighted median, Mendelian randomisation-Egger, weighted model, and simple model through two-sample Mendelian randomisation analysis. Mendelian randomisation-Egger regression was used to assess pleiotropy, Cochrane's Q test was employed to detect heterogeneity, and a leave-one-out sensitivity analysis was conducted. Results: Genetically-predicted chronotype (IVW,OR = 1.07; 95%CL = 1.04-1.12; p = 0.0002) was suggestively associated with bioavailable testosterone levels. However, using the IVW method, we found no evidence of a causal association between other sleep traits and male fertility. Conclusion: This study found that chronotype affects testosterone secretion levels. However, further studies are needed to explain this mechanism.
Collapse
Affiliation(s)
- Shikuan Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyang Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanzhen Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongsen Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hang Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peihai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
62
|
Li Y, Tan Z, Zuo P, Li M, Hou L, Wang X. Gestodene causes masculinization of the western mosquitofish (Gambusia affinis): Insights from ovary metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168693. [PMID: 38008334 DOI: 10.1016/j.scitotenv.2023.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Gestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Peiyu Zuo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Maorong Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
63
|
Adeyi AO, Ajisebiola BS, Sanni AA, Oladele JO, Mustapha ARK, Oyedara OO, Fagbenro OS. Kaempferol mitigates reproductive dysfunctions induced by Naja nigricollis venom through antioxidant system and anti-inflammatory response in male rats. Sci Rep 2024; 14:3933. [PMID: 38365877 PMCID: PMC10873395 DOI: 10.1038/s41598-024-54523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Naja nigricollis Venom (NnV) contains complex toxins that affects various vital systems functions after envenoming. The venom toxins have been reported to induce male reproductive disorders in envenomed rats. This present study explored the ameliorative potential of kaempferol on NnV-induced male reproductive toxicity. Fifty male wistar rats were sorted randomly into five groups (n = 10) for this study. Group 1 were noted as the control, while rats in groups 2 to 5 were injected with LD50 of NnV (1.0 mg/kg bw; i.p.). Group 2 was left untreated post envenomation while group 3 was treated with 0.2 ml of polyvalent antivenom. Groups 4 and 5 were treated with 4 and 8 mg/kg of kaempferol, respectively. NnV caused substantial reduction in concentrations of follicle stimulating hormone, testosterone and luteinizing hormone, while sperm motility, volume and counts significantly (p < 0.05) decreased in envenomed untreated rats. The venom enhanced malondialdehyde levels and substantially decreased glutathione levels, superoxide dismutase and glutathione peroxidase activities in the testes and epididymis of envenomed untreated rats. Additionally, epididymal and testicular myeloperoxidase activity and nitric oxide levels were elevated which substantiated severe morphological defects noticed in the reproductive organs. However, treatment of envenomed rats with kaempferol normalized the reproductive hormones with significant improvement on sperm functional parameters. Elevated inflammatory and oxidative stress biomarkers in testis and epididymis were suppressed post kaempferol treatment. Severe histopathological lesions in the epididymal and testicular tissues were ameliorated in the envenomed treated groups. Results highlights the significance of kaempferol in mitigating reproductive toxicity induced after snakebite envenoming.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olukunle Silas Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
64
|
Xiao Z, Liang J, Huang R, Chen D, Mei J, Deng J, Wang Z, Li L, Li Z, Xia H, Yang Y, Huang Y. Inhibition of miR-143-3p Restores Blood-Testis Barrier Function and Ameliorates Sertoli Cell Senescence. Cells 2024; 13:313. [PMID: 38391926 PMCID: PMC10887369 DOI: 10.3390/cells13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the increasing trend of delayed childbirth, the age-related decline in male reproductive function has become a widely recognized issue. Sertoli cells (SCs) play a vital role in creating the necessary microenvironment for spermatogenesis in the testis. However, the mechanism underlying Sertoli cell aging is still unclear. In this study, senescent Sertoli cells showed a substantial upregulation of miR-143-3p expression. miR-143-3p was found to limit Sertoli cell proliferation, promote cellular senescence, and cause blood-testis barrier (BTB) dysfunction by targeting ubiquitin-conjugating enzyme E2 E3 (UBE2E3). Additionally, the TGF-β receptor inhibitor SB431542 showed potential in alleviating age-related BTB dysfunction, rescuing testicular atrophy, and reversing the reduction in germ cell numbers by negatively regulating miR-143-3p. These findings clarified the regulatory pathways underlying Sertoli cell senescence and suggested a promising therapeutic approach to restore BTB function, alleviate Sertoli cell senescence, and improve reproductive outcomes for individuals facing fertility challenges.
Collapse
Affiliation(s)
- Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jiaxin Mei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Jingxian Deng
- Department of Pharmacology, Jinan University, Guangzhou 510632, China;
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (Z.X.); (J.L.); (R.H.); (D.C.); (J.M.); (Z.W.); (L.L.); (Z.L.); (H.X.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
65
|
Ye R, Li Z, Xian H, Zhong Y, Liang B, Huang Y, Chen D, Dai M, Tang S, Guo J, Bai R, Feng Y, Chen Z, Yang X, Huang Z. Combined Effects of Polystyrene Nanosphere and Homosolate Exposures on Estrogenic End Points in MCF-7 Cells and Zebrafish. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27011. [PMID: 38381479 PMCID: PMC10880820 DOI: 10.1289/ehp13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS We assessed the impact of polystyrene nanospheres (PNSs; 50 nm , 1.0 mg / L ) on HMS-induced MCF-7 cell proliferation (HMS: 0.01 - 1 μ M , equivalent to 2.62 - 262 μ g / L ) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262 - 262 μ g / L ) with or without PNSs (50 nm , 1.0 mg / L ) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17 β -estradiol (E 2 ) release in females. Conversely, males showed lower testosterone, E 2 , and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.
Collapse
Affiliation(s)
- Rongyi Ye
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | | | - Shuqin Tang
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Jie Guo
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
66
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
67
|
AbdElrazek DA, Hassan NH, Ibrahim MA, Hassanen EI, Farroh KY, Abass HI. Ameliorative effects of rutin and rutin-loaded chitosan nanoparticles on testicular oxidative stress and histological damage induced by cyclophosphamide in male rats. Food Chem Toxicol 2024; 184:114436. [PMID: 38211767 DOI: 10.1016/j.fct.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Cyclophosphamide (CP) is broadly used to kill various tumor cells; however, its repeated uses have been reported to cause reproductive dysfunction and infertility. Natural flavonoid, rutin (RUT), possesses strong antioxidant and antiapoptotic activity that is attributed to ameliorate the reproductive dysfunction induced by CP. Many previous studies proved that the formulation of flavonoids in nanoemulsion has a promising perspective in mitigating the side effects of chemotherapy. Therefore, the main objective of this study was to investigate the ameliorative effects of RUT and RUT-loaded chitosan nanoparticles (RUT-CH NPs) against CP-induced reproductive dysfunction in male rats. For this aim, thirty-six male albino rats were randomly allocated into six groups as follows: control, RUT, RUT-CH NPs, CP, CP + RUT, and CP + RUT-CH NPs. In the CP groups, a single intraperitoneal injection of CP (150 mg/kg bwt) was administered on the first day of the experiment. RUT and RUT-CH NPs were orally administered either alone or with CP injection at a dose of 10 mg/kg bwt per day for 60 days. The results revealed that CP administration caused significant testicular oxidative stress damage through increasing the nitric oxide and malondialdehyde levels as well as decreasing the total antioxidant capacity and reduced glutathione contents. It also impaired spermatogenesis and steroidogenesis via altering the transcription levels of CYP11A1, HSD-3b, StAR, Bax, bcl-2, and Nrf-2 genes. Otherwise, the oral intake of either RUT or RUT-CH NPs with CP injection effectively attenuated these alterations and significantly improved the microscopic appearance of testicular tissue. In conclusion, this study highlights the potential of RUT either free or NPs in mitigating CP-induced testicular dysfunction via its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dina A AbdElrazek
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| | - H I Abass
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
68
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. eLife 2024; 12:RP90164. [PMID: 38226689 PMCID: PMC10945581 DOI: 10.7554/elife.90164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Mariko H Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
69
|
Barbarestani SY, Samadi F, Zaghari M, Pirsaraei ZA, Kastelic JP. Dietary supplementation with barley sprouts and d-aspartic acid improves reproductive hormone concentrations, testicular histology, antioxidant status, and mRNA expressions of apoptosis-related genes in aged broiler breeder roosters. Theriogenology 2024; 214:224-232. [PMID: 37924739 DOI: 10.1016/j.theriogenology.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The objective was to determine effects of dietary supplementation of barley sprouts (BS) and/or d-aspartic acid (DA) on the reproductive potential of aged broiler roosters. Birds (n = 32, 50 wk old) were randomly allocated to receive dietary supplements of BS powder (2 % of basal diet), and DA (200 mg/kg BW), both, or neither, for 12 wk. Roosters were housed individually, with 14-h light/10-h dark, ad libitum feed and water, and euthanized after 12 wk. Mean (±SEM) total phenolic compounds and IC50 in methanol extract of sprouted barley were 302.8 ± 10.9 mg GAE/g and 600.8 ± 50.5 mg TE per 100 g, respectively. In weekly semen collections, sperm total and progressive motility, plasma membrane integrity, sperm concentration, and sperm production were higher (P < 0.05) in both the DA + BS and BS groups compared to the Control, but sperm abnormalities were unaffected. Feeding DA increased right, left, and combined testicular weights (P < 0.05, P < 0.05, and P < 0.01, respectively) and, the testicular index (P = 0.01). Feeding BS increased seminiferous tubule diameter (P < 0.01), whereas BS + DA increased seminiferous epithelium thickness (P < 0.01). There were more spermatogonia (P < 0.01) and Leydig cells (P < 0.05) in BS-fed roosters but Sertoli cells were highest in BS + DA (P < 0.01). Serum MDA concentrations were lowest in BS (P < 0.01), whereas serum testosterone and LH were highest in DA (P < 0.05) and BS + DA (P < 0.01), respectively. Feeding BS reduced serum total cholesterol (P < 0.05) and increased serum HDL-cholesterol (P < 0.01), with decreases in serum LDL (P < 0.01) and the LDL/HDL ratio (P < 0.01) for BS + DA compared to Control. Relative expression of glutathione peroxidase mRNA was increased by BS (P < 0.01) or DA (P < 0.05), whereas relative mRNA expression of SOD was highest in BA (P < 0.01). Control roosters were highest for both BAX (P < 0.01) and the relative expression of the BAX/BCL-2 ratio (P < 0.01), whereas BS + DA increased BCL-2 (P < 0.05). In conclusion, feeding BS, and/or DA significantly improved reproductive potential in aged broiler roosters.
Collapse
Affiliation(s)
- Sarallah Yarmohammadi Barbarestani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Zarbakht Ansari Pirsaraei
- Department of Animal Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, Iran
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
70
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
71
|
Matsuyama S, DeFalco T. Steroid hormone signaling: multifaceted support of testicular function. Front Cell Dev Biol 2024; 11:1339385. [PMID: 38250327 PMCID: PMC10796553 DOI: 10.3389/fcell.2023.1339385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.
Collapse
Affiliation(s)
- Satoko Matsuyama
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
72
|
Zhu J, Wang Y, Lei L, Chen C, Ji L, Li J, Wu C, Yu W, Luo L, Chen W, Liu P, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Comparative genomic survey and functional analysis of DKKL1 during spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis). Int J Biol Macromol 2024; 254:127696. [PMID: 37913874 DOI: 10.1016/j.ijbiomac.2023.127696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17β-estradiol and 17α-methyltestosterone) and Wnt/β-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/β-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17β-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/β-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Life Science, Xinjiang Agricultural University, Ulumuqi, Xinjiang, PR China
| | - Luo Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiansong Li
- Huizhou Wealth Xing Industrial Co., Ltd., Huizhou, Guangdong, PR China
| | - Congcong Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Wenjun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Laifu Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiqin Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Pan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China.
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| |
Collapse
|
73
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Jiang T, Wang H. Effects of azithromycin exposure during pregnancy at different stages, doses and courses on testicular development in fetal mice. Biomed Pharmacother 2024; 170:116063. [PMID: 38154271 DOI: 10.1016/j.biopha.2023.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Azithromycin is a commonly used antibiotic during pregnancy, but some studies have suggested its potential developmental toxicity. Currently, the effects and mechanisms of prenatal azithromycin exposure (PAzE) on fetal testicular development are still unclear. The effects of prenatal exposure to the same drug on fetal testicular development could vary depending on different stages, doses, and courses. Hence, in this study, based on clinical medication characteristics, Kunming mice was administered intragastrically with azithromycin at different stages (mid-/late-pregnancy), doses (50, 100, 200 mg/kg·d), and courses (single-/multi-course). Fetal blood and testicular samples were collected on GD18 for relevant assessments. The results indicated that PAzE led to changes in fetal testicular morphology, reduced cell proliferation, increased apoptosis, and decreased expression of markers related to Leydig cells (Star), Sertoli cells (Wt1), and spermatogonia (Plzf). Further investigation revealed that the effects of PAzE on fetal testicular development were characterized by mid-pregnancy, high dose (clinical dose), and single course having more pronounced effects. Additionally, the TGFβ/Smad and Nrf2 signaling pathways may be involved in the changes in fetal testicular development induced by PAzE. In summary, this study confirmed that PAzE influences fetal testicular morphological development and multicellular function. It provided theoretical and experimental evidence for guiding the rational use of azithromycin during pregnancy and further exploring the mechanisms underlying its developmental toxicity on fetal testicles.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guanghui Chen
- Wuhan University People's Hospital, Wuhan 430071, China
| | - Tao Jiang
- Suizhou Emergency Medical Center, Suizhou 441300, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
74
|
Xiao Y, Liu R, Tang W, Yang C. Cantharidin-induced toxic injury, oxidative stress, and autophagy attenuated by Astragalus polysaccharides in mouse testis. Reprod Toxicol 2024; 123:108520. [PMID: 38056682 DOI: 10.1016/j.reprotox.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Traditional Chinese medicine health preservation, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ruxia Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changfu Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
75
|
Danga AK, Rath PC. Molecular cloning, expression and cellular localization of two long noncoding RNAs (mLINC-RBE and mLINC-RSAS) in the mouse testis. Int J Biol Macromol 2024; 255:128106. [PMID: 37979740 DOI: 10.1016/j.ijbiomac.2023.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcribed in complex, overlapping, sense- and antisense orientations from intronic and intergenic regions of mammalian genomes. Transcription of genome in mammalian testis is more widespread compared to other organs. LncRNAs are involved in gene expression, chromatin regulation, mRNA stability and translation of proteins during diverse cellular functions. We report molecular cloning of two novel lncRNAs (mLINC-RBE and mLINC-RSAS) and their expression by RT-PCR as well as cellular localization by RNA in-situ hybridization in the mouse testes. mLINC-RBE is an intergenic lncRNA from chromosome 4, with 16.96 % repeat sequences, expressed as a sense transcript with piRNA sequences and its expression is localized into primary spermatocytes. mLINC-RSAS is an intergenic lncRNA from chromosome 2, with 49.7 % repeat sequences, expressed as both sense- and antisense transcripts with miRNA sequences and its expression is localized into different cell types, such as Sertoli cells, primary spermatocytes and round spermatids. The lncRNAs also contain sequences for some short peptides (micropeptides). This suggests that these two repeat sequence containing, intergenic genomic sense- and antisense transcripts expressed as lncRNAs with piRNAs, miRNAs, and showing cell-type specific, differential expression may regulate important functions in mammalian testes. Such functions may be regulated by RNA structures, RNA processing and RNA-protein complexes.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
76
|
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M. Alginate oligosaccharide extends the service lifespan by improving the sperm metabolome and gut microbiota in an aging Duroc boars model. Front Cell Infect Microbiol 2023; 13:1308484. [PMID: 38116132 PMCID: PMC10728478 DOI: 10.3389/fcimb.2023.1308484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Alginate oligosaccharide (AOS), as a natural non-toxic plant extract, has been paid more attention in recent years due to its strong antioxidant, anti-inflammatory, and even anti-cancer properties. However, the mechanism by which AOS affects animal reproductive performance is still unclear. Methods The purpose of this study is to use multi-omics technology to analyze the effects of AOS in extending the service lifespan of aging boars. Results The results showed that AOS can significantly improve the sperm motility (p < 0.05) and sperm validity rate (p < 0.001) of aging boars and significantly reduce the abnormal sperm rate (p < 0.01) by increasing the protein levels such as CatSper 8 and protein kinase A (PKA) for semen quality. At the same time, AOS significantly improved the testosterone content in the blood of boars (p < 0.01). AOS significantly improved fatty acids such as adrenic acid (p < 0.05) and antioxidants such as succinic acid (p < 0.05) in sperm metabolites, significantly reducing harmful substances such as dibutyl phthalate (p < 0.05), which has a negative effect on spermatogenesis. AOS can improve the composition of intestinal microbes, mainly increasing beneficial bacteria Enterobacter (p = 0.1262) and reducing harmful bacteria such as Streptococcus (p < 0.05), Prevotellaceae_UCG-001 (p < 0.05), and Prevotellaceae_NK3B31_group (p < 0.05). Meanwhile, short-chain fatty acids in feces such as acetic acid (p < 0.05) and butyric acid (p < 0.05) were significantly increased. Spearman correlation analysis showed that there was a close correlation among microorganisms, sperm metabolites, and sperm parameters. Discussion Therefore, the data indicated that AOS improved the semen quality of older boars by improving the intestinal microbiota and sperm metabolome. AOS can be used as a feed additive to solve the problem of high elimination rate in large-scale boar studs.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Animal Nutrition Institute, Guigang, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Animal Nutrition Institute, Guigang, China
| | - Haidi Jiang
- YangXiang Joint Stock Company, Animal Nutrition Institute, Guigang, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, Jilin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
77
|
Cai P, Wang Y, Feng N, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Polystyrene nanoplastics aggravate reproductive system damage in obese male mice by perturbation of the testis redox homeostasis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2881-2893. [PMID: 37555767 DOI: 10.1002/tox.23923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
The potential impact of the combination of a high-fat diet (HFD) and polystyrene nanoplastics (PS-NPs) on fertility cannot be ignored, especially when the fertility rate is declining. However, it has not attracted considerable attention. In this study, an obese mouse model was established using an HFD, and the reproductive function of male mice was evaluated after intragastric administration of 100 μL of a 10 mg/mL PS-NP suspension for 4 weeks. By determining the morphology and vitality of sperm and related indicators of testosterone production, it was found that PS-NPs aggravated the destruction of sperm mitochondrial structure, decrease sperm activity, and testosterone production in HFD-fed mice. To comprehensively analyze the injury mechanism, the integrity of the blood testicular barrier (BTB) and the function of Leydig and Sertoli cells were further analyzed. It was found that PS-NPs could destroy BTB, promote the degeneration of Leydig cells, reduce the number of Sertoli cells, and decrease lactate secretion in HFD-fed mice. PS-NPs further interfered with redox homeostasis in the testicular tissues of HFD-fed mice. This study found that PS-NPs could aggravate the damage to the reproductive system of obese male mice by further perturbing its redox homeostasis and revealed the potential health risk of PS-NPs exposure under an HFD.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yaling Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
78
|
Wang H, Wang X, Li T, An X, Chen N, Shi H, Su M, Ma K, Hao Z, Duan X, Ma Y. Differential tissue expression of sex steroid-synthesizing enzyme CYP11A1 in male Tibetan sheep ( Ovis aries). Anim Biotechnol 2023; 34:2900-2909. [PMID: 36169054 DOI: 10.1080/10495398.2022.2125401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Steroid metabolism is a fundament to testicular development and function. The cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) is a key rate-limiting enzyme for catalyzing the conversion of cholesterol to pregnenolone. However, despite its importance, what expression and roles of CYP11A1 possesses and how it regulates the testicular development and spermatogenesis in Tibetan sheep remains largely unknown. Based on this, we evaluated the expression and localization patterns of CYP11A1 in testes and epididymides of Tibetan sheep at three developmental stages (three-month-old, pre-puberty; one-year-old, sexual maturity and three-year-old, adult) by quantitative real-time PCR (qPCR), western blot and immunofluorescence. The results showed that CYP11A1 mRNA and protein were expressed in testes and epididymides throughout the development stages and obviously more intense in one- and three-year-old groups than three-month-old group (except for the caput epididymidis). Immunofluorescence assay showed that the CYP11A1 protein was mainly located in Leydig cells and epididymal epithelial cells. In addition, positive signals of CYP11A1 protein were observed in germ cells, epididymal connective tissue and sperms stored in the epididymal lumen. Collectively, these results suggested that the CYP11A1 gene might be mainly involved in regulating spermatogenesis and androgen synthesis in developmental Tibetan sheep testis and epididymis.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Manchun Su
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Ziyun Hao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
| | - Xinming Duan
- Nongfayuan (Zhejiang) Agricultural Development Co., Ltd., Huzhou, Zhejiang, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou, China
- Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin, China
| |
Collapse
|
79
|
Pecora G, Sciarra F, Gangitano E, Venneri MA. How Food Choices Impact on Male Fertility. Curr Nutr Rep 2023; 12:864-876. [PMID: 37861951 PMCID: PMC10766669 DOI: 10.1007/s13668-023-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting an association between nutrition and male fertility. Here, we have highlighted the impact of the various food groups on reproductive hormones and on spermatogenesis, and the effects of classical and latest dietary patterns such as Mediterranean diet, Western diet, intermittent fasting, ketogenic diet, and vegan/vegetarian diet on male fertility. RECENT FINDINGS Nutrients are the precursors of molecules involved in various body's reactions; therefore, their balance is essential to ensure the correct regulation of different systems including the endocrine system. Hormones are strongly influenced by the nutritional status of the individual, and their alteration can lead to dysfunctions or diseases like infertility. In addition, nutrients affect sperm production and spermatogenesis, controlling sexual development, and maintaining secondary sexual characteristics and behaviors. The consumption of fruit, vegetables, fish, processed meats, dairy products, sugars, alcohol, and caffeine importantly impact on male fertility. Among dietary patterns, the Mediterranean diet and the Western diet are most strongly associated with the quality of semen. Nutrients, dietary patterns, and hormonal levels have an impact on male infertility. Therefore, understanding how these factors interact with each other is important for strategies to improve male fertility.
Collapse
Affiliation(s)
- Giulia Pecora
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 329, 00161, Rome, Italy.
| |
Collapse
|
80
|
Lara NLM, Goldsmith T, Rodriguez-Villamil P, Ongaratto F, Solin S, Webster D, Ganbaatar U, Hodgson S, Corbière SMAS, Bondareva A, Carlson DF, Dobrinski I. DAZL Knockout Pigs as Recipients for Spermatogonial Stem Cell Transplantation. Cells 2023; 12:2582. [PMID: 37947660 PMCID: PMC10649044 DOI: 10.3390/cells12212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Spermatogonial stem cell (SSC) transplantation into the testis of a germ cell (GC)-depleted surrogate allows transmission of donor genotype via donor-derived sperm produced by the recipient. Transplantation of gene-edited SSCs provides an approach to propagate gene-edited large animal models. DAZL is a conserved RNA-binding protein important for GC development, and DAZL knockout (KO) causes defects in GC commitment and differentiation. We characterized DAZL-KO pigs as SSC transplantation recipients. While there were GCs in 1-week-old (wko) KO, complete GC depletion was observed by 10 wko. Donor GCs were transplanted into 18 DAZL-KO recipients at 10-13 wko. At sexual maturity, semen and testes were evaluated for transplantation efficiency and spermatogenesis. Approximately 22% of recipient seminiferous tubules contained GCs, including elongated spermatids and proliferating spermatogonia. The ejaculate of 89% of recipients contained sperm, exclusively from donor origin. However, sperm concentration was lower than the wild-type range. Testicular protein expression and serum hormonal levels were comparable between DAZL-KO and wild-type. Intratesticular testosterone and Leydig cell volume were increased, and Leydig cell number decreased in transplanted DAZL-KO testis compared to wild-type. In summary, DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring.
Collapse
Affiliation(s)
- Nathalia L. M. Lara
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (N.L.M.L.); (A.B.)
| | - Taylor Goldsmith
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | | | - Felipe Ongaratto
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | - Staci Solin
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | - Dennis Webster
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | - Uyanga Ganbaatar
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | - Shane Hodgson
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | | | - Alla Bondareva
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (N.L.M.L.); (A.B.)
| | - Daniel F. Carlson
- Recombinetics, Inc., St. Paul, MN 55121, USA; (T.G.); (D.W.); (S.H.); (S.M.A.S.C.); (D.F.C.)
| | - Ina Dobrinski
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (N.L.M.L.); (A.B.)
| |
Collapse
|
81
|
Paradiso E, Lazzaretti C, Sperduti S, Melli B, Trenti T, Tagliavini S, Roli L, D'Achille F, Beltrán-Frutos E, Simoni M, Casarini L. Protein kinase B (Akt) blockade inhibits LH/hCG-mediated 17,20-lyase, but not 17α-hydroxylase activity of Cyp17a1 in mouse Leydig cell steroidogenesis. Cell Signal 2023; 111:110872. [PMID: 37640196 DOI: 10.1016/j.cellsig.2023.110872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Androgens are produced by adrenal and gonadal cells thanks to the action of specific enzymes. We investigated the role of protein kinase B (Akt) in the modulation of Δ4 steroidogenic enzymes' activity, in the mouse Leydig tumor cell line mLTC1. Cells were treated for 0-24 h with the 3 × 50% effective concentration of human luteinizing hormone (LH) and choriogonadotropin (hCG), in the presence and in the absence of the specific Akt inhibitor 3CAI. Cell signaling analysis was performed by bioluminescence resonance energy transfer (BRET) and Western blotting, while the expression of key target genes was investigated by real-time PCR. The synthesis of progesterone, 17α-hydroxy (OH)-progesterone and testosterone was measured by immunoassay. Control experiments for cell viability and caspase 3 activation were performed as well. We found that both hormones activated cAMP and downstream effectors, such as extracellularly-regulated kinase 1/2 (Erk1/2) and cAMP response element-binding protein (Creb), as well as Akt, and the transcription of Stard1, Hsd3b1, Cyp17a1 and Hsd17b3 genes, boosting the Δ4 steroidogenic pathway. Interestingly, Akt blockade decreased selectively Cyp17a1 expression levels, inhibiting its 17,20-lyase, but not the 17-hydroxylase activity. This effect is consistent with lower Cyp17a1 affinity to 17α-OH-progesterone than progesterone. As a result, cell treatment with 3CAI resulted in 17α-OH-progesterone accumulation at 16-24 h and decreased testosterone levels after 24 h. In conclusion, in the mouse Leydig cell line mLTC1, we found substantial Akt dependence of the 17,20-lyase activity and testosterone synthesis. Our results indicate that different intracellular pathways modulate selectively the dual activity of Cyp17a1.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy.
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Beatrice Melli
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Fabio D'Achille
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30120 Murcia, Spain
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
82
|
Tabęcka-Łonczyńska A, Kaczka P, Kaleniuk E. Involvement of estrogen receptor alpha (ERα) and impairment of steroidogenesis after exposure to tris(2,3-dibromopropyl) isocyanurate (TBC) in mouse spermatogenic (GC-1 spg) cells in vitro. J Steroid Biochem Mol Biol 2023; 234:106398. [PMID: 37703931 DOI: 10.1016/j.jsbmb.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Good-quality reproductive cells are essential for reproduction. Endocrine disruptors are widely available in the environment and are known to have an adverse effect on spermatogenesis and steroidogenesis. One of them is tris(2,3-dibromopropyl) isocyanurate (TBC), i.e. one of the novel brominated flame retardants (NBFR). TBC is a widely distributed ingredient used in the production of flame retardants. Currently, it is known to affect the hormonal system, but the exact mechanism of its action is unknown. Therefore, the aim of the study was to determine whether TBC alone and in cotreatment with BHPI (estrogen receptor alpha antagonist) has an impact on the expression of nuclear receptors involved in the formation of steroid hormones, proteins, and enzymes responsible for steroidogenesis and the levels of steroid hormones (E2, P4, and T) in the GC-1 spg cell line as a mouse model of spermatogenic cells in vitro. Our results indicate that ERα is involved in the mechanism of TBC action, while no activation of PPARγ, AhR, and IGF-1R was observed. In addition, a decrease in the levels of most of the analyzed proteins and enzymes involved in steroid conversion was observed. Only Cyp19a1 was upregulated after TBC, BHPI, and TBC with BHPI cotreatment. In all the analyzed groups, a significant decrease in P4 and a subtle decrease in T and E2 were observed in the production and secretion of the hormones to the culture medium, compared to the control. The obtained results confirm the involvement of TBC in the dysregulation of steroid biosynthesis, which may affect male fertility.
Collapse
Affiliation(s)
- Anna Tabęcka-Łonczyńska
- Department Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Piotr Kaczka
- PRO-NOO-BIOTICS Sp. z o.o., 39 Warszawska, 35-205 Rzeszow, Poland
| | - Edyta Kaleniuk
- Department Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
83
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
84
|
Pandey SP, Mohanty B. Role of the testicular capsule in seasonal modulation of the testis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:898-910. [PMID: 37528770 DOI: 10.1002/jez.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
While the seasonal testicular cycle has been well studied regarding internal components, no attention has been given to the testicular capsule (tunica albuginea and tunica serosa). This study elucidated the structure-function modulations of intra-testicular functions by its capsule in the finch red munia (Amandava amandava) during the annual testicular cycle. The birds were studied during breeding (preparatory and breeding) and nonbreeding (regressive and quiescent) reproductive phases using hematoxylin-eosin and acridine orange-ethidium bromide capsule staining, hormonal ELISA (LH and testosterone) and immunohistochemical expression of neuropeptides (GnRH, GnIH) and androgen receptor (AR). The thickness of the tunica albuginea was significantly increased with multiple myoid layers during the nonbreeding phases (p < 0.05). The thickness of the tunica serosa was not altered, although characteristics and distribution of squamous cells showed significant seasonal alterations. Immunoreactive (-ir) AR and GnIH cells were differentially localized on both layers of the capsule. Strong AR-ir cells on tunica serosa during breeding phases showed increased expression of the receptor; a significant increase in plasma LH and testosterone was also observed during the breeding cycle (p < 0.01). Contrarily, intense GnIH-ir cells on both the capsular layers peaked during testicular regression. Differential structural alterations of the testicular capsule provide mechanical support and help maintain internal homeostasis in tune with changing seasons. The seasonal expressions and alterations of reproduction-related receptors, hormones, and neuropeptides provide evidence for the potential regulatory roles of the capsule in the peripheral modulation of intratesticular functions.
Collapse
Affiliation(s)
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
85
|
Cincotta SA, Richardson N, Foecke MH, Laird DJ. Differential susceptibility of male and female germ cells to glucocorticoid-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547215. [PMID: 37425891 PMCID: PMC10327205 DOI: 10.1101/2023.06.30.547215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.
Collapse
Affiliation(s)
- Steven A. Cincotta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Nainoa Richardson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Mariko H. Foecke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Diana J. Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
86
|
Fan Q, He R, Li Y, Gao P, Huang R, Li R, Zhang J, Li H, Liang X. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Syst Biol Reprod Med 2023; 69:333-346. [PMID: 37578152 DOI: 10.1080/19396368.2023.2241600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
Collapse
Affiliation(s)
- Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pu Gao
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rong Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
87
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2023-0064. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
88
|
Huang X, Liu X, Zhang X, Yang Y, Gao H, Gao J, Bao H, Zhao L, Yang G, Zhang Y, Liu D. The long noncoding RNA CIRBIL is a regulator of steroidogenesis in mice. Reprod Biol 2023; 23:100783. [PMID: 37336146 DOI: 10.1016/j.repbio.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Infertility affects roughly 8-12 % of couples worldwide, and in above 50 % of couples, male factors are the primary or contributing cause. Many long noncoding RNAs (lncRNAs) are detected in the testis, but their functions are not well understood. CIRBIL was 862 nucleotides in length and was found to be localized mostly in the cytosol of Leydig cell, a small portion was positioned inside the seminiferous tubules. Loss of CIRBIL in mice resulted in male subfertility, characterized by smaller testis and increased germ cell apoptosis. Deletion of CIRBIL significant decreased the number of sperm and impaired the integrity of sperm head and tail. In CIRBIL KO mice, testosterone levels in serum and expression of testosterone biosynthesis genes (STAR and 3β-HSD) were both reduced. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were primarily enriched in steroid synthesis process in CIRBIL-binding proteins. Protein-protein (PPI) interaction networks revealed that both cis- and trans-regulated target genes of CIRBIL were associated with testosterone synthesis. Collectively, our results strongly suggest that CIRBIL is a regulator of steroid hormone synthesis.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Xin Liu
- The Department of Histology and Embryology, Harbin Medical University, Harbin 150086, PR China
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Haiyu Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Jianjun Gao
- The Department of Hepatopancreatobility, Surgery Second Affiliated Hospital of Harbin Medical University, 150086, PR China
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China; North Translational Medicine Research Cooperation Center, 2019 Research Unit 070, Harbin, Heilongjiang 150086, PR China.
| | - Donghua Liu
- The Department of Histology and Embryology, Harbin Medical University, Harbin 150086, PR China.
| |
Collapse
|
89
|
Su J, Song Y, Yang Y, Li Z, Zhao F, Mao F, Wang D, Cao G. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep. Anim Reprod Sci 2023; 256:107306. [PMID: 37541020 DOI: 10.1016/j.anireprosci.2023.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.
Collapse
Affiliation(s)
- Jie Su
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Huhhot 010021, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Zhijun Li
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China
| | - Feifei Zhao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Fei Mao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China.
| |
Collapse
|
90
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
91
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
92
|
Huang IS, Li LH, Chen WJ, Huang EYH, Juan CC, Huang WJ. Proteomic Analysis of Testicular Interstitial Fluid in Men with Azoospermia. EUR UROL SUPPL 2023; 54:88-96. [PMID: 37545847 PMCID: PMC10403685 DOI: 10.1016/j.euros.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background The primary microenvironment of the testis comprises testicular interstitial fluid (TIF) surrounding the seminiferous tubules and testicular interstitial tissue. The pathological alterations of germ and Sertoli cells could affect the TIF composition and might contain putative biomarkers for monitoring active spermatogenesis. Objective We identified differentially expressed proteins in the TIF of patients with obstructive (OA) or nonobstructive (NOA) azoospermia to elucidate the underlying etiology of defective spermatogenesis. Design setting and participants We prospectively enrolled nine patients, including three men with OA and six with NOA with (n = 3) and without (n = 3) successful sperm retrieval. Their TIF was collected during the testicular sperm extraction procedure. Outcome measurements and statistical analysis TIF was analyzed using liquid chromatography-tandem mass spectrometry to identify differentially expressed proteins specific to OA and NOA with or without successful sperm retrieval. The dysregulated protein was further validated using Western blotting. Results and limitations Among the 555 TIF proteins identified in NOA patients, 14 were downregulated relative to OA patients. These proteins participate in biological processes such as proteolysis, complement activation, and immune responses; complement and coagulation cascade pathways were also enriched. Furthermore, 68 proteins with significantly higher levels were identified in the TIF of NOA patients with successful sperm retrieval than in those with failed sperm retrieval; these are mainly implicated in oxidation-reduction processes. The expression of calreticulin, which can distinguish successful and failed testicular sperm retrieval in the NOA group, was validated by Western blotting. Conclusions We provide the first scientific evaluation of TIF protein composition in men with azoospermia. These findings will help identify the physiological and pathological roles of each protein in regulating sperm production. Thus, our study underscores the potential of TIF in sperm retrieval biomarker discovery and would serve as a foundation for further studies to improve treatment strategies against azoospermia. Patient summary Using a proteomic approach, we identified and analyzed the total protein content of testicular interstitial fluid in humans with defective spermatogenesis for the first time and discovered altered protein expression patterns in patients with nonobstructive azoospermia (NOA). Proteins related to oxidation-reduction processes were upregulated in NOA patients with successful sperm retrieval compared with those with failed sperm retrieval. This can aid the development of novel diagnostic tools for successful testicular sperm retrieval.
Collapse
Affiliation(s)
- I-Shen Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eric Yi-Hsiu Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - William J. Huang
- Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Urology, College of Medicine and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
93
|
Biswas S, Pal P, Mondal R, Mukhopadhyay PK. Casein and pea enriched high-protein diet attenuates arsenic provoked apoptosis in testicles of adult rats. Toxicol Res (Camb) 2023; 12:551-563. [PMID: 37663799 PMCID: PMC10470344 DOI: 10.1093/toxres/tfad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 09/05/2023] Open
Abstract
Arsenic toxicity is a major health issue that also threats male reproductive system leading to impairment of fertility. The antioxidant capacity of casein and pea enriched formulated high-protein diet (FHPD) is found to be effective in different toxicity management. The present study was endeavored to investigate the mitigatory aspect of FHPD on arsenic stimulated testicular apoptosis. Adult male rats were maintained on either normal diet as control (Gr I, n = 8) and arsenic (As2O3) treated at a dose of 3 mg/kg/rat/day (Gr II, n = 8) or on isocaloric FHPD as supplemented (Gr III, n = 8) with same dose of arsenic for 30 consecutive days. Testicular histomorphometry, spermatokinetics, testicular functional marker enzymes, serum gonadotrophins, oxidative stress markers, testicular deoxyribonucleic acid (DNA) damage, and apoptosis markers were evaluated to assess the reprotoxicity of arsenic and subsequent protection by FHPD. FHPD protected the histopathological alterations and also restored normal spermatogenesis. Altered enzymatic activities of testicular functional markers like lactate dehydrogenase, γ-glutamyl transferase, acid phosphatase, and alkaline phosphatase were also regularized. FHPD also reinstated the normal level of follicle stimulating hormone (FSH), luteinising hormone (LH), and also normalized the enzymatic activities of testicular glutathione peroxidase and glutathione reductase. Testicular DNA damage was also prevented by FHPD supplementation. Testicular apoptosis marked by the altered messenger ribonucleic acid and protein expression of apoptotic markers like Bax, Bcl-2, caspase 9, and caspase 3 were also attenuated upon FHPD supplementation along with diminution of arsenic accumulation in testicular tissues. FHPD not only mitigated the adverse effects of arsenic induced gonadotoxicity but also helped in sustaining the normal reproductive functions.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | |
Collapse
|
94
|
Wanjari UR, Gopalakrishnan AV. A review on immunological aspects in male reproduction: An immune cells and cytokines. J Reprod Immunol 2023; 158:103984. [PMID: 37390629 DOI: 10.1016/j.jri.2023.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
The male reproductive system, particularly the male gamete, offers a unique barrier to the immune system. The growing germ cells in the testis need to be shielded from autoimmune damage. Hence the testis has to establish and sustain an immune-privileged milieu. Sertoli cells create this safe space, protected by the blood-testis barrier. Cytokines are a type of immune reaction that can positively and negatively affect male reproductive health. Inflammation, disease, and obesity are just a few physiological conditions for which cytokines mediate signals. They interact with steroidogenesis, shaping the adrenals and testes to produce the hormones needed for survival. In particular pathological condition, including autoimmune disorders, contains high levels of the same cytokines in semen that play an essential role in the immunomodulation of the male gonad. This review focuses on understanding the immunological role of cytokines in the control and development of male reproduction. Also, in maintaining male reproductive health and diseases linked with their aberrant function in the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
95
|
Hamzah RK, Al-Musawi JEQ. Histological Study of Alteration in Testes and Epididymis of Domestic Rabbits Caused by Tribulus Terrestris and Vitamin E. ARCHIVES OF RAZI INSTITUTE 2023; 78:1239-1246. [PMID: 38226379 PMCID: PMC10787932 DOI: 10.32592/ari.2023.78.4.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/10/2022] [Indexed: 01/17/2024]
Abstract
Tribulus Terrestris (TT) is a common herbal plant with different categories that grows in many countries of the world. Traditional Chinese and Indian therapies have used TT for infertility treatment and also as a powerful antioxidant agent. Therefore, this study aimed to use this plant supplemented with vitamin E to study their combined effects on the histological condition of the testicle and epididymis of rabbits. This study was performed on 28 healthy male rabbits (445-950 g, 2.0-3.0 months old) that were randomly divided into four groups (n=7). All animals were subjected to clinical examination to ensure that they were free of external and internal parasites with the use of some preventive treatments. The animals were housed individually (cage size: 50 cm×50 cm×40 cm) over the 60-day study period starting from January 2022, with an adaptation period of two weeks. Tribulus Terrestris and vitamin E treatments were as follows: the first group (G1) was daily fed on a standard diet and kept as the control group, the second group (G2) was daily fed on the same ration plus 1 g of TT (animal/daily), the third group (G3) was daily fed on the same ration plus 1 g of TT supplemented with 60 mg of vitamin E (orally) (animal /daily), and the fourth group (G4) was daily fed on the same ration, with the addition of 60 mg vitamin E per animal (orally). The morphometric investigation, macroscopic variables (including body weight, testicular weight, and volume), and the microscopic parameters of the testicular seminal tubule were measured. The histological section showed the absence of negative effects after the oral administration of TT at a dose of 1 g per day and 60 IU vitamin E for each animal. However, there was a positive effect on spermatogonia and spermatocytes in all animals, while the spermatogonia in the experimental groups were more dense, especially in the second and third groups, compared to the control group. The seminiferous tubules were significantly lined with spermatogonia, spermatocytes, and round spermatids (P<0.5) in the experimental groups, compared to the control group. Nevertheless, the epididymis tissue did not show traces of histological changes, such as epididymal hyperplasia. Sperms were more frequent in the lumens of the epididymis as well as the lumens larger than those of the control. Based on the results of this study, it can be concluded that the pole plant and vitamin E have a positive effect on the epithelial lining of the seminiferous tubules and the epididymis with an increase in sperm formation and differentiation towards maturity.
Collapse
Affiliation(s)
- R Kh Hamzah
- Department of Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - J E Q Al-Musawi
- Department of Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
96
|
Wang L, Meng Q, Wang H, Huang X, Yu C, Yin G, Wang D, Jiang H, Huang Z. Luman regulates the activity of the LHCGR promoter. Res Vet Sci 2023; 161:132-137. [PMID: 37384971 DOI: 10.1016/j.rvsc.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Testosterone in male mammals is mainly secreted by testicular Leydig cells, and its secretion process is regulated by the hypothalamic-pituitary-gonadal axis. After receiving the luteinizing hormone (LH) stimulus signal, the lutropin/choriogonadotropin receptor (LHCGR) on the Leydig cell membrane transfers the signal into the cell and finally increases the secretion of testosterone by upregulating the expression of steroid hormone synthase. In previous experiments, we found that interfering with the expression of the Luman protein can significantly increase testosterone secretion in MLTC-1 cells. In this experiment, we found that knockdown of Luman in MLTC-1 cells significantly increased the concentration of cAMP and upregulated the expression of AC and LHCGR. Moreover, an analysis of the activity of the LHCGR promoter by a dual luciferase reporter system showed that knockdown of Luman increased the activity of the LHCGR promoter. Therefore, we believe that knockdown of Luman increased the activity of the LHCGR promoter and upregulated the expression of LHCGR, thereby increasing the concentration of intracellular cAMP and ultimately leading to an increase of testosterone secretion by MLTC-1 cells.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| | - Qingrui Meng
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Hailun Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Xiaoyu Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Chunchen Yu
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Dengfeng Wang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Heji Jiang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
97
|
Akhigbe RE, Afolabi OA, Ajayi AF. L-Arginine abrogates maternal and pre-pubertal codeine exposure-induced impaired spermatogenesis and sperm quality by modulating the levels of mRNA encoding spermatogenic genes. Front Endocrinol (Lausanne) 2023; 14:1180085. [PMID: 37529606 PMCID: PMC10390314 DOI: 10.3389/fendo.2023.1180085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Although, codeine has been demonstrated to lower sperm quality; the effects of maternal and prepubertal codeine exposure on male offspring is yet to be reported. In addition, the effect of arginine on codeine-induced decline in sperm quality has not been explored. This study investigated the impact of maternal and prepubertal codeine exposure on spermatogenesis and sperm quality in F1 male Wistar rats to study the effect that codeine may have during recreational use in humans. Also, the effect of arginine supplementation on codeine-induced alteration in spermatogenesis and sperm quality was evaluated. Methods Female rats were treated with either 0.5 ml distilled water or codeine orally for eight weeks, and then mated with male rats (female:male, 2:1). The F1 male offsprings of both cohorts were weaned at 3 weeks old and administered distilled water, codeine, arginine, or codeine with arginine orally for eight weeks. Results Prepubertal codeine exposure in rats whose dams (female parents) were exposed to codeine delayed puberty and reduced the weight at puberty. Prepubertal codeine exposure exacerbated maternal codeine exposure-induced reduced total and daily spermatid production, sperm count, sperm motility, and normal sperm form, as well as impaired sperm plasma membrane integrity and increased not intact acrosome and damaged sperm DNA integrity. These perturbations were accompanied by a decrease in mRNA levels encoding spermatogenic genes, testicular testosterone and androgen receptor (AR) concentrations, and upregulation of sperm 8-hydroxydeoxyguanosine (8OHdG). Prepubertal arginine supplementation mitigated codeine-induced alterations. Discussion This study provides novel experimental evidence that maternal and prepubertal codeine exposure reprogramed spermatogenesis and sperm quality of male FI generation by decreasing mRNA levels encoding spermatogenic genes and AR via oxidative stress-mediated signaling, which was abrogated by prepubertal arginine supplementation.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Oladele A. Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Ayodeji Folorusho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
98
|
Innocenti F, Di Persio S, Taggi M, Maggio R, Lardo P, Toscano V, Canipari R, Vicini E, Stigliano A. Effect of Mitotane on Male Gonadal Function. Cancers (Basel) 2023; 15:3234. [PMID: 37370841 DOI: 10.3390/cancers15123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Clinical evidence has shown frequent hypogonadism following mitotane (MTT) treatment in male patients with adrenocortical carcinoma. This study aimed to evaluate the impact of MTT on male gonadal function. METHODS Morphological analysis of testes and testosterone assays were performed on adult CD1 MTT-treated and untreated mice. The expression of key genes involved in interstitial and tubular compartments was studied by real-time PCR. Moreover, quantitative and qualitative analysis of spermatozoa was performed. RESULTS Several degrees of damage to the testes and a significant testosterone reduction in MTT-treated mice were observed. A significant decline in 3βHsd1 and Insl3 mRNA expression in the interstitial compartment confirmed an impairment of androgen production. Fsh-R mRNA expression was unaffected by MTT, proving that Sertoli cells are not the drug's primary target. Sperm concentrations were significantly lower in MTT-treated animals. Moreover, the drug caused a significant increase in the percentage of spermatozoa with abnormal chromatin structures. CONCLUSION MTT negatively affects the male reproductive system, including changes in the morphology of testicular tissue and reductions in sperm concentration and quality.
Collapse
Affiliation(s)
- Federica Innocenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Di Persio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, 00185 Rome, Italy
| | - Marilena Taggi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Maggio
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Pina Lardo
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Toscano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Rita Canipari
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Stigliano
- Endocrinology, Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
99
|
Chu X, Javed A, Ashraf MF, Gao X, Jiang S. Primary culture and endocrine functional analysis of Leydig cells in ducks ( Anas platyrhynchos). Front Endocrinol (Lausanne) 2023; 14:1195618. [PMID: 37347106 PMCID: PMC10280297 DOI: 10.3389/fendo.2023.1195618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Testicular Leydig cells (LCs) are the primary known source of testosterone, which is necessary for maintaining spermatogenesis and male fertility. However, the isolation, identification, and functional analysis of testosterone in duck LCs are still ambiguous. The aim of the present study was to establish a feasible method for isolating highly purified primary duck LCs. The highly purified primary duck LCs were isolated from the fresh testes of 2-month-old ducks via the digestion of collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were performed. Results revealed that the LCs were prominently noticeable in the testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied 90% area of the petri dish and highly expressed 3β-HSD 24 h after culture (hac) as compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate that the testosterone level in cellular supernatant was highly expressed in 24 and 48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac, indicating the primary duck LCs secrete testosterone at an early stage. Based on the above results, the present study has effectively developed a technique for isolating highly purified primary duck LCs and identified its biological function in synthesizing testosterone.
Collapse
Affiliation(s)
- Xiaoya Chu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Aiman Javed
- Department of Psychiatry & Behavioral Sciences, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Muhammad Faizan Ashraf
- Department of Basic Sciences, Fatima Memorial Hospital (FMH) College of Medicine & Dentistry, Lahore, Pakistan
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
100
|
Mohammadzadeh M, Montazeri F, Poodineh J, Vatanparast M, Rahmanian Koshkaki E, Ghasemi Esmailabad S, Mohseni F, Talebi AR. Therapeutic potential of testosterone on sperm parameters and chromatin status in fresh and thawed normo and asthenozoospermic samples. Rev Int Androl 2023; 21:100352. [PMID: 37244225 DOI: 10.1016/j.androl.2023.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Hormonal changes alter the physiological level of ROS and cause oxidative stress in the cell. As estimated, hormonal deficiencies, environmental and ideological factors make up about 25% of male infertility. Pathogenic reactive oxygen species (ROS) is a chief cause of unexplained infertility. Limited studies exist on the effects of testosterone on human sperm culture. Therefore, in the current study, the effect of different doses of testosterone on sperm parameters and chromatin quality was investigated. MATERIALS AND METHODS Semen samples from 15 normospermic and 15 asthenospermic patients were prepared by swim up method, and then were divided into four groups by exposing to different concentrations of testosterone (1, 10, and 100nM) for 45min. Samples without any intervention were considered as control group. All samples were washed twice. Sperm parameters and chromatin protamination were assessed in each group and the remains were frozen. After two weeks, all tests were repeated for sperm thawed. Also, the MSOM technique was used to determine the sperm morphology of class 1. RESULTS Although sperm parameters were not show any significant differences in normospermic and asthenospermic samples exposed to different concentrations of testosterone before and after freezing, chromatin protamination was significantly decreased in the normospermic samples exposed to 10nM of testosterone before freezing (p<0.006), as well as 1 and 10nM of testosterone after freezing compared to control samples (p=0.001 and p=0.0009, respectively). Similarly, chromatin protamination in the asthenospermic samples was significantly decreased at concentration of 1nM of testosterone before and after freezing (p=0.0014 and p=0.0004, respectively), and at concentration of 10nM of testosterone before and after freezing (p=0.0009, p=0.0007) compared to control samples. CONCLUSION Using a low dose of testosterone in the sperm culture medium, has positive effects on chromatin quality.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, and Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Rahmanian Koshkaki
- Anatomy and Embryology Department, Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeed Ghasemi Esmailabad
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, and Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Mohseni
- Department of Anesthesiology, Nursing School, Gerash University of Medical Sciences, Gerash, Iran
| | - Ali Reza Talebi
- Department of Reproductive Biology, Yazd Reproductive Sciences Institute, Research and Clinical Center for Infertility, and Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|