51
|
Wehrens EJ, Wong KA, Gupta A, Khan A, Benedict CA, Zuniga EI. IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence. PLoS One 2018; 13:e0201249. [PMID: 30044874 PMCID: PMC6059457 DOI: 10.1371/journal.pone.0201249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.
Collapse
Affiliation(s)
- Ellen J. Wehrens
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt A. Wong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ankan Gupta
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Ayesha Khan
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Chris A. Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
52
|
|
53
|
Buggert M, Nguyen S, McLane LM, Steblyanko M, Anikeeva N, Paquin-Proulx D, Del Rio Estrada PM, Ablanedo-Terrazas Y, Noyan K, Reuter MA, Demers K, Sandberg JK, Eller MA, Streeck H, Jansson M, Nowak P, Sönnerborg A, Canaday DH, Naji A, Wherry EJ, Robb ML, Deeks SG, Reyes-Teran G, Sykulev Y, Karlsson AC, Betts MR. Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease. PLoS Pathog 2018; 14:e1006973. [PMID: 29652923 PMCID: PMC5919077 DOI: 10.1371/journal.ppat.1006973] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/25/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
CD4+ T cells subsets have a wide range of important helper and regulatory functions in the immune system. Several studies have specifically suggested that circulating effector CD4+ T cells may play a direct role in control of HIV replication through cytolytic activity or autocrine β-chemokine production. However, it remains unclear whether effector CD4+ T cells expressing cytolytic molecules and β-chemokines are present within lymph nodes (LNs), a major site of HIV replication. Here, we report that expression of β-chemokines and cytolytic molecules are enriched within a CD4+ T cell population with high levels of the T-box transcription factors T-bet and eomesodermin (Eomes). This effector population is predominately found in peripheral blood and is limited in LNs regardless of HIV infection or treatment status. As a result, CD4+ T cells generally lack effector functions in LNs, including cytolytic capacity and IFNγ and β-chemokine expression, even in HIV elite controllers and during acute/early HIV infection. While we do find the presence of degranulating CD4+ T cells in LNs, these cells do not bear functional or transcriptional effector T cell properties and are inherently poor to form stable immunological synapses compared to their peripheral blood counterparts. We demonstrate that CD4+ T cell cytolytic function, phenotype, and programming in the peripheral blood is dissociated from those characteristics found in lymphoid tissues. Together, these data challenge our current models based on blood and suggest spatially and temporally dissociated mechanisms of viral control in lymphoid tissues. CD4+ T cells have classically been divided into different subsets based on their different abilities to help and regulate specific parts of the immune system. Recent work in the HIV field has demonstrated that HIV-specific CD4+ T cells with unique effector functions, such as cytolytic activity and β-chemokine production, can play a direct role in control of HIV replication. However, HIV infection is generally considered to be a disease centered in lymphoid tissues, where unique CD4+ T helper cell subsets are present to orchestrate the maturation and priming of adaptive immunity. In this study, we identify that two specific transcription factors, T-bet and Eomes, mark cytolytic and β-chemokine producing CD4+ T cells. While this effector CD4+ T cell population is part of immunosurveillance mechanisms in blood, we find that lymph nodes largely lack this effector population–independent of HIV infection or disease progression status. These results indicate that current effector CD4+ T cell mediated correlates of HIV control are limited to blood and not representative of potential correlates of control in lymphoid tissues.
Collapse
Affiliation(s)
- Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (MRB)
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Laura M. McLane
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Maria Steblyanko
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nadia Anikeeva
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Dominic Paquin-Proulx
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Perla M. Del Rio Estrada
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuria Ablanedo-Terrazas
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Morgan A. Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Korey Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Johan K. Sandberg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Hendrik Streeck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Nowak
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Center for Infection Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David H. Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States of America
- Geriatric Research, Education and Clinical Center, Louis Stokes VA Medical Center, Cleveland, OH, United States of America
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco General Hospital, San Francisco, CA, United States of America
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yuri Sykulev
- Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
- Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (MB); (MRB)
| |
Collapse
|
54
|
Abstract
During differentiation of CD4+CD8+ double-positive (DP) thymocytes into the CD4-CD8+ single-positive (CD8SP) thymocytes committed to the cytotoxic T cell lineage, Cd8a transcription is temporally terminated after positive selection and is subsequently reinitiated, a process known as coreceptor reversal. Despite the identification of a transcriptional enhancer in the Cd8a gene that directs reporter transgene expression specifically in CD8SP thymocytes, the molecular mechanisms controlling reactivation of the Cd8a gene are not fully understood. Here, we show that, after positive selection, hCD2 reporter expression from the Cd8a locus, which was generated by insertion of hCD2 cDNA into the first exon of the Cd8a gene, requires the incorporation of intron sequences into the hCD2 transcript. The presence of polyadenylation signals after hCD2 cDNA inhibited hCD2 expression in mature CD8+ T cells, whereas hCD2 expression in DP thymocytes recapitulated the Cd8a expression. Incorporation of the endogenous short intron structure and heterologous intron structure of the Cd4 locus restored hCD2 expression in mature CD8+ T cells in a variegated manner. Interestingly, stage-specific DNA demethylation was impaired in Cd8a reporter alleles that failed to express hCD2 in CD8+ T cells, and intron sequences lacking RNA splicing signals still restored hCD2 expression. These observations indicate that "intron-mediated enhancement" is involved in a stage-specific reactivation of the Cd8a locus harboring hCD2 cDNA. However, the Cd8a gene was transcribed in mature CD8+ T cells, albeit at a lower level, from a mutant Cd8a locus lacking intron structures, suggesting that protein-coding sequences in transcripts affect sensitivity to intron-mediated enhancement.
Collapse
|
55
|
Mpande CAM, Dintwe OB, Musvosvi M, Mabwe S, Bilek N, Hatherill M, Nemes E, Scriba TJ. Functional, Antigen-Specific Stem Cell Memory (T SCM) CD4 + T Cells Are Induced by Human Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:324. [PMID: 29545791 PMCID: PMC5839236 DOI: 10.3389/fimmu.2018.00324] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Background Maintenance of long-lasting immunity is thought to depend on stem cell memory T cells (TSCM), which have superior self-renewing capacity, longevity and proliferative potential compared with central memory (TCM) or effector (TEFF) T cells. Our knowledge of TSCM derives primarily from studies of virus-specific CD8+ TSCM. We aimed to determine if infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis, generates antigen-specific CD4+ TSCM and to characterize their functional ontology. Methods We studied T cell responses to natural M. tb infection in a longitudinal adolescent cohort of recent QuantiFERON-TB Gold (QFT) converters and three cross-sectional QFT+ adult cohorts; and to bacillus Calmette-Guerin (BCG) vaccination in infants. M. tb and/or BCG-specific CD4 T cells were detected by flow cytometry using major histocompatibility complex class II tetramers bearing Ag85, CFP-10, or ESAT-6 peptides, or by intracellular cytokine staining. Transcriptomic analyses of M. tb-specific tetramer+ CD4+ TSCM (CD45RA+ CCR7+ CD27+) were performed by microfluidic qRT-PCR, and functional and phenotypic characteristics were confirmed by measuring expression of chemokine receptors, cytotoxic molecules and cytokines using flow cytometry. Results M. tb-specific TSCM were not detected in QFT-negative persons. After QFT conversion frequencies of TSCM increased to measurable levels and remained detectable thereafter, suggesting that primary M. tb infection induces TSCM cells. Gene expression (GE) profiling of tetramer+ TSCM showed that these cells were distinct from bulk CD4+ naïve T cells (TN) and shared features of bulk TSCM and M. tb-specific tetramer+ TCM and TEFF cells. These TSCM were predominantly CD95+ and CXCR3+, markers typical of CD8+ TSCM. Tetramer+ TSCM expressed significantly higher protein levels of CCR5, CCR6, CXCR3, granzyme A, granzyme K, and granulysin than bulk TN and TSCM cells. M. tb-specific TSCM were also functional, producing IL-2, IFN-γ, and TNF-α upon antigen stimulation, and their frequencies correlated positively with long-term BCG-specific CD4+ T cell proliferative potential after infant vaccination. Conclusion Human infection with M. tb induced distinct, antigen-specific CD4+ TSCM cells endowed with effector functions, including expression of cytotoxic molecules and Th1 cytokines, and displayed chemokine receptor profiles consistent with memory Th1/17 cells. Induction of CD4+ TSCM should be considered for vaccination approaches that aim to generate long-lived memory T cells against M. tb.
Collapse
Affiliation(s)
- Cheleka A. M. Mpande
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - One B. Dintwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Simbarashe Mabwe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
56
|
Serroukh Y, Gu-Trantien C, Hooshiar Kashani B, Defrance M, Vu Manh TP, Azouz A, Detavernier A, Hoyois A, Das J, Bizet M, Pollet E, Tabbuso T, Calonne E, van Gisbergen K, Dalod M, Fuks F, Goriely S, Marchant A. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes. eLife 2018; 7:30496. [PMID: 29488879 PMCID: PMC5844691 DOI: 10.7554/elife.30496] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Chunyan Gu-Trantien
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | | | - Matthieu Defrance
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Abdulkader Azouz
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Aurélie Detavernier
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Alice Hoyois
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Bizet
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Emeline Pollet
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - Tressy Tabbuso
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Emilie Calonne
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Klaas van Gisbergen
- Department of Haematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy 13288, Aix Marseille Université UM2, Marseille, France
| | - François Fuks
- Laboratoire d'Epigénétique du Cancer, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
57
|
Ellestad KK, Thangavelu G, Haile Y, Lin J, Boon L, Anderson CC. Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Front Immunol 2018; 9:12. [PMID: 29416537 PMCID: PMC5787554 DOI: 10.3389/fimmu.2018.00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Lymphopenia can result from various factors, including viral infections, clinical interventions, or as a normal property of the fetal/neonatal period. T cells in a lymphopenic environment undergo lymphopenia-induced proliferation (LIP) to fill the available “niche” as defined by peptide–MHC and homeostatic cytokine resources. We recently reported systemic autoimmunity following reconstitution of the lymphoid compartment of Rag1−/− mice with PD-1−/− hematopoietic stem cells or by transfer of thymocytes, but not splenocytes, suggesting that programmed death-1 (PD-1) plays a crucial role in controlling recent thymic emigrants (RTE) and preventing autoimmunity upon their LIP. However, it is unclear whether RTE residing within the periphery of a lymphoreplete host maintain enhanced autoimmune generating potential or if this property only manifests if RTE experience a lymphopenic periphery immediately after export from the thymus. Furthermore, it is unclear which of a variety of T cell effector mechanisms generate pathology when control of RTE by PD-1 is lacking. Herein, we determined that PD-1 is upregulated on CD4 T cells undergoing the natural LIP characteristic of the neonatal period. Newly generated T cells lacking PD-1 maintained an enhanced autoimmune potential even after residence in a lymphoreplete periphery, emphasizing the importance of PD-1 in the establishment of peripheral tolerance. Neither Fas nor perforin-dependent killing mechanisms were required for autoimmunity, while host MHC-II expression was critical, suggesting that LIP-driven autoimmunity in the absence of PD-1 may primarily result from a CD4 T cell-mediated systemic cytokinemia, a feature potentially shared by other autoimmune or inflammatory syndromes associated with immune reconstitution and LIP.
Collapse
Affiliation(s)
- Kristofor K Ellestad
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Govindarajan Thangavelu
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yohannes Haile
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jiaxin Lin
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Colin C Anderson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
58
|
Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P, de Silva AD, Harris E, Peters B, Seumois G, Weiskopf D, Sette A, Vijayanand P. Precursors of human CD4 + cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol 2018; 3:eaan8664. [PMID: 29352091 PMCID: PMC5931334 DOI: 10.1126/sciimmunol.aan8664] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 01/03/2023]
Abstract
CD4+ cytotoxic T lymphocytes (CD4-CTLs) have been reported to play a protective role in several viral infections. However, little is known in humans about the biology of CD4-CTL generation, their functional properties, and heterogeneity, especially in relation to other well-described CD4+ memory T cell subsets. We performed single-cell RNA sequencing in more than 9000 cells to unravel CD4-CTL heterogeneity, transcriptional profile, and clonality in humans. Single-cell differential gene expression analysis revealed a spectrum of known transcripts, including several linked to cytotoxic and costimulatory function that are expressed at higher levels in the TEMRA (effector memory T cells expressing CD45RA) subset, which is highly enriched for CD4-CTLs, compared with CD4+ T cells in the central memory (TCM) and effector memory (TEM) subsets. Simultaneous T cell antigen receptor (TCR) analysis in single cells and bulk subsets revealed that CD4-TEMRA cells show marked clonal expansion compared with TCM and TEM cells and that most of CD4-TEMRA were dengue virus (DENV)-specific in donors with previous DENV infection. The profile of CD4-TEMRA was highly heterogeneous across donors, with four distinct clusters identified by the single-cell analysis. We identified distinct clusters of CD4-CTL effector and precursor cells in the TEMRA subset; the precursor cells shared TCR clonotypes with CD4-CTL effectors and were distinguished by high expression of the interleukin-7 receptor. Our identification of a CD4-CTL precursor population may allow further investigation of how CD4-CTLs arise in humans and, thus, could provide insights into the mechanisms that may be used to generate durable and effective CD4-CTL immunity.
Collapse
Affiliation(s)
- Veena S Patil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Ariel Madrigal
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Benjamin J Schmiedel
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - James Clarke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Patrick O'Rourke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Aruna D de Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
- Genetech Research Institute, Colombo, Sri Lanka
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California San Diego, 9500 Gilman Drive #0656, La Jolla, CA 92093, USA
| | - Gregory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California San Diego, 9500 Gilman Drive #0656, La Jolla, CA 92093, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
- Department of Medicine, University of California San Diego, 9500 Gilman Drive #0656, La Jolla, CA 92093, USA
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine University of Southampton, Southampton, UK
| |
Collapse
|
59
|
Donnarumma T, Young GR, Merkenschlager J, Eksmond U, Bongard N, Nutt SL, Boyer C, Dittmer U, Le-Trilling VTK, Trilling M, Bayer W, Kassiotis G. Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus. Cell Rep 2017; 17:1571-1583. [PMID: 27806296 PMCID: PMC5149578 DOI: 10.1016/j.celrep.2016.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions. Adenoviruses prime CD4 T cells with CTL potential, but retroviruses do not CD4 CTLs are transcriptionally distinguishable from other Th cells The CD4 CTL program is the direct opposite of the Tfh program CD4 CTLs are restrained by the TCF-1-Bcl6 nexus and by PD-1 and LAG3
Collapse
Affiliation(s)
- Tiziano Donnarumma
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George R Young
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Retrovirus-Host Interactions, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Urszula Eksmond
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nadine Bongard
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille 13288, France
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
60
|
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu Rev Immunol 2017; 34:369-94. [PMID: 27168242 DOI: 10.1146/annurev-immunol-041015-055427] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vitamin A is a multifunctional vitamin implicated in a wide range of biological processes. Its control over the immune system and functions are perhaps the most pleiotropic not only for development but also for the functional fate of almost every cell involved in protective or regulatory adaptive or innate immunity. This is especially key at the intestinal border, where dietary vitamin A is first absorbed. Most effects of vitamin A are exerted by its metabolite, retinoic acid (RA), which through ligation of nuclear receptors controls transcriptional expression of RA target genes. In addition to this canonical function, RA and RA receptors (RARs), either as ligand-receptor or separately, play extranuclear, nongenomic roles that greatly expand the multiple mechanisms employed for their numerous and paradoxical functions that ultimately link environmental sensing with immune cell fate. This review discusses RA and RARs and their complex roles in innate and adaptive immunity.
Collapse
Affiliation(s)
- Alexandre Larange
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| | - Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, California 92037; ,
| |
Collapse
|
61
|
Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4 +CD8αα + T cells. Science 2017; 357. [PMID: 28775213 PMCID: PMC5687812 DOI: 10.1126/science.aah5825 10.1126/science.aah5825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The small intestine contains CD4+CD8αα+ double-positive intraepithelial lymphocytes (DP IELs), which originate from intestinal CD4+ T cells through down-regulation of the transcription factor Thpok and have regulatory functions. DP IELs are absent in germ-free mice, which suggests that their differentiation depends on microbial factors. We found that DP IEL numbers in mice varied in different vivaria, correlating with the presence of Lactobacillus reuteri This species induced DP IELs in germ-free mice and conventionally-raised mice lacking these cells. L. reuteri did not shape the DP-IEL-TCR (TCR, T cell receptor) repertoire but generated indole derivatives of tryptophan that activated the aryl-hydrocarbon receptor in CD4+ T cells, allowing Thpok down-regulation and differentiation into DP IELs. Thus, L. reuteri, together with a tryptophan-rich diet, can reprogram intraepithelial CD4+ T cells into immunoregulatory T cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Jiani N. Chai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Ma. Diarey Tianero
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Philip P. Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | - Victor S. Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110,Correspondence to: Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid St Louis, MO 63110. Tel: 314-362-0367; FAX: 314-747-0809;
| |
Collapse
|
62
|
Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, Merriman J, Cortez VS, Caparon MG, Donia MS, Gilfillan S, Cella M, Gordon JI, Hsieh CS, Colonna M. Lactobacillus reuteri induces gut intraepithelial CD4 +CD8αα + T cells. Science 2017; 357:806-810. [PMID: 28775213 DOI: 10.1126/science.aah5825] [Citation(s) in RCA: 562] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 04/05/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
Abstract
The small intestine contains CD4+CD8αα+ double-positive intraepithelial lymphocytes (DP IELs), which originate from intestinal CD4+ T cells through down-regulation of the transcription factor Thpok and have regulatory functions. DP IELs are absent in germ-free mice, which suggests that their differentiation depends on microbial factors. We found that DP IEL numbers in mice varied in different vivaria, correlating with the presence of Lactobacillus reuteri This species induced DP IELs in germ-free mice and conventionally-raised mice lacking these cells. L. reuteri did not shape the DP-IEL-TCR (TCR, T cell receptor) repertoire but generated indole derivatives of tryptophan that activated the aryl-hydrocarbon receptor in CD4+ T cells, allowing Thpok down-regulation and differentiation into DP IELs. Thus, L. reuteri, together with a tryptophan-rich diet, can reprogram intraepithelial CD4+ T cells into immunoregulatory T cells.
Collapse
Affiliation(s)
- Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ma Diarey Tianero
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip P Ahern
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
63
|
Vacchio MS, Bosselut R. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function. THE JOURNAL OF IMMUNOLOGY 2017; 196:4848-56. [PMID: 27260768 DOI: 10.4049/jimmunol.1600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
MHC-restricted CD4(+) and CD8(+) T cells are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. Although the transcriptional control of CD4(+)-CD8(+) lineage choice in the thymus is now better understood, less was known about what maintains the CD4(+) and CD8(+) lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in postthymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4(+)-CD8(+) lineage commitment in the thymus, is critical for CD4(+) T cell helper functions.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
64
|
Vinton CL, Ortiz AM, Calantone N, Mudd JC, Deleage C, Morcock DR, Whitted S, Estes JD, Hirsch VM, Brenchley JM. Cytotoxic T Cell Functions Accumulate When CD4 Is Downregulated by CD4 + T Cells in African Green Monkeys. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:4403-4412. [PMID: 28438898 PMCID: PMC5502537 DOI: 10.4049/jimmunol.1700136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023]
Abstract
African green monkeys (AGMs) are a natural host of SIV that do not develop simian AIDS. Adult AGMs naturally have low numbers of CD4+ T cells and a large population of MHC class II-restricted CD8αα T cells that are generated through CD4 downregulation in CD4+ T cells. In this article, we study the functional profiles and SIV infection status in vivo of CD4+ T cells, CD8αα T cells, and CD8αβ T cells in lymph nodes, peripheral blood, and bronchoalveolar lavage fluid of AGMs and rhesus macaques (in which CD4 downregulation is not observed). We show that, although CD8αα T cells in AGMs maintain functions associated with CD4+ T cells (including Th follicular functionality in lymphoid tissues and Th2 responses in bronchoalveolar lavage fluid), they also accumulate functions normally attributed to canonical CD8+ T cells. These hyperfunctional CD8αα T cells are found to circulate peripherally, as well as reside within the lymphoid tissue. Due to their unique combination of CD4 and CD8 T cell effector functions, these CD4- CD8αα T cells are likely able to serve as an immunophenotype capable of Th1, follicular Th, and CTL functionalities, yet they are unable to be infected by SIV. These data demonstrate the ambiguity of CD4/CD8 expression in dictating the functional capacities of T cells and suggest that accumulation of hyperfunctional CD8αα T cells in AGMs may lead to tissue-specific antiviral immune responses in lymphoid follicles that limit SIV replication in this particular anatomical niche.
Collapse
Affiliation(s)
- Carol L Vinton
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nina Calantone
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claire Deleage
- Retroviral Immunopathology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702; and
| | - David R Morcock
- Retroviral Immunopathology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702; and
| | - Sonya Whitted
- Nonhuman Primate Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jacob D Estes
- Retroviral Immunopathology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702; and
| | - Vanessa M Hirsch
- Nonhuman Primate Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW Remarkable insights have been gleaned recently with regard to the pathophysiology of IgG4-related disease (IgG4-RD). These findings have direct implications for the development of targeted strategies for the treatment of this condition. RECENT FINDINGS Oligoclonal expansions of cells of both the B and T lymphocyte lineages are present in the blood of patients with IgG4-RD. Oligoclonal expansions of plasmablasts are a good biomarker for disease activity. An oligoclonally expanded population of CD4+ cytotoxic T lymphocytes is found not only in the peripheral blood but also at tissue sites of active disease. This cell elaborates cytokines that may drive the fibrosis characteristic of IgG4-RD. T follicular helper cells (Tfhc), particularly the Tfhc2 subset, appear to play a major role in driving the class switch to IgG4 that typifies this disease. The relationship between malignancy and IgG4-RD remains an area of interest. SUMMARY Advances in understanding the pathophysiology of IgG4-RD have proceeded swiftly, leading to the identification of a number of potential targeted treatment strategies. The completion of classification criteria for IgG4-RD, an effort supported jointly by the American College of Rheumatology and the European League Against Rheumatism, will further facilitate studies on this disease.
Collapse
|
66
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
67
|
Takeuchi A, Saito T. CD4 CTL, a Cytotoxic Subset of CD4 + T Cells, Their Differentiation and Function. Front Immunol 2017; 8:194. [PMID: 28280496 PMCID: PMC5321676 DOI: 10.3389/fimmu.2017.00194] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
CD4+ T cells with cytotoxic activity (CD4 CTL) have been observed in various immune responses. These cells are characterized by their ability to secrete granzyme B and perforin and to kill the target cells in an MHC class II-restricted fashion. Although CD4 CTLs were once thought to be an in vitro artifact associated with long-term culturing, they have since been identified in vivo and shown to play important roles in antiviral and antitumor immunity, as well as in inflammation. Functional characterization of CD4 CTL suggests their potential significance for therapeutic purposes. However, in order to develop effective CD4 CTL therapy it is necessary to understand the differentiation and generation of these cells. Although the mechanisms regulating development of various CD4+ Th subsets have been clarified in terms of the cytokine and transcription factor requirement, the CD4 CTL differentiation mechanism remains elusive. These cells are thought to be most closely related to Th1 cells secreting IFNγ and regulated by eomesodermin and/or T-bet transcription factors for their differentiation. However, our studies and those of others have identified CD4 CTLs within other CD4+ T cell subsets, including naïve T cells. We have identified class I-restricted T cell-associated molecule as a marker of CD4 CTL and, by using this marker, we detected a subset of naïve T cells that have the potential to differentiate into CD4 CTL. CD4 CTL develops at sites of infections as well as inflammation. In this review, we summarize recent findings about the generation of CD4 CTL and propose a model with several differentiation pathways.
Collapse
Affiliation(s)
- Arata Takeuchi
- Laboratory for Cell Signaling, Department of Immunology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, Department of Immunology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; WPI Immunology Frontier Center, Osaka University, Suita, Japan
| |
Collapse
|
68
|
Tian Y, Sette A, Weiskopf D. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Front Immunol 2016; 7:531. [PMID: 28003809 PMCID: PMC5141332 DOI: 10.3389/fimmu.2016.00531] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
69
|
Parrot T, Oger R, Benlalam H, Raingeard de la Blétière D, Jouand N, Coutolleau A, Preisser L, Khammari A, Dréno B, Guardiola P, Delneste Y, Labarrière N, Gervois N. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4 +CD8 + double positive T cells. Oncoimmunology 2016; 5:e1250991. [PMID: 28123891 PMCID: PMC5214764 DOI: 10.1080/2162402x.2016.1250991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Although CD4+CD8+ double positive (DP) T cells represent a small fraction of peripheral T lymphocytes in healthy human donors, their frequency is often increased under pathological conditions (in blood and targeted tissues). In solid cancers such as melanoma, we previously demonstrated an enrichment of tumor reactive CD4lowCD8highαβ DP T cells among tumor-infiltrating lymphocytes of unknown function. Similarly to their single positive (SP) CD8+ counterparts, intra-melanoma DP T cells recognized melanoma cell lines in an HLA-class-I restricted context. However, they presented a poor cytotoxic activity but a strong production of diverse Th1 and Th2 cytokines. The aim of this study was to clearly define the role of intra-melanoma CD4lowCD8highαβ DP T cells in the antitumor immune response. Based on a comparative transcriptome analysis between intra-melanoma SP CD4+, SP CD8+ and DP autologous melanoma-infiltrating T-cell compartments, we evidenced an overexpression of the CD40L co-stimulatory molecule on activated DP T cells. We showed that, like SP CD4+ T cells, and through CD40L involvement, DP T cells are able to induce both proliferation and differentiation of B lymphocytes and maturation of functional DCs able to efficiently prime cytotoxic melanoma-specific CD8 T-cell responses. Taken together, these results highlight the helper potential of atypical DP T cells and their role in potentiating antitumor response.
Collapse
Affiliation(s)
- Tiphaine Parrot
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Romain Oger
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Houssem Benlalam
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Diane Raingeard de la Blétière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire, Angers, France
| | - Nicolas Jouand
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Anne Coutolleau
- SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire , Angers, France
| | - Laurence Preisser
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Amir Khammari
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Unit of Skin Cancer, Centre Hospitalier Universitaire, Nantes, France
| | - Brigitte Dréno
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Unit of Skin Cancer, Centre Hospitalier Universitaire, Nantes, France; GMP Unit of Cellular Therapy, Centre Hospitalier Universitaire, Nantes, France
| | - Philippe Guardiola
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire, Angers, France
| | - Yves Delneste
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nathalie Labarrière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nadine Gervois
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
70
|
Park Y, Moon SJ, Lee SW. Lineage re-commitment of CD4CD8αα intraepithelial lymphocytes in the gut. BMB Rep 2016; 49:11-7. [PMID: 26592937 PMCID: PMC4914207 DOI: 10.5483/bmbrep.2016.49.1.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal tract forms the largest surface in our body with constantly
being exposed to various antigens, which provides unique microenvironment for
the immune system in the intestine. Accordingly, the gut epithelium harbors the
most T lymphocytes in the body as intraepithelial
lymphocytes (IELs), which are phenotypically and
functionally heterogeneous populations, distinct from the conventional mature T
cells in the periphery. IELs arise either from pre-committed thymic precursors
(natural IELs) or from conventional CD4 or CD8αβ T cells in response
to peripheral antigens (induced IELs), both of which commonly express CD8α
homodimers (CD8αα). Although lineage commitment to either conventional
CD4 T helper (Th) or cytotoxic CD8αβ T cells as well as their
respective co-receptor expression are mutually exclusive and irreversible
process, CD4 T cells can be redirected to the CD8 IELs with high cytolytic
activity upon migration to the gut epithelium. Recent reports show that master
transcription factors for CD4 and CD8 T cells, ThPOK (Th-inducing
BTB/POZ-Kruppel-like factor) and Runx3 (Runt related transcription factor 3),
respectively, are the key regulators for re-programming of CD4 T cells to CD8
lineage in the intestinal epithelium. This review will focus on the unique
differentiation process of IELs, particularly lineage re-commitment of CD4 IELs.
[BMB Reports 2016; 49(1): 11-17]
Collapse
Affiliation(s)
- Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sook-Jin Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
71
|
Burel JG, Apte SH, Groves PL, Klein K, McCarthy JS, Doolan DL. Reduced Plasmodium Parasite Burden Associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-γ Production. PLoS Pathog 2016; 12:e1005839. [PMID: 27662621 PMCID: PMC5035011 DOI: 10.1371/journal.ppat.1005839] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/02/2016] [Indexed: 11/19/2022] Open
Abstract
Using a unique resource of samples from a controlled human malaria infection (CHMI) study, we identified a novel population of CD4+ T cells whose frequency in the peripheral blood was inversely correlated with parasite burden following P. falciparum infection. These CD4+ T cells expressed the multifunctional ectoenzyme CD38 and had unique features that distinguished them from other CD4+ T cells. Specifically, their phenotype was associated with proliferation, activation and cytotoxic potential as well as significantly impaired production of IFN-γ and other cytokines and reduced basal levels of activated STAT1. A CD38+ CD4+ T cell population with similar features was identified in healthy uninfected individuals, at lower frequency. CD38+ CD4+ T cells could be generated in vitro from CD38- CD4+ T cells after antigenic or mitogenic stimulation. This is the first report of a population of CD38+ CD4+ T cells with a cytotoxic phenotype and markedly impaired IFN-γ capacity in humans. The expansion of this CD38+ CD4+ T population following infection and its significant association with reduced blood-stage parasite burden is consistent with an important functional role for these cells in protective immunity to malaria in humans. Their ubiquitous presence in humans suggests that they may have a broad role in host-pathogen defense. TRIAL REGISTRATION ClinicalTrials.gov clinical trial numbers ACTRN12612000814875, ACTRN12613000565741 and ACTRN12613001040752.
Collapse
Affiliation(s)
- Julie G. Burel
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
| | - Simon H. Apte
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Penny L. Groves
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerenaftali Klein
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James S. McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Denise L. Doolan
- Molecular Vaccinology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, School of Medicine, Brisbane, Australia
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- * E-mail:
| |
Collapse
|
72
|
Cross-reactive multifunctional CD4+ T cell responses against Salmonella enterica serovars Typhi, Paratyphi A and Paratyphi B in humans following immunization with live oral typhoid vaccine Ty21a. Clin Immunol 2016; 173:87-95. [PMID: 27634430 DOI: 10.1016/j.clim.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Abstract
The live oral typhoid vaccine Ty21a elicits predominantly CD8+, as well as CD4+ T cells mediated immune responses. Clinical field studies showed that Ty21a is moderately effective against S. Typhi and S. Paratyphi B, but not S. Paratyphi A infections. In this study we describe the in depth characterization of S. Typhi, S. Paratyphi A and S. Paratyphi B cross-reactive CD4+ T cell responses elicited following immunization with Ty21a. PBMC samples were collected from 16 healthy volunteers before and 42/84days after Ty21a immunization and stimulated ex-vivo with Salmonella-infected targets. Multiparametric flow cytometry was used to detect the vaccine elicited Salmonella-specific responses in T effector/memory (TEM) and CD45RA+ T effector/memory (TEMRA) CD4+ cell subsets, by measuring CD4+ multifunctional (MF) cells that concomitantly produced IFN-γ, TNF-α, IL-2, MIP-1β, IL-17A and/or expressed CD107a. Post-vaccination increases in S. Typhi-specific MF cells were observed in CD4+ TEM and TEMRA subsets which predominantly produced IFN-γ and/or TNF-α, while IL-2 was produced by a smaller cell subset. A small proportion of those MF cells also produced MIP-1β, IL-17A and expressed CD107a (a marker associated with cytotoxicity). Approximately one third of these specific MF cells have the potential to migrate to the gut mucosa, as evidenced by co-expression of the gut-homing molecule integrin α4β7. In contrast to our previous observations with CD8+ T cells, MF CD4+ T cell responses to the different Salmonella serovars evaluated were similar in magnitude and characteristics. We conclude that although induction of cross-reactive CD4+ MF effector T cells suggest a possible role in Salmonella-immunity, these responses are unlikely to provide an immunological basis for the observed efficacy of Ty21a against S. Typhi and S. Paratyphi B, but not to S. Paratyphi A.
Collapse
|
73
|
HLA-DPB1 mismatch alleles represent powerful leukemia rejection antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia 2016; 31:434-445. [DOI: 10.1038/leu.2016.210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/03/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022]
|
74
|
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
75
|
De Lazzari M, Fedrigo M, Perazzolo Marra M, Calabrò F, Tarantini G, D'Amore EGS, Adami F, Thiene G, Iliceto S, Angelini A, Tona F. Relapsing Leukemia Infiltrating the Heart. Circ Heart Fail 2016; 8:1133-4. [PMID: 26578669 DOI: 10.1161/circheartfailure.115.002491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Manuel De Lazzari
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Marny Fedrigo
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Martina Perazzolo Marra
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Federica Calabrò
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Giuseppe Tarantini
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Emanuele G S D'Amore
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Fausto Adami
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Gaetano Thiene
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Sabino Iliceto
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Annalisa Angelini
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.)
| | - Francesco Tona
- From the Departments of Cardiac, Thoracic, and Vascular Sciences (M.D.L., M.F., F.C., M.P.M., G.T., G.T., S.I., A.A., F.T.) and Medicine (F.A.), University of Padua, Padua, Italy; and Pathology Institute, Vicenza Hospital, Vicenza, Italy (E.G.S.D.).
| |
Collapse
|
76
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
77
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
78
|
Eomesodermin-expressing T-helper cells are essential for chronic neuroinflammation. Nat Commun 2015; 6:8437. [PMID: 26436530 DOI: 10.1038/ncomms9437] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/09/2022] Open
Abstract
Development of acute experimental autoimmune encephalomyelitis (EAE) depends on Th17 cells expressing the nuclear factor NR4A2. However, in mice lacking NR4A2 in T cells, a late-onset disease is still inducible, despite a great reduction in acute inflammation. We here reveal that development of this late onset disease depends on cytotoxic T-cell-like CD4(+) T cells expressing the T-box transcription factor Eomesodermin (Eomes). T-cell-specific deletion of the Eomes gene remarkably ameliorates the late-onset EAE. Strikingly, similar Eomes(+) CD4(+) T cells are increased in the peripheral blood and cerebrospinal fluid from patients in a progressive state of multiple sclerosis. Collective data indicate an involvement of granzyme B and protease-activated receptor-1 in the neuroinflammation mediated by Eomes(+) CD4(+) T cells.
Collapse
|
79
|
Ellmeier W. Molecular control of CD4+ T cell lineage plasticity and integrity. Int Immunopharmacol 2015; 28:813-7. [DOI: 10.1016/j.intimp.2015.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
|
80
|
Malek Abrahimians E, Carlier VA, Vander Elst L, Saint-Remy JMR. MHC Class II-Restricted Epitopes Containing an Oxidoreductase Activity Prompt CD4(+) T Cells with Apoptosis-Inducing Properties. Front Immunol 2015; 6:449. [PMID: 26388872 PMCID: PMC4556975 DOI: 10.3389/fimmu.2015.00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Abrogating an unwanted immune response toward a specific antigen without compromising the entire immune system is a hoped-for goal in immunotherapy. Instead of manipulating dendritic cells and suppressive regulatory T cells, depleting effector T cells or blocking their co-stimulatory pathways, we describe a method to specifically inhibit the presentation of an antigen eliciting an unwanted immune reaction. Inclusion of an oxidoreductase motif within the flanking residues of MHC class II epitopes polarizes CD4(+) T cells to cytolytic cells capable of inducing apoptosis in antigen presenting cells (APCs) displaying cognate peptides through MHC class II molecules. This novel function results from an increased synapse formation between both cells. Moreover, these cells eliminate by apoptosis bystander CD4(+) T cells activated at the surface of the APC. We hypothesize that they would thereby block the recruitment of cells of alternative specificity for the same autoantigen or cells specific for another antigen associated with the pathology, providing a system by which response against multiple antigens linked with the same disease can be suppressed. These findings open the way toward a novel form of antigen-specific immunosuppression.
Collapse
Affiliation(s)
- Elin Malek Abrahimians
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Vincent A Carlier
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Luc Vander Elst
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Jean-Marie R Saint-Remy
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| |
Collapse
|
81
|
Guo Z, Wang H, Meng F, Li J, Zhang S. Combined Trabectedin and anti-PD1 antibody produces a synergistic antitumor effect in a murine model of ovarian cancer. J Transl Med 2015. [PMID: 26219551 PMCID: PMC4517526 DOI: 10.1186/s12967-015-0613-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Monoclonal antibodies (mAb) that block programmed death (PD)-1 signaling pathway hold great potential as a novel cancer immunotherapy. Recent evidence suggests that combining with conventional, targeted or other immunotherapies, these mAb can induce synergistic antitumor responses. In this study, we investigated whether Trabectedin (ET-743), a novel anticancer agent currently used for treating relapsed ovarian cancer, can synergize with anti (α)-PD-1 mAb to increase antitumor activity in the murine ID8 ovarian cancer model. METHODS Mice with established peritoneal ID8 tumor were treated with either single or combined Trabectedin and α-PD-1 mAb, their overall survival was recorded; tumor-associated immune cells and immune gene expression in tumors from treated mice were analyzed by flow cytometry and quantitative RT-PCR, respectively, and antigen-specific immunity of effector CD8(+) T cells was evaluated by ELISA and cytotoxicity assay. In addition, the effect of Trabectedin on tumoral PD-L1 expression was analyzed by both flow cytometry and immunofluorescence staining. RESULTS Though single treatment showed a modest antitumor effect in mice bearing 10-day-established ID8 tumor, combined Trabectedin and α-PD-1 mAb treatment induced a strong antitumor immune response, leading to a significant tumor regression with half of mice tumor-free 90 days after tumor inoculation. Mechanistic investigation revealed that combination treatment induces a systemic tumor-specific immunity with an indispensable role of both CD4(+) and CD8(+) T cells, and effector CD8(+) T cells exhibited the antigen-specific cytokine secretion and cytotoxicity upon tumor antigen stimulation; additionally, combination treatment increased the IFN-γ-producing effector T cells and decreased the immunosuppressive cells in peritoneal cavity; accordingly, it enhanced the expression of Th1-associated immune-stimulating genes while reducing the transcription of regulatory/suppressive immune genes, reshaping tumor microenvironment from a immunosuppressive to a stimulatory state. Finally, in vivo Trabectedin treatment has been shown to induce IFN-γ-dependent PD-L1 expression within tumor, possibly constituting a mechanistic basis for its synergistic antitumor effect with α-PD-1 mAb therapy. CONCLUSION This study provides the evidence that α-PD-1 mAb can produce a synergistic antitumor efficacy when combined with Trabectedin, a clinically available anticancer agent, supporting a direct translation of this combination strategy in clinic for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Haolin Wang
- Department of Acute Abdominal Surgery, The First Hospital of Dalian Medical University, Dalian, 116044, China.
| | - Fandong Meng
- Molecular Oncology Department of Cancer Research Institution, The First Hospital of China Medical University, Shenyang, 110004, China.
| | - Jie Li
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Shulan Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
82
|
Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc Natl Acad Sci U S A 2015. [PMID: 26195744 DOI: 10.1073/pnas.1505956112] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue virus (DENV) is a rapidly spreading pathogen with unusual pathogenesis, and correlates of protection from severe dengue disease and vaccine efficacy have not yet been established. Although DENV-specific CD8(+) T-cell responses have been extensively studied, the breadth and specificity of CD4(+) T-cell responses remains to be defined. Here we define HLA-restricted CD4(+) T-cell epitopes resulting from natural infection with dengue virus in a hyperepidemic setting. Ex vivo flow-cytometric analysis of DENV-specific CD4(+) T cells revealed that the virus-specific cells were highly polarized, with a strong bias toward a CX3CR1(+) Eomesodermin(+) perforin(+) granzyme B(+) CD45RA(+) CD4 CTL phenotype. Importantly, these cells correlated with a protective HLA DR allele, and we demonstrate that these cells have direct ex vivo DENV-specific cytolytic activity. We speculate that cytotoxic dengue-specific CD4(+) T cells may play a role in the control of dengue infection in vivo, and this immune correlate may be a key target for dengue virus vaccine development.
Collapse
|
83
|
High-dose cyclophosphamide induces specific tumor immunity with concomitant recruitment of LAMP1/CD107a-expressing CD4-positive T cells into tumor sites. Cancer Lett 2015; 366:93-9. [PMID: 26116901 DOI: 10.1016/j.canlet.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/01/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
Cancer chemotherapy regimens, particularly those employing high-dose cytotoxic drugs such as cyclophosphamide (CTX), have been considered to be immune suppressive. However, we observed that a single administration of high-dose CTX abolished tumors arising from subcutaneous injection of a mouse hepatoma cell line and subsequently induced specific tumor immunity. Depletion of T cells, specifically CD4(+) T cells, abrogated the CTX-mediated tumor regression. CTX treatment induced the rapid recruitment of CD4(+) T cells into the tumors, and these recruited cells initiated expression of LAMP1/CD107a, a cytotoxic granule molecule, and granzyme B in the absence of antigen presentation at draining lymph nodes and proliferation in the tumor tissues. Moreover, CTX enhanced the expression of a CC chemokine, CCL3, in tumor tissues, and CTX-mediated tumor regression was attenuated in mice deficient in CCR5, the receptor for this chemokine. Consistently, less CTX-induced accumulation of intratumoral LAMP1/CD107a-expressing CD4(+) T cells was observed in mice receiving splenocytes derived from CCR5-deficient mice than in those receiving splenocytes derived from WT mice. Thus, CTX induces the expression of CCL3, which induces the intratumoral migration of CD4(+) T cells expressing cytotoxic molecules, leading to tumor eradication and subsequent specific tumor immunity.
Collapse
|
84
|
Wang Y, Zhang J, Wu Y, Ding ZY, Luo XM, Liu J, Zhong WN, Deng GH, Xia XY, Deng YT, Wei YQ, Jiang Y. Mannan-modified adenovirus targeting TERT and VEGFR-2: A universal tumour vaccine. Sci Rep 2015; 5:11275. [PMID: 26085010 PMCID: PMC4471666 DOI: 10.1038/srep11275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/14/2015] [Indexed: 02/05/2023] Open
Abstract
Antigen-presenting cells including dendritic cells (DCs) express mannan receptors (MR) on their surface, which can be exploited in cancer therapy by designing immune-stimulatory viruses coated with mannan-modified capsids that then bind to DCs and initiate a potent immune response. Although the combination of anti-angiogenesis and cancer immunotherapy agents has a synergistic antitumor effect, more effective strategies for delivering such combinations are still required. Here we report the design and application of mannan-modified adenovirus that expresses both telomerase reverse transcriptase (TERT) and vascular endothelial growth factor receptor-2 (VEGFR-2). Cytotoxic T lymphocytes that are reactive to TERT and VEGFR-2 are capable of mounting an anti-tumour response in murine breast and colon tumour models and in a lung metastatic model. Compared with mannan-modified TERT adenovirus vaccine or mannan-modified VEGFR-2 adenovirus vaccine alone, the combined vaccine showed remarkably synergistic anti-tumour immunity in these models. Both TERT- and VEGFR-2-specific cytotoxic T lymphocytes (CTL) were identified in an in vitro cytotoxicity assay, and the CTL activity against tumour cells was significantly elevated in the combined vaccine group. Furthermore, CTL-mediated toxicity was blocked by anti-CD8 monoclonal antibodies. Thus, the combined mannan-modified TERT and VEGFR-2 adenovirus confers potent anti-tumour immunity by targeting both tumour cells and intratumoural angiogenesis.
Collapse
Affiliation(s)
- Ying Wang
- 1] Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China [2] Department of East Ward Oncology, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Jie Zhang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhen-Yu Ding
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xin-Mei Luo
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wu-Ning Zhong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Guo-Hua Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiang-Yu Xia
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yao-Tiao Deng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu-Quan Wei
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Jiang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
85
|
Hu Z, Blackman MA, Kaye KM, Usherwood EJ. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. THE JOURNAL OF IMMUNOLOGY 2015; 194:2746-56. [PMID: 25662997 DOI: 10.4049/jimmunol.1401928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD4(+) T cells are critical for the control of virus infections, T cell memory, and immune surveillance. We studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4(+) T cells using gp150-specific TCR-transgenic mice. This allowed a more detailed study of the characteristics of the CD4(+) T cell response than did previously available approaches for this virus. Most gp150-specific CD4(+) T cells expressed T-bet and produced IFN-γ, indicating that MHV-68 infection triggered differentiation of CD4(+) T cells largely into the Th1 subset, whereas some became follicular Th cells and Foxp3(+) regulatory T cells. These CD4(+) T cells were protective against MHV-68 infection in the absence of CD8(+) T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4(+) T cells, based on lymphocyte Ag 6C (Ly6C) expression. Ly6C expression positively correlated with IFN-γ, TNF-α, and granzyme B production; T-bet and KLRG1 expression; proliferation; and CD4(+) T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression, and secondary expansion potential. Ly6C(+) and Ly6C(-) gp150-specific CD4(+) T cells were able to interconvert in a bidirectional manner upon secondary Ag exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4(+) T cells but is inversely correlated with memory potential. Interconversion between Ly6C(+) and Ly6C(-) cells may maintain a balance between the two Ag-specific CD4(+) T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4(+) T cells during persistent virus infection.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - Kenneth M Kaye
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
86
|
|
87
|
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism.
Collapse
Affiliation(s)
- G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN. 55108
| | - Christopher A. Pennell
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN. 55445
| | - Michael R. Olin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN. 55445
| |
Collapse
|
88
|
Shih HY, Sciumè G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, Bonelli M, Bosselut R, Kanno Y, Muljo SA, O'Shea JJ. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunol Rev 2014; 261:23-49. [PMID: 25123275 PMCID: PMC4321863 DOI: 10.1111/imr.12208] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of the specification of CD4(+) helper T cells to discrete effector 'lineages' represented a watershed event in conceptualizing mechanisms of host defense and immunoregulation. However, our appreciation for the actual complexity of helper T-cell subsets continues unabated. Just as the Sami language of Scandinavia has 1000 different words for reindeer, immunologists recognize the range of fates available for a CD4(+) T cell is numerous and may be underestimated. Added to the crowded scene for helper T-cell subsets is the continuously growing family of innate lymphoid cells (ILCs), endowed with common effector responses and the previously defined 'master regulators' for CD4(+) helper T-cell subsets are also shared by ILC subsets. Within the context of this extraordinary complexity are concomitant advances in the understanding of transcriptomes and epigenomes. So what do terms like 'lineage commitment' and helper T-cell 'specification' mean in the early 21st century? How do we put all of this together in a coherent conceptual framework? It would be arrogant to assume that we have a sophisticated enough understanding to seriously answer these questions. Instead, we review the current status of the flexibility of helper T-cell responses in relation to their genetic regulatory networks and epigenetic landscapes. Recent data have provided major surprises as to what master regulators can or cannot do, how they interact with other transcription factors and impact global genome-wide changes, and how all these factors come together to influence helper cell function.
Collapse
Affiliation(s)
- Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|