51
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| |
Collapse
|
52
|
Hackel A, Aksamit A, Bruderek K, Lang S, Brandau S. TNF-α and IL-1β sensitize human MSC for IFN-γ signaling and enhance neutrophil recruitment. Eur J Immunol 2020; 51:319-330. [PMID: 32845509 DOI: 10.1002/eji.201948336] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022]
Abstract
During inflammatory processes, tissue environmental cues are influencing the immunoregulatory properties of tissue-resident mesenchymal stem/stromal cells (MSC). In this study, we elucidated one of the molecular and cellular responses of human MSC exposed to combinations of inflammatory cytokines. We showed that during multi-cytokine priming by TNF-α, IL-1β, and IFN-γ, IL-1β further augmented the well-established immunoregulatory activity induced by TNF-α/IFN-γ. On the molecular level, TNF-α and IL-1β enhanced the expression of IFN-γ receptor (IFN-γR) via NF 'kappa-light-chain-enhancer' of activated B-cells (NF-κΒ) signaling. In turn, enhanced responsiveness to IFN-γ stimulation activated STAT5 and p38-MAPK signaling. This molecular feedback resulted in an increased IL-8 release and augmented recruitment of polymorphonuclear granulocytes (PMN). Our study suggests the possibility that responses of MSC to multi-cytokine priming regimens may be exploited therapeutically to fine-tune inflammatory activity in tissues. This study elucidates molecular mechanisms underlying the immunological priming of mesenchymal stromal cells (MSC) and their interaction with neutrophils.
Collapse
Affiliation(s)
- Alexander Hackel
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aleksandra Aksamit
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
53
|
Galland S, Martin P, Fregni G, Letovanec I, Stamenkovic I. Attenuation of the pro-inflammatory signature of lung cancer-derived mesenchymal stromal cells by statins. Cancer Lett 2020; 484:50-64. [PMID: 32418888 DOI: 10.1016/j.canlet.2020.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Solid tumor growth triggers a dynamic host response, which recapitulates wound healing and defines the tumor microenvironment (TME). In addition to the action of the tumor cells themselves, the TME is maintained by a myriad of immune and stromal cell-derived soluble mediators and extracellular matrix components whose combined action supports tumor progression. However, therapeutic targeting of the TME has proven challenging because of incomplete understanding of the tumor-host crosstalk at the molecular level. Here, we investigated the crosstalk between mesenchymal stromal cells (MSCs) and primary cancer cells (PCCs) from human squamous cell lung carcinoma (SCC). We discovered that PCCs secrete CCL3 and stimulate IL-6, CCL2, ICAM-1 and VCAM-1 expression in MSCs and that the MSC-PCC crosstalk can be disrupted by the lipid-lowering drug simvastatin, which displays pleiotropic effects on cell metabolism and suppresses IL-6 and CCL2 production by MSCs and CCL3 secretion by PCCs. In addition, simvastatin inhibited spheroid formation by PCCs and negatively affected PCC survival. Our observations demonstrate that commonly used statins may be repurposed to target the TME in lung carcinoma.
Collapse
Affiliation(s)
- Sabine Galland
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland.
| | - Patricia Martin
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Giulia Fregni
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Igor Letovanec
- Clinical Pathology Service, Institute of Pathology, CHUV, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| |
Collapse
|
54
|
Munir S, Basu A, Maity P, Krug L, Haas P, Jiang D, Strauss G, Wlaschek M, Geiger H, Singh K, Scharffetter-Kochanek K. TLR4-dependent shaping of the wound site by MSCs accelerates wound healing. EMBO Rep 2020; 21:e48777. [PMID: 32162777 PMCID: PMC7202058 DOI: 10.15252/embr.201948777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
We here address the question whether the unique capacity of mesenchymal stem cells to re‐establish tissue homeostasis depends on their potential to sense pathogen‐associated molecular pattern and, in consequence, mount an adaptive response in the interest of tissue repair. After injection of MSCs primed with the bacterial wall component LPS into murine wounds, an unexpected acceleration of healing occurs, clearly exceeding that of non‐primed MSCs. This correlates with a fundamental reprogramming of the transcriptome in LPS‐treated MSCs as deduced from RNAseq analysis and its validation. A network of genes mediating the adaptive response through the Toll‐like receptor 4 (TLR4) pathway responsible for neutrophil and macrophage recruitment and their activation profoundly contributes to enhanced wound healing. In fact, injection of LPS‐primed MSCs silenced for TLR4 fails to accelerate wound healing. These unprecedented findings hold substantial promise to refine current MSC‐based therapies for difficult‐to‐treat wounds.
Collapse
Affiliation(s)
- Saira Munir
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Philipp Haas
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Dongsheng Jiang
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany.,Institute of Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany.,Aging Research Center (ARC), Ulm, Germany
| |
Collapse
|
55
|
Eljarrah A, Gergues M, Pobiarzyn PW, Sandiford OA, Rameshwar P. Therapeutic Potential of Mesenchymal Stem Cells in Immune-Mediated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:93-108. [PMID: 31898783 DOI: 10.1007/978-3-030-31206-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can self-renew and differentiate into cells of all germ layers. MSCs can be easily attracted to the site of tissue insult with high levels of inflammatory mediators. The general ability of MSCs to migrate at the sites of tissue injury suggested an innate ability for these cells to be involved in baseline tissue repair. The bone marrow is one of the primary sources of MSCs, though they can be ubiquitous. An attractive property of MSCs for clinical application is their ability to cross allogeneic barrier. However, alone, MSCs are not immune suppressive cells. Rather, they can be licensed by the tissue microenvironment to become immune suppressor cells. Immune suppressor functions of MSCs include those that blunt cytotoxicity of natural killer cells, suppression of T-cell proliferation, and "veto" function. MSCs, as third-party cells, suppress the immune response that generally recapitulates graft-versus-host disease (GvHD) responses. Based on the plastic functions of MSCs, these cells have dominated the field of cell-based therapies, such as anti-inflammatory and drug delivery. Here, we focus on the potential use of MSC for immunological disorders such as Crohn's disease and GvHD.
Collapse
Affiliation(s)
- Adam Eljarrah
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Marina Gergues
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Piotr W Pobiarzyn
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Oleta A Sandiford
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Rutgers School of Graduate School at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|
56
|
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165577. [DOI: 10.1016/j.bbadis.2019.165577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
57
|
Salem ML, El-Naggar SA, Mobasher MA, Elgharabawy RM. The Toll-Like Receptor 3 Agonist Polyriboinosinic Polyribocytidylic Acid Increases the Numbers of NK Cells with Distinct Phenotype in the Liver of B6 Mice. J Immunol Res 2020; 2020:2489407. [PMID: 32211442 PMCID: PMC7077049 DOI: 10.1155/2020/2489407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
One of the activating factors of the cells of the innate immune system is the agonists of toll-like receptors (TLRs). Our earlier publications detailed how poly(I:C), a TLR3 agonist, elevates the NK cell population and the associated antigen-specific CD8+ T cell responses. This study involved a single treatment of the B6 mice with poly(I:C) intraperitoneally. To perform a detailed phenotypic analysis, mononuclear cells were prepared from each of the liver, peripheral blood, and spleen. These cells were then examined for their NK cell population by flow cytometric analysis following cell staining with indicated antibodies. The findings of the study showed that the NK cell population of the liver with an NK1.1highCD11bhighCD11chigh B220+Ly6G- phenotype was elevated following the treatment with poly(I:C). In the absence of CD11b molecule (CR3-/- mice), poly(I:C) can still increase the remained numbers of NK cells with NK1.1+CD11b- and NK1.1+Ly6G- phenotypes in the liver while their numbers in the blood decrease. After the treatment with anti-AGM1 Ab, which induced depletion of NK1.1+CD11b+ cells and partial depletion of CD3+NK1.1+ and NK1.1+CD11b- cell populations, poly(I:C) normalized the partial decreases in the numbers of NK cells concomitant with increased numbers of NK1.1-CD11b+ cell population in both liver and blood. Regarding mice with a TLR3-/- phenotype, their injection with poly(I:C) resulted in the partial elevation in the NK cell population as compared to wild-type B6 mice. To summarise, the TLR3 agonist poly(I:C) results in the elevation of a subset of liver NK cells expressing the two myeloid markers CD11c and CD11b. The effect of poly(I:C) on NK cells is partially dependent on TLR3 and independent of the presence of CD11b.
Collapse
Affiliation(s)
- Mohamed L. Salem
- 1Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- 2Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Sabry A. El-Naggar
- 1Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- 2Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt
| | - Maysa A. Mobasher
- 3Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
- 4Department of Clinical Pathology, El Ahrar Educational Hospital, Ministry of Health, Zagazig, Egypt
| | - Rehab M. Elgharabawy
- 5Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- 6Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
58
|
Galland S, Stamenkovic I. Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression. J Pathol 2019; 250:555-572. [PMID: 31608444 PMCID: PMC7217065 DOI: 10.1002/path.5357] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair. Because their current definition is somewhat loose – based primarily on their ability to differentiate into a variety of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers – MSCs likely encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part, the pleiotropic functions that they display in different physiological and pathological settings. In the context of tissue injury, MSCs can respectively promote and attenuate inflammation during the early and late phases of tissue repair. They may thereby act as sensors of the inflammatory response and secrete mediators that boost or temper the response as required by the stage of the reparatory and regenerative process. MSCs are also implicated in regulating tumor development, in which they are increasingly recognized to play a complex role. Thus, MSCs can both promote and constrain tumor progression by directly affecting tumor cells via secreted mediators and cell–cell interactions and by modulating the innate and adaptive immune response. This review summarizes our current understanding of MSC involvement in tumor development and highlights the mechanistic underpinnings of their implication in tumor growth and progression. © 2020 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sabine Galland
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| |
Collapse
|
59
|
Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S, Brandau S. EGFR-Specific Tyrosine Kinase Inhibitor Modifies NK Cell-Mediated Antitumoral Activity against Ovarian Cancer Cells. Int J Mol Sci 2019; 20:ijms20194693. [PMID: 31546690 PMCID: PMC6801374 DOI: 10.3390/ijms20194693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The adverse prognosis of most patients with ovarian cancer is related to recurrent disease caused by resistance to chemotherapeutic and targeted therapeutics. Besides their direct activity against tumor cells, monoclonal antibodies and tyrosine kinase inhibitors (TKIs) also influence the antitumoral activity of immune cells, which has important implications for the design of immunotherapies. In this preclinical study, we treated different ovarian cancer cell lines with anti-epidermal growth factor receptor (EGFR) TKIs and co-incubated them with natural killer (NK) cells. We studied treatment-related structural and functional changes on tumor and immune cells in the presence of the anti-EGFR antibody cetuximab and investigated NK-mediated antitumoral activity. We show that long-term exposure of ovarian cancer cells to TKIs leads to reduced responsiveness of intrinsically sensitive cancer cells over time. Inversely, neither long-term treatment with TKIs nor cetuximab could overcome the intrinsic resistance of certain ovarian cancer cells to anti-EGFR agents. Remarkably, tumor cells pretreated with anti-EGFR TKIs showed increased sensitivity towards NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In contrast, the cytokine secretion of NK cells was reduced by TKI sensitization. Our data suggest that sensitization of tumor cells by anti-EGFR TKIs differentially modulates interactions with NK cells. These data have important implications for the design of chemo-immuno combination therapies in this tumor entity.
Collapse
Affiliation(s)
- Nina Mallmann-Gottschalk
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Yvonne Sax
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Stephan Lang
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Sven Brandau
- Department of Otorhinolaryngology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
60
|
Mahdavi Gorabi A, Banach M, Reiner Ž, Pirro M, Hajighasemi S, Johnston TP, Sahebkar A. The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. J Clin Med 2019; 8:E1413. [PMID: 31500373 PMCID: PMC6780166 DOI: 10.3390/jcm8091413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease that mainly affects the arterial intima. The disease is more prevalent in middle-age and older individuals with one or more cardiovascular risk factors, including dyslipidemia, hypertension, diabetes, smoking, obesity, and others. The beginning and development of atherosclerosis has been associated with several immune components, including infiltration of inflammatory cells, monocyte/macrophage-derived foam cells, and inflammatory cytokines and chemokines. Mesenchymal stem cells (MSCs) originate from several tissue sources of the body and have self-renewal and multipotent differentiation characteristics. They also have immunomodulatory and anti-inflammatory properties. Recently, it was shown that MSCs have a regulatory role in plasma lipid levels. In addition, MSCs have shown to have promising potential in terms of treatment strategies for several diseases, including those with an inflammatory component. In this regard, transplantation of MSCs to patients with atherosclerosis has been proposed as a novel strategy in the treatment of this disease. In this review, we summarize the current advancements regarding MSCs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb 1000, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
61
|
Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal Stem Cells, Immune Cells and Tumor Cells Crosstalk: A Sinister Triangle in the Tumor Microenvironment. Curr Stem Cell Res Ther 2019; 14:43-51. [PMID: 30112998 DOI: 10.2174/1574888x13666180816114809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Mesenchymal Stem Cells [MSCs] are a heterogeneous population of fibroblast-like cells which maintain self-renewability and pluripotency. Many studies have demonstrated the immunomodulatory effects of MSCs on the innate and adaptive immune cells. As a result of interactions with tumor cells, microenvironment and immune-stimulating milieu, MSCs contribute to tumor progression by several mechanisms, including sustained proliferative signal in cancer stem cells [CSCs], inhibition of tumor cell apoptosis, transition to tumor-associated fibroblasts [TAFs], promotion of angiogenesis, stimulation of epithelial-mesenchymal transition [EMT], suppression of immune responses, and consequential promotion of tumor metastasis. Here, we present an overview of the latest findings on Janusfaced roles that MSCs play in the tumor microenvironment [TME], with a concise focus on innate and adaptive immune responses.
Collapse
Affiliation(s)
- Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Abtahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
62
|
Spiegel JL, Hambrecht M, Kohlbauer V, Haubner F, Ihler F, Canis M, Schilling AF, Böker KO, Dressel R, Streckfuss-Bömeke K, Jakob M. Radiation-induced sensitivity of tissue-resident mesenchymal stem cells in the head and neck region. Head Neck 2019; 41:2892-2903. [PMID: 31017352 DOI: 10.1002/hed.25768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/03/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue-resident mesenchymal stem cells (MSCs) possess the ability to migrate to areas of inflammation and promote the regeneration of damaged tissue. However, it remains unclear how radiation influences this capacity of MSC in the head and neck region. METHODS Two types of MSCs of the head and neck region (mucosa [mMSC] and parotid gland [pMSC]) were isolated, cultured and exposed to single radiation dosages of 2 Gy/day up to 10 days. Effects on morphology, colony forming ability, apoptosis, chemokine receptor expression, cytokine secretion, and cell migration were analyzed. RESULTS Although MSC preserved MSC-specific regenerative abilities and immunomodulatory properties following irradiation in our in vitro model, we found a deleterious impact on colony forming ability, especially in pMSC. CONCLUSIONS MSC exhibited robustness and activation upon radiation for the support of tissue regeneration, but lost their potential to replicate, thus possibly leading to depletion of the local MSC-pool after irradiation.
Collapse
Affiliation(s)
- Jennifer L Spiegel
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Mario Hambrecht
- Department of Otorhinolaryngology, Universitaetsmedizin Goettingen, University Medical Center Goettingen, Goettingen, Germany
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany.,German Center for Vertigo and Balance Disorders, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kai O Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Katrin Streckfuss-Bömeke
- Department of Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-Universitaet Muenchen, Munich, Germany
| |
Collapse
|
63
|
TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine 2018; 39:531-539. [PMID: 30579870 PMCID: PMC6355656 DOI: 10.1016/j.ebiom.2018.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Decidual natural killer (dNK) cells are the predominant lymphocytes accumulated at the maternal-fetal interface. Regulatory mechanism of dNK cells in preeclampsia, a gestational complication characterized by high blood pressure and increased proteinuria occurring after 20 weeks pregnancy, is not completely understood. METHODS Multi-parameter flow cytometry is applied to investigate the phenotype and function of dNK cells freshly isolated from decidual samples or conditionally cultured by TGFb stimulation. FINDINGS In preeclampsia, we documented elevated numbers of CD56+ CD3- dNK cells in close proximity to Foxp3+ regulatory T (Treg) cells within the decidua. In vitro experiments using dNK cells from early gestation showed that dNK activation (IFNG, IL-8 and CD107a) can be downregulated by Treg cells. The expression of these markers by dNK cells was significantly lower in preeclampsia. We also observed a positive correlation between the expression of dNK activation receptors (NKp30 and NKG2D) and the expression of IFNG in specific dNK subsets. TGFb levels are increased in the decidua of preeclamptic pregnancies. We analyzed co-expression of activation (IFNG/IL-8/CD107a) and angiogenic (VEGF) markers in dNK cells. TGFb treatment reduced while blockade of TGFb increased co-expression of these markers. INTERPRETATION Our findings suggest that elevated decidual TGFb1 supresses the activation of specific subsets of dNK which in turn contributes to the uteroplacental pathology associated with the onset of preeclampsia.
Collapse
|
64
|
Abdi J, Rashedi I, Keating A. Concise Review: TLR Pathway-miRNA Interplay in Mesenchymal Stromal Cells: Regulatory Roles and Therapeutic Directions. Stem Cells 2018; 36:1655-1662. [PMID: 30171669 DOI: 10.1002/stem.2902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) deploy Toll-like receptors (TLRs) to respond to exogenous and endogenous signals. Activation of TLR pathways in MSCs alters their inflammatory profile and immunomodulatory effects on cells from both the innate and adaptive immune systems. Micro-RNAs (miRNAs), whose expression is modulated by TLR activation, can regulate inflammatory responses by targeting components of the TLR signaling pathways either in MSCs or in the cells with which they interact. Here, we review how the miRNA-TLR pathway axis can regulate the immunomodulatory functions of MSCs, including their interactions with monocytes/macrophages and natural killer cells, and discuss the therapeutic implications for MSC-based therapies. Stem Cells 2018;36:1655-1662.
Collapse
Affiliation(s)
- Jahangir Abdi
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada.,Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada
| |
Collapse
|
65
|
Abnave P, Ghigo E. Role of the immune system in regeneration and its dynamic interplay with adult stem cells. Semin Cell Dev Biol 2018; 87:160-168. [PMID: 29635020 DOI: 10.1016/j.semcdb.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration.
Collapse
Affiliation(s)
- Prasad Abnave
- URMITE, CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | - Eric Ghigo
- Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385 Marseille Cedex 05, France; CNRS, 21 chemin de Joseph Aiguier, 13009 Marseille.
| |
Collapse
|
66
|
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Immunological impact of Wharton's Jelly mesenchymal stromal cells and natural killer cell co-culture. Mol Cell Biochem 2018; 447:111-124. [PMID: 29380244 DOI: 10.1007/s11010-018-3297-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Due to their easier isolation, multilineage potential, and immunomodulatory capacity, Wharton's Jelly-derived mesenchymal stromal cells (WJ-MSCs) exhibit promising efficacy in the field of regenerative medicine and immunotherapy. Characterization of WJ-MSCs-natural killer (NK) cells crosstalk is required for ameliorating the medicinal value of WJ-MSCs. Here, we revealed that the outcome of WJ-MSCs-NK cells crosstalk varied according to the type of cytokines (IL-2, IL-12, IL-15 and IL-21) utilized to activate NK cells. Differently activated NK cells exerted distinct cytotoxicities against WJ-MSCs causing their probable death. Cell surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, CD226, CD314, CD335, CD336 and CD337) governing the interaction between NK cells and their targets, exhibited altered expression profiles following the co-culture with WJ-MSCs. Although partly inhibited NK cell proliferation, WJ-MSCs enhanced activated NK-cell-mediated secretion of IFN-γ and TNF-α. Moreover, WJ-MSCs reinforced NK cells' degranulation as well as secretion of perforin and granzymes. On the other hand, WJ-MSCs displayed only slight increase in ROS generation but significant decrease in A1 and C1 serpins expression following co-culture with activated NK cells. Altogether, our results highlight that WJ-MSCs-NK cells interaction may affect both cell type features and, therefore, their therapeutic properties.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Mohammad Fayyad-Kazan
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium.
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Dominique Bron
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium.,Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, 1000, Bruxelles, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| |
Collapse
|