51
|
Incerpi S, Hsieh MT, Lin HY, Cheng GY, De Vito P, Fiore AM, Ahmed RG, Salvia R, Candelotti E, Leone S, Luly P, Pedersen JZ, Davis FB, Davis PJ. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. Am J Physiol Cell Physiol 2014; 307:C150-61. [PMID: 24808494 DOI: 10.1152/ajpcell.00308.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormones L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) have been shown to initiate short- and long-term effects via a plasma membrane receptor site located on integrin αvβ3. Also insulin-like growth factor type I (IGF-I) activity is known to be subject to regulation by this integrin. To investigate the possible cross-talk between T4 and IGF-I in rat L6 myoblasts, we have examined integrin αvβ3-mediated modulatory actions of T4 on glucose uptake, measured through carrier-mediated 2-deoxy-[3H]-D-glucose uptake, and on cell proliferation stimulated by IGF-I, assessed by cell counting, [3H]-thymidine incorporation, and fluorescence-activated cell sorting analysis. IGF-I stimulated glucose transport and cell proliferation via the cell surface IGF-I receptor (IGFIR) and, downstream of the receptor, by the phosphatidylinositol 3-kinase signal transduction pathway. Addition of 0.1 nM free T4 caused little or no cell proliferation but prevented both glucose uptake and proliferative actions of IGF-I. These actions of T4 were mediated by an Arg-Gly-Asp (RGD)-sensitive pathway, suggesting the existence of crosstalk between IGFIR and the T4 receptor located near the RGD recognition site on the integrin. An RGD-sequence-containing integrin inhibitor, a monoclonal antibody to αvβ3, and the T4 metabolite tetraiodothyroacetic acid all blocked the inhibition by T4 of IGF-I-stimulated glucose uptake and cell proliferation. Western blotting confirmed roles for activated phosphatidylinositol 3-kinase and extracellular regulated kinase 1/2 (ERK1/2) in the effects of IGF-I and also showed a role for ERK1/2 in the actions of T4 that modified the effects of IGF-I. We conclude that thyroid hormone inhibits IGF-I-stimulated glucose uptake and cell proliferation in L6 myoblasts.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy;
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - R G Ahmed
- Department of Zoology, Beni-Suef University, Beni-Suef, Egypt
| | - Rosanna Salvia
- Department of Sciences, University Roma Tre, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo Luly
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Faith B Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York; Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
52
|
Senese R, Cioffi F, de Lange P, Goglia F, Lanni A. Thyroid: biological actions of 'nonclassical' thyroid hormones. J Endocrinol 2014; 221:R1-12. [PMID: 24464019 DOI: 10.1530/joe-13-0573] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thyroid hormones (THs) are produced by the thyroid gland and converted in peripheral organs by deiodinases. THs regulate cell functions through two distinct mechanisms: genomic (nuclear) and nongenomic (non-nuclear). Many TH effects are mediated by the genomic pathway--a mechanism that requires TH activation of nuclear thyroid hormone receptors. The overall nongenomic processes, emerging as important accessory mechanisms in TH actions, have been observed at the plasma membrane, in the cytoplasm and cytoskeleton, and in organelles. Some products of peripheral TH metabolism (besides triiodo-L-thyronine), now termed 'nonclassical THs', were previously considered as inactive breakdown products. However, several reports have recently shown that they may have relevant biological effects. The recent accumulation of knowledge on how classical and nonclassical THs modulate the activity of membrane receptors, components of the mitochondrial respiratory chain, kinases and deacetylases, opened the door to the discovery of new pathways through which they act. We reviewed the current state-of-the-art on the actions of the nonclassical THs, discussing the role that these endogenous TH metabolites may have in the modulation of thyroid-related effects in organisms with differing complexity, ranging from nonmammals to humans.
Collapse
Affiliation(s)
- Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | | | |
Collapse
|
53
|
Stenzel D, Wilsch-Bräuninger M, Wong FK, Heuer H, Huttner WB. Integrin αvβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 2014; 141:795-806. [DOI: 10.1242/dev.101907] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvβ3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvβ3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvβ3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvβ3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvβ3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvβ3. Convergence of ECM and thyroid hormones on integrin αvβ3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
- Denise Stenzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Fong Kuan Wong
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Heike Heuer
- Leibniz Institute for Age Research / Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
54
|
Davis PJ, Lin HY, Tang HY, Davis FB, Mousa SA. Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 2013; 23:1503-9. [PMID: 24011085 DOI: 10.1089/thy.2013.0280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
At thyroid hormone response elements on specific genes, complexes of nuclear thyroid hormone receptors (TRs) and 3,5,3'-triiodo-L-thyronine (T(3)), coactivator or corepressor nucleoproteins, and histone acetylases or deacetylases mediate genomic effects of the hormone. Nongenomic effects of the hormone are those whose initiation does not primarily depend upon formation of the TR-T(3) complex. Among the nongenomic effects of thyroid hormone are a set of actions initiated at a cell surface receptor on integrin αvβ3 that are relevant to a) intracellular trafficking of proteins, including TRβ1, b) serine phosphorylation and acetylation of this nuclear receptor, c) assembly within the nucleus of complexes of coactivators and corepressor, and d) transcription of specific genes, including that for TRβ1. These actions initiated at αvβ3 are reviewed here and appear to be adjunctive to the genomic actions of the TR-T(3) complex.
Collapse
Affiliation(s)
- Paul J Davis
- 1 Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences , Albany, New York
| | | | | | | | | |
Collapse
|
55
|
Cioffi F, Senese R, Lanni A, Goglia F. Thyroid hormones and mitochondria: with a brief look at derivatives and analogues. Mol Cell Endocrinol 2013; 379:51-61. [PMID: 23769708 DOI: 10.1016/j.mce.2013.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Thyroid hormones (TH) have a multiplicity of effects. Early in life, they mainly affect development and differentiation, while later on they have particularly important influences over metabolic processes in almost all tissues. It is now quite widely accepted that thyroid hormones have two types of effects on mitochondria. The first is a rapid stimulation of respiration, which is evident within minutes/hours after hormone treatment, and it is probable that extranuclear/non-genomic mechanisms underlie this effect. The second response occurs one to several days after hormone treatment, and leads to mitochondrial biogenesis and to a change in mitochondrial mass. The hormone signal for the second response involves both T3-responsive nuclear genes and a direct action of T3 at mitochondrial binding sites. T3, by binding to a specific mitochondrial receptor and affecting the transcription apparatus, may thus act in a coordinated manner with the T3 nuclear pathway to regulate mitochondrial biogenesis and turnover. Transcription factors, coactivators, corepressors, signaling pathways and, perhaps, all play roles in these mechanisms. This review article focuses chiefly on TH, but also looks briefly at some analogues and derivatives (on which the data is still somewhat patchy). We summarize data obtained recently and in the past to try to obtain an updated picture of the current research position concerning the metabolic effects of TH, with particular emphasis on those exerted via mitochondria.
Collapse
Affiliation(s)
- Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | | | | | | |
Collapse
|
56
|
Varedi M, Shiri H, Moattari A, Omrani GHR, Amirghofran Z. Hyperthyroid state or in vitro thyroxine treatment modulates TH1/TH2 responses during exposure to HSV-1 antigens. J Immunotoxicol 2013; 11:160-5. [PMID: 24090439 DOI: 10.3109/1547691x.2013.816983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increasingly in recent years, thyroid hormones (THs) have been considered to be important regulators of the immune system. However, their roles in host defense against viral infections are not clearly established. Therefore, this study was undertaken to examine proliferative activity and cytokine production by lymphocytes isolated from hyperthyroid and euthyroid Balb/c mice in response to herpes simplex virus-1 (HSV-1). Lymphocytes of hyperthyroid animals showed a significantly higher rate of proliferation and interferon (IFN)-γ production when compared with that by lymphocytes from euthyroid mice. In vitro thyroxine (T4) treatment was similarly effective in the potentiation of proliferation, but not IFNγ production, by euthyroid lymphocytes. Furthermore, the hyperthyroid state significantly attenuated ConA-, but not HSV-1-, induced interleukin (IL)-10 release; in vitro T4 treatment synergized this effect. These findings suggest that supra-physiologic TH levels (i.e. as occur in hyper-thyroid states) or in vitro TH treatment modulate T-helper (TH)1/TH2 lymphocyte responses and thereby amplifies host defenses against viral infections. One may also conclude that THs may have a potential application in viral immunization and/or treatment of viral infections.
Collapse
|
57
|
Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY. Small Molecule Hormone or Hormone-Like Ligands of Integrin αVβ3: Implications for Cancer Cell Behavior. Discov Oncol 2013; 4:335-42. [DOI: 10.1007/s12672-013-0156-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
|
58
|
Lin HY, Su YF, Hsieh MT, Lin S, Meng R, London D, Lin C, Tang HY, Hwang J, Davis FB, Mousa SA, Davis PJ. Nuclear monomeric integrin αv in cancer cells is a coactivator regulated by thyroid hormone. FASEB J 2013; 27:3209-16. [PMID: 23640055 DOI: 10.1096/fj.12-227132] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thyroid hormone induces tumor cell and blood vessel cell proliferation via a cell surface receptor on heterodimeric integrin αvβ3. We investigated the role of thyroid hormone-induced internalization of nuclear integrin αv monomer. Physiological concentration of thyroxine (free T4, 10(-10) M), but not 3,5,3'-triiodo-l-thyronine (T3), induced cellular internalization and nuclear translocation of integrin αv monomer in human non-small-cell lung cancer (H522) and ovarian carcinoma (OVCAR-3) cells. T4 did not complex with integrin αv monomer during its internalization. The αv monomer was phosphorylated by activated ERK1/2 when it heterodimerized with integrin β3 in vitro. Nuclear αv complexed with transcriptional coactivator proteins, p300 and STAT1, and with corepressor proteins, NCoR and SMRT. Nuclear αv monomer in T4-exposed cells, but not integrin β3, bound to promoters of specific genes that have important roles in cancer cells, including estrogen receptor-α, cyclooxygenase-2, hypoxia-inducible factor-1α, and thyroid hormone receptor β1 in chromatin immunoprecipitation assay. In summary, monomeric αv is a novel coactivator regulated from the cell surface by thyroid hormone for the expression of genes involved in tumorigenesis and angiogenesis. This study also offers a mechanism for modulation of gene expression by thyroid hormone that is adjunctive to the nuclear hormone receptor (TR)-T3 pathway.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, 250 Wu-Shin St., Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Martin JV, Giannopoulos PF, Moffett SX, James TD. Effects of acute microinjections of thyroid hormone to the preoptic region of euthyroid adult male rats on sleep and motor activity. Brain Res 2013; 1516:45-54. [PMID: 23348377 DOI: 10.1016/j.brainres.2013.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 11/30/2022]
Abstract
In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3μg) and highest (10μg) doses tested were without significant effect while intermediate doses (1 and 3μg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2.
Collapse
Affiliation(s)
- Joseph V Martin
- Biology Department, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA.
| | | | | | | |
Collapse
|
60
|
Pentassuglia L, Sawyer DB. ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:909-16. [PMID: 23261977 DOI: 10.1016/j.bbamcr.2012.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
|
61
|
Gnocchi D, Leoni S, Incerpi S, Bruscalupi G. 3,5,3'-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes. Steroids 2012; 77:589-95. [PMID: 22366194 DOI: 10.1016/j.steroids.2012.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/18/2022]
Abstract
Thyroid hormones (THs) have a wide variety of essential roles in vertebrates, ranging from the regulation of key metabolic processes to cell proliferation and apoptosis. The classical mechanism of action of THs is genomic; 3,5,3'-triiodothyronine (T3) binds to specific nuclear receptors (TRs) and modifies the expression of specific genes. Recently, a new category of mechanisms, termed nongenomic, has been discovered for T3. These mechanisms include, among others, the rapid activation of signal transduction pathways, such as PI3K/Akt and MAPK, which eventually lead to cell proliferation. These effects are mediated in some cell types by a plasma membrane receptor, identified as integrin αvβ3, and in other cell types by cytoplasmic TRβ1. The aim of this work was to analyze the effect of T3 on the cell growth of chick embryo hepatocytes at two different stages of development, 14 and 19 days, and to determine the activation of the signal transduction pathways, focusing on the potential involvement of a plasma membrane receptor and the possible participation of PI3K/Akt and reactive oxygen species (ROS). Our results clearly show that T3 stimulates cell proliferation at both stages of development through the activation of the PI3K/Akt pathway and the production of small amounts of ROS, which operate as effective second messengers. Moreover, we prove that these effects are not initiated at the plasma membrane receptor for T3.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
| | | | | | | |
Collapse
|
62
|
Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang HY, Lin HY, Davis FB, Davis PJ. Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 2012; 76:39-45. [DOI: 10.1016/j.lungcan.2011.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 10/01/2011] [Indexed: 10/16/2022]
|
63
|
Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol 2012; 2012:959057. [PMID: 22547930 PMCID: PMC3323866 DOI: 10.1155/2012/959057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022] Open
Abstract
Recent biochemical studies have identified a cell surface receptor for thyroid and steroid hormones that bind near the arginine-glycine-aspartate (RGD) recognition site on the heterodimeric αvβ3 integrin. To further characterize the intermolecular interactions for a series of hormone analogues, combined quantum mechanical and molecular mechanical (QM/MM) methods were used to calculate their interaction energies. All calculations were performed in the presence of either calcium (Ca(2+)) or magnesium (Mg(2+)) ions. These data reveal that 3,5'-triiodothyronine (T(3)) and 3,5,3',5'-tetraiodothyroacetic acid (T(4)ac) bound in two different modes, occupying two alternate sites, one of which is along the Arg side chain of the RGD cyclic peptide site. These orientations differ from those of the other ligands whose alternate binding modes placed the ligands deeper within the RGD binding pocket. These observations are consistent with biological data that indicate the presence of two discrete binding sites that control distinct downstream signal transduction pathways for T(3).
Collapse
|
64
|
Meng R, Tang HY, Westfall J, London D, Cao JH, Mousa SA, Luidens M, Hercbergs A, Davis FB, Davis PJ, Lin HY. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells. PLoS One 2011; 6:e27547. [PMID: 22132110 PMCID: PMC3222665 DOI: 10.1371/journal.pone.0027547] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 10/19/2011] [Indexed: 12/28/2022] Open
Abstract
A cell surface receptor for thyroid hormone that activates extracellular regulated kinase (ERK) 1/2 has been identified on integrin αvβ3. We have examined the actions of thyroid hormone initiated at the integrin on human NCI-H522 non-small cell lung carcinoma and NCI-H510A small cell lung cancer cells. At a physiologic total hormone concentration (10(-7) M), T(4) significantly increased proliferating cell nuclear antigen (PCNA) abundance in these cell lines, as did 3, 5, 3'-triiodo-L-thyronine (T(3)) at a supraphysiologic concentration. Neutralizing antibody to integrin αvβ3 and an integrin-binding Arg-Gly-Asp (RGD) peptide blocked thyroid hormone-induced PCNA expression. Tetraiodothyroacetic acid (tetrac) lacks thyroid hormone function but inhibits binding of T(4) and T(3) to the integrin receptor; tetrac eliminated thyroid hormone-induced lung cancer cell proliferation and ERK1/2 activation. In these estrogen receptor-α (ERα)-positive lung cancer cells, thyroid hormone (T(4)>T(3)) caused phosphorylation of ERα; the specific ERα antagonist ICI 182,780 blocked T(4)-induced, but not T(3)-induced ERK1/2 activation, as well as ERα phosphorylation, proliferating-cell nuclear antigen (PCNA) expression and hormone-dependent thymidine uptake by tumor cells. Thus, in ERα-positive human lung cancer cells, the proliferative action of thyroid hormone initiated at the plasma membrane is at least in part mediated by ERα. In summary, thyroid hormone may be one of several endogenous factors capable of supporting proliferation of lung cancer cells. Activity as an inhibitor of lung cancer cell proliferation induced at the integrin receptor makes tetrac a novel anti-proliferative agent.
Collapse
Affiliation(s)
- Ran Meng
- Ordway Signal Transduction, Albany, New York, United States of America
- Pharmaceutical Research Institute, Albany College of Pharmacy, Albany, New York, United States of America
| | - Heng-Yuan Tang
- Ordway Signal Transduction, Albany, New York, United States of America
| | - Jennifer Westfall
- Ordway Signal Transduction, Albany, New York, United States of America
| | - David London
- Ordway Signal Transduction, Albany, New York, United States of America
| | - James H. Cao
- Ordway Signal Transduction, Albany, New York, United States of America
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy, Albany, New York, United States of America
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mary Luidens
- Ordway Signal Transduction, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Aleck Hercbergs
- The Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Faith B. Davis
- Ordway Signal Transduction, Albany, New York, United States of America
| | - Paul J. Davis
- Ordway Signal Transduction, Albany, New York, United States of America
- Pharmaceutical Research Institute, Albany College of Pharmacy, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Hung-Yun Lin
- Ordway Signal Transduction, Albany, New York, United States of America
- Pharmaceutical Research Institute, Albany College of Pharmacy, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
65
|
Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L765-71. [PMID: 21840963 DOI: 10.1152/ajplung.00151.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.
Collapse
Affiliation(s)
- Jianxun Lei
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | |
Collapse
|
66
|
De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FB, Davis PJ. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 2011; 21:879-90. [PMID: 21745103 DOI: 10.1089/thy.2010.0429] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence suggests that thyroid hormones, L-thyroxine (T(4)) and 3,3',5-triiodo-L-thyronine (T(3)), are modulators of the immune response. In monocytes, macrophages, leukocytes, natural killer cells, and lymphocytes, a wide range of immune functions such as chemotaxis, phagocytosis, generation of reactive oxygen species (ROS), and cytokine synthesis and release are altered under hypo- and hyperthyroid conditions. SUMMARY Hyperthyroidism decreases the proinflammatory activities of monocytes and macrophages, whereas enhancement of phagocytosis and increased levels of ROS may occur during hypothyroidism. The expression of proinflammatory molecules such as macrophage inflammatory protein-1α and interleukin-1β increases in hypothyroidism. However, in Kupffer cells, proinflammatory activities such as the respiratory burst, nitric oxide synthase activity, and tumor necrosis factor-α expression may result from increased T(3) levels. Thyroid hormones also affect natural killer cell activity and cell-mediated immune responses. Still, for many immune cells no clear correlation has been found so far between abnormally high or low T(3) or T(4) levels and the effects observed on the immune responses. CONCLUSIONS In this review we outline the contributions of thyroid hormones to different aspects of innate and adaptive immune responses. The relationship between thyroid hormones and immune cells is complex and T(3) and T(4) may modulate immune responses through both genomic and nongenomic mechanisms. Future studies of the molecular signaling mechanisms involved in this cross-talk between thyroid hormones and the immune system may support development of new strategies to improve clinical immune responses.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
67
|
Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51:99-115. [PMID: 20868274 DOI: 10.1146/annurev-pharmtox-010510-100512] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma membrane integrin αvβ3 is a cell surface receptor for thyroid hormone at which nongenomic actions are initiated. L-thyroxine (T₄) and 3,3',5-triiodo-L-thyronine (T₃) promote angiogenesis and tumor cell proliferation via the receptor. Tetraiodothyroacetic acid (tetrac), a deaminated T₄ derivative, blocks the nongenomic proliferative and proangiogenic actions of T₄ and T₃. Acting at the integrin independently of T₄ and T₃, tetrac and a novel nanoparticulate formulation of tetrac that acts exclusively at the cell surface have oncologically desirable antiproliferative actions on multiple tumor cell survival pathway genes. These agents also block the angiogenic activity of vascular growth factors. Volume and vascular support of xenografts of human pancreatic, kidney, lung, and breast cancers are downregulated by tetrac formulations. The integrin αvβ3 receptor site for thyroid hormone selectively regulates signal transduction pathways and distinguishes between unmodified tetrac and the nanoparticulate formulation. The receptor also mediates nongenomic thyroid hormone effects on plasma membrane ion transporters and on intracellular protein trafficking.
Collapse
Affiliation(s)
- Paul J Davis
- Ordway Research Institute, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
68
|
Bridoux A, Khan RA, Chen C, Chevé G, Cui H, Dyskin E, Yasri A, Mousa SA. Design, synthesis, and biological evaluation of bifunctional thyrointegrin inhibitors: new anti-angiogenesis analogs. J Enzyme Inhib Med Chem 2011; 26:871-82. [DOI: 10.3109/14756366.2011.557023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre Bridoux
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
| | - Riaz A. Khan
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Department of Chemistry, Manav Rachna International University (MRIU), Faridabad, Haryana, India
| | - Celei Chen
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Gwenaël Chevé
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Huadong Cui
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Evgeny Dyskin
- Pharmaceutical Research Institute, Rensselaer, NY, USA
| | - Aziz Yasri
- NOVADECISION, Rond point Benjamin Franklin–C539521, 34950 Montpellier Cedex 2, France
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Rensselaer, NY, USA
- Vascular Vision Pharmaceuticals, Rensselaer, NY, USA
- King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
69
|
Liu YY, Nakatani T, Kogai T, Mody K, Brent GA. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression. Endocrinology 2011; 152:1143-53. [PMID: 21266512 PMCID: PMC3040047 DOI: 10.1210/en.2010-0580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).
Collapse
Affiliation(s)
- Yan-Yun Liu
- Molecular Endocrinology Laboratory, Building 114, Room 230, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, California 90073, USA
| | | | | | | | | |
Collapse
|
70
|
Scapin S, Leoni S, Spagnuolo S, Gnocchi D, De Vito P, Luly P, Pedersen JZ, Incerpi S. Short-term effects of thyroid hormones during development: Focus on signal transduction. Steroids 2010; 75:576-84. [PMID: 19900468 DOI: 10.1016/j.steroids.2009.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 12/27/2022]
Abstract
Extranuclear or nongenomic effects of thyroid hormones are mediated by receptors located at the plasma membrane or inside cells, and are independent of protein synthesis. Recently the alphaVbeta3 integrin was identified as a cell membrane receptor for thyroid hormones, and a wide variety of nongenomic effects have now been shown to be induced through binding of thyroid hormones to this receptor. However, also other thyroid hormone receptors can produce nongenomic effects, including the cytoplasmic TRalpha and TRbeta receptors and probably also a G protein-coupled membrane receptor, and increasing importance is now given to thyroid hormone metabolites like 3,5-diiodothyronine and reverse T(3) that can mimick some nongenomic effects of T(3) and T(4). Signal transduction from the alphaVbeta3 integrin may proceed through at least three independent pathways (protein kinase C, Src or mitogen-activated kinases) but the details are still unknown. Thyroid hormones induce nongenomic effects on at least three important Na(+)-dependent transport systems, the Na(+)/K(+)-ATPase, the Na(+)/H(+) exchanger, and amino acid transport System A, leading to a mitogenic response in embryo cells; but modulation of the same transport systems may have different roles in other cells and at different developmental stages. It seems that thyroid hormones in many cases can modulate nongenomically the same targets affected by the nuclear receptors through long-term mechanisms. Recent results on nongenomic effects confirm the old theory that the primary role of thyroid hormones is to keep the steady-state level of functioning of the cell, but more and more mechanisms are discovered by which this goal can be achieved.
Collapse
Affiliation(s)
- Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Axelband F, Dias J, Ferrão FM, Einicker-Lamas M. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system. J Cell Physiol 2010; 226:21-8. [PMID: 20658515 DOI: 10.1002/jcp.22325] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- F Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
73
|
Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 2010; 95:1972-80. [PMID: 20133461 DOI: 10.1210/jc.2009-1926] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alphavbeta3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. OBJECTIVE We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. DESIGN h-MTC cells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 microg/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. RESULTS In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. CONCLUSIONS Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models.
Collapse
Affiliation(s)
- M Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 2010; 20:281-6. [PMID: 20187783 DOI: 10.1089/thy.2009.0249] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tetraiodothyroacetic acid (tetrac) is a deaminated analogue of L-thyroxine that blocks the actions of L-thyroxine and 3,5,3'-triiodo-L-thyronine at the cell surface receptor for thyroid hormone on integrin alpha v beta 3. Tetrac blocks the proliferative effects of thyroid hormone on tumor cells and the proangiogenesis actions of the hormone. In the absence of thyroid hormone, tetrac also blocks angiogenesis induced by various growth factors. Covalently linked to poly(lactide-co-glycolide), tetrac nanoparticles (tetrac NP) do not gain access to the cell interior and act exclusively at the integrin receptor. Here, the activity of tetrac and tetrac NP against follicular thyroid carcinoma (FTC)-236 cells was studied in two models: (1) tumor cell implants in the chick chorioallantoic membrane (CAM) system and (2) xenografts in the nude mouse. METHODS FTC-236 cells (10(6)) were implanted in the CAM (n = 8 each for control, and for tetrac and tetrac NP, both at 1 microg/CAM) and the actions of tetrac and tetrac NP were determined after 8 days on tumor-related angiogenesis and tumor growth. Xenografts of 10(7) FTC-236 cells were implanted in nude mice (n = 8 per group). Tetrac or tetrac NP was administered intraperitoneal (1 mg/kg and 1 mg tetrac equivalent/kg, respectively) every other day for 32 days beginning on day 10, when tumor volume was 200-250 mm(3). Animals were monitored after discontinuation of treatment up to day 40. RESULTS In the CAM paradigm, tetrac and tetrac NP arrested tumor-related angiogenesis and tumor growth. In the xenograft model, tetrac and tetrac NP promptly and progressively reduced tumor volume (p < 0.01) over 32 days. There was some regrowth of tumor after interruption of tetrac treatment, but at day 40, tumor volume and tumor weight at sacrifice were 45-55% below those of controls (p < 0.01). Animal weight gain was comparable in the control and treatment groups of animals. CONCLUSIONS Tetrac and tetrac NP effectively arrest FTC-236 cell tumor growth in the CAM and xenograft models, suggesting its potential utility against FTC.
Collapse
Affiliation(s)
- Murat Yalcin
- Albany College of Pharmacy and Health Sciences, Pharmaceutical Research Institute, Rensselaer, New York 12144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Mousa SS, Davis FB, Davis PJ, Mousa SA. Human platelet aggregation and degranulation is induced in vitro by L-thyroxine, but not by 3,5,3'-triiodo-L-thyronine or diiodothyropropionic acid (DITPA). Clin Appl Thromb Hemost 2009; 16:288-93. [PMID: 19903697 DOI: 10.1177/1076029609348315] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The endogenous thyroid hormones L-thyroxine (T(4)) and 3,5,3'-triiodo-L-thyronine (T(3)) induce angiogenesis via an endothelial cell iodothyronine receptor on integrin alphaVbeta3. This receptor also exists on platelets. Diiodothyropropionic acid (DITPA) and GC-1, a noniodinated thyroid hormone analog, also induce angiogenesis. Here we examined the effects of iodothyronines (L-T(4) vs L-T(3)) and analogs DITPA and GC-1 on human platelet function. Subthreshold aggregation of platelets obtained from healthy human donors was induced with collagen. Platelet activation (proaggregation) and adenosine triphosphate (ATP) secretion (degranulation) induced by L-T( 4), L-T(4)-agarose, L-T(3), DITPA, or GC-1 were determined simultaneously. Platelet aggregation and ATP secretion induced by a subthreshold level of collagen were enhanced 3-fold by either L-T(4) or L-T( 4)-agarose (0.01 micromol/L) as compared to control, whereas, L-T( 3), DITPA, or GC-1 had no effect under the same conditions. The platelet proaggregatory and degranulation effects of L-T(4) were blocked by the alphavbeta3 antagonist XT199 (0.1 micromol/ L) and by tetraiodothyroacetic acid (tetrac; 0.1 micromol/L). Tetrac inhibits binding of thyroid hormone analogs to the receptor on alphavbeta3 and lacks thyromimetic activity at this site; thus, the proaggregatory action of L-T(4) likely involves the cell surface receptor on integrin alphavbeta3. The thyroid hormone receptor (TR) on human platelets but not endothelial cells distinguishes among iodothyronines, reflecting quantitative differences in integrin sites on endothelial cells and platelets or qualitative differences in the phospholipids/protein microenvironment of endothelial and platelet membranes that can affect integrin function. Additional studies in different populations with larger sample sizes are warranted to determine the impact of the current findings on clinical interventions.
Collapse
Affiliation(s)
- Shaymaa S Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York 12144, USA.
| | | | | | | |
Collapse
|
76
|
Yonkers MA, Ribera AB. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev 2009; 4:20. [PMID: 19505305 PMCID: PMC2704202 DOI: 10.1186/1749-8104-4-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/08/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neurodevelopment requires thyroid hormone, yet the mechanisms and targets of thyroid hormone action during embryonic stages remain ill-defined. We previously showed that the thyroid hormone thyroxine (T4) rapidly increases voltage-gated sodium current in zebrafish Rohon-Beard cells (RBs), a primary sensory neuron subtype present during embryonic development. Here, we determined essential components of the rapid T4 signaling pathway by identifying the involved intracellular messengers, the targeted sodium channel isotype, and the spatial and temporal expression pattern of the nongenomic alphaVbeta3 integrin T4 receptor. RESULTS We first tested which signaling pathways mediate T4's rapid modulation of sodium current (I(Na)) by perturbing specific pathways associated with nongenomic thyroid hormone signaling. We found that pharmacological blockade of protein phosphatase 1 and the mitogen-activated protein kinase p38 isoform decreased and increased tonic sodium current amplitudes, respectively, and blockade of either occluded rapid responses to acute T4 application. We next tested for the ion channel target of rapid T4 signaling via morpholino knock-down of specific sodium channel isotypes. We found that selective knock-down of the sodium channel alpha-subunit Na(v)1.6a, but not Na(v)1.1la, occluded T4's acute effects. We also determined the spatial and temporal distribution of a nongenomic T4 receptor, integrin alphaVbeta3. At 24 hours post fertilization (hpf), immunofluorescent assays showed no specific integrin alphaVbeta3 immunoreactivity in wild-type zebrafish embryos. However, by 48 hpf, embryos expressed integrin alphaVbeta3 in RBs and primary motoneurons. Consistent with this temporal expression, T4 modulated RB I(Na) at 48 but not 24 hpf. We next tested whether T4 rapidly modulated I(Na) of caudal primary motoneurons, which express the receptor (alphaVbeta3) and target (Na(v)1.6a) of rapid T4 signaling. In response to T4, caudal primary motoneurons rapidly increased sodium current peak amplitude 1.3-fold. CONCLUSION T4's nongenomic regulation of sodium current occurs in different neuronal subtypes, requires the activity of specific phosphorylation pathways, and requires both integrin alphaVbeta3 and Na(v)1.6a. Our in vivo analyses identify molecules required for T4's rapid regulation of voltage-gated sodium current.
Collapse
Affiliation(s)
- Marc A Yonkers
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
77
|
Bridoux A, Cui H, Dyskin E, Yalcin M, Mousa SA. Semisynthesis and pharmacological activities of Tetrac analogs: Angiogenesis modulators. Bioorg Med Chem Lett 2009; 19:3259-63. [DOI: 10.1016/j.bmcl.2009.04.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
|
78
|
Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ. l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 2009; 296:C980-91. [DOI: 10.1152/ajpcell.00305.2008] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3,5,3′-Triiodo-l-thyronine (T3), but not l-thyroxine (T4), activated Src kinase and, downstream, phosphatidylinositol 3-kinase (PI3-kinase) by means of an αvβ3 integrin receptor on human glioblastoma U-87 MG cells. Although both T3 and T4 stimulated extracellular signal-regulated kinase (ERK) 1/2, activated ERK1/2 did not contribute to T3-induced Src kinase or PI3-kinase activation, and an inhibitor of PI3-kinase, LY-294002, did not block activation of ERK1/2 by physiological concentrations of T3 and T4. Thus the PI3-kinase, Src kinase, and ERK1/2 signaling cascades are parallel pathways in T3-treated U-87 MG cells. T3 and T4 both caused proliferation of U-87 MG cells; these effects were blocked by the ERK1/2 inhibitor PD-98059 but not by LY-294002. Small-interfering RNA knockdown of PI3-kinase confirmed that PI3-kinase was not involved in the proliferative action of T3 on U-87 MG cells. PI3-kinase-dependent actions of T3 in these cells included shuttling of nuclear thyroid hormone receptor-α (TRα) from cytoplasm to nucleus and accumulation of hypoxia-inducible factor ( HIF)- 1α mRNA; LY-294002 inhibited these actions. Results of studies involving αvβ3 receptor antagonists tetraiodothyroacetic acid (tetrac) and Arg-Gly-Asp (RGD) peptide, together with mathematical modeling of the kinetics of displacement of radiolabeled T3 from the integrin by unlabeled T3 and by unlabeled T4, are consistent with the presence of two iodothyronine receptor domains on the integrin. A model proposes that one site binds T3 exclusively, activates PI3-kinase via Src kinase, and stimulates TRα trafficking and HIF- 1α gene expression. Tetrac and RGD peptide both inhibit T3 action at this site. The second site binds T4 and T3, and, via this receptor, the iodothyronines stimulate ERK1/2-dependent tumor cell proliferation. T3 action here is inhibited by tetrac alone, but the effect of T4 is blocked by both tetrac and the RGD peptide.
Collapse
|
79
|
Araki O, Ying H, Zhu XG, Willingham MC, Cheng SY. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol 2009; 23:308-15. [PMID: 19131509 DOI: 10.1210/me.2008-0311] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) play critical roles in energy homeostasis. To understand the role of TRs in lipid homeostasis in vivo, we adopted the loss-of-function approach by creating knock-in mutant mice with targeted mutation in the TRalpha gene (TRalpha1PV mouse) or TRbeta gene (TRbetaPV mouse). The PV mutation, identified in a patient with resistance to thyroid hormone, exhibits potent dominant-negative activity. Here we show that in contrast to TRalpha1PV mouse, TRbetaPV mice exhibited no significant reduction in WAT but had significant increases in serum free fatty acids and total triglycerides. Moreover, the liver of TRbetaPV mice was markedly increased (33%) with excess lipid accumulation, but the liver mass of TRalpha1PV mouse was decreased (23%) with paucity of lipids. These results indicate that apo-TRbeta and apo-TRalpha1 exerted distinct abnormalities in lipid metabolism. Further biochemical analyses indicate that increased lipogenic enzyme expression, activated peroxisome proliferator-activated receptor gamma (Ppargamma) signaling, and decreased fatty acid beta-oxidation activity contributed to the adipogenic steatosis and lipid accumulation in the liver of TRbetaPV mice. In contrast, the expression of lipogenic enzymes and Ppargamma was decreased in the liver of TRalpha1PV mice. These results suggest that the regulation of genes critical for lipid metabolism by TRs in the liver is isoform dependent. These results indicate that apo-TRbeta and apo-TRalpha1 had different effects on lipid metabolism and that both TR isoforms contribute to the pathogenesis of lipid metabolism in hypothyroidism.
Collapse
Affiliation(s)
- O Araki
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | |
Collapse
|
80
|
Cao HJ, Lin HY, Luidens MK, Davis FB, Davis PJ. Cytoplasm-to-nucleus shuttling of thyroid hormone receptor-beta1 (Trbeta1) is directed from a plasma membrane integrin receptor by thyroid hormone. Endocr Res 2009; 34:31-42. [PMID: 19557589 DOI: 10.1080/07435800902911810] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In CV-1 cells, shuttling from cytoplasm to nucleus of the nuclear thyroid hormone receptor-beta1 (TRbeta1, TR) is shown in this report to be regulated by extracellular thyroid hormone at a hormone receptor on cell surface integrin alphav3. METHODS The receptor was introduced into cells as a GFP-TR1 chimera and intracellular movement of the receptor was monitored by confocal microscopy of cells treated with L-thyroxine (T(4)). RESULTS AND DISCUSSION TR-GFP translocation in the presence of T(4) requires activation of extracellular-regulated protein kinases 1/2 (ERK1/2). Inhibition of T(4)-binding to alphavbeta3 with anti-alphavbeta3 or Arg-Gly-Asp (RGD) peptide blocks T(4)-stimulated GFP-TR nuclear translocation, as do the hormone-binding inhibitor tetraiodothyroacetic acid (tetrac) and the ERK1/2 inhibitor, PD98059. TR1 is an ERK1/2 substrate. CONCLUSIONS Via a nongenomic mechanism initiated at plasma membrane integrin v3, T(4)-activated ERK1/2 and TR1 move transiently in an immunoprecipitable complex to the nuclei of T(4)-treated cells.
Collapse
Affiliation(s)
- H James Cao
- Ordway Research Institute, Inc., Albany, New York 12208, USA
| | | | | | | | | |
Collapse
|
81
|
Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29:211-8. [PMID: 17983645 DOI: 10.1016/j.yfrne.2007.09.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/13/2007] [Indexed: 12/18/2022]
Abstract
The nongenomic actions of thyroid hormone require a plasma membrane receptor or nuclear receptors located in cytoplasm. The plasma membrane receptor is located on integrin alphaVbeta3 at the Arg-Gly-Asp recognition site important to the binding by the integrin of extracellular matrix proteins. l-Thyroxine (T(4)) is bound with greater affinity at this site than 3,5,3'-triiodo-l-thyronine (T(3)). Mitogen-activated protein kinase (MAPK; ERK1/2) transduces the hormone signal into complex cellular/nuclear events including angiogenesis and tumor cell proliferation. Acting at the integrin receptor and without cell entry, thyroid hormone can foster ERK1/2-dependent serine phosphorylation of nuclear thyroid hormone receptor-beta1 (TRbeta1) and de-repress the latter. The integrin receptor also mediates actions of the hormone on intracellular protein trafficking and on plasma membrane ion pumps, including the sodium/protein antiporter. Tetraiodothyroacetic (tetrac) is a T(4) analog that inhibits binding of iodothyronines to the integrin receptor and is a probe for the participation of this receptor in cellular actions of the hormone. Tetrac blocks thyroid hormone effects on angiogenesis and cancer cell proliferation. Acting on a truncated form of nuclear TRalpha1 (TRDeltaalpha1) located in cytoplasm, T(4) and 3,3',5'-triiodothyronine (reverse T(3)), but not T(3), cause conversion of soluble actin to fibrous (F) actin that is important to cell motility, e.g., in cells such as glia and neurons. Normal development of the central nervous system requires such motility. TRbeta1 in cytoplasm mediates action of T(3) on expression of certain genes via phosphatidylinositol 3-kinase (PI 3-K) and the protein kinase B/Akt pathway. PI 3-K and, possibly, cytoplasmic TRbeta1 are involved in stimulation by T(3) of insertion of Na,K-ATPase in the plasma membrane and of increase in activity of this pump. Because ambient thyroid hormone levels are constant in the euthyroid intact organism, these nongenomic hormone actions are likely to be contributors to basal rate-setting of transcription of certain genes and of complex cellular events such as angiogenesis and cancer cell proliferation.
Collapse
Affiliation(s)
- Paul J Davis
- Ordway Research Institute, Inc., 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|
82
|
Garfield DH, Hercbergs A, Davis P. Management of hypothyroidism after radiotherapy for nasopharyngeal carcinoma. Med Oncol 2008; 25:474-5. [DOI: 10.1007/s12032-008-9068-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/28/2008] [Indexed: 12/26/2022]
|
83
|
Abstract
Our concepts of hormone receptors have, until recently, been narrowly defined. In the last few years, an increasing number of reports identify novel proteins, such as enzymes, acting as receptors. In this review we cover the novel receptors for the hormones atrial naturetic hormone, enterostatin, hepcidin, thyroid hormones, estradiol, progesterone, and the vitamin D metabolites 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Ilka Nemere
- Department of Nutrition and Food Sciences and the Center for Integrated Biosciences, Utah State University, Logan Utah, USA.
| | | |
Collapse
|
84
|
Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 2007; 11:183-90. [DOI: 10.1007/s10456-007-9088-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
|