51
|
Park J, Joung I, Joo K, Lee J. Application of conformational space annealing to the protein structure modeling using cryo-EM maps. J Comput Chem 2023; 44:2332-2346. [PMID: 37585026 DOI: 10.1002/jcc.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo-EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax (FastRelax) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo-EM map and de novo protein modeling by tracing the Cryo-EM map, was performed by CSA. In the refinement of the rigid-fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross-correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo-EM structure modeling.
Collapse
Affiliation(s)
| | | | - Keehyoung Joo
- Center for Advanced Computations, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
52
|
Li S, Hsieh KY, Kuo CI, Lin TC, Lee SH, Chen YR, Wang CH, Ho MR, Ting SY, Zhang K, Chang CI. A 5+1 assemble-to-activate mechanism of the Lon proteolytic machine. Nat Commun 2023; 14:7340. [PMID: 37957149 PMCID: PMC10643698 DOI: 10.1038/s41467-023-43035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Many AAA+ (ATPases associated with diverse cellular activities) proteins function as protein or DNA remodelers by threading the substrate through the central pore of their hexameric assemblies. In this ATP-dependent translocating state, the substrate is gripped by the pore loops of the ATPase domains arranged in a universal right-handed spiral staircase organization. However, the process by which a AAA+ protein is activated to adopt this substrate-pore-loop arrangement remains unknown. We show here, using cryo-electron microscopy (cryo-EM), that the activation process of the Lon AAA+ protease may involve a pentameric assembly and a substrate-dependent incorporation of the sixth protomer to form the substrate-pore-loop contacts seen in the translocating state. Based on the structural results, we design truncated monomeric mutants that inhibit Lon activity by binding to the native pentamer and demonstrated that expressing these monomeric mutants in Escherichia coli cells containing functional Lon elicits specific phenotypes associated with lon deficiency, including the inhibition of persister cell formation. These findings uncover a substrate-dependent assembly process for the activation of a AAA+ protein and demonstrate a targeted approach to selectively inhibit its function within cells.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Chi Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ru Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - See-Yeun Ting
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kaiming Zhang
- Department of Urology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
53
|
Li W, Qin Z, Nand E, Grunst MW, Grover JR, Bess JW, Lifson JD, Zwick MB, Tagare HD, Uchil PD, Mothes W. HIV-1 Env trimers asymmetrically engage CD4 receptors in membranes. Nature 2023; 623:1026-1033. [PMID: 37993716 PMCID: PMC10686830 DOI: 10.1038/s41586-023-06762-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.
Collapse
Affiliation(s)
- Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Nand
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hemant D Tagare
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
54
|
Palchevskyi S, Czarnocki-Cieciura M, Vistoli G, Gervasoni S, Nowak E, Beccari AR, Nowotny M, Talarico C. Structure of human TRPM8 channel. Commun Biol 2023; 6:1065. [PMID: 37857704 PMCID: PMC10587237 DOI: 10.1038/s42003-023-05425-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
TRPM8 is a non-selective cation channel permeable to both monovalent and divalent cations that is activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. It is a therapeutic target for anticancer drug development, and its modulators can be utilized for several pathological conditions. Here, we present a cryo-electron microscopy structure of a human TRPM8 channel in the closed state that was solved at 2.7 Å resolution. Our structure comprises the most complete model of the N-terminal pre-melastatin homology region. We also visualized several lipids that are bound by the protein and modeled how the human channel interacts with icilin. Analyses of pore helices in available TRPM structures showed that all these structures can be grouped into different closed, desensitized and open state conformations based on the register of the pore helix S6 which positions particular amino acid residues at the channel constriction.
Collapse
Affiliation(s)
- Sergii Palchevskyi
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
- Cell Signalling Department, Institute of Molecular Biology and Genetics NASU, 03143, Kyiv, Ukraine
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133, Milano, Italy
- Department of Physics, University of Cagliari, I-09042, Monserrato, Italy
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, 02-109, Warsaw, Poland.
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131, Napoli, Italy.
| |
Collapse
|
55
|
Miyashita O, Tama F. Advancing cryo-electron microscopy data analysis through accelerated simulation-based flexible fitting approaches. Curr Opin Struct Biol 2023; 82:102653. [PMID: 37451233 DOI: 10.1016/j.sbi.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Flexible fitting based on molecular dynamics simulation is a technique for structure modeling from cryo-EM data. It has been utilized for nearly two decades, and while cryo-EM resolution has improved significantly, it remains a powerful approach that can provide structural and dynamical insights that are not directly accessible from experimental data alone. Molecular dynamics simulations provide a means to extract atomistic details of conformational changes that are encoded in cryo-EM data and can also assist in improving the quality of structural models. Additionally, molecular dynamics simulations enable the characterization of conformational heterogeneity in cryo-EM data. We will summarize the advancements made in these techniques and highlight recent developments in this field.
Collapse
Affiliation(s)
- Osamu Miyashita
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
56
|
Kelly DF, Jonaid GM, Kaylor L, Solares MJ, Berry S, DiCecco LA, Dearnaley W, Casasanta M. Delineating Conformational Variability in Small Protein Structures Using Combinatorial Refinement Strategies. MICROMACHINES 2023; 14:1869. [PMID: 37893306 PMCID: PMC10609307 DOI: 10.3390/mi14101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
As small protein assemblies and even small proteins are becoming more amenable to cryo-Electron Microscopy (EM) structural studies, it is important to consider the complementary dynamic information present in the data. Current computational strategies are limited in their ability to resolve minute differences among low molecular weight entities. Here, we demonstrate a new combinatorial approach to delineate flexible conformations among small proteins using real-space refinement applications. We performed a meta-analysis of structural data for the SARS CoV-2 Nucleocapsid (N) protein using a combination of rigid-body refinement and simulated annealing methods. For the N protein monomer, we determined three new flexible conformers with good stereochemistry and quantitative comparisons provided new evidence of their dynamic properties. A similar analysis performed for the N protein dimer showed only minor structural differences among the flexible models. These results suggested a more stable view of the N protein dimer than the monomer structure. Taken together, the new computational strategies can delineate conformational changes in low molecular weight proteins that may go unnoticed by conventional assessments. The results also suggest that small proteins may be further stabilized for structural studies through the use of solution components that limit the movement of external flexible regions.
Collapse
Affiliation(s)
- Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Liam Kaylor
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Maria J. Solares
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Samantha Berry
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Liza-Anastasia DiCecco
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - William Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
57
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
58
|
Akey CW, Echeverria I, Ouch C, Nudelman I, Shi Y, Wang J, Chait BT, Sali A, Fernandez-Martinez J, Rout MP. Implications of a multiscale structure of the yeast nuclear pore complex. Mol Cell 2023; 83:3283-3302.e5. [PMID: 37738963 PMCID: PMC10630966 DOI: 10.1016/j.molcel.2023.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Nuclear pore complexes (NPCs) direct the nucleocytoplasmic transport of macromolecules. Here, we provide a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryogenic electron microscopy and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. We resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring reveals an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christna Ouch
- Department of Pharmacology, Physiology and Biophysics, Boston University, Chobanian and Avedisian School of Medicine, 700 Albany Street, Boston, MA 02118, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
59
|
Mangini V, Grasso G, Belviso BD, Sciacca MFM, Lanza V, Caliandro R, Milardi D. Stretching the chains: the destabilizing impact of Cu 2+ and Zn 2+ ions on K48-linked diubiquitin. Dalton Trans 2023; 52:11835-11849. [PMID: 37581921 DOI: 10.1039/d3dt01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Ubiquitin signalling and metal homeostasis play key roles in controlling several physiological cellular activities, including protein trafficking and degradation. While some relationships between these two biochemical pathways have started to surface, our knowledge of their interplay remains limited. Here, we employ a variety of techniques, such as circular dichroism, differential scanning calorimetry, pressure perturbation calorimetry, fluorescence emission, SDS-PAGE, and small-angle X-ray scattering (SAXS) to evaluate the impact of Cu2+ and Zn2+ ions on the structure and stability of K48 linked diubiquitin (K48-Ub2), a simple model for polyubiquitin chains. The SAXS analysis results show that the structure of the metal-free protein is similar to that observed when the protein is bound to the E2 conjugating enzyme, lending support to the idea that the structure of unanchored K48-linked ubiquitin chains is sufficient for identification by conjugating enzymes without the need for an induced fit mechanism. Our results indicate that K48-Ub2 can coordinate up to four metal ions with both copper and zinc ions inducing slight changes to the secondary structure of the protein. However, we noted significant distinctions in their impacts on protein stability and overall architecture. Specifically, Cu2+ ions resulted in a destabilization of the protein structure, which facilitated the formation of dimer aggregates. Next, we observed a shift in the conformational dynamics of K48-Ub2 toward less compact and more flexible states upon metal ion binding, with Zn2+ inducing a more significant effect than Cu2+ ions. Our structural modelling study demonstrates that both metal ions induced perturbations in the K48-Ub2 structure, leading to the separation of the two monomers thus inhibiting interactions with E2 enzymes. In conclusion, the findings from this study enhance our comprehension of the mechanisms underlying Ub chains recognition. Moreover, they strengthen the notion that drug discovery initiatives aimed at targeting metal-mediated disruptions in Ub signaling hold great potential for treating a wide range of diseases that stem from abnormal protein accumulation.
Collapse
Affiliation(s)
- Vincenzo Mangini
- Istituto di Cristallografia - CNR sede di Bari, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Giulia Grasso
- Istituto di Cristallografia - CNR sede secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Benny Danilo Belviso
- Istituto di Cristallografia - CNR sede di Bari, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Michele F M Sciacca
- Istituto di Cristallografia - CNR sede secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Valeria Lanza
- Istituto di Cristallografia - CNR sede secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| | - Rocco Caliandro
- Istituto di Cristallografia - CNR sede di Bari, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Danilo Milardi
- Istituto di Cristallografia - CNR sede secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
60
|
Krebs AS, Liu HF, Zhou Y, Rey JS, Levintov L, Shen J, Howe A, Perilla JR, Bartesaghi A, Zhang P. Molecular architecture and conservation of an immature human endogenous retrovirus. Nat Commun 2023; 14:5149. [PMID: 37620323 PMCID: PMC10449913 DOI: 10.1038/s41467-023-40786-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging. The structure shows a hexamer unit oligomerized through a 6-helix bundle, which is stabilized by a small molecule analogous to IP6 in immature HIV-1 capsid. The HERV-K immature lattice is assembled via highly conserved dimer and trimer interfaces, as detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the linker between the N-terminal and the C-terminal domains of CA occurs during HERV-K maturation. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Computer Science, Duke University, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
61
|
Spivak M, Stone JE, Ribeiro J, Saam J, Freddolino L, Bernardi RC, Tajkhorshid E. VMD as a Platform for Interactive Small Molecule Preparation and Visualization in Quantum and Classical Simulations. J Chem Inf Model 2023; 63:4664-4678. [PMID: 37506321 PMCID: PMC10516160 DOI: 10.1021/acs.jcim.3c00658] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Modeling and simulation of small molecules such as drugs and biological cofactors have been both a major focus of computational chemistry for decades and a growing need among computational biophysicists who seek to investigate the interaction of different types of ligands with biomolecules. Of particular interest in this regard are quantum mechanical (QM) calculations that are used to more accurately describe such small molecules, which can be of heterogeneous structures and chemistry, either in purely QM calculations or in hybrid QM/molecular mechanics (MM) simulations. QM programs are also used to develop MM force field parameters for small molecules to be used along with established force fields for biomolecules in classical simulations. With this growing need in mind, here we report a set of software tools developed and closely integrated within the broadly used molecular visualization/analysis program, VMD, that allow the user to construct, modify, and parametrize small molecules and prepare them for QM, hybrid QM/MM, or classical simulations. The tools also provide interactive analysis and visualization capabilities in an easy-to-use and integrated environment. In this paper, we briefly report on these tools and their major features and capabilities, along with examples of how they can facilitate molecular research in computational biophysics that might be otherwise prohibitively complex.
Collapse
Affiliation(s)
- Mariano Spivak
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John E Stone
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - João Ribeiro
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jan Saam
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Rafael C Bernardi
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, Center for Biophyics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
62
|
Mulvaney T, Kretsch RC, Elliott L, Beton J, Kryshtafovych A, Rigden DJ, Das R, Topf M. CASP15 cryoEM protein and RNA targets: refinement and analysis using experimental maps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552287. [PMID: 37609268 PMCID: PMC10441278 DOI: 10.1101/2023.08.07.552287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
CASP assessments primarily rely on comparing predicted coordinates with experimental reference structures. However, errors in the reference structures can potentially reduce the accuracy of the assessment. This issue is particularly prominent in cryoEM-determined structures, and therefore, in the assessment of CASP15 cryoEM targets, we directly utilized density maps to evaluate the predictions. A method for ranking the quality of protein chain predictions based on rigid fitting to experimental density was found to correlate well with the CASP assessment scores. Overall, the evaluation against the density map indicated that the models are of high accuracy although local assessment of predicted side chains in a 1.52 Å resolution map showed that side-chains are sometimes poorly positioned. The top 136 predictions associated with 9 protein target reference structures were selected for refinement, in addition to the top 40 predictions for 11 RNA targets. To this end, we have developed an automated hierarchical refinement pipeline in cryoEM maps. For both proteins and RNA, the refinement of CASP15 predictions resulted in structures that are close to the reference target structure, including some regions with better fit to the density. This refinement was successful despite large conformational changes and secondary structure element movements often being required, suggesting that predictions from CASP-assessed methods could serve as a good starting point for building atomic models in cryoEM maps for both proteins and RNA. Loop modeling continued to pose a challenge for predictors with even short loops failing to be accurately modeled or refined at times. The lack of consensus amongst models suggests that modeling holds the potential for identifying more flexible regions within the structure.
Collapse
|
63
|
Yvonnesdotter L, Rovšnik U, Blau C, Lycksell M, Howard RJ, Lindahl E. Automated simulation-based membrane protein refinement into cryo-EM data. Biophys J 2023; 122:2773-2781. [PMID: 37277992 PMCID: PMC10397807 DOI: 10.1016/j.bpj.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023] Open
Abstract
The resolution revolution has increasingly enabled single-particle cryogenic electron microscopy (cryo-EM) reconstructions of previously inaccessible systems, including membrane proteins-a category that constitutes a disproportionate share of drug targets. We present a protocol for using density-guided molecular dynamics simulations to automatically refine atomistic models into membrane protein cryo-EM maps. Using adaptive force density-guided simulations as implemented in the GROMACS molecular dynamics package, we show how automated model refinement of a membrane protein is achieved without the need to manually tune the fitting force ad hoc. We also present selection criteria to choose the best-fit model that balances stereochemistry and goodness of fit. The proposed protocol was used to refine models into a new cryo-EM density of the membrane protein maltoporin, either in a lipid bilayer or detergent micelle, and we found that results do not substantially differ from fitting in solution. Fitted structures satisfied classical model-quality metrics and improved the quality and the model-to-map correlation of the x-ray starting structure. Additionally, the density-guided fitting in combination with generalized orientation-dependent all-atom potential was used to correct the pixel-size estimation of the experimental cryo-EM density map. This work demonstrates the applicability of a straightforward automated approach to fitting membrane protein cryo-EM densities. Such computational approaches promise to facilitate rapid refinement of proteins under different conditions or with various ligands present, including targets in the highly relevant superfamily of membrane proteins.
Collapse
Affiliation(s)
- Linnea Yvonnesdotter
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Urška Rovšnik
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Christian Blau
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Marie Lycksell
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Rebecca Joy Howard
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Erik Lindahl
- Science for Life Laboratory & Swedish e-Science Research Center, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
64
|
Brotzakis ZF. Guide for determination of protein structural ensembles by combining cryo-EM data with metadynamics. FEBS Open Bio 2023; 13:1193-1203. [PMID: 36562694 PMCID: PMC10315759 DOI: 10.1002/2211-5463.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Metadynamics electron microscopy metaInference (MEMMI) is an integrative structural biology method that enables a rapid and accurate characterization of protein structural dynamics at the atomic level and the error in the cryo-EM experimental data, even in cases where conformations are separated by high energy barriers. It achieves this by incorporating (a) cryo-electron microscopy electron density maps with (b) metadynamic-enhanced-sampling molecular dynamics. Here, I showcase the setup and analysis protocol of MEMMI, used to discover the atomistic structural ensemble and error in the cryo-EM electron density map of the fuzzy coat of IAPP, a fibril implicated in type II diabetes.
Collapse
Affiliation(s)
- Z. Faidon Brotzakis
- Department of ChemistryUniversity of CambridgeUK
- Institute of BioinnovationBSRC FlemingVariGreece
| |
Collapse
|
65
|
Chauvier A, Porta JC, Deb I, Ellinger E, Meze K, Frank AT, Ohi MD, Walter NG. Structural basis for control of bacterial RNA polymerase pausing by a riboswitch and its ligand. Nat Struct Mol Biol 2023; 30:902-913. [PMID: 37264140 PMCID: PMC10523900 DOI: 10.1038/s41594-023-01002-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Indrajit Deb
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Katarina Meze
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aaron T Frank
- Biophysics Program, University of Michigan, Ann Arbor, MI, USA
- Arrakis Therapeutics, Waltham, MA, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
66
|
Blau C, Yvonnesdotter L, Lindahl E. Gentle and fast all-atom model refinement to cryo-EM densities via a maximum likelihood approach. PLoS Comput Biol 2023; 19:e1011255. [PMID: 37523411 PMCID: PMC10427019 DOI: 10.1371/journal.pcbi.1011255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/15/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Better detectors and automated data collection have generated a flood of high-resolution cryo-EM maps, which in turn has renewed interest in improving methods for determining structure models corresponding to these maps. However, automatically fitting atoms to densities becomes difficult as their resolution increases and the refinement potential has a vast number of local minima. In practice, the problem becomes even more complex when one also wants to achieve a balance between a good fit of atom positions to the map, while also establishing good stereochemistry or allowing protein secondary structure to change during fitting. Here, we present a solution to this challenge using a maximum likelihood approach by formulating the problem as identifying the structure most likely to have produced the observed density map. This allows us to derive new types of smooth refinement potential-based on relative entropy-in combination with a novel adaptive force scaling algorithm to allow balancing of force-field and density-based potentials. In a low-noise scenario, as expected from modern cryo-EM data, the relative-entropy based refinement potential outperforms alternatives, and the adaptive force scaling appears to aid all existing refinement potentials. The method is available as a component in the GROMACS molecular simulation toolkit.
Collapse
Affiliation(s)
- Christian Blau
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
67
|
Li Y, Shen Y, Zhang Y, Yan R. Structural Basis for the Enhanced Infectivity and Immune Evasion of Omicron Subvariants. Viruses 2023; 15:1398. [PMID: 37376697 PMCID: PMC10304477 DOI: 10.3390/v15061398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The Omicron variants of SARS-CoV-2 have emerged as the dominant strains worldwide, causing the COVID-19 pandemic. Each Omicron subvariant contains at least 30 mutations on the spike protein (S protein) compared to the original wild-type (WT) strain. Here we report the cryo-EM structures of the trimeric S proteins from the BA.1, BA.2, BA.3, and BA.4/BA.5 subvariants, with BA.4 and BA.5 sharing the same S protein mutations, each in complex with the surface receptor ACE2. All three receptor-binding domains of the S protein from BA.2 and BA.4/BA.5 are "up", while the BA.1 S protein has two "up" and one "down". The BA.3 S protein displays increased heterogeneity, with the majority in the all "up" RBD state. The different conformations preferences of the S protein are consistent with their varied transmissibility. By analyzing the position of the glycan modification on Asn343, which is located at the S309 epitopes, we have uncovered the underlying immune evasion mechanism of the Omicron subvariants. Our findings provide a molecular basis of high infectivity and immune evasion of Omicron subvariants, thereby offering insights into potential therapeutic interventions against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yaning Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Renhong Yan
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
68
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
69
|
Krebs AS, Liu HF, Zhou Y, Rey JS, Levintov L, Shen J, Howe A, Perilla JR, Bartesaghi A, Zhang P. Molecular architecture and conservation of an immature human endogenous retrovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544027. [PMID: 37333227 PMCID: PMC10274761 DOI: 10.1101/2023.06.07.544027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A significant part of the human genome consists of endogenous retroviruses sequences. Human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus, is activated and expressed in many cancers and amyotrophic lateral sclerosis and possibly contributes to the aging process. To understand the molecular architecture of endogenous retroviruses, we determined the structure of immature HERV-K from native virus-like particles (VLPs) using cryo-electron tomography and subtomogram averaging (cryoET STA). The HERV-K VLPs show a greater distance between the viral membrane and immature capsid lattice, correlating with the presence of additional peptides, SP1 and p15, between the capsid (CA) and matrix (MA) proteins compared to the other retroviruses. The resulting cryoET STA map of the immature HERV-K capsid at 3.2 Å resolution shows a hexamer unit oligomerized through a 6-helix bundle which is further stabilized by a small molecule in the same way as the IP6 in immature HIV-1 capsid. The HERV-K immature CA hexamer assembles into the immature lattice via highly conserved dimmer and trimer interfaces, whose interactions were further detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the flexible linker between the N-terminal and the C-terminal domains of CA occurs between the immature and the mature HERV-K capsid protein, analogous to HIV-1. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
70
|
Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, Campomanes P, Ivanović L, Hoffmann PC, Miller EA, Vanni S, Kukulski W. In situ architecture of the ER-mitochondria encounter structure. Nature 2023:10.1038/s41586-023-06050-3. [PMID: 37165187 DOI: 10.1038/s41586-023-06050-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
The endoplasmic reticulum and mitochondria are main hubs of eukaryotic membrane biogenesis that rely on lipid exchange via membrane contact sites1-3, but the underpinning mechanisms remain poorly understood. In yeast, tethering and lipid transfer between the two organelles is mediated by the endoplasmic reticulum-mitochondria encounter structure (ERMES), a four-subunit complex of unresolved stoichiometry and architecture4-6. Here we determined the molecular organization of ERMES within Saccharomyces cerevisiae cells using integrative structural biology by combining quantitative live imaging, cryo-correlative microscopy, subtomogram averaging and molecular modelling. We found that ERMES assembles into approximately 25 discrete bridge-like complexes distributed irregularly across a contact site. Each bridge consists of three synaptotagmin-like mitochondrial lipid binding protein domains oriented in a zig-zag arrangement. Our molecular model of ERMES reveals a pathway for lipids. These findings resolve the in situ supramolecular architecture of a major inter-organelle lipid transfer machinery and provide a basis for the mechanistic understanding of lipid fluxes in eukaryotic cells.
Collapse
Affiliation(s)
- Michael R Wozny
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge, UK
- SciLifeLab, Solna, Sweden
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Picco
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Rasha Khaddaj
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lazar Ivanović
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Patrick C Hoffmann
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | | | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Wanda Kukulski
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
71
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539492. [PMID: 37205329 PMCID: PMC10187307 DOI: 10.1101/2023.05.04.539492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gβγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gβγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gβγ complexes in the presence of various substrates/analogs, revealing two distinct Gβγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gβγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gβγ binding sites and interdomain contacts that change upon Gβγ binding suggest that Gβγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gβγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
| | - Sandeep K Ravala
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Yu-Chen Yen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Thomas Klose
- Purdue Cryo-EM Facility, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Qing Deng
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - John J G Tesmer
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
72
|
Yen YC, Li Y, Chen CL, Klose T, Watts VJ, Dessauer CW, Tesmer JJG. Isoform Specific Regulation of Adenylyl Cyclase 5 by Gβγ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539090. [PMID: 37205557 PMCID: PMC10187219 DOI: 10.1101/2023.05.02.539090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gαs, but their response to Gβγ regulation is isoform-specific. For example, AC5 is conditionally activated by Gβγ. Here, we report cryo-EM structures of ligand-free AC5 in complex with Gβγ and of a dimeric form of AC5 that could be involved in its regulation. Gβγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gβγ interaction with both purified proteins and cell-based assays. The interface with Gβγ involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gβγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed. Because our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yong Li
- Department Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Purdue CryoEM Facility, Suite 171, Hockmeyer Hall for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Val J Watts
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Carmen W Dessauer
- Department Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
73
|
Chi X, Xia L, Zhang G, Chi X, Huang B, Zhang Y, Chen Z, Han J, Wu L, Li Z, Sun H, Huang P, Yu C, Chen W, Zhou Q. Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies against SARS-CoV-2 Omicron variants. Cell Discov 2023; 9:37. [PMID: 37015915 PMCID: PMC10071473 DOI: 10.1038/s41421-023-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/02/2023] [Indexed: 04/06/2023] Open
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 continues to spread around the world. Mutant strains of SARS-CoV-2 are constantly emerging. At present, Omicron variants have become mainstream. In this work, we carried out a systematic and comprehensive analysis of the reported spike protein antibodies, counting the epitopes and genotypes of these antibodies. We further comprehensively analyzed the impact of Omicron mutations on antibody epitopes and classified these antibodies according to their binding patterns. We found that the epitopes of the H-RBD class antibodies were significantly less affected by Omicron mutations than other classes. Binding and virus neutralization experiments showed that such antibodies could effectively inhibit the immune escape of Omicron. Cryo-EM results showed that this class of antibodies utilized a conserved mechanism to neutralize SARS-CoV-2. Our results greatly help us deeply understand the impact of Omicron mutations. Meanwhile, it also provides guidance and insights for developing Omicron antibodies and vaccines.
Collapse
Affiliation(s)
- Xiangyang Chi
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Lingyun Xia
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Guanying Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Ximin Chi
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Bangdong Huang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jin Han
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Liushu Wu
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zeya Li
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Hancong Sun
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Ping Huang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Changming Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China.
| | - Qiang Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
74
|
Zhao Y, Zhao Y, Xie L, Li Q, Zhang Y, Zang Y, Li X, Zhang L, Yang Z. Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:6281. [PMID: 37047254 PMCID: PMC10094189 DOI: 10.3390/ijms24076281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent public health problem. Spike (S) protein mediates the fusion between the virus and the host cell membranes, consequently emerging as an important target of drug design. The lack of comparisons of in situ full-length S homotrimer structures in different states hinders understanding the structures and revealing the function, thereby limiting the discovery and development of therapeutic agents. Here, the steady-state structures of the in situ full-length S trimer in closed and open states (Sclosed and Sopen) were modeled with the constraints of density maps, associated with the analysis of the dynamic structural differences. Subsequently, we identified various regions with structure and property differences as potential binding pockets for ligands that promote the formation of inactive trimeric protein complexes. By using virtual screening strategy and a newly defined druggable cavity, five ligands were screened with potential bioactivities. Then molecular dynamic (MD) simulations were performed on apo protein structures and ligand bound complexes to reveal the conformational changes upon ligand binding. Our simulation results revealed that sulforaphane (SFN), which has the best binding affinity, could inhibit the conformational changes of S homotrimer that would occur during the viral membrane fusion. Our results could aid in the understanding of the regulation mechanism of S trimer aggregation and the structure-activity relationship, facilitating the development of potential antiviral agents.
Collapse
Affiliation(s)
- Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yifan Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Linke Xie
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qian Li
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yuze Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
75
|
Zhang J, Zhang M, Wang Q, Wen H, Liu Z, Wang F, Wang Y, Yao F, Song N, Kou Z, Li Y, Guo F, Zhu S. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat Struct Mol Biol 2023; 30:629-639. [PMID: 36959261 DOI: 10.1038/s41594-023-00959-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are heterotetramers comprising two GluN1 and two alternate GluN2 (N2A-N2D) subunits. Here we report full-length cryo-EM structures of the human N1-N2D di-heterotetramer (di-receptor), rat N1-N2C di-receptor and N1-N2A-N2C tri-heterotetramer (tri-receptor) at a best resolution of 3.0 Å. The bilobate N-terminal domain (NTD) in N2D intrinsically adopts a closed conformation, leading to a compact NTD tetramer in the N1-N2D receptor. Additionally, crosslinking the ligand-binding domain (LBD) of two N1 protomers significantly elevated the channel open probability (Po) in N1-N2D di-receptors. Surprisingly, the N1-N2C di-receptor adopted both symmetric (minor) and asymmetric (major) conformations, the latter further locked by an allosteric potentiator, PYD-106, binding to a pocket between the NTD and LBD in only one N2C protomer. Finally, the N2A and N2C subunits in the N1-N2A-N2C tri-receptor display a conformation close to one protomer in the N1-N2A and N1-N2C di-receptors, respectively. These findings provide a comprehensive structural understanding of diverse function in major NMDA receptor subtypes.
Collapse
Affiliation(s)
- Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Han Wen
- DP Technology, Beijing, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | - Fenyong Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nan Song
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zengwei Kou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fei Guo
- University of Chinese Academy of Sciences, Beijing, China
- Center for Neurological and Psychiatric Research and Drug Discovery, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
76
|
Jaciuk M, Scherf D, Kaszuba K, Gaik M, Rau A, Kościelniak A, Krutyhołowa R, Rawski M, Indyka P, Graziadei A, Chramiec-Głąbik A, Biela A, Dobosz D, Lin TY, Abbassi NEH, Hammermeister A, Rappsilber J, Kosinski J, Schaffrath R, Glatt S. Cryo-EM structure of the fully assembled Elongator complex. Nucleic Acids Res 2023; 51:2011-2032. [PMID: 36617428 PMCID: PMC10018365 DOI: 10.1093/nar/gkac1232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.
Collapse
Affiliation(s)
- Marcin Jaciuk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - David Scherf
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Karol Kaszuba
- European Molecular Biology Laboratory Hamburg, Hamburg 22607, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany
| | - Monika Gaik
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Alexander Rau
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Michał Rawski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow 30-387, Poland
| | - Paulina Indyka
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow 30-387, Poland
| | - Andrea Graziadei
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | | | - Anna Biela
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Dominika Dobosz
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Ting-Yu Lin
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
| | - Nour-el-Hana Abbassi
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Alexander Hammermeister
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow 30-387, Poland
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jan Kosinski
- European Molecular Biology Laboratory Hamburg, Hamburg 22607, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Raffael Schaffrath
- Institute for Biology, Department for Microbiology, University of Kassel, Kassel 34132, Germany
| | - Sebastian Glatt
- To whom correspondence should be addressed. Tel: +48 12 664 6321; Fax: +48 12 664 6902;
| |
Collapse
|
77
|
Lee S, Seok C, Park H. Benchmarking applicability of medium-resolution cryo-EM protein structures for structure-based drug design. J Comput Chem 2023; 44:1360-1368. [PMID: 36847771 DOI: 10.1002/jcc.27091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
Cryo-electron microscopy (cryo-EM) is gaining large attention for high-resolution protein structure determination in solutions. However, a very high percentage of cryo-EM structures correspond to resolutions of 3-5 Å, making the structures difficult to be used in in silico drug design. In this study, we analyze how useful cryo-EM protein structures are for in silico drug design by evaluating ligand docking accuracy. From realistic cross-docking scenarios using medium resolution (3-5 Å) cryo-EM structures and a popular docking tool Autodock-Vina, only 20% of docking succeeded, when the success rate doubles in the same kind of cross-docking but using high-resolution (<2 Å) crystal structures instead. We decipher the reason for failures by decomposing the contribution from resolution-dependent and independent factors. The heterogeneity in the protein side-chain and backbone conformations is identified as the major resolution-dependent factor causing docking difficulty from our analysis, while intrinsic receptor flexibility mainly comprises the resolution-independent factor. We demonstrate the flexibility implementation in current ligand docking tools is able to rescue only a portion of failures (10%), and the limited performance was majorly due to potential structural errors than conformational changes. Our work suggests the strong necessity of more robust method developments on ligand docking and EM modeling techniques in order to fully utilize cryo-EM structures for in silico drug design.
Collapse
Affiliation(s)
- Seho Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.,Galux Inc., Seoul, Republic of Korea
| | - Hahnbeom Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
78
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. RESEARCH SQUARE 2023:rs.3.rs-2553619. [PMID: 36824920 PMCID: PMC9949256 DOI: 10.21203/rs.3.rs-2553619/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
79
|
Leone V, Bradshaw RT, Koshy C, Lee PS, Fenollar-Ferrer C, Heinz V, Ziegler C, Forrest LR. Insights into autoregulation of a membrane protein complex by its cytoplasmic domains. Biophys J 2023; 122:577-594. [PMID: 36528790 PMCID: PMC9941749 DOI: 10.1016/j.bpj.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Membrane transporters mediate the passage of molecules across membranes and are essential for cellular function. While the transmembrane region of these proteins is responsible for substrate transport, often the cytoplasmic regions are required for modulating their activity. However, it can be difficult to obtain atomic-resolution descriptions of these autoregulatory domains by classical structural biology techniques, especially if they lack a single, defined structure. The betaine permease, BetP, a homotrimer, is a prominent and well-studied example of a membrane protein whose autoregulation depends on cytoplasmic N- and C-terminal segments. These domains sense and transduce changes in K+ concentration and in lipid bilayer properties caused by osmotic stress. However, structural data for these terminal domains is incomplete, which hinders a clear description of the molecular mechanism of autoregulation. Here we used microsecond-scale molecular simulations of the BetP trimer to compare reported conformations of the 45-amino-acid long C-terminal tails. The simulations provide support for the idea that the conformation derived from electron microscopy (EM) data represents a more stable global orientation of the C-terminal segment under downregulating conditions while also providing a detailed molecular description of its dynamics and highlighting specific interactions with lipids, ions, and neighboring transporter subunits. A missing piece of the molecular puzzle is the N-terminal segment, whose dynamic nature has prevented structural characterization. Using Rosetta to generate ensembles of de novo conformations in the context of the EM-derived structure robustly identifies two features of the N-terminal tail, namely 1) short helical elements and 2) an orientation that would confine potential interactions to the protomer in the counterclockwise direction (viewed from the cytoplasm). Since each C-terminal tail only contacts the protomer in the clockwise direction, these results indicate an intricate interplay between the three protomers of BetP in the downregulated protein and a multidirectionality that may facilitate autoregulation of transport.
Collapse
Affiliation(s)
- Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| | - Richard T Bradshaw
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Caroline Koshy
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Paul Suhwan Lee
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Cristina Fenollar-Ferrer
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Veronika Heinz
- Department of Structural Biology/Biophysics II, University of Regensburg, Regensburg, Germany
| | - Christine Ziegler
- Department of Structural Biology/Biophysics II, University of Regensburg, Regensburg, Germany
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
80
|
Doran MH, Rynkiewicz MJ, Pavadai E, Bodt SM, Rasicci D, Moore JR, Yengo CM, Bullitt E, Lehman W. Myosin loop-4 is critical for optimal tropomyosin repositioning on actin during muscle activation and relaxation. J Gen Physiol 2023; 155:e202213274. [PMID: 36459134 PMCID: PMC9723511 DOI: 10.1085/jgp.202213274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
During force-generating steps of the muscle crossbridge cycle, the tip of the myosin motor, specifically loop-4, contacts the tropomyosin cable of actin filaments. In the current study, we determined the corresponding effect of myosin loop-4 on the regulatory positioning of tropomyosin on actin. To accomplish this, we compared high-resolution cryo-EM structures of myosin S1-decorated thin filaments containing either wild-type or a loop-4 mutant construct, where the seven-residue portion of myosin loop-4 that contacts tropomyosin was replaced by glycine residues, thus removing polar side chains from residues 366-372. Cryo-EM analysis of fully decorated actin-tropomyosin filaments with wild-type and mutant S1, yielded 3.4-3.6 Å resolution reconstructions, with even higher definition at the actin-myosin interface. Loop-4 densities both in wild-type and mutant S1 were clearly identified, and side chains were resolved in the wild-type structure. Aside from loop-4, actin and myosin structural domains were indistinguishable from each other when filaments were decorated with either mutant or wild-type S1. In marked contrast, the position of tropomyosin on actin in the two reconstructions differed by 3 to 4 Å. In maps of filaments containing the mutant, tropomyosin was located closer to the myosin-head and thus moved in the direction of the C-state conformation adopted by myosin-free thin filaments. Complementary interaction energy measurements showed that tropomyosin in the mutant thin filaments sits on actin in a local energy minimum, whereas tropomyosin is positioned by wild-type S1 in an energetically unfavorable location. We propose that the high potential energy associated with tropomyosin positioning in wild-type filaments favors an effective transition to B- and C-states following release of myosin from the thin filaments during relaxation.
Collapse
Affiliation(s)
- Matthew H. Doran
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Skylar M.L. Bodt
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - David Rasicci
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - Jeffrey R. Moore
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA
| | - Christopher M. Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - William Lehman
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| |
Collapse
|
81
|
Hassan A, Byju S, Freitas F, Roc C, Pender N, Nguyen K, Kimbrough E, Mattingly J, Gonzalez Jr. R, de Oliveira R, Dunham C, Whitford P. Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome. Nucleic Acids Res 2023; 51:919-934. [PMID: 36583339 PMCID: PMC9881166 DOI: 10.1093/nar/gkac1211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sandra Byju
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Claude Roc
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Nisaa Pender
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Evelyn M Kimbrough
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA 30322, USA
| | - Jacob M Mattingly
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Christine M Dunham
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
82
|
Sarkar D, Kulke M, Vermaas JV. LongBondEliminator: A Molecular Simulation Tool to Remove Ring Penetrations in Biomolecular Simulation Systems. Biomolecules 2023; 13:biom13010107. [PMID: 36671493 PMCID: PMC9856086 DOI: 10.3390/biom13010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
We develop a workflow, implemented as a plugin to the molecular visualization program VMD, that can fix ring penetrations with minimal user input. LongBondEliminator, detects ring piercing artifacts by the long, strained bonds that are the local minimum energy conformation during minimization for some assembled simulation system. The LongBondEliminator tool then automatically treats regions near these long bonds using multiple biases applied through NAMD. By combining biases implemented through the collective variables module, density-based forces, and alchemical techniques in NAMD, LongBondEliminator will iteratively alleviate long bonds found within molecular simulation systems. Through three concrete examples with increasing complexity, a lignin polymer, an viral capsid assembly, and a large, highly glycosylated protein aggrecan, we demonstrate the utility for this method in eliminating ring penetrations from classical MD simulation systems. The tool is available via gitlab as a VMD plugin, and has been developed to be generically useful across a variety of biomolecular simulations.
Collapse
|
83
|
Structural Studies Reveal that Endosomal Cations Promote Formation of Infectious Coxsackievirus A9 A-Particles, Facilitating RNA and VP4 Release. J Virol 2022; 96:e0136722. [PMID: 36448797 PMCID: PMC9769374 DOI: 10.1128/jvi.01367-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coxsackievirus A9 (CVA9), an enterovirus, is a common cause of pediatric aseptic meningitis and neonatal sepsis. During cell entry, enterovirus capsids undergo conformational changes leading to expansion, formation of large pores, externalization of VP1 N termini, and loss of the lipid factor from VP1. Factors such as receptor binding, heat, and acidic pH can trigger capsid expansion in some enteroviruses. Here, we show that fatty acid-free bovine serum albumin or neutral endosomal ionic conditions can independently prime CVA9 for expansion and genome release. Our results showed that CVA9 treatment with albumin or endosomal ions generated a heterogeneous population of virions, which could be physically separated by asymmetric flow field flow fractionation and computationally by cryo-electron microscopy (cryo-EM) and image processing. We report cryo-EM structures of CVA9 A-particles obtained by albumin or endosomal ion treatment and a control nonexpanded virion to 3.5, 3.3, and 2.9 Å resolution, respectively. Whereas albumin promoted stable expanded virions, the endosomal ionic concentrations induced unstable CVA9 virions which easily disintegrated, losing their genome. Loss of most of the VP4 molecules and exposure of negatively charged amino acid residues in the capsid's interior after expansion created a repulsive viral RNA-capsid interface, aiding genome release. IMPORTANCE Coxsackievirus A9 (CVA9) is a common cause of meningitis and neonatal sepsis. The triggers and mode of action of RNA release into the cell unusually do not require receptor interaction. Rather, a slow process in the endosome, independent of low pH, is required. Here, we show by biophysical separation, cryogenic electron microscopy, and image reconstruction that albumin and buffers mimicking the endosomal ion composition can separately and together expand and prime CVA9 for uncoating. Furthermore, we show in these expanded particles that VP4 is present at only ~10% of the occupancy found in the virion, VP1 is externalized, and the genome is repelled by the negatively charged, repulsive inner surface of the capsid that occurs due to the expansion. Thus, we can now link observations from cell biology of infection with the physical processes that occur in the capsid to promote genome uncoating.
Collapse
|
84
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
85
|
Harastani M, Vuillemot R, Hamitouche I, Moghadam NB, Jonic S. ContinuousFlex: Software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy and tomography data. J Struct Biol 2022; 214:107906. [PMID: 36244611 DOI: 10.1016/j.jsb.2022.107906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
ContinuousFlex is a user-friendly open-source software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET) data. In 2019, ContinuousFlex became available as a plugin for Scipion, an image processing software package extensively used in the cryo-EM field. Currently, ContinuousFlex contains software for running (1) recently published methods HEMNMA-3D, TomoFlow, and NMMD; (2) earlier published methods HEMNMA and StructMap; and (3) methods for simulating cryo-EM and cryo-ET data with conformational variability and methods for data preprocessing. It also includes external software for molecular dynamics simulation (GENESIS) and normal mode analysis (ElNemo), used in some of the mentioned methods. The HEMNMA software has been presented in the past, but not the software of other methods. Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named DeepHEMNMA. In this article, we review these methods in the context of the ContinuousFlex package, developed to facilitate their use by the community.
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Nima Barati Moghadam
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
86
|
Strauch A, Rossa B, Köhler F, Haeussler S, Mühlhofer M, Rührnößl F, Körösy C, Bushman Y, Conradt B, Haslbeck M, Weinkauf S, Buchner J. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. J Biol Chem 2022; 299:102753. [PMID: 36442512 PMCID: PMC9800568 DOI: 10.1016/j.jbc.2022.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.
Collapse
Affiliation(s)
- Annika Strauch
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Benjamin Rossa
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Florian Rührnößl
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Caroline Körösy
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
87
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
88
|
Raghavan SSR, Dagil R, Lopez-Perez M, Conrad J, Bassi MR, Quintana MDP, Choudhary S, Gustavsson T, Wang Y, Gourdon P, Ofori MF, Christensen SB, Minja DTR, Schmiegelow C, Nielsen MA, Barfod L, Hviid L, Salanti A, Lavstsen T, Wang K. Cryo-EM reveals the conformational epitope of human monoclonal antibody PAM1.4 broadly reacting with polymorphic malarial protein VAR2CSA. PLoS Pathog 2022; 18:e1010924. [PMCID: PMC9668162 DOI: 10.1371/journal.ppat.1010924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4’s broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria.
Collapse
Affiliation(s)
- Sai Sundar Rajan Raghavan
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mary Lopez-Perez
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Julian Conrad
- Swedish National Cryo-EM Facility, Science for Life Laboratories, Solna, Sweden
| | - Maria Rosaria Bassi
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Maria del Pilar Quintana
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Yong Wang
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sebastian Boje Christensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Christentze Schmiegelow
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- * E-mail: (TL); (KW)
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (TL); (KW)
| |
Collapse
|
89
|
Xue L, Lenz S, Zimmermann-Kogadeeva M, Tegunov D, Cramer P, Bork P, Rappsilber J, Mahamid J. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 2022; 610:205-211. [PMID: 36171285 PMCID: PMC9534751 DOI: 10.1038/s41586-022-05255-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.
Collapse
Affiliation(s)
- Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Swantje Lenz
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
| | - Maria Zimmermann-Kogadeeva
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Yonsei Frontier Lab, Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
90
|
Rahman S, Hoffmann NA, Worden EJ, Smith ML, Namitz KEW, Knutson BA, Cosgrove MS, Wolberger C. Multistate structures of the MLL1-WRAD complex bound to H2B-ubiquitinated nucleosome. Proc Natl Acad Sci U S A 2022; 119:e2205691119. [PMID: 36095189 PMCID: PMC9499523 DOI: 10.1073/pnas.2205691119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The human Mixed Lineage Leukemia-1 (MLL1) complex methylates histone H3K4 to promote transcription and is stimulated by monoubiquitination of histone H2B. Recent structures of the MLL1-WRAD core complex, which comprises the MLL1 methyltransferase, WDR5, RbBp5, Ash2L, and DPY-30, have revealed variability in the docking of MLL1-WRAD on nucleosomes. In addition, portions of the Ash2L structure and the position of DPY30 remain ambiguous. We used an integrated approach combining cryoelectron microscopy (cryo-EM) and mass spectrometry cross-linking to determine a structure of the MLL1-WRAD complex bound to ubiquitinated nucleosomes. The resulting model contains the Ash2L intrinsically disordered region (IDR), SPRY insertion region, Sdc1-DPY30 interacting region (SDI-motif), and the DPY30 dimer. We also resolved three additional states of MLL1-WRAD lacking one or more subunits, which may reflect different steps in the assembly of MLL1-WRAD. The docking of subunits in all four states differs from structures of MLL1-WRAD bound to unmodified nucleosomes, suggesting that H2B-ubiquitin favors assembly of the active complex. Our results provide a more complete picture of MLL1-WRAD and the role of ubiquitin in promoting formation of the active methyltransferase complex.
Collapse
Affiliation(s)
- Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Niklas A. Hoffmann
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan J. Worden
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Marissa L. Smith
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kevin E. W. Namitz
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Bruce A. Knutson
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
91
|
Hopkins FR, Álvarez-Rodríguez B, Heath GR, Panayi K, Hover S, Edwards TA, Barr JN, Fontana J. The Native Orthobunyavirus Ribonucleoprotein Possesses a Helical Architecture. mBio 2022; 13:e0140522. [PMID: 35762594 PMCID: PMC9426602 DOI: 10.1128/mbio.01405-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Bunyavirales order is the largest group of negative-sense RNA viruses, containing many lethal human pathogens for which approved anti-infective measures are not available. The bunyavirus genome consists of multiple negative-sense RNA segments enwrapped by the virus-encoded nucleocapsid protein (NP), which together with the viral polymerase form ribonucleoproteins (RNPs). RNPs represent substrates for RNA synthesis and virion assembly, which require inherent flexibility, consistent with the appearance of RNPs spilled from virions. These observations have resulted in conflicting models describing the overall RNP architecture. Here, we purified RNPs from Bunyamwera virus (BUNV), the prototypical orthobunyavirus. The lengths of purified RNPs imaged by negative staining resulted in 3 populations of RNPs, suggesting that RNPs possess a consistent method of condensation. Employing microscopy approaches, we conclusively show that the NP portion of BUNV RNPs is helical. Furthermore, we present a pseudo-atomic model for this portion based on a cryo-electron microscopy average at 13 Å resolution, which allowed us to fit the BUNV NP crystal structure by molecular dynamics. This model was confirmed by NP mutagenesis using a mini-genome system. The model shows that adjacent NP monomers in the RNP chain interact laterally through flexible N- and C-terminal arms only, with no longitudinal helix-stabilizing interactions, thus providing a potential model for the molecular basis for RNP flexibility. Excessive RNase treatment disrupts native RNPs, suggesting that RNA was key in maintaining the RNP structure. Overall, this work will inform studies on bunyaviral RNP assembly, packaging, and RNA replication, and aid in future antiviral strategies. IMPORTANCE Bunyaviruses are emerging RNA viruses that cause significant disease and economic burden and for which vaccines or therapies approved for humans are not available. The bunyavirus genome is wrapped up by the nucleoprotein (NP) and interacts with the viral polymerase, forming a ribonucleoprotein (RNP). This is the only form of the genome active for viral replication and assembly. However, until now how NPs are organized within an RNP was not known for any orthobunyavirus. Here, we purified RNPs from the prototypical orthobunyavirus, Bunyamwera virus, and employed microscopy approaches to show that the NP portion of the RNP was helical. We then combined our helical average with the known structure of an NP monomer, generating a pseudo-atomic model of this region. This arrangement allowed the RNPs to be highly flexible, which was critical for several stages of the viral replication cycle, such as segment circularization.
Collapse
Affiliation(s)
- Francis R. Hopkins
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - George R. Heath
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Kyriakoulla Panayi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Samantha Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Thomas A. Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leedsgrid.9909.9, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leedsgrid.9909.9, Leeds, United Kingdom
| |
Collapse
|
92
|
Asi H, Dasgupta B, Nagai T, Miyashita O, Tama F. A hybrid approach to study large conformational transitions of biomolecules from single particle XFEL diffraction data. Front Mol Biosci 2022; 9:913860. [PMID: 36660427 PMCID: PMC9846856 DOI: 10.3389/fmolb.2022.913860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 01/06/2023] Open
Abstract
X-ray free-electron laser (XFEL) is the latest generation of the X-ray source that could become an invaluable technique in structural biology. XFEL has ultrashort pulse duration, extreme peak brilliance, and high spatial coherence, which could enable the observation of the biological molecules in near nature state at room temperature without crystallization. However, for biological systems, due to their low diffraction power and complexity of sample delivery, experiments and data analysis are not straightforward, making it extremely challenging to reconstruct three-dimensional (3D) structures from single particle XFEL data. Given the current limitations to the amount and resolution of the data from such XFEL experiments, we propose a new hybrid approach for characterizing biomolecular conformational transitions by using a single 2D low-resolution XFEL diffraction pattern in combination with another known conformation. In our method, we represent the molecular structure with a coarse-grained model, the Gaussian mixture model, to describe large conformational transitions from low-resolution XFEL data. We obtain plausible 3D structural models that are consistent with the XFEL diffraction pattern by deforming an initial structural model to maximize the similarity between the target pattern and the simulated diffraction patterns from the candidate models. We tested the proposed algorithm on two biomolecules of different sizes with different complexities of conformational transitions, adenylate kinase, and elongation factor 2, using synthetic XFEL data. The results show that, with the proposed algorithm, we can successfully describe the conformational transitions by flexibly fitting the coarse-grained model of one conformation to become consistent with an XFEL diffraction pattern simulated from another conformation. In addition, we showed that the incident beam orientation has some effect on the accuracy of the 3D structure modeling and discussed the reasons for the inaccuracies for certain orientations. The proposed method could serve as an alternative approach for retrieving information on 3D conformational transitions from the XFEL diffraction patterns to interpret experimental data. Since the molecules are represented by Gaussian kernels and no atomic structure is needed in principle, such a method could also be used as a tool to seek initial models for 3D reconstruction algorithms.
Collapse
Affiliation(s)
- Han Asi
- Department of Physics, Nagoya University, Nagoya, Japan
| | - Bhaskar Dasgupta
- Division of Biological Data Science, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro City, Japan
| | - Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Japan,*Correspondence: Osamu Miyashita, ; Florence Tama,
| | - Florence Tama
- Department of Physics, Nagoya University, Nagoya, Japan,RIKEN Center for Computational Science, Kobe, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan,*Correspondence: Osamu Miyashita, ; Florence Tama,
| |
Collapse
|
93
|
Chen CL, Klose T, Sun C, Kim AS, Buda G, Rossmann MG, Diamond MS, Klimstra WB, Kuhn RJ. Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states. Proc Natl Acad Sci U S A 2022; 119:e2114119119. [PMID: 35867819 PMCID: PMC9335222 DOI: 10.1073/pnas.2114119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/03/2022] [Indexed: 01/24/2023] Open
Abstract
Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Chengqun Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Geeta Buda
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - William B. Klimstra
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
94
|
Alnabati E, Esquivel-Rodriguez J, Terashi G, Kihara D. MarkovFit: Structure Fitting for Protein Complexes in Electron Microscopy Maps Using Markov Random Field. Front Mol Biosci 2022; 9:935411. [PMID: 35959463 PMCID: PMC9358042 DOI: 10.3389/fmolb.2022.935411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
An increasing number of protein complex structures are determined by cryo-electron microscopy (cryo-EM). When individual protein structures have been determined and are available, an important task in structure modeling is to fit the individual structures into the density map. Here, we designed a method that fits the atomic structures of proteins in cryo-EM maps of medium to low resolutions using Markov random fields, which allows probabilistic evaluation of fitted models. The accuracy of our method, MarkovFit, performed better than existing methods on datasets of 31 simulated cryo-EM maps of resolution 10 Å , nine experimentally determined cryo-EM maps of resolution less than 4 Å , and 28 experimentally determined cryo-EM maps of resolution 6 to 20 Å .
Collapse
Affiliation(s)
- Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
95
|
Yen YC, Schafer CT, Gustavsson M, Eberle SA, Dominik PK, Deneka D, Zhang P, Schall TJ, Kossiakoff AA, Tesmer JJG, Handel TM. Structures of atypical chemokine receptor 3 reveal the basis for its promiscuity and signaling bias. SCIENCE ADVANCES 2022; 8:eabn8063. [PMID: 35857509 PMCID: PMC9278869 DOI: 10.1126/sciadv.abn8063] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/26/2022] [Indexed: 05/12/2023]
Abstract
Both CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are activated by the chemokine CXCL12 yet evoke distinct cellular responses. CXCR4 is a canonical G protein-coupled receptor (GPCR), whereas ACKR3 is intrinsically biased for arrestin. The molecular basis for this difference is not understood. Here, we describe cryo-EM structures of ACKR3 in complex with CXCL12, a more potent CXCL12 variant, and a small-molecule agonist. The bound chemokines adopt an unexpected pose relative to those established for CXCR4 and observed in other receptor-chemokine complexes. Along with functional studies, these structures provide insight into the ligand-binding promiscuity of ACKR3, why it fails to couple to G proteins, and its bias toward β-arrestin. The results lay the groundwork for understanding the physiological interplay of ACKR3 with other GPCRs.
Collapse
Affiliation(s)
- Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie A. Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pawel K. Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Department of Biophysics, Jagiellonian University, Krakow, Poland
| | - Penglie Zhang
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Thomas J. Schall
- ChemoCentryx Inc., 835 Industrial Rd., Suite 600, San Carlos, CA 94070, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
96
|
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 2022; 609:605-610. [PMID: 35768502 PMCID: PMC9477730 DOI: 10.1038/s41586-022-04883-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1–3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4–9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline–proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development. Structural and biophysical analysis of the Arabidopsis thaliana auxin transporter PIN8 reveal that PIN transporters export auxin using an elevator mechanism.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikael Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | | |
Collapse
|
97
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
98
|
Rynkiewicz MJ, Pavadai E, Lehman W. Modeling Human Cardiac Thin Filament Structures. Front Physiol 2022; 13:932333. [PMID: 35812320 PMCID: PMC9257132 DOI: 10.3389/fphys.2022.932333] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Striated muscle contraction is regulated in a calcium-dependent manner through dynamic motions of the tropomyosin/troponin polymer, a multicomponent complex wrapped around actin-containing thin filaments. Tropomyosin/troponin sterically blocks myosin-binding at low-calcium concentrations but moves to expose myosin-binding sites at high-calcium concentrations leading to force development. Understanding the key intermolecular interactions that define these dynamic motions will promote our understanding of mutation-induced contractile dysfunction that eventually leads to hypertrophic cardiomyopathy, dilated cardiomyopathy, and skeletal myopathies. Advancements in cryoelectron microscopy (cryoEM) have resulted in a partial elucidation of structures of the thin filament, revealing many atomic-level interactions between the component proteins and critical calcium-dependent conformational alterations. However, building models at the resolutions achieved can be challenging since landmarks in the maps are often missing or ambiguous. Therefore, current computational analyses including de novo structure prediction, protein-protein docking, molecular dynamics flexible fitting, and molecular dynamics simulations are needed to ensure good quality models. We review here our efforts to model the troponin T domain spanning the head-to-tail overlap domain of tropomyosin, improving previous models. Next, we refined the published cryoEM modeled structures, which had mistakenly compressed alpha helices, with a model that has expected helical parameters while matching densities in the cryoEM volume. Lastly, we used this model to reinterpret the interactions between tropomyosin and troponin I showing key features that hold the tropomyosin cable in its low-calcium, sterically blocking position. These revised thin filament models show improved intermolecular interactions in the key low- and high-calcium regulatory states, providing novel insights into function.
Collapse
|
99
|
Structural and functional analysis of an inter-Spike bivalent neutralizing antibody against SARS-CoV-2 variants. iScience 2022; 25:104431. [PMID: 35607524 PMCID: PMC9116965 DOI: 10.1016/j.isci.2022.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
The different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted most public concern because they caused “wave and wave” COVID-19 pandemic. The initial step of viral infection is mediated by the SARS-CoV-2 Spike (S) protein, which mediates the receptor recognition and membrane fusion between virus and host cells. Neutralizing antibodies (nAbs) targeting the S protein of SARS-CoV-2 have become promising candidates for clinical intervention strategy, while multiple studies have shown that different variants have enhanced infectivity and antibody resistance. Here, we explore the structure and function of STS165, a broadly inter-Spike bivalent nAb against SARS-CoV-2 variants and even SARS-CoV, contributing to further understanding of the working mechanism of nAbs. STS165 broadly neutralizes different variants of SARS-CoV-2 and even SARS-CoV STS165 exhibits inter-Spike bivalent binding characteristics STS165 may work as an ideal partner to form therapeutic antibody cocktails
Collapse
|
100
|
Xie T, Chi X, Huang B, Ye F, Zhou Q, Huang J. Rational exploration of fold atlas for human solute carrier proteins. Structure 2022; 30:1321-1330.e5. [PMID: 35700727 DOI: 10.1016/j.str.2022.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
The solute carrier (SLC) superfamily is the largest group of proteins responsible for the transmembrane transport of substances in human cells. It includes more than 400 members that are organized into 65 families according to their physiological function and sequence similarity. Different families of SLCs can adopt the same or different folds that determine the mechanism and reflect the evolutionary relationship between SLC members. Analysis of structural data in the literature before this work showed 13 different folds in the SLC superfamily covering 40 families and 343 members. To further study their mechanism, we systematically explored the SLC superfamily to look for more folds. Based on our results, at least three new folds are found for the SLC superfamily, one of which is in the choline-like transporter family (SLC44) and has been experimentally verified. Our work has laid a foundation and provided important insights for the systematic and comprehensive study of the structure and function of SLC.
Collapse
Affiliation(s)
- Tengyu Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Ximin Chi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Bangdong Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Fangfei Ye
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiang Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Jing Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|