51
|
Brehm E, Zhou C, Gao L, Flaws JA. Prenatal exposure to an environmentally relevant phthalate mixture accelerates biomarkers of reproductive aging in a multiple and transgenerational manner in female mice. Reprod Toxicol 2020; 98:260-268. [PMID: 33129917 PMCID: PMC7736276 DOI: 10.1016/j.reprotox.2020.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Phthalates are known endocrine-disrupting chemicals that are found in many consumer products. Our laboratory previously developed a relevant phthalate mixture consisting of six phthalates and found that it disrupted female fertility in mice. However, it is unknown if prenatal exposure to phthalate mixtures can accelerate reproductive aging and if this occurs in multiple generations. Thus, we tested the hypothesis that prenatal exposure to a mixture of phthalates accelerates biomarkers of reproductive aging in multiple generations of female mice. Pregnant CD-1 mice were orally dosed with vehicle control or a phthalate mixture (20 μg/kg/day-500 mg/kg/day) daily from gestational day 10 to birth. Adult F1 females born to these dams were used to create the F2 and F3 generations by mating them with unexposed males. At 13 months, estrous cyclicity was monitored and ovaries and sera were collected for analysis. In the F1 generation, the mixture decreased testosterone and inhibin B levels, but increased follicle-stimulating hormone and luteinizing hormone levels compared to control. In the F2 generation, the phthalate mixture decreased the percent of antral follicles and testosterone hormone levels compared to control. In the F3 generation, prenatal exposure to the phthalate mixture increased ovarian weight, increased the time in metestrus/diestrus, altered follicle numbers, and decreased the levels of luteinizing hormone compared to control. Collectively, these data suggest that prenatal exposure to a phthalate mixture may accelerate several biomarkers of reproductive aging in a multi- and transgenerational manner in female mice.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States.
| |
Collapse
|
52
|
Hamid N, Junaid M, Manzoor R, Jia PP, Pei DS. Prioritizing phthalate esters (PAEs) using experimental in vitro/vivo toxicity assays and computational in silico approaches. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122851. [PMID: 32485506 DOI: 10.1016/j.jhazmat.2020.122851] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Phthalate esters (PAEs) pose prominent ecological risks owing to their multiplex toxicity potentials and ubiquitous detection in the environment. Therefore, this study aims to prioritize the individual and mixtures of six PAEs based on their toxicological implications using in vitro and vivo models exposed at environmentally relevant concentrations. Results were further confirmed using in silico Combination index (CI) and Independent action (IA), and molecular docking models. Among PAEs, DEHP revealed prominent in vitro/vivo toxicity followed by DEP, DBP, and DMP. Importantly, binary mixtures particularly C2-C6 and C11-C15 exhibited greater developmental toxicity, apoptosis, and perturbed the HPG pathway. The CI and IA models forecasted antagonistic and additive effects at Fa = 0.5 and Fa = 0.9 using in vitro Acinetobacter sp. Tox2. Conversely, in zebrafish, the IA model predicted mixture effects in the following order: additive > synergistic > antagonistic on the regulation of the HPG pathway, which was consistent with experimental results from Acridine Orange (AO) staining and apoptosis gene expression. Molecular docking for estrogen receptors (ERα, ERβ) revealed the highest binding energy scores for DEHP, compared to other PAEs. In short, our findings confirm that individual and mixtures of PAEs behave as xenoestrogens in the freshwater ecosystem with DEHP as a priority compound.
Collapse
Affiliation(s)
- Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pan-Pan Jia
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
53
|
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations†. Biol Reprod 2020; 101:635-644. [PMID: 31077281 DOI: 10.1093/biolre/ioz081] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. Likewise, exposures to endocrine disruptors during developmental periods are particularly concerning because programming during development can be adversely impacted by hormone level changes. Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
54
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
55
|
Wen Y, Rattan S, Flaws JA, Irudayaraj J. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. Toxicol Appl Pharmacol 2020; 402:115123. [PMID: 32628958 DOI: 10.1016/j.taap.2020.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous industrial pollutant, is a known endocrine disrupter implicated in metabolic diseases. Prenatal DEHP exposure promotes epigenetic multi- and transgenerational inheritance of adult onset disease in subsequent generations (F1-F3). However, the epigenetic toxicity is less understood in the liver. In this study, CD-1 mice were prenatally exposed to 20 μg/kg/day, 200 μg/kg/day, 500 mg/kg/day, or 750 mg/kg/day DEHP from gestational day (GD) 10.5 until birth of pups. Following prenatal exposure, the multigenerational and transgenerational effects of mRNA expression of epigenetic regulators were evaluated in F1, F2, and F3 generation mouse livers at postnatal days (PNDs) 8 and 60. Results showed that DEHP exposed mice livers exhibited significant changes in global DNA methylation levels in all three generations, with the effect being different in F2 after high dosage exposure. Histopathology indicated that DEHP exposure could induce mild damage in F1 livers. The expression levels of DNA methyltransferase 1 (Dnmt1) were significantly changed in both the F1 and F2 generations at PND 8, suggesting that maintenance Dnmt1 plays a major role in the multigenerational effect that occur in the early developmental stages. Additionally, DEHP exposure caused significant changes in ten-eleven translocation methylcytosine (Tet) dioxygenases encoding Tet1 expression in all three generations and Tet2 expression in F3 at PND 60, implicating their contributions in inducing both multi- and transgenerational effects after DEHP exposure in mouse liver. Overall, our results establish that prenatal and ancestral DEHP exposure are critical for epigenetic regulation of DNA methylation in female mouse livers.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
56
|
Dutta S, Haggerty DK, Rappolee DA, Ruden DM. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front Genet 2020; 11:405. [PMID: 32435260 PMCID: PMC7218126 DOI: 10.3389/fgene.2020.00405] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Phthalates are esters of phthalic acid which are used in cosmetics and other daily personal care products. They are also used in polyvinyl chloride (PVC) plastics to increase durability and plasticity. Phthalates are not present in plastics by covalent bonds and thus can easily leach into the environment and enter the human body by dermal absorption, ingestion, or inhalation. Several in vitro and in vivo studies suggest that phthalates can act as endocrine disruptors and cause moderate reproductive and developmental toxicities. Furthermore, phthalates can pass through the placental barrier and affect the developing fetus. Thus, phthalates have ubiquitous presence in food and environment with potential adverse health effects in humans. This review focusses on studies conducted in the field of toxicogenomics of phthalates and discusses possible transgenerational and multigenerational effects caused by phthalate exposure during any point of the life-cycle.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Diana K Haggerty
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Daniel A Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Reproductive Stress, Inc., Grosse Pointe Farms, MI, United States
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States.,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
57
|
Pu SY, Hamid N, Ren YW, Pei DS. Effects of phthalate acid esters on zebrafish larvae: Development and skeletal morphogenesis. CHEMOSPHERE 2020; 246:125808. [PMID: 31918107 DOI: 10.1016/j.chemosphere.2019.125808] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the acute developmental toxicity of six priority phthalic acid esters (PAEs) including dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), di-n-octyl phthalate (DNOP), and benzyl butyl phthalate (BBP) in zebrafish embryos. A novel alcian blue and alizarin red double staining was performed to detect skeletal development of zebrafish larvae. Results revealed that all six PAEs could induce different developmental abnormalities in zebrafish larvae, including abnormal movement, decreased heart rate, spinal curvature, and pericardial edema. The bone development of zebrafish larvae exposed to PAEs was also affected by PAEs acute exposure. Among PAEs, DBP, and BBP even at low doses can cause mortality in zebrafish, implying their higher toxicity. Contrarily, DEHP and DNOP showed minor effects on the developmental morphology of zebrafish larvae. However, the gene expression levels of skeleton-related genes showed the upregulation of the runx2b and shha genes after DEHP and DBP exposure. Taken together, the strict use and release of PAEs in the environment should be supervised by the government for ecological and environmental safety.
Collapse
Affiliation(s)
- Shi-Ya Pu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Naima Hamid
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Wei Ren
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Sheng Pei
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
58
|
Cathey A, Watkins DJ, Sánchez BN, Tamayo-Ortiz M, Solano-Gonzalez M, Torres-Olascoaga L, Téllez-Rojo MM, Peterson KE, Meeker JD. Onset and tempo of sexual maturation is differentially associated with gestational phthalate exposure between boys and girls in a Mexico City birth cohort. ENVIRONMENT INTERNATIONAL 2020; 136:105469. [PMID: 31931345 PMCID: PMC7024044 DOI: 10.1016/j.envint.2020.105469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 05/03/2023]
Abstract
Phthalates are endocrine disrupting compounds commonly found in consumer products, exposure to which may influence reproductive maturation. Effects from exposure in utero on the onset and progression of sexual development are understudied. We examined longitudinal associations between gestational phthalate exposure and sexual maturation at two points in adolescence (8-14, 9-18 years). Gestational exposure was quantified using the geometric mean of 3 trimester-specific urinary phthalate metabolite measurements. Sexual maturation was assessed using Tanner stages and menarche onset for girls and Tanner stages and testicular volume for boys. Generalized estimating equations for correlated ordinal multinomial responses were used to model relationships between phthalates and odds of transitioning to the next Tanner stage, while generalized additive (GA) mixed models were used to assess the odds of menarche. All models were adjusted for child age (centered around the mean), BMI z-score, change in BMI between visits, time (years) between visits (ΔT), and interactions between ΔT and mean-centered child age and the natural log of exposure metabolite concentration. Among girls, a doubling of gestational MBzP concentrations was associated with increased odds of being at a higher Tanner stage for breast development at 8-14 years (OR = 4.62; 95% CI: 1.38, 15.5), but with slower progression of breast development over the follow-up period (OR = 0.65 per year; 95% CI: 0.46, 0.92) after adjustment for child age and BMI z-score. Similar results were found for ∑DEHP levels and breast development. In boys, a doubling of gestational MBP concentrations was associated with lower odds of being at a higher Tanner stage for pubic hair growth at 8-14 years (OR = 0.37; 95% CI: 0.14, 0.95) but with faster progression (OR: 1.28; 95% CI: 0.97, 1.69). These results indicate that gestational phthalate exposures may impact the onset and progression of sexual development, and that these relationships differ between boys and girls.
Collapse
Affiliation(s)
- Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico; Mexican Council of Science and Technology, Mexico City, Mexico
| | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Libni Torres-Olascoaga
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
59
|
Li K, Liszka M, Zhou C, Brehm E, Flaws JA, Nowak RA. Prenatal exposure to a phthalate mixture leads to multigenerational and transgenerational effects on uterine morphology and function in mice. Reprod Toxicol 2020; 93:178-190. [PMID: 32126281 DOI: 10.1016/j.reprotox.2020.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Phthalates are commonly used plasticizers and additives that are found in plastic containers, children's toys and medical equipment. Phthalates are classified as endocrine-disrupting chemicals and exposure to phthalates has been associated with several human health risks including reproductive defects. Most studies focus on a single phthalate; however, humans are exposed to a mixture of phthalates daily. We hypothesized that prenatal exposure to an environmentally relevant phthalate mixture would lead to changes in uterine morphology and function in mice in a multi-generational manner. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle or a phthalate mixture (20 μg/kg/day, 200 μg/kg/day, 200 mg/kg/day, and 500 mg/kg/day) from gestational day 10.5 to parturition. The mixture contained 35 % diethyl phthalate, 21 % di-(2-ethylhexyl) phthalate, 15 % dibutyl phthalate, 15 % diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The F1 pups were maintained and mated to produce two more generations (F2 and F3). At the age of 13 months, all females were euthanized and tissue samples were collected in diestrus. Our results showed that exposure to a phthalate mixture caused a decrease in progesterone levels in the treated groups in the F2 generation. The 200 mg/kg/day treatment group showed a decreased and increased luminal epithelial cell proliferation in the F1 and F2 generations respectively. In addition, these mice in the F2 generation had reduced Hand2 expression in the sub-epithelial stroma compared to the controls. A higher incidence of multilayered luminal epithelium and large dilated endometrial glands were observed in the phthalate mixture exposed groups in all generations. The mixture also caused a higher incidence of smooth muscle actin expression and collagen deposition in the endometrium compared to controls. Collectively, our results demonstrate that prenatal exposure to an environmentally relevant phthalate mixture can have adverse effects on female reproductive functions.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Monika Liszka
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States.
| |
Collapse
|
60
|
Meling DD, Warner GR, Szumski JR, Gao L, Gonsioroski AV, Rattan S, Flaws JA. The effects of a phthalate metabolite mixture on antral follicle growth and sex steroid synthesis in mice. Toxicol Appl Pharmacol 2019; 388:114875. [PMID: 31884101 DOI: 10.1016/j.taap.2019.114875] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
Phthalates are used as solvents and plasticizers in a wide variety of consumer products. Most people are exposed to phthalates as parent compounds through ingestion, inhalation, and dermal contact. However, these parent compounds are quickly metabolized to more active compounds in several tissues. Although studies indicate that phthalate metabolites reach the ovary, little is known about whether they are ovarian toxicants. Thus, this study tested the hypothesis that phthalate metabolites influence the expression of genes involved in sex steroid synthesis, cell cycle regulation, cell death, oxidative stress, and key receptors, as well as production of sex steroid hormones by mouse antral follicles. The selected metabolite mixture consisted of 36.7% monoethyl phthalate (MEP), 19.4% mono(2-ethylhexyl) phthalate (MEHP), 15.3% monobutyl phthalate (MBP), 10.2% monoisobutyl phthalate (MiBP), 10.2% monoisononyl phthalate (MiNP), and 8.2% monobenzyl phthalate (MBzP). Antral follicles from adult CD-1 mice were cultured for 96 h with vehicle control (DMSO) or metabolite mixture (0.065-325 μg/mL). Growth of follicles in culture was monitored every 24 h. Total RNA was isolated after 24 and 96 h and used for gene expression analysis. Media were collected and subjected to hormone analysis. Exposure to the phthalate mixture inhibited follicle growth, decreased expression of steroidogenic enzymes, and altered the levels of sex steroids relative to control. The mixture, primarily at the two highest doses, also altered expression of cell cycle regulators, apoptotic factors, oxidative stress genes, and some receptors. Collectively, these data suggest that mixtures of phthalate metabolites can directly impact follicle health.
Collapse
Affiliation(s)
- Daryl D Meling
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Jason R Szumski
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Andressa V Gonsioroski
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA.
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Ave., Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL 61801, USA.
| |
Collapse
|
61
|
Strakovsky RS, Schantz SL. Using Experimental Models to Assess Effects of Bisphenol A (BPA) and Phthalates on the Placenta: Challenges and Perspectives. Toxicol Sci 2019; 166:250-268. [PMID: 30203063 DOI: 10.1093/toxsci/kfy224] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The placenta is critical for all aspects of fetal development. Bisphenol A (BPA) and phthalates are endocrine disruptors with ubiquitous exposure in pregnant women-their effects on the placenta is an area of growing research interest. Therefore, our objectives were to (1) summarize research related to the effects BPA or phthalates on placental outcomes in animal and cell models, and (2) evaluate the challenges for using such models to study the impacts of these chemicals on placental endpoints. Overall, studies in cells and animal models suggest that BPA and phthalates impact placental hormones, some epigenetic endpoints, increase inflammation and oxidative stress, and decrease cell viability and nutrient transfer. However, few animal or cell studies have assessed these outcomes at concentrations relevant to humans. Furthermore, it is unclear whether effects of BPA/phthalates on the placenta in animal models mediate fetal outcomes, as most studies have dosed after the earliest stages of placental and fetal development. It is also unclear whether effects of these chemicals are sex-specific, as few studies have considered placental sex. Finally, while there is substantial evidence for effects of mono-(2-ethylhexyl) phthalate (the major metabolite of di-(2-ethylhexyl) phthalate), on placental endpoints in cells, little is currently known about effects of other phthalates to which pregnant women are exposed. Moving forward, these limitations will need to be addressed to help us understand the precise mechanisms of action of these chemicals within the placenta, and how these reported perturbations impact fetal health.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48823
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology.,Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2347 Beckman Institute, Urbana, Illinois 61801
| |
Collapse
|
62
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
63
|
Neier K, Cheatham D, Bedrosian LD, Gregg BE, Song PXK, Dolinoy DC. Longitudinal Metabolic Impacts of Perinatal Exposure to Phthalates and Phthalate Mixtures in Mice. Endocrinology 2019; 160:1613-1630. [PMID: 31125050 PMCID: PMC6589074 DOI: 10.1210/en.2019-00287] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Developmental exposures to phthalates are suspected to contribute to risk of metabolic syndrome. However, findings from human studies are inconsistent, and long-term metabolic impacts of early-life phthalate and phthalate mixture exposures are not fully understood. Furthermore, most animal studies investigating metabolic impacts of developmental phthalate exposures have focused on diethylhexyl phthalate (DEHP), whereas newer phthalates, such as diisononyl phthalate (DINP), are understudied. We used a longitudinal mouse model to evaluate long-term metabolic impacts of perinatal exposures to three individual phthalates, DEHP, DINP, and dibutyl phthalate (DBP), as well as two mixtures (DEHP+DINP and DEHP+DINP+DBP). Phthalates were administered to pregnant and lactating females through phytoestrogen-free chow at the following exposure levels: 25 mg of DEHP/kg of chow, 25 mg of DBP/kg of chow, and 75 mg of DINP/kg of chow. One male and female per litter (n = 9 to 13 per sex per group) were weaned onto control chow and followed until 10 months of age. They underwent metabolic phenotyping at 2 and 8 months, and adipokines were measured in plasma collected at 10 months. Longitudinally, females perinatally exposed to DEHP only had increased body fat percentage and decreased lean mass percentage, whereas females perinatally exposed to DINP only had impaired glucose tolerance. Perinatal phthalate exposures also modified the relationship between body fat percentage and plasma adipokine levels at 10 months in females. Phthalate-exposed males did not exhibit statistically significant differences in the measured longitudinal metabolic outcomes. Surprisingly, perinatal phthalate mixture exposures were statistically significantly associated with few metabolic effects and were not associated with larger effects than single exposures, revealing complexities in metabolic effects of developmental phthalate mixture exposures.
Collapse
Affiliation(s)
- Kari Neier
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Drew Cheatham
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Leah D Bedrosian
- Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Brigid E Gregg
- Pediatric Endocrinology, University of Michigan, Ann Arbor, Michigan
| | - Peter X K Song
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
- Correspondence: Dana C. Dolinoy, PhD, Environmental Health Sciences and Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
64
|
Scarano WR, Bedrat A, Alonso-Costa LG, Aquino AM, Fantinatti B, Justulin LA, Barbisan LF, Freire PP, Flaws JA, Bernardo L. Exposure to an environmentally relevant phthalate mixture during prostate development induces microRNA upregulation and transcriptome modulation in rats. Toxicol Sci 2019; 171:84-97. [PMID: 31199487 PMCID: PMC6736208 DOI: 10.1093/toxsci/kfz141] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Environmental exposure to phthalates during intrauterine development might increase susceptibility to neoplasms in reproductive organs such as the prostate. Although studies have suggested an increase in prostatic lesions in adult animals submitted to perinatal exposure to phthalates, the molecular pathways underlying these alterations remain unclear. Genome-wide levels of mRNAs and miRNAs were monitored with RNA-seq to determine if perinatal exposure to a phthalate mixture in pregnant rats is capable of modifying gene expression expression during prostate development of the filial generation. The mixture contains diethyl-phthalate, di-(2-ethylhexyl)-phthalate, dibutyl-phthalate, di-isononyl-phthalate, di-isobutyl-phthalate, and benzylbutyl-phthalate. Pregnant females were divided into 4 groups and orally dosed daily from GD10 to PND21 with corn oil (Control:C) or the phthalate mixture at three doses (20 μg/kg/d:T1; 200 μg/kg/d:T2; 200 mg/kg/d:T3). The phthalate mixture decreased anogenital distance, prostate weight and decreased testosterone level at the lowest exposure dose at PND22. The mixture also increased inflammatory foci and focal hyperplasia incidence at PND120. miR-184 was upregulated in all treated groups in relation to control and miR-141-3p was only upregulated at the lowest dose. In addition, 120 genes were deregulated at the lowest dose with several of these genes related to developmental, differentiation and oncogenesis. The data indicate that phthalate exposure at lower doses can cause greater gene expression modulation as well as other downstream phenotypes than exposure at higher doses. A significant fraction of the downregulated genes were predicted to be targets of miR-141-3p and miR-184, both of which were induced at the lower exposure doses.
Collapse
Affiliation(s)
- Wellerson R Scarano
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil.,Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| | - Amina Bedrat
- Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| | - Luiz G Alonso-Costa
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Ariana M Aquino
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Bruno Fantinatti
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Luis A Justulin
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Luis F Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Paula P Freire
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL
| | - Lemos Bernardo
- Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| |
Collapse
|
65
|
Warner GR, Li Z, Houde ML, Atkinson CE, Meling DD, Chiang C, Flaws JA. Ovarian Metabolism of an Environmentally Relevant Phthalate Mixture. Toxicol Sci 2019; 169:246-259. [PMID: 30768133 PMCID: PMC6484896 DOI: 10.1093/toxsci/kfz047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phthalates are synthetic chemicals with widespread human exposure due to their use as additives in consumer products. Phthalate diesters are hydrolyzed in the environment and in the body to monoesters that may be more toxic than the parent compounds. This study tested the hypothesis that adult mouse antral follicles, but not neonatal ovaries, are able to metabolize an environmentally relevant mixture of phthalates. Whole neonatal ovaries and isolated adult antral follicles from CD-1 mice were cultured in media treated with vehicle control or 0.1-10 µg/ml of a mixture composed of 35% diethyl phthalate (DEP), 21% di(2-ethylhexyl) phthalate (DEHP), 15% dibutyl phthalate (DBP), 15% diisononyl phthalate (DiNP), 8% diisobutyl phthalate (DiBP), and 5% benzylbutyl phthalate (BzBP). After 4 days of culture, media were subjected to high-performance liquid chromatography tandem mass spectrometry to measure the amounts of diester phthalates and monoester metabolites. Ovaries and follicles were collected to measure the gene and protein expression of the enzymes required for phthalate metabolism. Monoester metabolites for all phthalates except DiNP were detected in the media for both culture types at most doses. The long-chain phthalates (BzBP, DEHP, and DiNP) were metabolized less than the short-chain phthalates (DEP, DBP, and DiBP) compared with respective controls. Expression of metabolizing enzymes was observed for all treatment groups in both culture types. These data indicate that mouse ovaries are capable of metabolizing low doses of phthalates and suggest that metabolic capacity differs for follicles at different stages of development.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Madeline L Houde
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Cassandra E Atkinson
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
66
|
Barakat R, Seymore T, Lin PCP, Park CJ, Ko CJ. Prenatal exposure to an environmentally relevant phthalate mixture disrupts testicular steroidogenesis in adult male mice. ENVIRONMENTAL RESEARCH 2019; 172:194-201. [PMID: 30802670 PMCID: PMC6511329 DOI: 10.1016/j.envres.2019.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Endocrine disrupting chemicals (EDCs) in the environment are considered to be a contributing factor to the decline in the sperm quality. With growing evidence of the harmful effects of EDCs on the male reproductive system, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects reproductive outcomes and androgen synthesis. In this study, an environmentally relevant composition of phthalates (15% DiNP, 21% DEHP, 36% DEP, 15% DBP, 8% DiBP, and 5% BBzP) that were detected in urine samples of pregnant women in Illinois, United States, was used. Pregnant CD-1 mice (F0) were orally dosed with a vehicle or the phthalate mixtures (20 µg/kg/day, 200 µg/kg/day, 200 mg/kg/day, or 500 mg/kg/day) from gestational day 10.5 to the day of birth. Then, the indices of the reproductive function of the F1 males born to these dams were assessed. Those male mice prenatally exposed to the phthalate mixture had smaller gonads, prostates and seminal vesicles, especially in the 20 µg/kg/day and 500 mg/kg/day phthalate mixture groups, compared to the controls. Importantly, at the age of 12 months, those prenatally exposed mice had significantly lower serum testosterone concentrations accompanied by the decreased mRNA expression of testicular steroidogenic genes (StAR, Cyp11, and Cyp17) and impaired spermatogenesis. Taken together, this study found that prenatal exposure to environmentally relevant doses of a phthalate mixture caused a life-long impact on the reproduction in male mice.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, Egypt
| | - Talia Seymore
- Pennsylvania State University, University Park, PA, United States
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
67
|
Rattan S, Brehm E, Gao L, Flaws JA. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol Sci 2019; 163:420-429. [PMID: 29471507 DOI: 10.1093/toxsci/kfy042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant and endocrine disrupting chemical, but little is known about its effects on female reproduction. Thus, we tested the hypothesis that prenatal exposure to DEHP accelerates the onset of puberty, disrupts estrous cyclicity, disrupts birth outcomes, and reduces fertility in the F1, F2, and F3 generations of female mice. Pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 µg/kg/day and 500 and 750 mg/kg/day) from gestation day 10.5 until birth. F1 females were mated with untreated males to obtain the F2 generation. F2 females were mated with untreated males to produce the F3 generation. In all generations, the onset of puberty, estrous cyclicity, select birth outcomes, and fertility-related indices were evaluated. In the F1 generation, prenatal DEHP exposure (200 µg/kg/day) accelerated the onset of puberty, it (200 µg and 500 mg/kg/day) disrupted estrous cyclicity, and it (20 and 200 µg/kg/day) decreased fertility-related indices. In the F2 generation, ancestral DEHP exposure (500 mg/kg/day) accelerated the onset of puberty, it (20 and 200 µg/kg/day) disrupted estrous cyclicity, it (20 µg and 500 mg/kg/day) increased litter size, and it (500 mg/kg/day) decreased fertility-related indices. In the F3 generation, ancestral DEHP exposure (20, 200 µg, and 500 mg/kg/day) accelerated the onset of puberty, it (20 µg/kg/day) disrupted estrous cyclicity, and it (750 mg/kg/day) decreased female pup anogenital index. Collectively, these data indicate that prenatal DEHP exposure causes female reproductive problems in a multigenerational and transgenerational manner.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| |
Collapse
|
68
|
Repouskou A, Panagiotidou E, Panagopoulou L, Bisting PL, Tuck AR, Sjödin MOD, Lindberg J, Bozas E, Rüegg J, Gennings C, Bornehag CG, Damdimopoulou P, Stamatakis A, Kitraki E. Gestational exposure to an epidemiologically defined mixture of phthalates leads to gonadal dysfunction in mouse offspring of both sexes. Sci Rep 2019; 9:6424. [PMID: 31015488 PMCID: PMC6478857 DOI: 10.1038/s41598-019-42377-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/29/2019] [Indexed: 11/17/2022] Open
Abstract
The increasing concern for the reproductive toxicity of abundantly used phthalates requires reliable tools for exposure risk assessment to mixtures of chemicals, based on real life human exposure and disorder-associated epidemiological evidence. We herein used a mixture of four phthalate monoesters (33% mono-butyl phthalate, 16% mono-benzyl phthalate, 21% mono-ethyl hexyl phthalate, and 30% mono-isononyl phthalate), detected in 1st trimester urine of 194 pregnant women and identified as bad actors for a shorter anogenital distance (AGD) in their baby boys. Mice were treated with 0, 0.26, 2.6 and 13 mg/kg/d of the mixture, corresponding to 0x, 10x, 100x, 500x levels detected in the pregnant women. Adverse outcomes detected in the reproductive system of the offspring in pre-puberty and adulthood included reduced AGD index and gonadal weight, changes in gonadal histology and altered expression of key regulators of gonadal growth and steroidogenesis. Most aberrations were apparent in both sexes, though more pronounced in males, and exhibited a non-monotonic pattern. The phthalate mixture directly affected expression of steroidogenesis as demonstrated in a relevant in vitro model. The detected adversities at exposures close to the levels detected in pregnant women, raise concern on the existing safety limits for early-life human exposures and emphasizes the need for re-evaluation of the exposure risk.
Collapse
Affiliation(s)
- Anastasia Repouskou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emily Panagiotidou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Lydia Panagopoulou
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Astrud R Tuck
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Marcus O D Sjödin
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Johan Lindberg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
| | - Evangelos Bozas
- Pediatric Research laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- IMM -Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Karlstad University, Karlstad, Sweden
| | - Pauliina Damdimopoulou
- Swetox, Karolinska Institutet, Unit of Toxicological Sciences, Södertälje, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Antonios Stamatakis
- Biology-Biochemistry laboratory, Faculty of Nursing, School of Health Sciences, NKUA, Athens, Greece
| | - Efthymia Kitraki
- Laboratory of Basic Sciences, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
69
|
Shi M, Sekulovski N, MacLean JA, Whorton A, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Female Reproductive Functions in Mice. Toxicol Sci 2019; 168:561-571. [PMID: 30629253 DOI: 10.1093/toxsci/kfz014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study was performed to examine whether prenatal exposure to bisphenol (BP) A analogues, BPE and BPS, negatively impacts female reproductive functions and follicular development using mice as a model. CD-1 mice were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5, 20, or 50 µg/kg/day) from gestational day 11 (the presence of vaginal plug = 1) to birth. Exposure to BPA, BPE, and BPS accelerated the onset of puberty and exhibited abnormal estrous cyclicity, especially with lower doses. Females exposed to BPA, BPE, and BPS exhibited mating difficulties starting at 6 months of age. By 9 months, mice exhibited various fertility problems including reduced pregnancy rate, parturition issues, and increased dead pups at birth. Furthermore, the levels of serum testosterone were elevated by BPE or BPS exposure at the age of 9 months, whereas estrogen levels were not affected. On the other hand, the dysregulated expression of steroidogenic enzymes was observed in the ovary at 3, 6, or 9 months of age by BPE or BPS exposure. When we examined neonatal ovary on postnatal day 4, BPA, BPE, and BPS exposure inhibited germ cell nest breakdown and reduced number of primary and secondary follicles. These results suggest that prenatal exposure to BPA analogues, BPE, and BPS, have effects on fertility in later reproductive life probably due to the disruption of early folliculogenesis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
70
|
Encarnação T, Pais AACC, Campos MG, Burrows HD. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Sci Prog 2019; 102:3-42. [PMID: 31829784 PMCID: PMC10424550 DOI: 10.1177/0036850419826802] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocrine disrupting chemicals are a group of pollutants that can affect the endocrine system and lead to diseases and dysfunctions across the lifespan of organisms. They are omnipresent. They are in the air we breathe, in the food we eat and in the water we drink. They can be found in our everyday lives through personal care products, household cleaning products, furniture and in children's toys. Every year, hundreds of new chemicals are produced and released onto the market without being tested, and they reach our bodies through everyday products. Permanent exposure to those chemicals may intensify or even become the main cause for the development of diseases such as type 2 diabetes, obesity, cardiovascular diseases and certain types of cancer. In recent years, legislation and regulations have been implemented, which aim to control the release of potentially adverse endocrine disrupting chemicals, often invoking the precautionary principle. The objective of this review is to provide an overview of research on environmental aspects of endocrine disrupting chemicals and their effects on human health, based on evidence from animal and human studies. Emphasis is given to three ubiquitous and persistent groups of chemicals, polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides, and on two non-persistent, but ubiquitous, bisphenol A and phthalates. Some selected historical cases are also presented and successful cases of regulation and legislation described. These led to a decrease in exposure and consequent minimization of the effects of these compounds. Recommendations from experts on this field, World Health Organization, scientific reports and from the Endocrine Society are included.
Collapse
Affiliation(s)
- Telma Encarnação
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Alberto ACC Pais
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria G Campos
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Hugh D Burrows
- CQC, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
71
|
Park CJ, Barakat R, Ulanov A, Li Z, Lin PC, Chiu K, Zhou S, Perez P, Lee J, Flaws J, Ko CJ. Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products. Reprod Toxicol 2019; 84:114-121. [PMID: 30659930 DOI: 10.1016/j.reprotox.2019.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 01/23/2023]
Abstract
Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha, 13518, Egypt
| | - Alexander Ulanov
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Zhong Li
- Metabolomics Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Karen Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Sherry Zhou
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Pablo Perez
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jungyeon Lee
- TV Chosun Broadcasting, 33, Sejong-daero 21-gil, Jung-gu, Seoul, 04519, Republic of Korea
| | - Jodi Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
72
|
Moody L, Kougias D, Jung PM, Digan I, Hong A, Gorski A, Chen H, Juraska J, Pan YX. Perinatal phthalate and high-fat diet exposure induce sex-specific changes in adipocyte size and DNA methylation. J Nutr Biochem 2019; 65:15-25. [PMID: 30599393 DOI: 10.1016/j.jnutbio.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022]
Abstract
Environmental factors such as diet and endocrine-disrupting chemicals have individually been shown to mediate metabolic function. However, the underlying mechanism by which the combination disrupts adipocyte morphology and fat storage remains unknown. The current study evaluated early-life programming by diet and phthalate exposure. During gestation and lactation, pregnant Long-Evans hooded rat dams were fed either a control (C) or high-fat (HF) diet and were orally administered one of three phthalate dosages (0, 200 or 1000 μg/kg/day), yielding six groups of offspring: C-0, C-200, C-1000, HF-0, HF-200 and HF-1000. On postnatal day (PND) 90, gonadal fat pads were collected and analyzed for histology, gene expression and DNA methylation. Differences in body weight were observed only in males. Hematoxylin and eosin staining revealed larger adipocyte size in HF-0 vs. C-0 females. Exposure to 200 or 1000 μg/kg/day phthalates modulated diet-induced changes in adipose morphology. Compared to C-0 females, HF-0 females also had higher expression of the adipogenesis gene Wnt receptor, frizzled 1 (Fzd1) and the triglyceride cleaving enzyme lipoprotein lipase (Lpl). These increases in gene expression were accompanied by lower DNA methylation surrounding the transcription start sites of the two genes. Diet-driven effects were observed in unexposed females but not in phthalate-treated rats. Results suggest a sex-specific association between perinatal HF diet and body weight, adipocyte size and DNA methylation. Perinatal phthalate exposure appears to produce a phenotype that more closely resembles HF-fed animals.
Collapse
Affiliation(s)
| | | | - Paul M Jung
- Department of Food Science and Human Nutrition.
| | | | - Aaron Hong
- School of Molecular and Cellular Biology.
| | | | - Hong Chen
- Division of Nutritional Sciences; Department of Food Science and Human Nutrition.
| | | | - Yuan-Xiang Pan
- Division of Nutritional Sciences; Department of Food Science and Human Nutrition.
| |
Collapse
|
73
|
Arbuckle TE, Agarwal A, MacPherson SH, Fraser WD, Sathyanarayana S, Ramsay T, Dodds L, Muckle G, Fisher M, Foster W, Walker M, Monnier P. Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: The MIREC study. ENVIRONMENT INTERNATIONAL 2018; 120:572-583. [PMID: 30195175 DOI: 10.1016/j.envint.2018.08.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Anogenital distance (AGD) and the second to fourth finger (2D:4D) digit ratio may be early markers of in utero androgen exposure for the infant. Phthalates and phenols have been identified as endocrine disrupting chemicals. OBJECTIVES To study the association between prenatal exposure to phthalates, bisphenol A (BPA) and triclosan (TCS) and AGD and the 2D:4D digit ratios. METHODS Single spot urine samples were collected in the first trimester from the MIREC Study and analyzed for phthalates and phenols. Anogenital distance (n = 394) at birth and 2D:4D digit ratios (n = 420) at 6 months were measured in male and female infants. Associations between maternal concentrations of phenols and phthalate metabolites and these outcomes were estimated using multiple linear regression models. RESULTS In females, the anoclitoris distance (ACD) was negatively associated with mono-benzyl phthalate (MBzP) (β = -1.24; 95% CI -1.91, -0.57) and positively associated with mono-ethyl phthalate (MEP) (β = 0.65; 95% CI 0.12, 1.18) (masculinizing). In males, anopenile distance (APD) was positively associated with mono-n-butyl phthalate (MnBP) (β = 1.17; 95% CI 0.02, 2.32) and the molar sum of low molecular weight phthalates (ΣLMW). Female 2D:4D of the right hand was positively associated with MnBP and negatively with total BPA (masculinizing). CONCLUSIONS Significant associations were only observed for the long AGD metrics. Positive associations were observed between MnBP or LMW phthalates and APD in males. In females, prenatal MEP was associated with a masculinizing effect on ACD, while MBzP was associated with a feminizing effect. No significant associations were observed between prenatal phenols and AGD. Given the paucity of research on digit ratios and prenatal chemical exposures, it is difficult to say whether this metric will be a useful marker of prenatal androgen or anti-androgen exposure. Given the large number of associations examined, the statistical associations observed may have been due to Type 1 error. The inconsistencies in results between studies suggest that this issue is yet to be resolved.
Collapse
Affiliation(s)
- Tye E Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.
| | - Amisha Agarwal
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada; Clinical Research Unit, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Susan H MacPherson
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - William D Fraser
- Department of Obstetrics and Gynecology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Sathyanarayana
- University of Washington, Department of Pediatrics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Tim Ramsay
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Linda Dodds
- Perinatal Epidemiology Research Unit, Dalhousie University, Halifax, NS, Canada
| | - Gina Muckle
- School of Psychology, Laval University, Quebec CHU Research Center, Quebec City, QC, Canada
| | - Mandy Fisher
- Population Studies Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Warren Foster
- Department of Obstetrics & Gynecology, School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Mark Walker
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, ON, Canada
| | - Patricia Monnier
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada
| |
Collapse
|
74
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
75
|
Patiño-García D, Cruz-Fernandes L, Buñay J, Palomino J, Moreno RD. Reproductive Alterations in Chronically Exposed Female Mice to Environmentally Relevant Doses of a Mixture of Phthalates and Alkylphenols. Endocrinology 2018; 159:1050-1061. [PMID: 29300862 DOI: 10.1210/en.2017-00614] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that modify hormone biosynthesis, causing adverse effects to human health. Among them, phthalates and alkylphenols are important due to their wide use in plastics, detergents, personal care products, cosmetics, and food packaging. However, their conjoint effects over reproductive female health have not been addressed. The aim of this work was to test the effect of chronically exposed female mice to a mixture of three phthalates [bis (2-ethylhexyl), dibutyl, and benzyl butyl] and two alkylphenols (4-nonylphenol and 4-tert-octylphenol) from conception to adulthood at environmentally relevant doses. These EDCs were administered in two doses: one below the minimal risk dose to cause adverse effects on human development and reproduction [1 mg/kg body weight (BW)/d of the total mixture] and the other one based on the reference value close to occupational exposure in humans (10 mg/kg BW/d of the total mixture). Our results show that both doses had similar effects regarding the uterus and ovary relative weight, estrous cyclicity, serum levels of progesterone and 17β-estradiol, and expression of key elements in the steroidogenesis pathway (acute steroidogenic regulatory protein and CYP19A1). However, only the 1-mg/kg BW/d dose delayed the onset of puberty and the transition from preantral to antral follicles, whereas the 10-mg/kg BW/d dose decreased the number of antral follicles and gonadotropin receptor expression. In addition, we observed changes in several fertility parameters in exposed females and in their progeny (F2 generation). In conclusion, our results indicate that chronic exposure to a complex EDC mixture, at environmentally relevant doses, modifies reproductive parameters in female mice.
Collapse
Affiliation(s)
- Daniel Patiño-García
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonor Cruz-Fernandes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Buñay
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Palomino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
76
|
Brehm E, Rattan S, Gao L, Flaws JA. Prenatal Exposure to Di(2-Ethylhexyl) Phthalate Causes Long-Term Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2018; 159:795-809. [PMID: 29228129 PMCID: PMC5774227 DOI: 10.1210/en.2017-03004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 11/19/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer in many consumer products. Although DEHP is a known endocrine disruptor, little is known about the effects of DEHP exposure on female reproduction. Thus, this study tested the hypothesis that prenatal DEHP exposure affects follicle numbers, estrous cyclicity, and hormone levels in multiple generations of mice. Pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 µg/kg/d and 500 and 750 mg/kg/d) from gestational day 11 until birth. The F1 females were mated with untreated males to create the F2 generation, and the F2 females were mated with untreated males to create the F3 generation. At 1 year, ovaries, hormones, and estrous cycles were analyzed in each generation. Prenatal DEHP exposure altered estrous cyclicity (750 mg/kg/d), increased the presence of ovarian cysts (750 mg/kg/d), and decreased total follicle numbers (750 mg/kg/d) in the F1 generation. It also decreased anogenital distance (200 µg/kg/d) and altered follicle numbers (200 µg/kg/d and 500 mg/kg/d) in the F2 generation, and it altered estrous cyclicity (20 and 200 µg/kg/d and 500 and 750 mg/kg/d) and decreased folliculogenesis (200 µg/kg/d and 500 mg/kg/d) in the F3 generation. Further, prenatal DEHP increased estradiol levels (F1 and F3), decreased testosterone levels (F1, F2, and F3), decreased progesterone levels (F2), altered gonadotropin hormone levels (F1 and F3), and decreased inhibin B levels (F1 and F3). Collectively, these data show that prenatal exposure to DEHP has multigenerational and transgenerational effects on female reproduction and it may accelerate reproductive aging.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Saniya Rattan
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| |
Collapse
|
77
|
Pradhan A, Olsson PE, Jass J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. CHEMOSPHERE 2018; 190:375-382. [PMID: 29020644 DOI: 10.1016/j.chemosphere.2017.09.123] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2023]
Abstract
The widespread use of phthalates is of major concern as they have adverse effects on many different physiological functions, including reproduction, metabolism and cell differentiation. The aim of this study was to compare the toxicity of the widely-used di (2-ethydlhexyl) phthalate (DEHP) with its substitute, diethyl phthalate (DEP). We analyzed the toxicity of these two phthalates using Caenorhabditis elegans as a model system. Gene expression analysis following exposure during the L1 to young adult stage showed that DEHP and DEP alter the expression of genes involved in lipid metabolism and stress response. Genes associated with lipid metabolism, including fasn-1, pod-2, fat-5, acs-6 and sbp-1, and vitellogenin were upregulated. Among the stress response genes, ced-1 wah-1, daf-21 and gst-4 were upregulated, while ctl-1, cdf-2 and the heat shock proteins (hsp-16.1, hsp-16.48 and sip-1) were downregulated. Lipid staining revealed that DEHP significantly increased lipid content following 1 μM exposure, however, DEP required 10 μM exposure to elicit an effect. Both DEHP and DEP reduced the fecundity at 1 μM concentration. Lifespan analysis indicated that DEHP and DEP reduced the average lifespan from 14 days in unexposed worms to 13 and 12 days, respectively. Expression of lifespan associated genes showed a correlation to shortened lifespan in the exposed groups. As reported previously, our data also indicates that the banned DEHP is toxic to C. elegans, however its substitute DEP has not been previously tested in this model organism and our data revealed that DEP is equally potent as DEHP in regulating C. elegans physiological functions.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| | - Per-Erik Olsson
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jana Jass
- Biology, the Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
78
|
Craig ZR, Ziv-Gal A. Pretty Good or Pretty Bad? The Ovary and Chemicals in Personal Care Products. Toxicol Sci 2017; 162:349-360. [DOI: 10.1093/toxsci/kfx285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Zelieann R Craig
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Ayelet Ziv-Gal
- College of Health/School of Health Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
79
|
Hwang YH, Son YJ, Paik MJ, Yee ST. Effects of diisononyl phthalate on osteopenia in intact mice. Toxicol Appl Pharmacol 2017; 334:120-128. [PMID: 28893586 DOI: 10.1016/j.taap.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/05/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
Osteopenia is characterized by bone loss and deterioration of trabecular bone, which leads to osteoporotic fractures. This disease is highly prevalent in industrialized areas and is associated with exposure to endocrine disrupting chemicals (EDCs). Diisononyl phthalate (DINP) is one of these EDCs and is mainly used as a plasticizer in flexible polyvinyl chloride (PVC) products. Although it is well known that exposure to DINP is harmful to humans, no studies have been reported concerning its contribution to osteopenia. Therefore, in this study, we injected DINP (2, 20, and 200mg/kg) into C3H/HeN mice for 6weeks and found that the uterus weight, bone (femur and tibia) weight, and bone length of the DINP-exposed mice were reduced compared to those of the SHAM group. On the other hand, body weight, the serum alkaline phosphatase (ALP) and inorganic phosphorus (IP) levels in the DINP treated mice were increased compared with those of the SHAM group. The tartrate-resistant acid phosphatase (TRAP) activity (bone resorption marker) was increased and the bone alkaline phosphatase (BALP) activity was lowered by the treatment with DINP as compared with the SHAM group. Furthermore, the microarchitecture of the femur and tibia in the intact mice was destroyed by the DINP injection. The tissue volume (TV), bone volume (BV), BV/TV, bone surface (BS), BS/TV, trabecular thickness (Tb.Th), and trabecular number (Tb.N) were reduced and the trabecular pattern factor (Tb.Pf), structure model index (SMI), and trabecular separation (Tb.Sp) were increased by the DINP injection. The bone mineral density (BMD) of the femur and tibia was lower in the DINP group than in the SHAM group. These results indicate that DINP contributes to an increased risk of osteopenia via destruction of the microarchitecture and enhancement of osteoclast activity.
Collapse
Affiliation(s)
- Yun-Ho Hwang
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, 540-950, Republic of Korea
| | - Young-Jin Son
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, 540-950, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, 540-950, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, 540-950, Republic of Korea; Suncheon Research Center for Natural Medicines, Suncheon, Republic of Korea.
| |
Collapse
|
80
|
Adir M, Salmon-Divon M, Combelles CMH, Mansur A, Cohen Y, Machtinger R. In Vitro Exposure of Human Luteinized Mural Granulosa Cells to Dibutyl Phthalate Affects Global Gene Expression. Toxicol Sci 2017; 160:180-188. [DOI: 10.1093/toxsci/kfx170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
81
|
Zhou C, Gao L, Flaws JA. Exposure to an Environmentally Relevant Phthalate Mixture Causes Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2017; 158:1739-1754. [PMID: 28368545 PMCID: PMC5460945 DOI: 10.1210/en.2017-00100] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/17/2017] [Indexed: 02/08/2023]
Abstract
Phthalates are used in consumer products and are known endocrine-disrupting chemicals. However, limited information is available on the effects of phthalate mixtures on female reproduction. Previously, we developed a phthalate mixture made of 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% di-isononyl phthalate, 8% di-isobutyl phthalate, and 5% benzylbutyl phthalate that mimics human exposure. We tested the effects of prenatal exposure to this mixture on reproductive outcomes in first-filial-generation (F1) female mice and found that it impaired reproductive outcomes. However, the impact of this exposure on second-filial-generation (F2) and third-filial-generation (F3) females was unknown. Thus, we hypothesized that prenatal exposure to the phthalate mixture induces multigenerational and transgenerational effects on female reproduction. Pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 µg/kg/d, 200 and 500 mg/kg/d) daily from gestational day 10 to birth. Adult F1 females born to these dams were used to generate the F2 generation and adult F2 females born to F1 females were used to generate the F3 generation. F2 and F3 females were subjected to tissue collections and fertility tests. Prenatal phthalate mixture exposure increased uterine weight, anogenital distance, and body weight; induced cystic ovaries; and caused fertility complications in the F2 generation. It also increased uterine weight, decreased anogenital distance, and caused fertility complications in the F3 generation. These data suggest that prenatal exposure to the phthalate mixture induces multigenerational and transgenerational effects on female reproduction.
Collapse
Affiliation(s)
- Changqing Zhou
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| |
Collapse
|