51
|
Specific PP2A Catalytic Subunits Are a Prerequisite for Positive Growth Effects in Arabidopsis Co-Cultivated with Azospirillum brasilense and Pseudomonas simiae. PLANTS 2020; 10:plants10010066. [PMID: 33396893 PMCID: PMC7823443 DOI: 10.3390/plants10010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR Azospirillum brasilense (wild type strain Sp245 and auxin deficient strain FAJ0009) and Pseudomonas simiae (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants. These plants had mutations in the PP2A catalytic subunits (C), and the PP2A activity-modulating genes LEUCINE CARBOXYL METHYL TRANSFERASE 1 (LCMT1) and PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (PTPA). When exposed to the three PGPR, WT and all mutant Arabidopsis revealed the typical phenotype of PGPR-treated plants with shortened primary root and increased lateral root density. Fresh weight of plants generally increased when the seedlings were exposed to the bacteria strains, with the exception of catalytic subunit double mutant c2c5. The positive effect on root and shoot fresh weight was especially pronounced in Arabidopsis mutants with low PP2A activity. Comparison of different mutants indicated a significant role of the PP2A catalytic subunits C2 and C5 for a positive response to PGPR.
Collapse
|
52
|
Li F, Kozono D, Deraska P, Branigan T, Dunn C, Zheng XF, Parmar K, Nguyen H, DeCaprio J, Shapiro GI, Chowdhury D, D'Andrea AD. CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Mol Cell 2020; 80:410-422.e6. [PMID: 33108758 DOI: 10.1016/j.molcel.2020.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
While effective anti-cancer drugs targeting the CHK1 kinase are advancing in the clinic, drug resistance is rapidly emerging. Here, we demonstrate that CRISPR-mediated knockout of the little-known gene FAM122A/PABIR1 confers cellular resistance to CHK1 inhibitors (CHK1is) and cross-resistance to ATR inhibitors. Knockout of FAM122A results in activation of PP2A-B55α, a phosphatase that dephosphorylates the WEE1 protein and rescues WEE1 from ubiquitin-mediated degradation. The resulting increase in WEE1 protein expression reduces replication stress, activates the G2/M checkpoint, and confers cellular resistance to CHK1is. Interestingly, in tumor cells with oncogene-driven replication stress, CHK1 can directly phosphorylate FAM122A, leading to activation of the PP2A-B55α phosphatase and increased WEE1 expression. A combination of a CHK1i plus a WEE1 inhibitor can overcome CHK1i resistance of these tumor cells, thereby enhancing anti-cancer activity. The FAM122A expression level in a tumor cell can serve as a useful biomarker for predicting CHK1i sensitivity or resistance.
Collapse
Affiliation(s)
- Feng Li
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter Deraska
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Timothy Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Connor Dunn
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xiao-Feng Zheng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 01115; Early Drug Development Center, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
53
|
Wang L, Bharti, Kumar R, Pavlov PF, Winblad B. Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. Eur J Med Chem 2020; 209:112915. [PMID: 33139110 DOI: 10.1016/j.ejmech.2020.112915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by presence of extracellular amyloid plaques and intracellular neurofibrillary tangles composed of tau protein. Currently there are close to 50 million people living with dementia and this figure is expected to increase to 75 million by 2030 putting a huge burden on the economy due to the health care cost. Considering the effects on quality of life of patients and the increasing burden on the economy, there is an enormous need of new disease modifying therapies to tackle this disease. The current therapies are dominated by only symptomatic treatments including cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers but no disease modifying treatments exist so far. After several failed attempts to develop drugs against amyloidopathy, tau targeting approaches have been in the main focus of drug development against AD. After an overview of the tauopathy in AD, this review summarizes recent findings on the development of small molecules as therapeutics targeting tau modification, aggregation, and degradation, and tau-oriented multi-target directed ligands. Overall, this work aims to provide a comprehensive and critical overview of small molecules which are being explored as a lead candidate for discovering drugs against tauopathy in AD.
Collapse
Affiliation(s)
- Lisha Wang
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rajnish Kumar
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Pavel F Pavlov
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Bengt Winblad
- Dept. of Neuroscience Care and Society, Div. of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden; Memory Clinic, Theme Aging, Karolinska University Hospital, 14186, Huddinge, Sweden.
| |
Collapse
|
54
|
Wu Z, He Q, Zeng B, Zhou H, Zhou S. Juvenile hormone acts through FoxO to promote Cdc2 and Orc5 transcription for polyploidy-dependent vitellogenesis. Development 2020; 147:dev.188813. [PMID: 32907849 DOI: 10.1242/dev.188813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Vitellogenin (Vg) is a prerequisite for egg production and embryonic development after ovipositioning in oviparous animals. In many insects, juvenile hormone (JH) promotes fat body cell polyploidization for the massive Vg synthesis required for the maturation of multiple oocytes, but the underlying mechanisms remain poorly understood. Using the migratory locust Locusta migratoria as a model system, we report here that JH induces the dephosphorylation of Forkhead box O transcription factor (FoxO) through a signaling cascade including leucine carboxyl methyltransferase 1 (LCMT1) and protein phosphatase 2A (PP2A). JH promotes PP2A activity via LCMT1-mediated methylation, consequently triggering FoxO dephosphorylation. Dephosphorylated FoxO binds to the upstream region of two endocycle-related genes, cell-division-cycle 2 (Cdc2) and origin-recognition-complex subunit 5 (Orc5), and activates their transcription. Depletion of FoxO, Cdc2 or Orc5 results in blocked polyploidization of fat body cells, accompanied by markedly reduced Vg expression, impaired oocyte maturation and arrested ovarian development. The results suggest that JH acts via LCMT1-PP2A-FoxO to regulate Cdc2 and Orc5 expression, and to enhance ploidy of fat body cells in preparation for the large-scale Vg synthesis required for synchronous maturation of multiple eggs.
Collapse
Affiliation(s)
- Zhongxia Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiongjie He
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baojuan Zeng
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haodan Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
55
|
AMOTL2 inhibits JUN Thr239 dephosphorylation by binding PPP2R2A to suppress the proliferation in non-small cell lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118858. [PMID: 32950569 DOI: 10.1016/j.bbamcr.2020.118858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/22/2020] [Accepted: 09/13/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphatase 2A (PP2A) complex comprises an extended family of intracellular protein serine/threonine phosphatases, that participate in different signaling transduction pathways. Different functions of PP2As are determined by the variety of regulatory subunits. In this study, CRISPR/Cas9-mediated loss-of-function screen revealed that PPP2R2A downregulation suppressed cell growth in NSCLC cells. AMOTL2 was identified and confirmed as a novel binding partner of PPP2R2A in NSCLC cells by mass spectrometry, CO-IP, GST pull-down and immunofluorescence. Upregulation of AMOTL2 also led to cell proliferation delay in human and mouse lung tumor cells. The proto-oncogene JUN is a key subunit of activator protein-1 (AP-1) transcription factor which plays crucial role in regulating tumorigenesis and its activity is negatively regulated by the phosphorylation at T239. Our results showed that either AMOTL2 upregulation or PPP2R2A downregulation led to great increase in JUN T239 phosphorylation. AMOTL2 bound PPP2R2A in cytoplasm, which reduced nuclear localization of PPP2R2A. In conclusion, AMOTL2 and PPP2R2A act respectively as negative and positive regulator of cell growth in NSCLC cells and function in the AMOTL2-PPP2R2A-JUN axis, in which AMOTL2 inhibits the entry of PPP2R2A into the nucleus to dephosphorylate JUN at T239.
Collapse
|
56
|
Zhong Y, Tian F, Ma H, Wang H, Yang W, Liu Z, Liao A. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci 2020; 260:118077. [PMID: 32810509 DOI: 10.1016/j.lfs.2020.118077] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
AIMS Multiple myeloma (MM) is the second hematological plasma cell malignany and sensitive to fingolimod (FTY720), a novel immunosuppressant. Previous study shows FTY720-induced apoptosis and autophagy can cause cell death in MM cells, however, the high death rate cannot fully be explained. The study aims to investigate further mechanism of how FTY720 kills MM cells. MATERIALS AND METHODS Experiments are performed on 25 human primary cell samples and two MM cell lines by flow cytometry, fluorescence microscopy, and transmission electron microscopy. Expressions of relative factors are tested by qRT-PCR or western blot. KEY FINDINGS Ferroptosis-specific inhibitors, deferoxamine mesylate (DFOM) and ferropstatin-1 (Fer-1), reverse FTY720-induced cell death in MM cells. Glutathione peroxidase 4 (GPX4) and soluble carrier family 7 member 11 (SLC7A11), key regulators of ferroptosis, are highly expressed in primary MM cells and can be decreased by FTY720 at the mRNA and protein level in MM cells. In addition, FTY720 induces other characteristic changes of ferroptosis. Furthermore, FTY720 can dephosphorylate AMP-activated protein kinase subunit ɑ (AMPKɑ) at the Thr172 site by activating protein phosphatase 2A (PP2A) and reduce the expression of phosphorylated eukaryotic elongation factor 2 (eEF2), finally cause MM cell death. Using LB-100, a PP2A inhibitor, AICAR, an agonist of AMPK, and bafilomycin A1 (Baf-A1), an autophagy inhibitor, we discover that FTY720 induces ferroptosis and autophagy through the PP2A/AMPK pathway, and ferroptosis and autophagy can reinforce each other. SIGNIFICANCE These results provide a new perspective on the treatment of MM.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Tian
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huanxin Ma
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
57
|
Xie F, Li F, Li R, Liu Z, Shi J, Zhang C, Dong N. Inhibition of PP2A enhances the osteogenic differentiation of human aortic valvular interstitial cells via ERK and p38 MAPK pathways. Life Sci 2020; 257:118086. [PMID: 32679147 DOI: 10.1016/j.lfs.2020.118086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
AIMS To investigate the role of PP2A in calcified aortic valve disease (CAVD). MATERIALS AND METHODS The expressions of PP2A subunits were detected by real-time polymerase chain reaction (RT-PCR) and western blot in aortic valves from patients with CAVD and normal controls, the activities of PP2A were analyzed by commercial assay kit at the same time. Aortic valve calcification of mice was evaluated through histological and echocardiographic analysis. ApoE-/- mice and ApoE-/- mice injected intraperitoneally with PP2A inhibitor LB100 were fed a high-cholesterol diet for 24 weeks. Immunofluorescent staining was used to locate the cell-type in which PP2A activity was decreased, the PP2A activity of valvular interstitial cells (VICs) treated with osteogenic induction medium was assessed by western blot and commercial assay kit. After changing the activity of VICs through pharmacologic and genetic intervention, the osteoblast differentiation and mineralization were assessed by western blot and Alizarin Red staining. Finally, the mechanism was clarified by using several specific inhibitors. KEY FINDINGS PP2A activity was decreased both in calcified aortic valves and human VICs under osteogenic induction. The PP2A inhibitor LB100 aggravated the aortic valve calcification of mice. Furthermore, PPP2CA overexpression inhibited osteogenic differentiation of VICs, whereas PPP2CA knockdown promoted the process. Further study revealed that the ERK/p38 MAPKs signaling pathways mediated the osteogenic differentiation of VICs induced by PP2A inactivation. SIGNIFICANCE This study demonstrated that PP2A plays an important role in CAVD pathophysiology, PP2A activation may provide a novel strategy for the pharmacological treatment of CAVD.
Collapse
Affiliation(s)
- Fei Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
58
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
59
|
Stonyte V, Martín R, Segura-Peña D, Sekulić N, Lopez-Aviles S. Requirement of PP2A-B56 Par1 for the Stabilization of the CDK Inhibitor Rum1 and Activation of APC/C Ste9 during Pre-Start G1 in S. pombe. iScience 2020; 23:101063. [PMID: 32361273 PMCID: PMC7195536 DOI: 10.1016/j.isci.2020.101063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022] Open
Abstract
Exit from the cell cycle during the establishment of quiescence and upon cell differentiation requires the sustained inactivation of CDK complexes. Fission yeast cells deprived of nitrogen halt cell cycle progression in pre-Start G1, before becoming quiescent or undergoing sexual differentiation. The CDK inhibitor Rum1 and the APC/C activator Ste9 are fundamental for this arrest, but both are down-regulated by CDK complexes. Here, we show that PP2A-B56Par1 is instrumental for Rum1 stabilization and Ste9 activation. In the absence of PP2A-B56Par1, cells fail to accumulate Rum1, and this results in persistent CDK activity, Ste9 inactivation, retention of the mitotic cyclin Cdc13, and impaired withdrawal from the cell cycle during nitrogen starvation. Importantly, mutation of a putative B56 interacting motif in Rum1 recapitulates these defects. These results underscore the relevance of CDK-counteracting phosphatases in cell differentiation, establishment of the quiescent state, and escape from it in cancer cells. PP2A-B56Par1 is required for cell-cycle arrest and mating upon nitrogen deprivation Loss of Par1 impairs degradation of Cdc13 under nitrogen starvation Absence of Par1 impedes proper dephosphorylation of Ste9 and accumulation of Rum1 Mutation of a Rum1 putative PP2A-B56 SLiM depicts similar defects as the loss Par1
Collapse
Affiliation(s)
- Vilte Stonyte
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ruth Martín
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.
| | - Dario Segura-Peña
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway; Department of Chemistry, University of Oslo, Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
60
|
Rui M, Ng KS, Tang Q, Bu S, Yu F. Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO Rep 2020; 21:e48843. [PMID: 32187821 DOI: 10.15252/embr.201948843] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.
Collapse
Affiliation(s)
- Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Kay Siong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
61
|
Yang C, Bao X, Zhang L, Li Y, Li L, Zhang L. Cornel iridoid glycoside ameliorates cognitive deficits in APP/PS1/tau triple transgenic mice by attenuating amyloid-beta, tau hyperphosphorylation and neurotrophic dysfunction. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:328. [PMID: 32355772 PMCID: PMC7186687 DOI: 10.21037/atm.2020.02.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Targeted proteinopathy is involved in creating pharmacological agents that protect against Alzheimer disease (AD). Cornel iridoid glycoside (CIG) is an effective component derived from Cornus officinalis. The present study aimed to determine the effects of CIG on β-amyloid (Aβ) and tau pathology and the underlying mechanisms in APP/PS1/tau triple transgenic (3×Tg) model mice. Methods We intragastrically administered 16-month-old 3×Tg mice with CIG (100 and 200 mg/kg) daily for two months. Learning and memory abilities were determined using the Morris water maze (MWM) and object recognition tests (ORT). Amyloid plaques and Aβ40/42 and the expression of related proteins in the cerebral cortex and hippocampus of mice was determined by western blotting Results CIG improved learning and memory impairment in 3×Tg model mice, decreased amyloid plaque deposition, Aβ40/42 and the expression of full-length amyloid precursor protein, and increased levels of ADAM-10 (α-secretase), neprilysin (NEP), and insulin degrading enzyme (IDE) in the brains of the model mice. CIG also reduced tau hyperphosphorylation, and elevated phosphorylation level of GSK-3β at Ser9 and methylation of PP2A catalytic subunit C in the model mice. Moreover, CIG increased the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-responsive element binding protein (p-CREB) in the brain of 3×Tg mice. Conclusions CIG ameliorated learning and memory deficit via reducing Aβ content and, tau hyperphosphorylation and increasing neurotrophic factors in the brain of 3×Tg mice. These results suggest that CIG may be beneficial for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xunjie Bao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
62
|
The Role of MYC and PP2A in the Initiation and Progression of Myeloid Leukemias. Cells 2020; 9:cells9030544. [PMID: 32110991 PMCID: PMC7140463 DOI: 10.3390/cells9030544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The MYC transcription factor is one of the best characterized PP2A substrates. Deregulation of the MYC oncogene, along with inactivation of PP2A, are two frequent events in cancer. Both proteins are essential regulators of cell proliferation, apoptosis, and differentiation, and they, directly and indirectly, regulate each other’s activity. Studies in cancer suggest that targeting the MYC/PP2A network is an achievable strategy for the clinic. Here, we focus on and discuss the role of MYC and PP2A in myeloid leukemias.
Collapse
|
63
|
Bye-A-Jee H, Zaru R, Magrane M, Orchard S. Caenorhabditis elegans phosphatase complexes in UniProtKB and Complex Portal. FEBS J 2020; 287:2664-2684. [PMID: 31944606 DOI: 10.1111/febs.15213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Phosphatases play an essential role in the regulation of protein phosphorylation. Less abundant than kinases, many phosphatases are components of one or more macromolecular complexes with different substrate specificities and specific functionalities. The expert scientific curation of phosphatase complexes for the UniProt and Complex Portal databases supports the whole scientific community by collating and organising small- and large-scale experimental data from the scientific literature into context-specific central resources, where the data can be freely accessed and used to further academic and translational research. In this review, we discuss how the diverse biological functions of phosphatase complexes are presented in UniProt and the Complex Portal, and how understanding the biological significance of phosphatase complexes in Caenorhabditis elegans offers insight into the mechanisms of substrate diversity in a variety of cellular and molecular processes.
Collapse
Affiliation(s)
- Hema Bye-A-Jee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | -
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.,SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4, Switzerland.,Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA.,Protein Information Resource, University of Delaware, Newark, DE, USA
| |
Collapse
|
64
|
Frohner IE, Mudrak I, Kronlachner S, Schüchner S, Ogris E. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Sci Signal 2020; 13:13/616/eaax6490. [PMID: 31992581 DOI: 10.1126/scisignal.aax6490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits. The tested antibodies preferentially recognized the nonmethylated form of the enzyme, and they did not coimmunoprecipitate trimeric holoenzymes containing the regulatory subunits B or B', an issue that precludes their use to monitor PP2A holoenzyme activity. Furthermore, some of the antibodies also recognized the phosphatase PP4, demonstrating a lack of specificity for PP2A. Together, these findings suggest that reinterpretation of the data generated by using these reagents is required.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stephanie Kronlachner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
65
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
66
|
Fujimitsu K, Yamano H. PP2A-B56 binds to Apc1 and promotes Cdc20 association with the APC/C ubiquitin ligase in mitosis. EMBO Rep 2020; 21:e48503. [PMID: 31825153 PMCID: PMC6945068 DOI: 10.15252/embr.201948503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Cell cycle progression and genome stability are regulated by a ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C). Cyclin-dependent kinase 1 (Cdk1) has long been implicated in APC/C activation; however, the molecular mechanisms of governing this process in vivo are largely unknown. Recently, a Cdk1-dependent phosphorylation relay within Apc3-Apc1 subunits has been shown to alleviate Apc1-mediated auto-inhibition by which a mitotic APC/C co-activator Cdc20 binds to and activates the APC/C. However, the underlying mechanism for dephosphorylation of Cdc20 and APC/C remains elusive. Here, we show that a disordered loop domain of Apc1 (Apc1-loop500 ) directly binds the B56 regulatory subunit of protein phosphatase 2A (PP2A) and stimulates Cdc20 loading to the APC/C. Using the APC/C reconstitution system in Xenopus egg extracts, we demonstrate that mutations in Apc1-loop500 that abolish B56 binding decrease Cdc20 loading and APC/C-dependent ubiquitylation. Conversely, a non-phosphorylatable mutant Cdc20 can efficiently bind the APC/C even when PP2A-B56 binding is impeded. Furthermore, PP2A-B56 preferentially dephosphorylates Cdc20 over the Apc1 inhibitory domain. These results indicate that Apc1-loop500 plays a role in dephosphorylating Cdc20, promoting APC/C-Cdc20 complex formation in mitosis.
Collapse
Affiliation(s)
- Kazuyuki Fujimitsu
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| | - Hiroyuki Yamano
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| |
Collapse
|
67
|
Kleinberger T. Biology of the adenovirus E4orf4 protein: from virus infection to cancer cell death. FEBS Lett 2019; 594:1891-1917. [DOI: 10.1002/1873-3468.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology the Rappaport Faculty of Medicine Technion –Israel Institute of Technology Haifa Israel
| |
Collapse
|
68
|
Hein AL, Brandquist ND, Ouellette CY, Seshacharyulu P, Enke CA, Ouellette MM, Batra SK, Yan Y. PR55α regulatory subunit of PP2A inhibits the MOB1/LATS cascade and activates YAP in pancreatic cancer cells. Oncogenesis 2019; 8:63. [PMID: 31659153 PMCID: PMC6817822 DOI: 10.1038/s41389-019-0172-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
PP2A holoenzyme complexes are responsible for the majority of Ser/Thr phosphatase activities in human cells. Each PP2A consists of a catalytic subunit (C), a scaffold subunit (A), and a regulatory subunit (B). While the A and C subunits each exists only in two highly conserved isoforms, a large number of B subunits share no homology, which determines PP2A substrate specificity and cellular localization. It is anticipated that different PP2A holoenzymes play distinct roles in cellular signaling networks, whereas PP2A has only generally been defined as a putative tumor suppressor, which is mostly based on the loss-of-function studies using pharmacological or biological inhibitors for the highly conserved A or C subunit of PP2A. Recent studies of specific pathways indicate that some PP2A complexes also possess tumor-promoting functions. We have previously reported an essential role of PR55α, a PP2A regulatory subunit, in the support of oncogenic phenotypes, including in vivo tumorigenicity/metastasis of pancreatic cancer cells. In this report, we have elucidated a novel role of PR55α-regulated PP2A in the activation of YAP oncoprotein, whose function is required for anchorage-independent growth during oncogenesis of solid tumors. Our data show two lines of YAP regulation by PR55α: (1) PR55α inhibits the MOB1-triggered autoactivation of LATS1/2 kinases, the core member of the Hippo pathway that inhibits YAP by inducing its proteasomal degradation and cytoplasmic retention and (2) PR55α directly interacts with and regulates YAP itself. Accordingly, PR55α is essential for YAP-promoted gene transcriptions, as well as for anchorage-independent growth, in which YAP plays a key role. In summary, current findings demonstrate a novel YAP activation mechanism based on the PR55α-regulated PP2A phosphatase.
Collapse
Affiliation(s)
- Ashley L Hein
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nichole D Brandquist
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Caroline Y Ouellette
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Charles A Enke
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
69
|
Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong NJ, Muwonge AN, Azeloglu EU, Zhang W, Das B, He JC, Liu R. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun 2019; 10:4523. [PMID: 31586053 PMCID: PMC6778111 DOI: 10.1038/s41467-019-12433-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arctigenin (ATG) is a major component of Fructus Arctii, a traditional herbal remedy that reduced proteinuria in diabetic patients. However, whether ATG specifically provides renoprotection in DKD is not known. Here we report that ATG administration is sufficient to attenuate proteinuria and podocyte injury in mouse models of diabetes. Transcriptomic analysis of diabetic mouse glomeruli showed that cell adhesion and inflammation are two key pathways affected by ATG treatment, and mass spectrometry analysis identified protein phosphatase 2 A (PP2A) as one of the top ATG-interacting proteins in renal cells. Enhanced PP2A activity by ATG reduces p65 NF-κB-mediated inflammatory response and high glucose-induced migration in cultured podocytes via interaction with Drebrin-1. Importantly, podocyte-specific Pp2a deletion in mice exacerbates DKD injury and abrogates the ATG-mediated renoprotection. Collectively, our results demonstrate a renoprotective mechanism of ATG via PP2A activation and establish PP2A as a potential target for DKD progression.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shumin Yang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA.
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
70
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
71
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
72
|
Yun S, Hu R, Schwaemmle ME, Scherer AN, Zhuang Z, Koleske AJ, Pallas DC, Schwartz MA. Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis. J Clin Invest 2019; 129:4863-4874. [PMID: 31408443 PMCID: PMC6819111 DOI: 10.1172/jci127692] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.
Collapse
Affiliation(s)
- Sanguk Yun
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Rui Hu
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | | | - Alexander N. Scherer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Zhenwu Zhuang
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - David C. Pallas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Martin A. Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, and
- Department of Biomedical Engineering, and
- Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
73
|
Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019; 20:ijms20163914. [PMID: 31408949 PMCID: PMC6720190 DOI: 10.3390/ijms20163914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses are intracellular parasites that require a permissive host cell to express the viral genome and to produce new progeny virus particles. However, not all viral infections are productive and some viruses can induce carcinogenesis. Irrespective of the type of infection (productive or neoplastic), viruses hijack the host cell machinery to permit optimal viral replication or to transform the infected cell into a tumor cell. One mechanism viruses employ to reprogram the host cell is through interference with signaling pathways. Polyomaviruses are naked, double-stranded DNA viruses whose genome encodes the regulatory proteins large T-antigen and small t-antigen, and structural proteins that form the capsid. The large T-antigens and small t-antigens can interfere with several host signaling pathways. In this case, we review the interplay between the large T-antigens and small t-antigens with host signaling pathways and the biological consequences of these interactions.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
74
|
Madera-Salcedo IK, Sánchez-Hernández BE, Svyryd Y, Esquivel-Velázquez M, Rodríguez-Rodríguez N, Trejo-Zambrano MI, García-González HB, Hernández-Molina G, Mutchinick OM, Alcocer-Varela J, Rosetti F, Crispín JC. PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight 2019; 5:126457. [PMID: 31335320 DOI: 10.1172/jci.insight.126457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammation causes target organ damage in patients with systemic autoimmune diseases. The factors that allow this protracted response are poorly understood. We analyzed the transcriptional regulation of PPP2R2B (B55ß), a molecule necessary for the termination of the immune response, in patients with autoimmune diseases. Altered expression of B55ß conditioned resistance to cytokine withdrawal-induced death (CWID) in patients with autoimmune diseases. The impaired upregulation of B55ß was caused by inflammation-driven hypermethylation of specific cytosines located within a regulatory element of PPP2R2B preventing CTCF binding. This phenotype could be induced in healthy T cells by exposure to TNF-α. Our results reveal a gene whose expression is affected by an acquired defect, through an epigenetic mechanism, in the setting of systemic autoimmunity. Because failure to remove activated T cells through CWID could contribute to autoimmune pathology, this mechanism illustrates a vicious cycle through which autoimmune inflammation contributes to its own perpetuation.
Collapse
Affiliation(s)
| | - Beatriz E Sánchez-Hernández
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Yevgeniya Svyryd
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | - Osvaldo M Mutchinick
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | |
Collapse
|
75
|
Miron J, Picard C, Labonté A, Auld D, Breitner J, Poirier J. Association of PPP2R1A with Alzheimer's disease and specific cognitive domains. Neurobiol Aging 2019; 81:234-243. [PMID: 31349112 DOI: 10.1016/j.neurobiolaging.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/20/2023]
Abstract
In an attempt to identify novel genetic variants associated with sporadic Alzheimer's disease (AD), a genome-wide association study was performed on a population isolate from Eastern Canada, referred to as the Québec Founder Population (QFP). In the QFP cohort, the rs10406151 C variant on chromosome 19 is associated with higher AD risk and younger age at AD onset in APOE4- individuals. After surveying the region surrounding this intergenic polymorphism for brain cis-eQTL associations in BRAINEAC, we identified PPP2R1A as the most likely target gene modulated by the rs10406151 C variant. PPP2R1A mRNA and protein levels are elevated in multiple regions from QFP autopsy-confirmed AD brains when compared with age-matched controls. Using an independent cohort of cognitively normal individuals with a parental history of AD, we found that the rs10406151 C variant is significantly associated with lower visuospatial and constructional performances. The association of the rs10406151 C variant with AD risk appears to involve brain PPP2R1A gene expression alterations. However, the exact pathological pathway by which this variant modulates AD remains elusive.
Collapse
Affiliation(s)
- Justin Miron
- Douglas Hospital Research Centre, Montréal, Canada; Centre for the Studies on the Prevention of Alzheimer's Disease, Montréal, Canada; McGill University, Montréal, Canada
| | - Cynthia Picard
- Douglas Hospital Research Centre, Montréal, Canada; Centre for the Studies on the Prevention of Alzheimer's Disease, Montréal, Canada; McGill University, Montréal, Canada
| | - Anne Labonté
- Douglas Hospital Research Centre, Montréal, Canada; Centre for the Studies on the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Daniel Auld
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - John Breitner
- Douglas Hospital Research Centre, Montréal, Canada; Centre for the Studies on the Prevention of Alzheimer's Disease, Montréal, Canada; McGill University, Montréal, Canada
| | - Judes Poirier
- Douglas Hospital Research Centre, Montréal, Canada; Centre for the Studies on the Prevention of Alzheimer's Disease, Montréal, Canada; McGill University, Montréal, Canada.
| |
Collapse
|
76
|
Javadpour P, Dargahi L, Ahmadiani A, Ghasemi R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol Life Sci 2019; 76:2277-2297. [PMID: 30874837 PMCID: PMC11105459 DOI: 10.1007/s00018-019-03063-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has reached the consensus that the balance of phosphorylation state of signaling molecules is a pivotal point in the regulation of cell signaling. Therefore, characterizing elements (kinases-phosphatases) in the phosphorylation balance are at great importance. However, the role of phosphatase enzymes is less investigated than kinase enzymes. PP2A is a member of serine/threonine protein phosphatase that its imbalance has been reported in neurodegenerative diseases. Therefore, we reviewed the superfamily of phosphatases and more specifically PP2A, its regulation, and physiological functions participate in CNS. Thereafter, we discussed the latest findings about PP2A dysregulation in Alzheimer and Parkinson diseases and possible interplay between this phosphatase and insulin signaling pathways. Finally, activating/inhibitory modulators for PP2A activity as well as experimental methods for PP2A study have been reviewed.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
77
|
Taylor SE, O'Connor CM, Wang Z, Shen G, Song H, Leonard D, Sangodkar J, LaVasseur C, Avril S, Waggoner S, Zanotti K, Armstrong AJ, Nagel C, Resnick K, Singh S, Jackson MW, Xu W, Haider S, DiFeo A, Narla G. The Highly Recurrent PP2A Aα-Subunit Mutation P179R Alters Protein Structure and Impairs PP2A Enzyme Function to Promote Endometrial Tumorigenesis. Cancer Res 2019; 79:4242-4257. [PMID: 31142515 DOI: 10.1158/0008-5472.can-19-0218] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022]
Abstract
Somatic mutation of the protein phosphatase 2A (PP2A) Aα-subunit gene PPP2R1A is highly prevalent in high-grade endometrial carcinoma. The structural, molecular, and biological basis by which the most recurrent endometrial carcinoma-specific mutation site P179 facilitates features of endometrial carcinoma malignancy has yet to be fully determined. Here, we used a series of structural, biochemical, and biological approaches to investigate the impact of the P179R missense mutation on PP2A function. Enhanced sampling molecular dynamics simulations showed that arginine-to-proline substitution at the P179 residue changes the protein's stable conformation profile. A crystal structure of the tumor-derived PP2A mutant revealed marked changes in A-subunit conformation. Binding to the PP2A catalytic subunit was significantly impaired, disrupting holoenzyme formation and enzymatic activity. Cancer cells were dependent on PP2A disruption for sustained tumorigenic potential, and restoration of wild-type Aα in a patient-derived P179R-mutant cell line restored enzyme function and significantly attenuated tumorigenesis and metastasis in vivo. Furthermore, small molecule-mediated therapeutic reactivation of PP2A significantly inhibited tumorigenicity in vivo. These outcomes implicate PP2A functional inactivation as a critical component of high-grade endometrial carcinoma disease pathogenesis. Moreover, they highlight PP2A reactivation as a potential therapeutic strategy for patients who harbor P179R PPP2R1A mutations. SIGNIFICANCE: This study characterizes a highly recurrent, disease-specific PP2A PPP2R1A mutation as a driver of endometrial carcinoma and a target for novel therapeutic development.See related commentary by Haines and Huang, p. 4009.
Collapse
Affiliation(s)
- Sarah E Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Guobo Shen
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Haichi Song
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Daniel Leonard
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corinne LaVasseur
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven Waggoner
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kristine Zanotti
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Amy J Armstrong
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Christa Nagel
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio
| | - Kimberly Resnick
- Department of Obstetrics and Gynecology, MetroHealth, Cleveland, Ohio
| | - Sareena Singh
- Department of Obstetrics and Gynecology, Aultman Hospital, Canton, Ohio
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Analisa DiFeo
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
78
|
Lin DW, Chung BP, Huang JW, Wang X, Huang L, Kaiser P. Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion. J Biol Chem 2019; 294:10877-10885. [PMID: 31138654 DOI: 10.1074/jbc.ra119.008422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Work in yeast models has benefitted tremendously from the insertion of epitope or fluorescence tags at the native gene locus to study protein function and behavior under physiological conditions. In contrast, work in mammalian cells largely relies on overexpression of tagged proteins because high-quality antibodies are only available for a fraction of the mammalian proteome. CRISPR/Cas9-mediated genome editing has recently emerged as a powerful genome-modifying tool that can also be exploited to insert various tags and fluorophores at gene loci to study the physiological behavior of proteins in most organisms, including mammals. Here we describe a versatile toolset for rapid tagging of endogenous proteins. The strategy utilizes CRISPR/Cas9 and microhomology-mediated end joining repair for efficient tagging. We provide tools to insert 3×HA, His6FLAG, His6-Biotin-TEV-RGSHis6, mCherry, GFP, and the auxin-inducible degron tag for compound-induced protein depletion. This approach and the developed tools should greatly facilitate functional analysis of proteins in their native environment.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Wang
- Physiology and Biophysics, University of California, Irvine, California 92617
| | - Lan Huang
- Physiology and Biophysics, University of California, Irvine, California 92617
| | | |
Collapse
|
79
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
80
|
Ding Y, Yu A, Tsokos GC, Malek TR. CD25 and Protein Phosphatase 2A Cooperate to Enhance IL-2R Signaling in Human Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:93-104. [PMID: 31085588 DOI: 10.4049/jimmunol.1801570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
Low-dose IL-2 therapy is a direct approach to boost regulatory T cells (Tregs) and promote immune tolerance in autoimmune patients. However, the mechanisms responsible for selective response of Tregs to low-dose IL-2 is not fully understood. In this study we directly assessed the contribution of CD25 and protein phosphatase 2A (PP2A) in promoting IL-2R signaling in Tregs. IL-2-induced tyrosine phosphorylation of STAT5 (pSTAT5) was proportional to CD25 levels on human CD4+ T cells and YT human NK cell line, directly demonstrating that CD25 promotes IL-2R signaling. Overexpression of the PP2A catalytic subunit (PP2Ac) by lentiviral transduction in human Tregs increased the level of IL-2R subunits and promoted tyrosine phosphorylation of Jak3 and STAT5. Interestingly, increased expression of CD25 only partially accounted for this enhanced activation of pSTAT5, indicating that PP2A promotes IL-2R signaling through multiple mechanisms. Consistent with these findings, knockdown of PP2Ac in human Tregs and impaired PP2Ac activity in mouse Tregs significantly reduced IL-2-dependent STAT5 activation. In contrast, overexpression or knockdown of PP2Ac in human T effector cells did not affect IL-2-dependent pSTAT5 activation. Overexpression of PP2Ac in human Tregs also increased the expressions of proteins related to survival, activation, and immunosuppressive function, and upregulated several IL-2-regulated genes. Collectively, these findings suggest that CD25 and PP2A cooperatively enhance the responsiveness of Tregs to IL-2, which provide potential therapeutic targets for low-dose IL-2 therapy.
Collapse
Affiliation(s)
- Ying Ding
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Aixin Yu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| |
Collapse
|
81
|
Crispin JC, Hedrich CM, Suárez-Fueyo A, Comte D, Tsokos GC. SLE-Associated Defects Promote Altered T Cell Function. Crit Rev Immunol 2019; 37:39-58. [PMID: 29431078 DOI: 10.1615/critrevimmunol.2018025213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.
Collapse
Affiliation(s)
- Jose C Crispin
- Departamento de Inmunologia y Reumatologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Abel Suárez-Fueyo
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Denis Comte
- Divisions of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland
| | - George C Tsokos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
82
|
De Palma RM, Parnham SR, Li Y, Oaks JJ, Peterson YK, Szulc ZM, Roth BM, Xing Y, Ogretmen B. The NMR-based characterization of the FTY720-SET complex reveals an alternative mechanism for the attenuation of the inhibitory SET-PP2A interaction. FASEB J 2019; 33:7647-7666. [PMID: 30917007 DOI: 10.1096/fj.201802264r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The su(var)3-9, enhancer of zeste, trithorax (SET)/inhibitor 2 of protein phosphatase 2A (PP2A) oncoprotein binds and inhibits PP2A, composed of various isoforms of scaffolding, regulatory, and catalytic subunits. Targeting SET with a sphingolipid analog drug fingolimod (FTY720) or ceramide leads to the reactivation of tumor suppressor PP2A. However, molecular details of the SET-FTY720 or SET-ceramide, and mechanism of FTY720-dependent PP2A activation, remain unknown. Here, we report the first in solution examination of the SET-FTY720 or SET-ceramide complexes by NMR spectroscopy. FTY720-ceramide binding resulted in chemical shifts of residues residing at the N terminus of SET, preventing its dimerization or oligomerization. This then released SET from PP2ACα, resulting in PP2A activation, while monomeric SET remained associated with the B56γ. Our data also suggest that the PP2A holoenzyme, composed of PP2A-Aβ, PP2A-B56γ, and PP2ACα subunits, is selectively activated in response to the formation of the SET-FTY720 complex in A549 cells. Various PP2A-associated downstream effector proteins in the presence or absence of FTY720 were then identified by stable isotope labeling with amino cells in cell culture, including tumor suppressor nonmuscle myosin IIA. Attenuation of FTY720-SET association by point mutations of residues that are involved in FTY720 binding or dephosphorylation of SET at Serine 171, enhanced SET oligomerization and the formation of the SET-PP2A inhibitory complex, leading to resistance to FTY720-dependent PP2A activation.-De Palma, R. M., Parnham, S. R., Li, Y., Oaks, J. J., Peterson, Y. K., Szulc, Z. M., Roth, B. M., Xing, Y., Ogretmen, B. The NMR-based characterization of the FTY720-SET complex reveals an alternative mechanism for the attenuation of the inhibitory SET-PP2A interaction.
Collapse
Affiliation(s)
- Ryan M De Palma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stuart R Parnham
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yitong Li
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Braden M Roth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
83
|
Zhang Y, Zhang J, Wang E, Qian W, Fan Y, Feng Y, Yin H, Li Y, Wang Y, Yuan T. Microcystin-Leucine-Arginine Induces Tau Pathology Through Bα Degradation via Protein Phosphatase 2A Demethylation and Associated Glycogen Synthase Kinase-3β Phosphorylation. Toxicol Sci 2019; 162:475-487. [PMID: 29228318 DOI: 10.1093/toxsci/kfx271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microcystin-leucine-arginine (MC-LR) has been implicated as a potential environmental factor in Alzheimer's disease because of its potent inhibition of protein phosphatase 2A (PP2A) activity, but experimental evidence to support its detailed neurotoxic effects and their underlying mechanisms has been lacking. The present study investigated the role of PP2A catalytic subunit (PP2Ac) demethylation and its link with glycogen synthase kinase-3β (GSK)-3β in tau hyperphosphorylation induced by MC-LR. The results showed that MC-LR treatment significantly increased demethylation of PP2Ac, with a concomitant increase in GSK-3β phosphorylation at Ser9 resulting in elevated tau hyperphosphorylation at PP2A-favorable sites in SH-SY5Y cells and rat hippocampus. Coimmunoprecipitation experiments showed that MC-LR treatment dissociated PP2Ac from Bα, making it incompetent in binding tau, thus causing tau hyperphosphorylation. Moreover, we found that inhibition of PP2A resulted in an increase in phosphorylation of GSK-3β at Ser9 and a decrease in GSK-3β activity, which further promoted demethylation of PP2Ac induced by MC-LR. These findings suggest a scenario in which MC-LR-mediated demethylation of PP2Ac is associated with GSK-3β phosphorylation at Ser9 and contributes to dissociation of Bα from PP2Ac, which would result in Bα degradation and disruption of PP2A/Bα-tau interactions, thus promoting tau hyperphosphorylation and paired helical filaments-tau accumulation and, consequently, axonal degeneration and cell death.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Enhao Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, School of Medicine.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jangsu 226001, China
| | - Yan Fan
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Ying Feng
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Haimeng Yin
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yang Li
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yuning Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine
| |
Collapse
|
84
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
85
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
86
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
87
|
Reynhout S, Jansen S, Haesen D, van Belle S, de Munnik SA, Bongers EM, Schieving JH, Marcelis C, Amiel J, Rio M, Mclaughlin H, Ladda R, Sell S, Kriek M, Peeters-Scholte CM, Terhal PA, van Gassen KL, Verbeek N, Henry S, Scott Schwoerer J, Malik S, Revencu N, Ferreira CR, Macnamara E, Braakman HM, Brimble E, Ruzhnikov MR, Wagner M, Harrer P, Wieczorek D, Kuechler A, Tziperman B, Barel O, de Vries BB, Gordon CT, Janssens V, Vissers LE. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am J Hum Genet 2019; 104:139-156. [PMID: 30595372 DOI: 10.1016/j.ajhg.2018.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Collapse
|
88
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
89
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
90
|
Yoon JT, Ahn HK, Pai HS. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. PLANTA 2018; 248:1551-1567. [PMID: 30191298 DOI: 10.1007/s00425-018-3000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) regulate the cortical microtubule dynamics in Arabidopsis, through interaction with TONNEAU2 (TON2)/FASS and modulation of α-tubulin dephosphorylation. Protein phosphatase 2A is a major protein phosphatase in eukaryotes that dephosphorylates many different substrates to regulate their function. PP2A is assembled into a heterotrimeric complex of scaffolding A subunit, regulatory B subunit, and catalytic C subunit. Plant PP2A catalytic C subunit (PP2AC) isoforms are classified into two subfamilies. In this study, we investigated the cellular functions of the Arabidopsis PP2AC subfamily II genes PP2AC-3 and PP2AC-4, particularly regarding the cortical microtubule (MT) organization. PP2AC-3 and PP2AC-4 strongly interacted with the B'' regulatory subunit TON2. Simultaneous silencing of PP2AC-3 and PP2AC-4 by virus-induced gene silencing (PP2AC-3,4 VIGS) significantly altered plant morphology in Arabidopsis, increasing cell numbers in leaves and stems. The leaf epidermis of PP2AC-3,4 VIGS plants largely lost its jigsaw-puzzle shape and exhibited reduced trichome branch numbers. VIGS of PP2AC-3,4 in Arabidopsis transgenic plants that expressed GFP-fused β-tubulin 6 isoform (GFP-TUB6) for the visualization of MTs caused a reduction in the cortical MT array density in the pavement cells. VIGS of TON2 also led to similar cellular phenotypes and cortical MT patterns compared with those after VIGS of PP2AC-3,4, suggesting that PP2AC-3,4 and their interaction partner TON2 play a role in cortical MT organization in leaf epidermal cells. Furthermore, silencing of PP2AC-3,4 did not affect salt-induced phosphorylation of α-tubulin but delayed its dephosphorylation after salt removal. The reappearance of cortical MT arrays after salt removal was impaired in PP2AC-3,4 VIGS plants. These results suggest an involvement of PP2AC subfamily II in the regulation of cortical MT dynamics under normal and salt-stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- The Sainsbury Laboratory (TSL), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
91
|
Baro B, Játiva S, Calabria I, Vinaixa J, Bech-Serra JJ, de LaTorre C, Rodrigues J, Hernáez ML, Gil C, Barceló-Batllori S, Larsen MR, Queralt E. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast. Gigascience 2018; 7:4982941. [PMID: 29688323 PMCID: PMC5967524 DOI: 10.1093/gigascience/giy047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. Results We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84–90, thus highlighting the relevance of these aminoacids for substrate interaction. Conclusions We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases’ consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Inés Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Vinaixa
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan-Josep Bech-Serra
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina de LaTorre
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - João Rodrigues
- Structural Biology Department, School of Medicine, Stanford, California, USA
| | - María Luisa Hernáez
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Barceló-Batllori
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, Odense M, Denmark
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
92
|
Huang P, Wang S, Weng D, Xu L. Alpha4-overexpressing HL7702 cells can counteract microcystin-LR effects on cytoskeletal structure. ENVIRONMENTAL TOXICOLOGY 2018; 33:978-987. [PMID: 29984889 DOI: 10.1002/tox.22585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Our previous studies indicated that α4 was involved in the toxicity of MC-LR on the cytoskeleton via the change of PP2A activity in HEK 293. To explore the role of α4 in MC-LR toxicity via PP2A regulation in different cell lines, the HL7702 cell overexpressing α4 protein was exposed to MC-LR, and the change of PP2A, cytoskeletal structure, and cytoskeleton-related proteins were investigated. The results showed that PP2A activity was decreased, PP2A/C subunit expression and phosphorylation (Tyr307) increased significantly, but methylation (Leu 309)clearly decreased. The structure of the actin filaments and microtubules (MTs) remained unchanged, and the expression and phosphorylation of the cytoskeleton-related proteins showed different changes. In addition, the main components of the MAPK pathway, JNK, P38, and ERK1/2, were activated together. Our results indicated that elevated α4 expression did confer some resistance to MC-LR-induced cytoskeletal changes, but the responses of different cell lines to MC-LR, under the α4-overexpression condition, are not exactly the same.
Collapse
Affiliation(s)
- Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sha Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dengpo Weng
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
93
|
Baskaran R, Velmurugan BK. Protein phosphatase 2A as therapeutic targets in various disease models. Life Sci 2018; 210:40-46. [PMID: 30170071 DOI: 10.1016/j.lfs.2018.08.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/25/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
There are a large number of signalling pathways responsible for transmitting information within the cell. Although cellular signalling is thought to be majorly governed by protein kinases 'cascade effects'; their antagonists protein phosphatases also play a crucial dual role in signal transduction. By dephosphorylating the proteins involved in signalling pathways, phosphatases may lead to their activation and sometimes they may terminate a signal generated by kinases activity. Due to counterbalancing the function of phosphorylation, the protein phosphatases are very important to signal transduction processes and thus the control of phosphatase activity is as significant as kinases, in the regulation of a plethora of cellular processes. In general, the protein phosphatases are comprised of a catalytic subunit with one or more regulatory and/or targeting subunits associated with it. The Protein Phosphatase 2A (PP2A), a member of serine/threonine phosphatases family, is ubiquitously expressed a remarkably conserved enzyme in the cell. Its catalytic activity has been highly regulated and may have enormous therapeutic potential which is still untapped. It has specificities for a number of substrates which witnessed its involvement in various signalling modules of cell cycle regulation, cell morphology and development. Thus it can be an appropriate target for studying different diseases associated with abnormal signal transduction pathways such as neurodegenerative diseases and malignancies. This review will focus on the structure and regulatory pathways of PP2A. The de-regulation of PP2A in some specific pathology such as Cancer, Heart diseases, Neurodegenerative disorders and Diabetes will also be touched upon.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
94
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
95
|
Alvarado ME, Rubiano C, Sánchez W, Díaz A, Wasserman M. Calcium-binding proteins that are type B″ regulatory subunits of phosphatase 2A in Giardia intestinalis. Parasitol Res 2018; 117:3205-3214. [PMID: 30043281 DOI: 10.1007/s00436-018-6019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Giardia intestinalis is a protozoan parasite that colonizes the upper part of the small intestine of its mammalian hosts. The trophozoite, which is the replicative stage, has a complex cytoskeleton that allows it to move and adhere to intestinal cells. It has been proposed that protein phosphatase 2A (PP2A) participates in the regulation of changes to the parasite cytoskeleton during its life cycle. However, how PP2A is involved in this regulation remains unclear since its substrates and regulators have not been characterized. In this work, we report the bioinformatic and experimental analysis of two potential regulatory B″ subunits of PP2A in Giardia, both of which are calcium-binding proteins. In this work, in silico and experimental evidence of the binding of both proteins to calcium is presented; the proteins are shown to interact with the catalytic PP2A subunit in the trophozoite stage, and they exhibit different subcellular localization patterns. Because PP2A is a heterotrimer, homology analysis of the different subunits of PP2A indicates that fewer holoenzyme combinations can be formed in this parasite than in other organisms. Our results suggest that the localization of PP2A may be associated with calcium-dependent signaling through its B″ type regulatory subunits.
Collapse
Affiliation(s)
- Magda E Alvarado
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Claudia Rubiano
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - William Sánchez
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andrea Díaz
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Moisés Wasserman
- Laboratorio de Investigaciones Básicas en Bioquímica - LIBBIQ, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
96
|
Yoshida K, Teramachi J, Uchibe K, Ikegame M, Qiu L, Yang D, Okamura H. Reduction of protein phosphatase 2A Cα promotes in vivo bone formation and adipocyte differentiation. Mol Cell Endocrinol 2018; 470:251-258. [PMID: 29128580 DOI: 10.1016/j.mce.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022]
Abstract
Serine/threonine protein phosphatase 2A (PP2A) regulates diverse physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Previously, we demonstrated that silencing of the α-isoform of PP2A catalytic subunit (PP2A Cα) in osteoblasts accelerated osteoblast differentiation, whereas its overexpression suppressed differentiation. In this study, we examined the role of PP2A Cα in in vivo bone formation by generating transgenic mice (PP2A-Tg), in which the dominant negative form of PP2A Cα was specifically expressed in osteoblasts. PP2A-Tg mice exhibited an increase in body weight, cortical bone mineral density, and cortical bone thickness. Interestingly, they also displayed higher amounts of adipose tissue in the bone marrow of tibiae. The co-culture study showed that PP2A Cα-knockdown osteoblasts stimulated adipocyte differentiation from undifferentiated mesenchymal cells via upregulation of the adipocyte marker genes, such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα). These results indicated that the reduction of PP2A Cα levels in osteoblasts promoted bone formation in vivo. Additionally, PP2A Cα in osteoblasts was also potentially involved in controlling adipocyte differentiation through a paracrine mechanism.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Oral Healthcare Educations, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto, Tokushima 770-8504, Japan; Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| |
Collapse
|
97
|
Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 2018; 9:2126. [PMID: 29844427 PMCID: PMC5974350 DOI: 10.1038/s41467-018-04425-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence suggests that inhibition of protein phosphatase-2A (PP2A), a serine/threonine phosphatase, could enhance anticancer immunity. However, drugs targeting PP2A are not currently available. Here, we report that a PP2A inhibitor, LB-100, when combined with anti-PD-1 (aPD-1) blockade can synergistically elicit a durable immune-mediated antitumor response in a murine CT26 colon cancer model. This effect is T-cell dependent, leading to regression of a significant proportion of tumors. Analysis of tumor lymphocytes demonstrates enhanced effector T-cell and reduced suppressive regulatory T-cell infiltration. Clearance of tumor establishes antigen-specific secondary protective immunity. A synergistic effect of LB-100 and aPD-1 blockade is also observed in B16 melanoma model. In addition, LB-100 activates the mTORC1 signaling pathway resulting in decreased differentiation of naive CD4 cells into regulatory T cells. There is also increased expression of Th1 and decreased expression of Th2 cytokines. These data highlight the translational potential of PP2A inhibition in combination with checkpoint inhibition.
Collapse
|
98
|
Gupta MK, Mohan ML, Naga Prasad SV. G Protein-Coupled Receptor Resensitization Paradigms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:63-91. [PMID: 29776605 DOI: 10.1016/bs.ircmb.2018.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular responses to extracellular milieu/environment are driven by cell surface receptors that transmit the signal into the cells resulting in a synchronized and measured response. The ability to provide such exquisite responses to changes in external environment is mediated by the tight and yet, deliberate regulation of cell surface receptor function. In this regard, the seven transmembrane G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors that regulate responses like cardiac contractility, vision, and olfaction including platelet activation. GPCRs regulate these plethora of events through GPCR-activation, -desensitization, and -resensitization. External stimuli (ligands or agonists) activate GPCR initiating downstream signals. The activated GPCR undergoes inactivation or desensitization by phosphorylation and binding of β-arrestin resulting in diminution of downstream signals. The desensitized GPCRs are internalized into endosomes, wherein they undergo dephosphorylation or resensitization by protein phosphatase to be recycled back to the cell membrane as naïve GPCR ready for the next wave of stimuli. Despite the knowledge that activation, desensitization, and resensitization shoulder an equal role in maintaining GPCR function, major advances have been made in understanding activation and desensitization compared to resensitization. However, increasing evidence shows that resensitization is exquisitely regulated process, thereby contributing to the dynamic regulation of GPCR function. In recognition of these observations, in this chapter we discuss the key advances on the mechanistic underpinning that drive and regulate GPCR function with a focus on resensitization.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Maradumane L Mohan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
99
|
Antiphospholipid antibodies induce thrombosis by PP2A activation via apoER2-Dab2-SHC1 complex formation in endothelium. Blood 2018; 131:2097-2110. [PMID: 29500169 DOI: 10.1182/blood-2017-11-814681] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/23/2018] [Indexed: 01/10/2023] Open
Abstract
In the antiphospholipid syndrome (APS), antiphospholipid antibody (aPL) recognition of β2 glycoprotein I promotes thrombosis, and preclinical studies indicate that this is due to endothelial nitric oxide synthase (eNOS) antagonism via apolipoprotein E receptor 2 (apoER2)-dependent processes. How apoER2 molecularly links these events is unknown. Here, we show that, in endothelial cells, the apoER2 cytoplasmic tail serves as a scaffold for aPL-induced assembly and activation of the heterotrimeric protein phosphatase 2A (PP2A). Disabled-2 (Dab2) recruitment to the apoER2 NPXY motif promotes the activating L309 methylation of the PP2A catalytic subunit by leucine methyl transferase-1. Concurrently, Src homology domain-containing transforming protein 1 (SHC1) recruits the PP2A scaffolding subunit to the proline-rich apoER2 C terminus along with 2 distinct regulatory PP2A subunits that mediate inhibitory dephosphorylation of Akt and eNOS. In mice, the coupling of these processes in endothelium is demonstrated to underlie aPL-invoked thrombosis. By elucidating these intricacies in the pathogenesis of APS-related thrombosis, numerous potential new therapeutic targets have been identified.
Collapse
|
100
|
Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer. Genes (Basel) 2018; 9:genes9030121. [PMID: 29495399 PMCID: PMC5867842 DOI: 10.3390/genes9030121] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase—composed of a structural, regulatory, and catalytic subunit—that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components—especially the multitude of regulatory subunits—has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.
Collapse
|