51
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
52
|
Basant A, Way M. The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. eLife 2022; 11:e74655. [PMID: 35796545 PMCID: PMC9333988 DOI: 10.7554/elife.74655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Phosphotyrosine (pTyr) motifs in unstructured polypeptides orchestrate important cellular processes by engaging SH2-containing adaptors to assemble complex signalling networks. The concept of phase separation has recently changed our appreciation of multivalent networks, however, the role of pTyr motif positioning in their function remains to be explored. We have now investigated this parameter in the operation of the signalling cascade driving actin-based motility and spread of Vaccinia virus. This network involves two pTyr motifs in the viral protein A36 that recruit the adaptors Nck and Grb2 upstream of N-WASP and Arp2/3 complex-mediated actin polymerisation. Manipulating the position of pTyr motifs in A36 and the unrelated p14 from Orthoreovirus, we find that only specific spatial arrangements of Nck and Grb2 binding sites result in robust N-WASP recruitment, Arp2/3 complex driven actin polymerisation and viral spread. This suggests that the relative position of pTyr adaptor binding sites is optimised for signal output. This finding may explain why the relative positions of pTyr motifs are frequently conserved in proteins from widely different species. It also has important implications for regulation of physiological networks, including those undergoing phase transitions.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
53
|
A.V.S SK, Sinha S, Donakonda S. Virus-host interaction network analysis in Colorectal cancer identifies core virus network signature and small molecules. Comput Struct Biotechnol J 2022; 20:4025-4039. [PMID: 35983230 PMCID: PMC9356043 DOI: 10.1016/j.csbj.2022.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Systematic analysis of virus-host networks identified key pathways in CRC. Core virus-CRC network revealed the growth pathway regulated by viruses. Short linear motif analysis identified druggable regions in virus proteins. Virtual screening revealed key anti-viral molecules against viral proteins. Molecular dynamics simulations showed the effect of anti-viral molecules.
Colorectal cancer (CRC) is a significant contributor to cancer-related deaths caused by an unhealthy lifestyle. Multiple studies reveal that viruses are involved in colorectal tumorigenesis. The viruses such as Human Cytomegalovirus (HCMV), Human papillomaviruses (HPV16 & HPV18), and John Cunningham virus (JCV) are known to cause colorectal cancer. The molecular mechanisms of cancer genesis and maintenance shared by these viruses remain unclear. We analysed the virus-host networks and connected them with colorectal cancer proteome datasets and extracted the core shared interactions in the virus-host CRC network. Our network topology analysis identified prominent virus proteins RL6 (HCMV), VE6 (HPV16 and HPV18), and Large T antigen (JCV). Sequence analysis uncovered short linear motifs (SLiMs) in each viral target. We used these targets to identify the antiviral drugs through a structure-based virtual screening approach. This analysis highlighted that temsavir, pimodivir, famotine, and bictegravir bind to each virus protein target, respectively. We also assessed the effect of drug binding using molecular dynamic simulations, which shed light on the modulatory effect of drug molecules on SLiM regions in viral targets. Hence, our systematic screening of virus-host networks revealed viral targets, which could be crucial for cancer therapy.
Collapse
Affiliation(s)
- Sai Krishna A.V.S
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Corresponding author.
| |
Collapse
|
54
|
Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 2022; 13:14227-14258. [PMID: 35734783 PMCID: PMC9342244 DOI: 10.1080/21655979.2022.2084498] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.
Collapse
Affiliation(s)
- German A Islan
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Boris Rodenak-Kladniew
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, La Plata, Pcia de Bueos aires, Argentina
| | - Nehuen Noacco
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,Nanomedicine Research Unit (Nanomed), Federal University of Abc (Ufabc), Santo André, Brazil
| | - Guillermo R Castro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,. Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de RosarioMax Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Rosario, Argentina
| |
Collapse
|
55
|
Zhao W, Wang L, Liu M, Zhang D, Andika IB, Zhu Y, Sun L. A Reduced Starch Level in Plants at Early Stages of Infection by Viruses Can Be Considered a Broad-Range Indicator of Virus Presence. Viruses 2022; 14:1176. [PMID: 35746648 PMCID: PMC9227243 DOI: 10.3390/v14061176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of virus infection can facilitate the effective control of plant viral diseases. To date, serological and molecular methods for the detection of virus infection have been widely used, but these methods have disadvantages if applied for broad-range and large-scale detection. Here, we investigated the effect of infection of several different plant RNA and DNA viruses such as cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), potato virus X (PVX), potato virus Y (PVY) and apple geminivirus on starch content in leaves of Nicotiana benthamiana. Analysis showed that virus infection at an early stage was generally associated with a reduction in starch accumulation. Notably, a reduction in starch accumulation was readily apparent even with a very low virus accumulation detected by RT-PCR. Furthermore, we also observed that the infection of three latent viruses in propagative apple materials was associated with a reduction in starch accumulation levels. Analysis of transcriptional expression showed that some genes encoding enzymes involved in starch biosynthesis were downregulated at the early stage of CMV, TMV, PVX and PVY infections, suggesting that virus infection interferes with starch biosynthesis in plants. Our findings suggest that assessing starch accumulation levels potentially serve as a broad-range indicator for the presence of virus infection.
Collapse
Affiliation(s)
- Wanying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
| | - Meizi Liu
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (M.L.); (D.Z.)
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (M.L.); (D.Z.)
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (W.Z.); (L.W.)
| |
Collapse
|
56
|
Elkhaligy H, Balbin CA, Siltberg-Liberles J. Comparative Analysis of Structural Features in SLiMs from Eukaryotes, Bacteria, and Viruses with Importance for Host-Pathogen Interactions. Pathogens 2022; 11:pathogens11050583. [PMID: 35631103 PMCID: PMC9147284 DOI: 10.3390/pathogens11050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions drive functions in eukaryotes that can be described by short linear motifs (SLiMs). Conservation of SLiMs help illuminate functional SLiMs in eukaryotic protein families. However, the simplicity of eukaryotic SLiMs makes them appear by chance due to mutational processes not only in eukaryotes but also in pathogenic bacteria and viruses. Further, functional eukaryotic SLiMs are often found in disordered regions. Although proteomes from pathogenic bacteria and viruses have less disorder than eukaryotic proteomes, their proteins can successfully mimic eukaryotic SLiMs and disrupt host cellular function. Identifying important SLiMs in pathogens is difficult but essential for understanding potential host-pathogen interactions. We performed a comparative analysis of structural features for experimentally verified SLiMs from the Eukaryotic Linear Motif (ELM) database across viruses, bacteria, and eukaryotes. Our results revealed that many viral SLiMs and specific motifs found across viruses and eukaryotes, such as some glycosylation motifs, have less disorder. Analyzing the disorder and coil properties of equivalent SLiMs from pathogens and eukaryotes revealed that some motifs are more structured in pathogens than their eukaryotic counterparts and vice versa. These results support a varying mechanism of interaction between pathogens and their eukaryotic hosts for some of the same motifs.
Collapse
|
57
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
58
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
59
|
Byerly CD, Mitra S, Patterson LL, Pittner NA, Velayutham TS, Paessler S, Veljkovic V, McBride JW. Ehrlichia SLiM ligand mimetic activates Hedgehog signaling to engage a BCL-2 anti-apoptotic cellular program. PLoS Pathog 2022; 18:e1010345. [PMID: 35576232 PMCID: PMC9135340 DOI: 10.1371/journal.ppat.1010345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) has evolved eukaryotic ligand mimicry to repurpose multiple cellular signaling pathways for immune evasion. In this investigation, we demonstrate that TRP120 has a novel repetitive short linear motif (SLiM) that activates the evolutionarily conserved Hedgehog (Hh) signaling pathway to inhibit apoptosis. In silico analysis revealed that TRP120 has sequence and functional similarity with Hh ligands and a candidate Hh ligand SLiM was identified. siRNA knockdown of Hh signaling and transcriptional components significantly reduced infection. Co-immunoprecipitation and surface plasmon resonance demonstrated that rTRP120-TR interacted directly with Hh receptor Patched-2 (PTCH2). E. chaffeensis infection resulted in early upregulation of Hh transcription factor GLI-1 and regulation of Hh target genes. Moreover, soluble recombinant TRP120 (rTRP120) activated Hh and induced gene expression consistent with the eukaryotic Hh ligand. The TRP120-Hh-SLiM (NPEVLIKD) induced nuclear translocation of GLI-1 in THP-1 cells and primary human monocytes and induced a rapid and expansive activation of Hh pathway target genes. Furthermore, Hh activation was blocked by an α-TRP120-Hh-SLiM antibody. TRP120-Hh-SLiM significantly increased levels of Hh target, anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and siRNA knockdown of BCL-2 dramatically inhibited infection. Blocking Hh signaling with the inhibitor Vismodegib, induced a pro-apoptotic cellular program defined by decreased mitochondria membrane potential, significant reductions in BCL-2, activation of caspase 3 and 9, and increased apoptotic cells. This study reveals a novel E. chaffeensis SLiM ligand mimetic that activates Hh signaling to maintain E. chaffeensis infection by engaging a BCL-2 anti-apoptotic cellular program.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thangam S. Velayutham
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Veljko Veljkovic
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
60
|
Tayal S, Bhatia V, Mehrotra T, Bhatnagar S. ImitateDB: A database for domain and motif mimicry incorporating host and pathogen protein interactions. Amino Acids 2022; 54:923-934. [PMID: 35487995 PMCID: PMC9054641 DOI: 10.1007/s00726-022-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/09/2022] [Indexed: 11/26/2022]
Abstract
Molecular mimicry of host proteins by pathogens constitutes a strategy to hijack the host pathways. At present, there is no dedicated resource for mimicked domains and motifs in the host-pathogen interactome. In this work, the experimental host-pathogen (HP) and host-host (HH) protein-protein interactions (PPIs) were collated. The domains and motifs of these proteins were annotated using CD Search and ScanProsite, respectively. Host and pathogen proteins with a shared host interactor and similar domain/motif constitute a mimicry pair exhibiting global structural similarity (domain mimicry pair; DMP) or local sequence motif similarity (motif mimicry pair; MMP). Mimicry pairs are likely to be co-expressed and co-localized. 1,97,607 DMPs and 32,67,568 MMPs were identified in 49,265 experimental HP-PPIs and organized in a web-based resource, ImitateDB ( http://imitatedb.sblab-nsit.net ) that can be easily queried. The results are externally integrated using hyperlinked domain PSSM ID, motif ID, protein ID and PubMed ID. Kinase, UL36, Smc and DEXDc were frequent DMP domains whereas protein kinase C phosphorylation, casein kinase 2 phosphorylation, glycosylation and myristoylation sites were frequent MMP motifs. Novel DMP domains SANT, Tudor, PhoX and MMP motif microbody C-terminal targeting signal, cornichon signature and lipocalin signature were proposed. ImitateDB is a novel resource for identifying mimicry in interacting host and pathogen proteins.
Collapse
Affiliation(s)
- Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Venugopal Bhatia
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Tanya Mehrotra
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
61
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
62
|
Saha D, Iannuccelli M, Brun C, Zanzoni A, Licata L. The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Front Microbiol 2022; 13:849781. [PMID: 35531299 PMCID: PMC9069133 DOI: 10.3389/fmicb.2022.849781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components. Experimental protein-protein interactions described in the scientific literature have been systematically captured into several molecular interaction databases. These data are organized in structured formats and can be easily downloaded by users to perform further bioinformatic and network studies. Network analysis of available virus-host interactomes allow us to understand how the host interactome is perturbed upon viral infection and what are the key host proteins targeted by the virus and the main cellular pathways that are subverted. In this review, we give an overview of publicly available viral-human protein-protein interactions resources and the community standards, curation rules and adopted ontologies. A description of the main virus-human interactome available is provided, together with the main network analyses that have been performed. We finally discuss the main limitations and future challenges to assess the quality and reliability of protein-protein interaction datasets and resources.
Collapse
Affiliation(s)
- Deeya Saha
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Christine Brun
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- *Correspondence: Andreas Zanzoni,
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Luana Licata,
| |
Collapse
|
63
|
Garg A, Dabburu GR, Singhal N, Kumar M. Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico. PLoS One 2022; 17:e0265657. [PMID: 35421114 PMCID: PMC9009644 DOI: 10.1371/journal.pone.0265657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mimicry of the host proteins/peptides can elicit host auto-reactive T- or B-cells resulting in autoimmune disease(s). Since intrinsically disordered protein regions (IDPRs) are involved in several host cell signaling and PPI networks, molecular mimicry of the IDPRs can help the pathogens in substituting their own proteins in the host cell-signaling and PPI networks and, ultimately hijacking the host cellular machinery. Thus, the present study was conducted to discern the structural disorder and intrinsically disordered protein regions (IDPRs) like, molecular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs) in the experimentally verified mimicry proteins and peptides (mimitopes) of bacteria, viruses and host. Also, functional characteristics of the mimicry proteins were studied in silico. Our results indicated that 78% of the bacterial host mimicry proteins and 45% of the bacterial host mimitopes were moderately/highly disordered while, 73% of the viral host mimicry proteins and 31% of the viral host mimitopes were moderately/highly disordered. Among the pathogens, 27% of the bacterial mimicry proteins and 13% of the bacterial mimitopes were moderately/highly disordered while, 53% of the viral mimicry proteins and 21% of the viral mimitopes were moderately/highly disordered. Though IDPR were frequent in host, bacterial and viral mimicry proteins, only a few mimitopes overlapped with the IDPRs like, MoRFs, SLiMs and LCRs. This suggests that most of the microbes cannot use molecular mimicry to modulate the host PPIs and hijack the host cell machinery. Functional analyses indicated that most of the pathogens exhibited mimicry with the host proteins involved in ion binding and signaling pathways. This is the first report on the disordered regions and functional aspects of experimentally proven host and microbial mimicry proteins.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| |
Collapse
|
64
|
Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem 2022; 283:106769. [DOI: 10.1016/j.bpc.2022.106769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
65
|
Host diversification is concurrent with linear motif evolution in a Mastadenovirus hub protein. J Mol Biol 2022; 434:167563. [PMID: 35351519 DOI: 10.1016/j.jmb.2022.167563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
Abstract
Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.
Collapse
|
66
|
Miorin L, Sanchez-Aparicio MT. SLiMs go viral! One more weapon against interferon. Cell Host Microbe 2022; 30:286-288. [PMID: 35271801 DOI: 10.1016/j.chom.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this issue of Cell Host & Microbe, Talbot-Cooper et al. highlight how viruses develop strategies that can target universal activators of the innate immune response. The authors unravel a common mechanism between poxviruses and paramyxoviruses to limit the expression of antiviral genes and promote virulence.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maria Teresa Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
67
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
68
|
A case of convergent evolution: Several viral and bacterial pathogens hijack RSK kinases through a common linear motif. Proc Natl Acad Sci U S A 2022; 119:2114647119. [PMID: 35091472 PMCID: PMC8812568 DOI: 10.1073/pnas.2114647119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.
Collapse
|
69
|
Alexa A, Sok P, Gross F, Albert K, Kobori E, Póti ÁL, Gógl G, Bento I, Kuang E, Taylor SS, Zhu F, Ciliberto A, Reményi A. A non-catalytic herpesviral protein reconfigures ERK-RSK signaling by targeting kinase docking systems in the host. Nat Commun 2022; 13:472. [PMID: 35078976 PMCID: PMC8789800 DOI: 10.1038/s41467-022-28109-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
The Kaposi's sarcoma associated herpesvirus protein ORF45 binds the extracellular signal-regulated kinase (ERK) and the p90 Ribosomal S6 kinase (RSK). ORF45 was shown to be a kinase activator in cells but a kinase inhibitor in vitro, and its effects on the ERK-RSK complex are unknown. Here, we demonstrate that ORF45 binds ERK and RSK using optimized linear binding motifs. The crystal structure of the ORF45-ERK2 complex shows how kinase docking motifs recognize the activated form of ERK. The crystal structure of the ORF45-RSK2 complex reveals an AGC kinase docking system, for which we provide evidence that it is functional in the host. We find that ORF45 manipulates ERK-RSK signaling by favoring the formation of a complex, in which activated kinases are better protected from phosphatases and docking motif-independent RSK substrate phosphorylation is selectively up-regulated. As such, our data suggest that ORF45 interferes with the natural design of kinase docking systems in the host.
Collapse
Affiliation(s)
- Anita Alexa
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Fridolin Gross
- IFOM, Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Krisztián Albert
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Evan Kobori
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0654, USA
| | - Ádám L Póti
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Gergő Gógl
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Ersheng Kuang
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0654, USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Andrea Ciliberto
- IFOM, Istituto FIRC di Oncologia Molecolare, 20139, Milan, Italy
| | - Attila Reményi
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary.
| |
Collapse
|
70
|
Kumar M, Michael S, Alvarado-Valverde J, Mészáros B, Sámano‐Sánchez H, Zeke A, Dobson L, Lazar T, Örd M, Nagpal A, Farahi N, Käser M, Kraleti R, Davey N, Pancsa R, Chemes L, Gibson T. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Res 2022; 50:D497-D508. [PMID: 34718738 PMCID: PMC8728146 DOI: 10.1093/nar/gkab975] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano‐Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
- Biomedical Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Laszlo Dobson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mihkel Örd
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Anurag Nagpal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India
| | - Nazanin Farahi
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Melanie Käser
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Ramya Kraleti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Justus Liebig University Giessen, Ludwigstraße 23, 35390 Gießen, Germany
| | - Norman E Davey
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Rita Pancsa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, CP1650 San Martín, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
71
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
72
|
Mompeán M, Treviño MÁ, Laurents DV. Partial structure, dampened mobility, and modest impact of a His tag in the SARS-CoV-2 Nsp2 C-terminal region. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:1129-1137. [PMID: 34633480 PMCID: PMC8503394 DOI: 10.1007/s00249-021-01575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) play essential roles in regulating physiological processes in eukaryotic cells. Many viruses use their own IDPs to "hack" these processes to deactivate host defenses and promote viral growth. Thus, viral IDPs are attractive drug targets. While IDPs are hard to study by X-ray crystallography or cryo-EM, atomic level information on their conformational preferences and dynamics can be obtained using NMR spectroscopy. SARS-CoV-2 Nsp2, whose C-terminal region (CtR) is predicted to be disordered, interacts with human proteins that regulate translation initiation and endosome vesicle sorting. Molecules that block these interactions could be valuable leads for drug development. The 13Cβ and backbone 13CO, 1HN, 13Cα, and 15N nuclei of Nsp2's 45-residue CtR were assigned and used to characterize its structure and dynamics in three contexts; namely: (1) retaining an N-terminal His tag, (2) without the His tag and with an adventitious internal cleavage, and (3) lacking both the His tag and the internal cleavage. Two five-residue segments adopting a minor extended population were identified. Overall, the dynamic behavior is midway between a completely rigid and a fully flexible chain. Whereas the presence of an N-terminal His tag and internal cleavage stiffen and loosen, respectively, neighboring residues, they do not affect the tendency of two regions to populate extended conformations.
Collapse
Affiliation(s)
- Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Miguel Á Treviño
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
73
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
74
|
Kruse T, Benz C, Garvanska DH, Lindqvist R, Mihalic F, Coscia F, Inturi R, Sayadi A, Simonetti L, Nilsson E, Ali M, Kliche J, Moliner Morro A, Mund A, Andersson E, McInerney G, Mann M, Jemth P, Davey NE, Överby AK, Nilsson J, Ivarsson Y. Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nat Commun 2021; 12:6761. [PMID: 34799561 PMCID: PMC8605023 DOI: 10.1038/s41467-021-26498-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.
Collapse
Affiliation(s)
- Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dimitriya H Garvanska
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Filip Mihalic
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Fabian Coscia
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Spatial Proteomics Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Johanna Kliche
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ainhoa Moliner Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mund
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Mann
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90185, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden.
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
75
|
Kundu S. ProTG4: A Web Server to Approximate the Sequence of a Generic Protein From an in Silico Library of Translatable G-Quadruplex ( TG4)-Mapped Peptides. Bioinform Biol Insights 2021; 15:11779322211045878. [PMID: 34602814 PMCID: PMC8482721 DOI: 10.1177/11779322211045878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
An RNA G-quadruplex in the protein coding segment of mRNA is translatable (TG4) and may potentially impact protein translation. This can be consequent to staggered ribosomal synthesis and/or result in an increased frequency of missense translational events. A mathematical model of the peptides that encompass the substituted amino acids, ie, the TG4-mapped peptidome, has been previously studied. However, the significance and relevance to disease biology of this model remains to be established. ProTG4 computes a confidence-of-sequence-identity (γ)-score, which is the average weighted length of every matched TG4-mapped peptide in a generic protein sequence. The weighted length is the product of the length of the peptide and the probability of its non-random occurrence in a library of randomly generated sequences of equivalent lengths. This is then averaged over the entire length of the protein sequence. ProTG4 is simple to operate, has clear instructions, and is accompanied by a set of ready-to-use examples. The rationale of the study, algorithms deployed, and the computational pipeline deployed are also part of the web page. Analyses by ProTG4 of taxonomically diverse protein sequences suggest that there is significant homology to TG4-mapped peptides. These findings, especially in potentially infectious and infesting agents, offer plausible explanations into the aetiology and pathogenesis of certain proteopathies. ProTG4 can also provide a quantitative measure to identify and annotate the canonical form of a generic protein sequence from its known isoforms. The article presents several case studies and discusses the relevance of ProTG4-assisted peptide analysis in gaining insights into various mechanisms of disease biology (mistranslation, alternate splicing, amino acid substitutions).
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
76
|
Zhang Q, Wu YF, Chen P, Liu TH, Dong ZQ, Lu C, Pan MH. Bombyx mori cell division cycle protein 37 promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104923. [PMID: 34446199 DOI: 10.1016/j.pestbp.2021.104923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Yun-Fei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China.
| |
Collapse
|
77
|
James SA, Ong HS, Hari R, Khan AM. A systematic bioinformatics approach for large-scale identification and characterization of host-pathogen shared sequences. BMC Genomics 2021; 22:700. [PMID: 34583643 PMCID: PMC8477458 DOI: 10.1186/s12864-021-07657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications. Results This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions. Conclusion Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07657-4.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia.,Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, 800211, Nigeria
| | - Hui San Ong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Ranjeev Hari
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia. .,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
78
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
79
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
80
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
81
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
82
|
Caillet-Saguy C, Durbesson F, Rezelj VV, Gogl G, Tran QD, Twizere JC, Vignuzzi M, Vincentelli R, Wolff N. Host PDZ-containing proteins targeted by SARS-CoV-2. FEBS J 2021; 288:5148-5162. [PMID: 33864728 PMCID: PMC8250131 DOI: 10.1111/febs.15881] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Small linear motifs targeting protein interacting domains called PSD‐95/Dlg/ZO‐1 (PDZ) have been identified at the C terminus of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) proteins E, 3a, and N. Using a high‐throughput approach of affinity‐profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS‐CoV‐2 proteins E, 3A, and N showing significant interactions with dissociation constants values ranging from 3 to 82 μm. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS‐CoV while three (NHERF1, MAST2, RADIL) are specific to SARS‐CoV‐2 E protein. Most of these SARS‐CoV‐2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Among the binders of the SARS‐CoV‐2 proteins E, 3a, or N, seven significantly affect viral replication under knock down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS‐CoV‐2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti‐coronaviral agents for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Veronica V Rezelj
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France
| | - Gergö Gogl
- IGBMC, INSERM U1258/UMR CNRS 7104, Illkirch, France
| | - Quang Dinh Tran
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France.,École doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, France
| | - Jean-Claude Twizere
- GIGA Institute, Molecular Biology of Diseases, Viral Interactomes laboratory, University of Liege, Belgium
| | - Marco Vignuzzi
- Institut Pasteur, Unité Populations Virales et Pathogénèse, UMR CNRS 3569, Paris, France
| | | | - Nicolas Wolff
- Institut Pasteur, Unité Récepteurs-Canaux, UMR CNRS 3571, Paris, France
| |
Collapse
|
83
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Brief Bioinform 2021; 22:6231751. [PMID: 33866372 DOI: 10.1093/bib/bbab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered regions/proteins (IDRs) are abundant across all the domains of life, where they perform important regulatory roles and supplement the biological functions of structured proteins/regions (SRs). Despite the multifunctionality features of IDRs, several interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used and reliable intrinsic disorder prediction algorithms (IUPred2A and ESpritz) to a dataset of 6108 reference viral proteomes to unravel the multifaceted evolutionary forces that shape the codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive evidence that the natural selection predominantly governs the evolution of codon usage in regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage in regions encoding IDRs is less optimized for the protein synthesis machinery (transfer RNAs pool) of their host than for those encoding SRs, but also that the selective constraints imposed by codon bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses are likely to tolerate more translational errors than SRs. All these findings hold true, irrespective of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple taxonomically divergent hosts.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Moscow region, Pushchino 142290, Russia
| | - Sonia Longhi
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
84
|
Gruca A, Ziemska-Legiecka J, Jarnot P, Sarnowska E, Sarnowski TJ, Grynberg M. Common low complexity regions for SARS-CoV-2 and human proteomes as potential multidirectional risk factor in vaccine development. BMC Bioinformatics 2021; 22:182. [PMID: 33832440 PMCID: PMC8027979 DOI: 10.1186/s12859-021-04017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.
Collapse
Affiliation(s)
- Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | | | - Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
85
|
Karjalainen M, Hellman M, Tossavainen H, Permi P. 1H, 13C, and 15N NMR chemical shift assignment of the complex formed by the first EPEC EspF repeat and N-WASP GTPase binding domain. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:213-217. [PMID: 33475933 PMCID: PMC7973643 DOI: 10.1007/s12104-021-10008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
LEE-encoded effector EspF (EspF) is an effector protein part of enteropathogenic Escherichia coli's (EPEC's) arsenal for intestinal infection. This intrinsically disordered protein contains three highly conserved repeats which together compose over half of the protein's complete amino acid sequence. EPEC uses EspF to hijack host proteins in order to promote infection. In the attack EspF is translocated, together with other effector proteins, to host cell via type III secretion system. Inside host EspF stimulates actin polymerization by interacting with Neural Wiskott-Aldrich syndrome protein (N-WASP), a regulator in actin polymerization machinery. It is presumed that EspF acts by disrupting the autoinhibitory state of N-WASP GTPase binding domain. In this NMR spectroscopy study, we report the 1H, 13C, and 15N resonance assignments for the complex formed by the first 47-residue repeat of EspF and N-WASP GTPase binding domain. These near-complete resonance assignments provide the basis for further studies which aim to characterize structure, interactions, and dynamics between these two proteins in solution.
Collapse
Affiliation(s)
- Mikael Karjalainen
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland.
| |
Collapse
|
86
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
87
|
Alshehri MA, Manee MM, Alqahtani FH, Al-Shomrani BM, Uversky VN. On the Prevalence and Potential Functionality of an Intrinsic Disorder in the MERS-CoV Proteome. Viruses 2021; 13:v13020339. [PMID: 33671602 PMCID: PMC7926987 DOI: 10.3390/v13020339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Middle East respiratory syndrome is a severe respiratory illness caused by an infectious coronavirus. This virus is associated with a high mortality rate, but there is as of yet no effective vaccine or antibody available for human immunity/treatment. Drug design relies on understanding the 3D structures of viral proteins; however, arriving at such understanding is difficult for intrinsically disordered proteins, whose disorder-dependent functions are key to the virus’s biology. Disorder is suggested to provide viral proteins with highly flexible structures and diverse functions that are utilized when invading host organisms and adjusting to new habitats. To date, the functional roles of intrinsically disordered proteins in the mechanisms of MERS-CoV pathogenesis, transmission, and treatment remain unclear. In this study, we performed structural analysis to evaluate the abundance of intrinsic disorder in the MERS-CoV proteome and in individual proteins derived from the MERS-CoV genome. Moreover, we detected disordered protein binding regions, namely, molecular recognition features and short linear motifs. Studying disordered proteins/regions in MERS-CoV could contribute to unlocking the complex riddles of viral infection, exploitation strategies, and drug development approaches in the near future by making it possible to target these important (yet challenging) unstructured regions.
Collapse
Affiliation(s)
- Manal A. Alshehri
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Manee M. Manee
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Fahad H. Alqahtani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Badr M. Al-Shomrani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
- Correspondence: (B.M.A.-S.); (V.N.U.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA
- Correspondence: (B.M.A.-S.); (V.N.U.)
| |
Collapse
|
88
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
89
|
Yang CW, Shi ZL. Uncovering potential host proteins and pathways that may interact with eukaryotic short linear motifs in viral proteins of MERS, SARS and SARS2 coronaviruses that infect humans. PLoS One 2021; 16:e0246150. [PMID: 33534852 PMCID: PMC7857568 DOI: 10.1371/journal.pone.0246150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A coronavirus pandemic caused by a novel coronavirus (SARS-CoV-2) has spread rapidly worldwide since December 2019. Improved understanding and new strategies to cope with novel coronaviruses are urgently needed. Viruses (especially RNA viruses) encode a limited number and size (length of polypeptide chain) of viral proteins and must interact with the host cell components to control (hijack) the host cell machinery. To achieve this goal, the extensive mimicry of SLiMs in host proteins provides an effective strategy. However, little is known regarding SLiMs in coronavirus proteins and their potential targets in host cells. The objective of this study is to uncover SLiMs in coronavirus proteins that are present within host cells. These SLiMs have a high possibility of interacting with host intracellular proteins and hijacking the host cell machinery for virus replication and dissemination. In total, 1,479 SLiM hits were identified in the 16 proteins of 590 coronaviruses infecting humans. Overall, 106 host proteins were identified that may interact with SLiMs in 16 coronavirus proteins. These SLiM-interacting proteins are composed of many intracellular key regulators, such as receptors, transcription factors and kinases, and may have important contributions to virus replication, immune evasion and viral pathogenesis. A total of 209 pathways containing proteins that may interact with SLiMs in coronavirus proteins were identified. This study uncovers potential mechanisms by which coronaviruses hijack the host cell machinery. These results provide potential therapeutic targets for viral infections.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Center for Applied Artificial Intelligence Research, Soochow University, Taipei, Taiwan
- * E-mail:
| | - Zhi-Ling Shi
- Ocean School of Fuzhou University, Fuzhou University, Fuzhou, China
| |
Collapse
|
90
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
91
|
Piovesan D, Necci M, Escobedo N, Monzon AM, Hatos A, Mičetić I, Quaglia F, Paladin L, Ramasamy P, Dosztányi Z, Vranken WF, Davey N, Parisi G, Fuxreiter M, Tosatto SE. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res 2021; 49:D361-D367. [PMID: 33237329 PMCID: PMC7779018 DOI: 10.1093/nar/gkaa1058] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.
Collapse
Affiliation(s)
- Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Nahuel Escobedo
- Dept. of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | | | - András Hatos
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Ivan Mičetić
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Federica Quaglia
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Lisanna Paladin
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Pathmanaban Ramasamy
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, BC building, 6th floor, CP 263, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium
- Department of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, BC building, 6th floor, CP 263, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Gustavo Parisi
- Dept. of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Monika Fuxreiter
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| |
Collapse
|
92
|
Murrali MG, Felli IC, Pierattelli R. Adenoviral E1A Exploits Flexibility and Disorder to Target Cellular Proteins. Biomolecules 2020; 10:biom10111541. [PMID: 33187345 PMCID: PMC7698142 DOI: 10.3390/biom10111541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Direct interaction between intrinsically disordered proteins (IDPs) is often difficult to characterize hampering the elucidation of their binding mechanism. Particularly challenging is the study of fuzzy complexes, in which the intrinsically disordered proteins or regions retain conformational freedom within the assembly. To date, nuclear magnetic resonance spectroscopy has proven to be one of the most powerful techniques to characterize at the atomic level intrinsically disordered proteins and their interactions, including those cases where the formed complexes are highly dynamic. Here, we present the characterization of the interaction between a viral protein, the Early region 1A protein from Adenovirus (E1A), and a disordered region of the human CREB-binding protein, namely the fourth intrinsically disordered linker CBP-ID4. E1A was widely studied as a prototypical viral oncogene. Its interaction with two folded domains of CBP was mapped, providing hints for understanding some functional aspects of the interaction with this transcriptional coactivator. However, the role of the flexible linker connecting these two globular domains of CBP in this interaction was never explored before.
Collapse
Affiliation(s)
| | - Isabella C. Felli
- Correspondence: (I.C.F.); (R.P.); Tel.: +39-0554574242 (I.C.F.); +39-0554574265 (R.P.)
| | - Roberta Pierattelli
- Correspondence: (I.C.F.); (R.P.); Tel.: +39-0554574242 (I.C.F.); +39-0554574265 (R.P.)
| |
Collapse
|
93
|
Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S. Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Sci Rep 2020; 10:19574. [PMID: 33177626 PMCID: PMC7658984 DOI: 10.1038/s41598-020-76522-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Using SAXS and NMR spectroscopy, we herein provide a high-resolution description of the intrinsically disordered N-terminal domain (PNT, aa 1-406) shared by the Nipah virus (NiV) phosphoprotein (P) and V protein, two key players in viral genome replication and in evasion of the host innate immune response, respectively. The use of multidimensional NMR spectroscopy allowed us to assign as much as 91% of the residues of this intrinsically disordered domain whose size constitutes a technical challenge for NMR studies. Chemical shifts and nuclear relaxation measurements provide the picture of a highly flexible protein. The combination of SAXS and NMR information enabled the description of the conformational ensemble of the protein in solution. The present results, beyond providing an overall description of the conformational behavior of this intrinsically disordered region, also constitute an asset for obtaining atomistic information in future interaction studies with viral and/or cellular partners. The present study can thus be regarded as the starting point towards the design of inhibitors that by targeting crucial protein-protein interactions involving PNT might be instrumental to combat this deadly virus.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Edoardo Salladini
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Florence Center for Electron Nanoscopy (FloCEN), University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France.
| |
Collapse
|
94
|
Hill T, Unckless RL. Recurrent evolution of high virulence in isolated populations of a DNA virus. eLife 2020; 9:e58931. [PMID: 33112738 PMCID: PMC7685711 DOI: 10.7554/elife.58931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here, we describe the recurrent evolution of a virulent strain of a DNA virus, which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types recurrently evolved at least four times in the past ~30,000 years, three times in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host-immune system and an increased virulence compared to the low viral titer type.
Collapse
Affiliation(s)
- Tom Hill
- The Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Robert L Unckless
- The Department of Molecular Biosciences, University of KansasLawrenceUnited States
| |
Collapse
|
95
|
Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. J Cell Biol 2020; 219:e202006159. [PMID: 32785687 PMCID: PMC7659715 DOI: 10.1083/jcb.202006159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.
Collapse
Affiliation(s)
- Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
| | - Almer M. van der Sloot
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | | | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY
| | | | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
96
|
Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis. Nat Commun 2020; 11:4845. [PMID: 32973148 PMCID: PMC7518283 DOI: 10.1038/s41467-020-18542-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of β-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases.
Collapse
|
97
|
Schoeman D, Fielding BC. Is There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Immunopathology? A Review of the Literature. Front Microbiol 2020; 11:2086. [PMID: 33013759 PMCID: PMC7496634 DOI: 10.3389/fmicb.2020.02086] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Since the severe acute respiratory syndrome (SARS) outbreak in 2003, human coronaviruses (hCoVs) have been identified as causative agents of severe acute respiratory tract infections. Two more hCoV outbreaks have since occurred, the most recent being SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The clinical presentation of SARS and MERS is remarkably similar to COVID-19, with hyperinflammation causing a severe form of the disease in some patients. Previous studies show that the expression of the SARS-CoV E protein is associated with the hyperinflammatory response that could culminate in acute respiratory distress syndrome (ARDS), a potentially fatal complication. This immune-mediated damage is largely caused by a cytokine storm, which is induced by significantly elevated levels of inflammatory cytokines interleukin (IL)-1β and IL-6, which are partly mediated by the expression of the SARS-CoV E protein. The interaction between the SARS-CoV E protein and the host protein, syntenin, as well as the viroporin function of SARS-CoV E, are linked to this cytokine dysregulation. This review aims to compare the clinical presentation of virulent hCoVs with a specific focus on the cause of the immunopathology. The review also proposes that inhibition of IL-1β and IL-6 in severe cases can improve patient outcome.
Collapse
Affiliation(s)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
98
|
Nikolakaki E, Giannakouros T. SR/RS Motifs as Critical Determinants of Coronavirus Life Cycle. Front Mol Biosci 2020; 7:219. [PMID: 32974389 PMCID: PMC7471607 DOI: 10.3389/fmolb.2020.00219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 01/24/2023] Open
Abstract
SR/RS domains are found in almost all eukaryotic genomes from C. elegans to human. These domains are thought to mediate interactions between proteins but also between proteins and RNA in complex networks associated with mRNA splicing, chromatin structure, transcription, cell cycle and cell structure. A precise and tight regulation of their function is achieved through phosphorylation of a number of serine residues within the SR/RS motifs by the Serine-Arginine protein kinases (SRPKs) that lead to delicate structural alterations. Given that coronavirus N proteins also contain SR/RS domains, we formulate the hypothesis that the viruses exploit the properties of these motifs to promote unpacking of viral RNA and virion assembly.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
99
|
Sharma N, Prosser O, Kumar P, Tuplin A, Giri R. Small molecule inhibitors possibly targeting the rearrangement of Zika virus envelope protein. Antiviral Res 2020; 182:104876. [PMID: 32783901 DOI: 10.1016/j.antiviral.2020.104876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
The recurrent public health threat imposed by Zika Virus (ZIKV) in various geographical areas necessitates the immediate development of antiviral compounds or vaccines. Flaviviral Envelope (E) proteins are essential for host-cell recognition and virion entry. Consequently, they represent an important target for antiviral therapy, with the aim of preventing viral spread during early stages of infection. Due to conformational rearrangement during entry, flavivirus E proteins present several alternative conformations as potential antiviral targets - for blocking entry or virus-host membrane fusion. We previously identified a conserved hydrophobic region, between DI/DIII of ZIKV E protein, with potential to act as an antiviral target. Here, we screened commercially available antiviral compound libraries against ZIKV E protein, using a structure-based drug discovery approach. The antiviral efficacy of the top ten screened compounds were experimentally validated for inhibition of ZIKV replication in Vero Cells. Compound F1065-0358 was observed to inhibit ZIKV replication with an IC50 of 14.0 μM. Ligand-protein complex molecular dynamic simulations confirmed the stability of ligand binding up to 100 ns. Together, results from this study indicate that F1065-0358 functions as a ZIKV virus inhibitor by interfering E protein conformational rearrangement. Furthermore, given that F1065-0358 interacts with highly conserved residues of E protein, this raises the potential for its efficacy against other pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Oliver Prosser
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
100
|
Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, Diakogianni A, Valverde JA, Bukirova D, Čalyševa J, Palopoli N, Davey NE, Chemes LB, Gibson TJ. ELM-the eukaryotic linear motif resource in 2020. Nucleic Acids Res 2020; 48:D296-D306. [PMID: 31680160 PMCID: PMC7145657 DOI: 10.1093/nar/gkz1030] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.
Collapse
Affiliation(s)
- Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marc Gouw
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Sushama Michael
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Juliana Glavina
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Athina Diakogianni
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Dayana Bukirova
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Nicolas Palopoli
- Department of Science and Technology, Universidad Nacional de Quilmes - CONICET, Bernal B1876BXD, Buenos Aires, Argentina
| | - Norman E Davey
- The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Rd, Chelsea, London SW3 6JB, UK
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBio) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín. Av. 25 de Mayo y Francia, CP1650, Buenos Aires, Argentina
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|