51
|
Tian J, Tang Y, Yang L, Ren J, Qing Q, Tao Y, Xu J, Zhu J. Molecular Mechanisms for Anti-aging of Low-Vacuum Cold Plasma Pretreatment in Caenorhabditis elegans. Appl Biochem Biotechnol 2022; 194:4817-4835. [PMID: 35666378 DOI: 10.1007/s12010-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Cold plasma pretreatment has the potential of anti-aging. However, its molecular mechanism is still not clear. Here, cold plasma pretreatment was firstly used to investigate the anti-aging effects of Caenorhabditis elegans using transcriptomic technique. It showed that the optimal parameters of discharge power, processing time, and working pressure for cold plasma pretreatment were separately 100 W, 15 s, and 135 Pa. The released 0.32 mJ/cm2 of the moderate apparent energy density was possibly beneficial to the strong positive interaction between plasma and C. elegans. The longest lifespan (13.67 ± 0.50 for 30 days) was obviously longer than the control (10.37 ± 0.46 for 23 days). Furthermore, compared with the control, frequencies of head thrashes with an increase of 26.01% and 37.31% and those of body bends with an increase of 33.37% and 34.51% on the fourth and eighth day, respectively, indicated movement behavior was improved. In addition, the variation of the enzyme activity of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) hinted that the cold plasma pretreatment contributed to the enhanced anti-aging effects in nematodes. Transcriptomics analysis revealed that cold plasma pretreatment resulted in specific gene expression. Anatomical structure morphogenesis, response to stress, regulation of biological quality, phosphate-containing compound metabolic process, and phosphorus metabolic process were the most enriched biological process for GO analysis. Cellular response to heat stress and HSF1-dependent transactivation were the two most enriched KEGG pathways. This work would provide the methodological basis using cold plasma pretreatment and the potential gene modification targets for anti-aging study.
Collapse
Affiliation(s)
- Jiamei Tian
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yumeng Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China.,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Linsong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qing Qing
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jieting Xu
- Wimi Biotechnology (Jiangsu) Co., Ltd, Changzhou, 213032, Jiangsu, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou, 213164, Jiangsu, China. .,School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
52
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
53
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
54
|
Qin H, Qiu H, He ST, Hong B, Liu K, Lou F, Li M, Hu P, Kong X, Song Y, Liu Y, Pu M, Han P, Li M, An X, Song L, Tong Y, Fan H, Wang R. Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128414. [PMID: 35149493 PMCID: PMC8813208 DOI: 10.1016/j.jhazmat.2022.128414] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Hongbo Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hengju Qiu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Ting He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pan Hu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianghao Kong
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Song
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchen Liu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
55
|
Umair M, Jabeen S, Ke Z, Jabbar S, Javed F, Abid M, Rehman Khan KU, Ji Y, Korma SA, El-Saadony MT, Zhao L, Cacciotti I, Mariana Gonçalves Lima C, Adam Conte-Junior C. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. ULTRASONICS SONOCHEMISTRY 2022; 86:105999. [PMID: 35436672 PMCID: PMC9036140 DOI: 10.1016/j.ultsonch.2022.105999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Sidra Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zekai Ke
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Faiqa Javed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Kashif-Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China.
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma 00166, Italy
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
56
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
57
|
Pre-treatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties. Food Res Int 2022; 154:111028. [DOI: 10.1016/j.foodres.2022.111028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
|
58
|
Sriraksha MS, Ayenampudi SB, Noor M, Raghavendra S, Chakka AK. Cold plasma technology: An insight on its disinfection efficiency of various food systems. FOOD SCI TECHNOL INT 2022; 29:428-441. [PMID: 35345915 DOI: 10.1177/10820132221089169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cold plasma technology is considered as one of the novel potential non-thermal techniques for food disinfection. The acceptability of any food product depends upon its physicochemical properties and shelf life. Recent studies have confirmed that plasma can effectively reduce the pathogenic microbes in various food systems. Further, there are reports that cold plasma showed minimal or no effect on the physicochemical and sensory properties of the foods owing to its low-temperature operation. The present review explores the recent reports on cold plasma technology emphasizing its disinfection efficacy on different food categories. Various researchers have demonstrated that plasma successfully reduced the microorganisms on cereals, milk, meat, fish and spices. Therefore, based on the current research, it can be suggested that cold plasma is an effective disinfectant technology for the inactivation of pathogenic microorganisms, and its non-thermal and environmentally friendly nature is an added advantage over traditional processing technologies.
Collapse
Affiliation(s)
- M S Sriraksha
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - Surendra Babu Ayenampudi
- Hindustan Institute of Science and Technology (Deemed to be university), Chennai, Tamil Nadu, India
| | - Mizna Noor
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - S.N. Raghavendra
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| | - Ashok Kumar Chakka
- Department of Post Graduate Studies & Research in Food Science, St Aloysius College (Autonomous), Mangaluru, Karnataka, India
| |
Collapse
|
59
|
Asghar A, Rashid MH, Ahmed W, Roobab U, Inam‐ur‐Raheem M, Shahid A, Kafeel S, Akram MS, Anwar R, Aadil RM. An in‐depth review of novel cold plasma technology for fresh‐cut produce. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ammara Asghar
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Waqar Ahmed
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Sadia Kafeel
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Muhammad Saad Akram
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| | - Raheel Anwar
- Institute of Horticulture University of Agriculture Faisalabad, 38000 Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad, 38000 Pakistan
| |
Collapse
|
60
|
Ranjbar Nedamani A, Hashemi SJ. Energy consumption computing of cold plasma‐assisted drying of apple slices (
Yellow Delicious
) by numerical simulation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Azadeh Ranjbar Nedamani
- Department of Biosystem Engineering, Sari Agricultural Sciences & Natural Resources University Iran
| | - Seyed Jafar Hashemi
- Department of Biosystem Engineering, Sari Agricultural Sciences & Natural Resources University Iran
| |
Collapse
|
61
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
62
|
Basak S, Annapure US. Impact of atmospheric pressure cold plasma on the rheological and gelling properties of high methoxyl apple pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
63
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
64
|
Obrová K, Vaňková E, Sláma M, Hodek J, Khun J, Ulrychová L, Nogueira F, Laos T, Sponseiler I, Kašparová P, Machková A, Weber J, Scholtz V, Lion T. Decontamination of High-Efficiency Mask Filters From Respiratory Pathogens Including SARS-CoV-2 by Non-thermal Plasma. Front Bioeng Biotechnol 2022; 10:815393. [PMID: 35237577 PMCID: PMC8883054 DOI: 10.3389/fbioe.2022.815393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.
Collapse
Affiliation(s)
- Klára Obrová
- St. Anna Children’s Cancer Research Institute (CCRI), Division Molecular Microbiology, Vienna, Austria
- *Correspondence: Klára Obrová, ; Thomas Lion,
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Sláma
- Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Khun
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, Prague, Czech Republic
| | - Filomena Nogueira
- St. Anna Children’s Cancer Research Institute (CCRI), Division Molecular Microbiology, Vienna, Austria
| | - Triin Laos
- St. Anna Children’s Cancer Research Institute (CCRI), Division Molecular Microbiology, Vienna, Austria
| | - Isabella Sponseiler
- St. Anna Children’s Cancer Research Institute (CCRI), Division Molecular Microbiology, Vienna, Austria
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Anna Machková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute (CCRI), Division Molecular Microbiology, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- *Correspondence: Klára Obrová, ; Thomas Lion,
| |
Collapse
|
65
|
Abstract
Cold atmospheric plasma (CAP) is a tunable source of reactive species and other physical factors. It exerts luxuriant biochemical effects on diverse cells, including bacterial cells, mammalian cells, and plant cells. Over the past decade, CAP has shown promising application in modern agriculture. Here, we focused on the state of the art of plasma agriculture, particularly the improvement of seed germination rates. Typical plasma sources, underlying physical principles, and the chemical and cellular mechanism of plasma’s effect on plants seeds have been discussed in depth.
Collapse
|
66
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
67
|
Wang J, He Z, Raghavan V. Soybean allergy: characteristics, mechanisms, detection and its reduction through novel food processing techniques. Crit Rev Food Sci Nutr 2022; 63:6182-6195. [PMID: 35075969 DOI: 10.1080/10408398.2022.2029345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human beings have consumed soybean as an excellent food source for thousand years due to its rich protein, fatty acids, minerals, and fibers. However, soybeans were recognized as one of the big eight allergens resulting in allergic symptoms and even could lead to death. With the increasing demand for soybean products, the challenges caused by soybean allergy need to be solved urgently. This review detailly described the pathogenesis and clinical characteristics of soybean allergy, and also the advantages and disadvantages of four different diagnostic methods were summarized. The major soybean allergens and their structures were summarized. Three types of soybean allergy including Type I, III, and IV, which could trigger allergic reactions were reported in this review. Summary in four different diagnostic methods showed that double-blind, placebo-controlled food challenge is recognized as a gold standard for diagnosing soybean allergy. Three types of processing techniques in reducing soybean allergy were discussed, and the results concluded that some novel food processing techniques such as ultrasound, cold-plasma treatment, showed potential application in the reduction of soybean allergenicity. Further, some suggestions regarding the management and treatment of food allergies were addressed in this review.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Zhaoyi He
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
68
|
Abstract
Agriculture has become a sector with a huge impact on the natural environment. The interest of agriculture in the category of innovative bio-stimulants is due to the intensive search for preparations based on natural substances. This is not possible without developing and implementing innovative technologies, e.g., cold plasma, along with innovative technologies supporting farmers. Therefore, given the need to prevent environmental damage caused by intensive agriculture, plant production and protection must be targeted at merging the stimulation of crop growth and the elimination of threats to humans and the environment. The analysis of how cold plasma can influence the production of organic bio-stimulants seems to be an unavoidable step in future approaches to this topic. Since allelopathic plants represent a source of many chemical compounds promoting crop growth and development, the coupling of biologically-active compound extraction with plasma activation of allelopathic extracts has interesting potential in offering the most modern alternative to conventional agriculture. However, its implementation in practice will only be feasible after a comprehensive and thoughtful investigation of the mechanisms behind crops’ response to such bio-stimulants.
Collapse
|
69
|
|
70
|
Assadi I, Guesmi A, Baaloudj O, Zeghioud H, Elfalleh W, Benhammadi N, Khezami L, Assadi AA. Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4880-4892. [PMID: 34796437 PMCID: PMC8601095 DOI: 10.1007/s11356-021-17486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 04/12/2023]
Abstract
Although several non-thermal plasmas (NTPs) technologies have been widely investigated in air treatment, very few studies have focused on the inactivation mechanism of viruses by NTPs. Due to its efficiency and environmental compatibility, non-thermal plasma could be considered a promising virus-inactivation technology. Plasma is a partly or fully ionized gas including some species (i.e., electrons, free radicals, ions, and neutral molecules) to oxidize pollutants or inactivate harmful organisms. Non-thermal plasmas are made using less energy and have an active electron at a much higher temperature than bulk gas molecules. This review describes NTPs for virus inactivation in indoor air. The different application processes of plasma for microorganism inactivation at both laboratory and pilot-scale was also reviewed This paper reports on recent advances in this exciting area of viral inactivation identifying applications and mechanisms of inactivation, and summarizing the results of the latest experiments in the literature. Moreover, special attention was paid to the mechanism of virus inactivation. Finally, the paper suggests research directions in the field of airborne virus inactivation using non-thermal plasma.
Collapse
Affiliation(s)
- Imen Assadi
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hichem Zeghioud
- Department of Process Engineering, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Naoufel Benhammadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | | |
Collapse
|
71
|
Basak S, Annapure US. Recent trends in the application of cold plasma for the modification of plant proteins - A review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
72
|
Ali F. Nonthermal and thermal treatments impact the structure and microstructure of milk fat globule membrane. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fatma Ali
- Department of Biological Chemical Engineering College of Chemical Engineering and Material Science Tianjin Economic and Technological Development Area (TEDA) Tianjin University of Science and Technology No. 29, 13th Avenue Tianjin 300457 China
| |
Collapse
|
73
|
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021; 10:foods10122927. [PMID: 34945478 PMCID: PMC8701285 DOI: 10.3390/foods10122927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Correspondence:
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| |
Collapse
|
74
|
Maruyama-Nakashita A, Ishibashi Y, Yamamoto K, Zhang L, Morikawa-Ichinose T, Kim SJ, Hayashi N. Oxygen plasma modulates glucosinolate levels without affecting lipid contents and composition in Brassica napus seeds. Biosci Biotechnol Biochem 2021; 85:2434-2441. [PMID: 34506620 DOI: 10.1093/bbb/zbab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 01/27/2023]
Abstract
Rapeseed contains high levels of glucosinolates (GSLs), playing pivotal roles in defense against herbivores and pests. As their presence in rapeseed reduces the value of the meal for animal feeding, intensive efforts to reduce them produced low-seed GSL cultivars. However, there is no such variety suitable for the south part of Japan. Here, we tested the effects of cold oxygen plasma (oxygen CP) on seed germination and GSL and lipid content, in 3 rapeseed cultivars. According to the cultivars, oxygen CP slightly stimulated seed germination and modified the GSL levels, and decreased GSL levels in Kizakinonatane but increased those in Nanashikibu. In contrast, it negligibly affected the lipid content and composition in the 3 cultivars. Thus, oxygen CP modulated seed GSL levels without affecting seed viability and lipid content. Future optimization of this technique may help optimize rapeseed GSL content without plant breeding.
Collapse
Affiliation(s)
- Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Kyotaro Yamamoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
| | - Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Nobuya Hayashi
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga, Fukuoka, Japan
| |
Collapse
|
75
|
Cortese E, Settimi AG, Pettenuzzo S, Cappellin L, Galenda A, Famengo A, Dabalà M, Antoni V, Navazio L. Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca 2+ Elevations in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112516. [PMID: 34834879 PMCID: PMC8622995 DOI: 10.3390/plants10112516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 05/15/2023]
Abstract
Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants. To this aim, Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with PAW generated by a plasma torch. Ca2+ measurement assays demonstrated the induction by PAW of rapid and sustained cytosolic Ca2+ elevations in Arabidopsis seedlings. The dynamics of the recorded Ca2+ signals were found to depend upon different parameters, such as the operational conditions of the torch, PAW storage, and dilution. The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures. Unveiling the signalling mechanisms underlying plant perception of PAW may allow to finely tune its generation for applications in agriculture, with potential advantages in the perspective of a more sustainable agriculture.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Alessio G. Settimi
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (A.G.S.); (M.D.)
| | - Silvia Pettenuzzo
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Luca Cappellin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy;
| | - Alessandro Galenda
- CNR Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Corso Stati Uniti 4, 35127 Padova, Italy; (A.G.); (A.F.)
| | - Alessia Famengo
- CNR Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Corso Stati Uniti 4, 35127 Padova, Italy; (A.G.); (A.F.)
| | - Manuele Dabalà
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (A.G.S.); (M.D.)
| | - Vanni Antoni
- Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
- Botanical Garden, University of Padova, Via Orto Botanico 15, 35123 Padova, Italy
- Correspondence:
| |
Collapse
|
76
|
Tagrida M, Benjakul S, Zhang B. Use of betel leaf (Piper betle L.) ethanolic extract in combination with modified atmospheric packaging and nonthermal plasma for shelf-life extension of Nile tilapia (Oreochromis niloticus) fillets. J Food Sci 2021; 86:5226-5239. [PMID: 34766340 DOI: 10.1111/1750-3841.15960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022]
Abstract
Fish is perishable and has the short shelf-life. To maintain its quality, it is necessary to implement the appropriate technology, particularly nonthermal processing along with safe additive, especially from plant origin under the concept of "hurdle technology". The use of potential vesicle including liposome for loading the plant extract could be a means to enhance the stability and activities of the extract. The current study aimed to evaluate the effect of liposomes loaded with betel leaf ethanolic extract (L/BLEEs) or unencapsulated BLEE (U/BLEE) in conjunction with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) on the quality changes and shelf-life of Nile tilapia fillets (TFs) stored under refrigerated condition (4°C). TFs treated with L/BLEE or U/BLEE at 400 ppm, packed under modified atmosphere (CO2 :Ar:O2 = 60:30:10) and subjected to NTP for 300 s (L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP, respectively) had the lowest microbial and chemical changes during storage, while the control showed the highest changes (p < 0.05). Lipid oxidation was lower in these samples, ascertained by more retained polyunsaturated fatty acids and lower lipid oxidation based on Fourier transform infrared (FT-IR) spectra. Overall likeness scores were similar (p > 0.05) between all the samples at day 0 of storage. Only L/BLEE-400/MAP-NTP and U/BLEE-400/MAP-NTP were still sensorially acceptable after 12 days at 4°C. Therefore, L/BLEE or U/BLEE combined with MAP/NTP treatment could be adopted as a potent hurdle for shelf-life extension of TFs. PRACTICAL APPLICATION: Natural additives and nonthermal processing technologies have gained increasing interest for preservation of fish. Liposomes loaded with betel leaf ethanolic extract (L/BLEE) rich in polyphenolics could be used together with modified atmospheric packaging (MAP) and nonthermal plasma (NTP) to retard bacterial growth and chemical deterioration in Nile tilapia fillets. These hurdles were proven to be able to maintain the qualities of tilapia fillets stored at 4°C up to 12 days, especially when L/BLEE was used at 400 ppm. Therefore, shelf-life extension of Nile tilapia fillets or other fish can be achieved by using the natural additive and nonthermal processing technologies.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
77
|
Xiang Q, Huangfu L, Dong S, Ma Y, Li K, Niu L, Bai Y. Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34761962 DOI: 10.1080/10408398.2021.2002257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent decades, food safety has emerged as a worldwide public health issue with economic and political implications. Pesticide residues, mycotoxins, allergens, and antinutritional factors are the primary concerns associated with food products due to their potential adverse health effects. Although various conventional processing methods (such as washing, peeling, and cooking) have been used to reduce or eliminate these hazards from agricultural food materials, the results obtained are not quite satisfactory. Recently, atmospheric cold plasma (ACP), an emerging low -temperature and green processing technology, has shown great potential for mitigating food hazards. However, detailed descriptions of the effects of ACP treatment on food hazards are still not available. Thus, the current review aims to highlight recent studies on the efficacy and application of ACP in the reduction or elimination of pesticide residues, mycotoxins, allergens, and antinutritional factors in various food products. The possible working mechanisms of ACP and its effect on food quality, and the toxicity of degradation products are emphatically discussed. In addition, multiple factors affecting the efficacy of ACP are summarized in detail. At the same time, the major technical challenges for practical application and future development prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Shanshan Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| |
Collapse
|
78
|
Mladenović KG, Grujović MŽ, Kiš M, Furmeg S, Tkalec VJ, Stefanović OD, Kocić-Tanackov SD. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Appl Microbiol Biotechnol 2021; 105:8615-8627. [PMID: 34731280 DOI: 10.1007/s00253-021-11655-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
There has been a growing interest in traditional dairy (such as raw milk cheeses) and meat products, in recent years. However, these products are suitable and nutrient medium and may be easily contaminated by microorganisms such as Enterobacteriaceae. Enterobacteriaceae are considered to be the indicator bacteria for microbiological quality of food and hygiene status of a production process. Additionally, the food contaminated by Enterobacteriaceae poses a microbiological risk for consumers. In fact, the contamination of raw milk and meat by Enterobacteriaceae amid manufacturing may easily occur from various environmental sources, and this group of bacteria is frequently detected in dairy and meat products. Therefore, monitoring the microbiological quality of the used raw material and maintaining high standards of hygiene in the production process are mandatory for a high quality of traditional products and the safety of the potential consumers. The goal of this review is to present the most recent survey on Enterobacteriaceae growth, number, and distribution in raw milk cheeses and meat, as well as to discuss the sources of contamination and methods of control. KEY POINTS: • Enterobacteriaceae: role and importance in milk and meat products, EU legal regulations • Dynamics, distribution, and survival of Enterobacteriaceae in milk and meat • Mechanisms of control of Enterobacteriaceae in dairy products.
Collapse
Affiliation(s)
- K G Mladenović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia. .,Institute for Information Technologies, Department of Science, University of Kragujevac, JovanaCvijica Bb, 34000, Kragujevac, Republic of Serbia.
| | - M Ž Grujović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia.,Institute for Information Technologies, Department of Science, University of Kragujevac, JovanaCvijica Bb, 34000, Kragujevac, Republic of Serbia
| | - M Kiš
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - S Furmeg
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - V Jaki Tkalec
- Laboratory for Food and Feed Microbiology, Croatian Veterinary Institute, Veterinary Institute Križevci, Zakmardijeva 10, 48260, Križevci, Croatia
| | - O D Stefanović
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Republic of Serbia
| | - S D Kocić-Tanackov
- Faculty of Technology, University in Novi Sad, Cara Lazara 1, 21000, Novi Sad, Republic of Serbia
| |
Collapse
|
79
|
Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Anti-Melanoma Capability of Contactless Cold Atmospheric Plasma Treatment. Int J Mol Sci 2021; 22:ijms222111728. [PMID: 34769162 PMCID: PMC8584098 DOI: 10.3390/ijms222111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
In this study, we demonstrated that the widely used cold atmospheric plasma (CAP) jet could significantly inhibit the growth of melanoma cells using a contactless treatment method, The flow rate of helium gas was a key operational parameter to modulate electromagnetic (EM) effect on melanoma cells. Metal sheets with different sizes could be used as a strategy to control the strength of EM effect. More attractive, the EM effect from CAP could penetrate glass/polystyrene barriers as thick as 7 mm. All these discoveries presented the profound non-invasive nature of a physically based CAP treatment, which provided a solid foundation for CAP-based cutaneous/subcutaneous tumor therapy.
Collapse
|
81
|
Physical and chemical properties of oil extracted from sesame (Sesamum indicum L.) and sunflower (Helianthus annuus L.) seeds treated with cold plasma. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
82
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
83
|
Aqueous and gaseous plasma applications for the treatment of mung bean seeds. Sci Rep 2021; 11:19681. [PMID: 34608179 PMCID: PMC8490402 DOI: 10.1038/s41598-021-97823-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Sprouts are particularly prone to microbial contamination due to their high nutrient content and the warm temperatures and humid conditions needed for their production. Therefore, disinfection is a crucial step in food processing as a means of preventing the transmission of bacterial, parasitic and viral pathogens. In this study, a dielectric coplanar surface barrier discharge (DCSBD) system was used for the application of cold atmospheric plasma (CAP), plasma activated water (PAW) and their combination on mung bean seeds. Germination assessments were performed in a test tube set-up filled with glass beads and the produced irrigation water. Overall, it was found that the combined seed treatment with direct air CAP (350 W) and air PAW had no negative impact on mung bean seed germination and growth, nor the concentration of secondary metabolites within the sprouts. These treatments also reduced the total microbial population in sprouts by 2.5 log CFU/g. This research reports for first time that aside from the stimulatory effect of plasma discharge on seed surface disinfection, sustained plasma treatment through irrigation of treated seeds with PAW can significantly enhance seedling growth. The positive outcome and further applications of different forms, of plasma i.e., gaseous and aqueous, in the agro-food industry is further supported by this research.
Collapse
|
84
|
NMR evaluation of apple cubes and apple juice composition subjected to two cold plasma technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
85
|
Multi-Modal Biological Destruction by Cold Atmospheric Plasma: Capability and Mechanism. Biomedicines 2021; 9:biomedicines9091259. [PMID: 34572443 PMCID: PMC8465976 DOI: 10.3390/biomedicines9091259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a near-room-temperature, partially ionized gas composed of reactive neutral and charged species. CAP also generates physical factors, including ultraviolet (UV) radiation and thermal and electromagnetic (EM) effects. Studies over the past decade demonstrated that CAP could effectively induce death in a wide range of cell types, from mammalian to bacterial cells. Viruses can also be inactivated by a CAP treatment. The CAP-triggered cell-death types mainly include apoptosis, necrosis, and autophagy-associated cell death. Cell death and virus inactivation triggered by CAP are the foundation of the emerging medical applications of CAP, including cancer therapy, sterilization, and wound healing. Here, we systematically analyze the entire picture of multi-modal biological destruction by CAP treatment and their underlying mechanisms based on the latest discoveries particularly the physical effects on cancer cells.
Collapse
|
86
|
Bang IH, Kim YE, Min SC. Preservation of mandarins using a microbial decontamination system integrating calcium oxide solution washing, modified atmosphere packaging, and dielectric barrier discharge cold plasma treatment. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Delorme MM, Pimentel TC, Freitas MQ, da Cunha DT, Silva R, Guimarães JT, Scudino H, Esmerino EA, Duarte MCKH, Cruz AG. Consumer innovativeness and perception about innovative processing technologies: A case study with sliced Prato cheese processed by ultraviolet radiation. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12807] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mariana M Delorme
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói 24230‐340Brazil
| | - Tatiana C Pimentel
- Instituto Federal do Paraná (IFPR) Campus Paranavaí Paranavaí Paraná 87506‐370Brazil
| | | | - Diogo T da Cunha
- Faculdade de Ciências Aplicadas Universidade Estadual de Campinas (UNICAMP) Limeira 13484‐350Brazil
| | - Ramon Silva
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói 24230‐340Brazil
- Instituto Federal de Educação Ciência e Tecnologia de Alimentos (IFRJ), Departamento de Alimentos Rio de Janeiro 20270‐021 Brazil
| | - Jonas Toledo Guimarães
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói 24230‐340Brazil
| | - Hugo Scudino
- Faculdade de Medicina Veterinária Universidade Federal Fluminense (UFF) Niterói 24230‐340Brazil
| | | | | | - Adriano G Cruz
- Instituto Federal de Educação Ciência e Tecnologia de Alimentos (IFRJ), Departamento de Alimentos Rio de Janeiro 20270‐021 Brazil
| |
Collapse
|
88
|
Saremnezhad S, Soltani M, Faraji A, Hayaloglu AA. Chemical changes of food constituents during cold plasma processing: A review. Food Res Int 2021; 147:110552. [PMID: 34399529 DOI: 10.1016/j.foodres.2021.110552] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
There is a growing demand for the consumption of nutritious and safe food products. Cold plasma is a novel non-thermal technology that in recent years, has found numerous applications in the food industry. Study on the applications of this technology and its effects on food quality is increasing. Like any other technology, using cold plasma for the processing of foods can be associated with food quality challenges. This paper reviews the effect of cold plasma on the chemical structure of different food constituents as well as its influence on food characteristics. The emphasis is on the recent studies about the plasma mechanisms of action and chemical alterations of different food components. The studies show that the interaction of plasma-reactive species with food components depends on process conditions. Developing the functional characteristics and reducing the anti-nutritional compounds are of promising potentials of cold plasma. Finally, the research gaps, the salient drawbacks, and future prospects of this technology are highlighted.
Collapse
Affiliation(s)
- Solmaz Saremnezhad
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
89
|
Waskow A, Butscher D, Oberbossel G, Klöti D, Rudolf von Rohr P, Büttner-Mainik A, Drissner D, Schuppler M. Low-energy electron beam has severe impact on seedling development compared to cold atmospheric pressure plasma. Sci Rep 2021; 11:16373. [PMID: 34385534 PMCID: PMC8360967 DOI: 10.1038/s41598-021-95767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Sprouts are germinated seeds that are often consumed due to their high nutritional content and health benefits. However, the conditions for germination strongly support the proliferation of present bacteria, including foodborne pathogens. Since sprouts are consumed raw or minimally processed, they are frequently linked to cases of food poisoning. Therefore, a seed decontamination method that provides efficient inactivation of microbial pathogens, while maintaining the germination capacity and quality of the seeds is in high demand. This study aimed to investigate and compare seed decontamination by cold atmospheric-pressure plasma and low-energy electron beam with respect to their impact on seed and seedling quality. The results show that both technologies provide great potential for inactivation of microorganisms on seeds, while cold plasma yielded a higher efficiency with 5 log units compared to a maximum of 3 log units after electron beam treatment. Both techniques accelerated seed germination, defined by the percentage of hypocotyl and leaf emergence at 3 days, with short plasma treatment (< 120 s) and all applied doses of electron beam treatment (8-60 kGy). However, even the lowest dose of electron beam treatment at 8 kGy in this study caused root abnormalities in seedlings, suggesting a detrimental effect on the seed tissue. Seeds treated with cold plasma had an eroded seed coat and increased seed wettability compared to electron beam treated seeds. However, these effects cannot explain the increase in the germination capacity of seeds as this was observed for both techniques. Future studies should focus on the investigation of the mechanisms causing accelerated seed germination and root abnormalities by characterizing the molecular and physiological impact of cold plasma and electron beam on seed tissue.
Collapse
Affiliation(s)
- A Waskow
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
- Swiss Plasma Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - D Butscher
- Institute of Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- BASF Personal Care and Nutrition GmbH, Illertissen, Germany
| | - G Oberbossel
- Institute of Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - D Klöti
- Competence Division for Plants and Plant Products, Seed Quality, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - P Rudolf von Rohr
- Institute of Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - A Büttner-Mainik
- Competence Division for Plants and Plant Products, Seed Quality, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - D Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Strasse 51, 72488, Sigmaringen, Germany
| | - M Schuppler
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| |
Collapse
|
90
|
Sohbatzadeh F, Yazdanshenas H, Soltani AH, Shabannejad A. An innovative strategy to rapidly inactivate 8.2-log Enterococcus faecalis in fresh pineapple juice using cold atmospheric plasma. Sci Rep 2021; 11:16010. [PMID: 34362987 PMCID: PMC8346603 DOI: 10.1038/s41598-021-95452-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is a life-threatening bacterium that resists high levels of antibiotics or chemical preservatives. In this study, we aimed to investigate the inactivation of E. faecalis in fresh pineapple juice (FPJ) with two different cold atmospheric plasmas (CAP) reinforced by H2O2/H2O cold vapor: a plasma jet and a surface dielectric barrier discharge (SDBD). CAP treatments for 300 s with plasma jet and 420 s with SDBD caused an 8.2 log reduction of E. faecalis. The concentration of reactive oxygen and nitrogen species induced in FPJ by plasmas was also evaluated. In terms of quality attributes of FPJ, no noticeable color changes (ΔE) were observed. Furthermore, a trifle of loss of organic content such as sugars and organic acids was observed after treatments. These results suggest that our rapid CAP strategy effectively inactivated E. faecalis in FPJ with no change of color and negligible effects on other physicochemical properties.
Collapse
Affiliation(s)
- Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran. .,Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran.
| | - Homayoon Yazdanshenas
- Department of Cellular and Molecular Biology, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | - Amir-Hossain Soltani
- Department of Cellular and Molecular Biology, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | - Amir Shabannejad
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran.,Plasma Technology Research Core, Faculty of Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
91
|
Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants-A Review. PLANTS 2021; 10:plants10081616. [PMID: 34451662 PMCID: PMC8401949 DOI: 10.3390/plants10081616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.
Collapse
|
92
|
Schnabel U, Balazinski M, Wagner R, Stachowiak J, Boehm D, Andrasch M, Bourke P, Ehlbeck J. Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
93
|
Warne GR, Williams PM, Pho HQ, Tran NN, Hessel V, Fisk ID. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. J Food Sci 2021; 86:3762-3777. [PMID: 34337748 DOI: 10.1111/1750-3841.15856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Cold plasma is formed by the nonthermal ionization of gas into free electrons, ions, reactive atomic and molecular species, and ultraviolet (UV) radiation. This cold plasma can be used to alter the surface of solid and liquid foods, and it offers multiple advantages over traditional thermal treatments, such as no thermal damage and increased output variation (due to the various input parameters gas, power, plasma type, etc.). Cold plasma appears to have limited impact on the sensory and color properties, at lower power and treatment times, but there has been a statistically significant reduction in pH for most of the cold plasma treatments reviewed (p < 0.05). Carbohydrates (cross linking and glycosylation), lipids (oxidation), and proteins (secondary structure) are more significantly impacted due to cold plasma at higher intensities and longer treatment times. Although cold plasma treatments and food matrices can vary considerably, this review has identified the literary evidence of some of the influences and impacts of the vast array of cold plasma treatment parameters on the biomolecular and organoleptic properties of these foods. Due to the rapidly evolving nature of the field, we have also identified that authors prioritize the presentation of different information when publishing from different research areas. Therefore, we have proposed a number of key physical and chemical cold plasma parameters that should be considered for inclusion in all future publications in the field.
Collapse
Affiliation(s)
- George R Warne
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| | - Philip M Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Hue Quoc Pho
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Ian D Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
94
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
95
|
Khan MU, Lin H, Ahmed I, Chen Y, Zhao J, Hang T, Dasanayaka BP, Li Z. Whey allergens: Influence of nonthermal processing treatments and their detection methods. Compr Rev Food Sci Food Saf 2021; 20:4480-4510. [PMID: 34288394 DOI: 10.1111/1541-4337.12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Whey and its components are recognized as value-added ingredients in infant formulas, beverages, sports nutritious foods, and other food products. Whey offers opportunities for the food industrial sector to develop functional foods with potential health benefits due to its unique physiological and functional attributes. Despite all the above importance, the consumption of whey protein (WP) can trigger hypersensitive reactions and is a constant threat for sensitive individuals. Although avoiding such food products is the most successful approach, there is still a chance of incorrect labeling and cross-contamination during food processing. As whey allergens in food products are cross-reactive, the phenomenon of homologous milk proteins of various species may escalate to a more serious problem. In this review, nonthermal processing technologies used to prevent and eliminate WP allergies are presented and discussed in detail. These processing technologies can either enhance or mitigate the impact of potential allergenicity. Therefore, the development of highly precise analytical technologies to detect and quantify the existence of whey allergens is of considerable importance. The present review is an attempt to cover all the updated approaches used for the detection of whey allergens in processed food products. Immunological and DNA-based assays are generally used for detecting allergenic proteins in processed food products. In addition, mass spectrometry is also employed as a preliminary technique for detection. We also highlighted the latest improvements in allergen detection toward biosensing strategies particularly immunosensors and aptasensors.
Collapse
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, No. 7 Panjiayuan Nanli, Beijing, Chaoyang, 100021, China
| | - Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | - Tian Hang
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| | | | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 5# Yushan Road, Qingdao, 266003, China
| |
Collapse
|
96
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
97
|
Ikmal Misnal MF, Redzuan N, Firdaus Zainal MN, Raja Ibrahim RK, Ahmad N, Agun L. Emerging cold plasma treatment on rice grains: A mini review. CHEMOSPHERE 2021; 274:129972. [PMID: 33979941 DOI: 10.1016/j.chemosphere.2021.129972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Future demand of rice is projected to increase with the increase of global population. However, the presence of bacteria, insects, and fungi has resulted in various changes in the physical and chemical characteristics of rice grain. To make it worse, the overuse of post-harvest chemicals (fungicide and pesticide) has caused possible risks to human health through either occupational or non-occupational exposure. For the last few years, cold plasma has been developed as an alternative non-thermal emerging technology for rice grains treatment due to its ability to inactivate or decontaminate pathogens without causing thermal damage and free of any harmful residues. Therefore, this review describes the operational mechanism of cold plasma treatment technology on rice grains, existing reactor system designs, and parameters influenced by the treatment technology (reactor design parameters and treatment process parameters). Possible advanced investigation on future reactor design modification as well as standard operating range of influenced parameters were suggested for improved efficiency and effectiveness of cold plasma treatment.
Collapse
Affiliation(s)
- Mohd Fadthul Ikmal Misnal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Norizah Redzuan
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Muhamad Nor Firdaus Zainal
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | - Norhayati Ahmad
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Linda Agun
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
98
|
Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114809] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma). Overall, CAPP technology is an innovative, powerful and effective tool offering a broad application potential. However, its limitations and negative impacts need to be determined in order to receive regulatory approval and consumer acceptance.
Collapse
|
99
|
Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J Fungi (Basel) 2021; 7:jof7050395. [PMID: 34069444 PMCID: PMC8159112 DOI: 10.3390/jof7050395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.
Collapse
|
100
|
Sharanyakanth PS, Lokeswari R, Mahendran R. Plasma bubbling effect on essential oil yield, extraction efficiency, and flavor compound of
Cuminum cyminum
L. seeds. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ramireddy Lokeswari
- Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| | - Radhakrishnan Mahendran
- Centre of Excellence in Nonthermal Processing Indian Institute of Food Processing Technology (IIFPT) Thanjavur India
| |
Collapse
|