51
|
Wang Y, Zhang K, Zhao Y, Li Y, Su W, Li S. Construction and Applications of Mammalian Cell-Based DNA-Encoded Peptide/Protein Libraries. ACS Synth Biol 2023; 12:1874-1888. [PMID: 37315219 DOI: 10.1021/acssynbio.3c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA-encoded peptide/protein libraries are the starting point for protein evolutionary modification and functional peptide/antibody selection. Different display technologies, protein directed evolution, and deep mutational scanning (DMS) experiments employ DNA-encoded libraries to provide sequence variations for downstream affinity- or function-based selections. Mammalian cells promise the inherent post-translational modification and near-to-natural conformation of exogenously expressed mammalian proteins and thus are the best platform for studying transmembrane proteins or human disease-related proteins. However, due to the current technical bottlenecks of constructing mammalian cell-based large size DNA-encoded libraries, the advantages of mammalian cells as screening platforms have not been fully exploited. In this review, we summarize the current efforts in constructing DNA-encoded libraries in mammalian cells and the existing applications of these libraries in different fields.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Kaili Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
52
|
Rosas Cancio-Suárez M, Díaz-Álvarez J, Ron R, Martínez-Sanz J, Serrano-Villar S, Moreno S, Sánchez-Conde M. From Innovation to Implementation: The Evolution of HIV Pre-Exposure Prophylaxis and Future Implications. Pathogens 2023; 12:924. [PMID: 37513771 PMCID: PMC10384104 DOI: 10.3390/pathogens12070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Pre-exposure prophylaxis (PrEP) is a highly effective HIV-prevention strategy that involves the continuous administration of antiretroviral drugs to HIV-negative individuals with a substantial risk of contracting an HIV infection. The use of PrEP has shown a reduction in the risk of HIV acquisition through sexual intercourse by up to 99%. Despite its effectiveness, PrEP uptake remains low among populations at high risk of HIV infection. This highlights the need for further research in strategies to enhance awareness and uptake of PrEP amongst these specific populations. This article presents a comprehensive overview of the existing literature on the effectiveness of PrEP in reducing HIV transmission rates. Additionally, we examine the obstacles related to PrEP implementation and uptake and put forward potential strategies to raise awareness and improve its use among populations at an increased risk of contracting HIV.
Collapse
Affiliation(s)
- Marta Rosas Cancio-Suárez
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Department of Medicine, University of Alcalá de Henares, Guadalajara Campus, 28801 Alcalá de Henares, Spain
| | - Jorge Díaz-Álvarez
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Raquel Ron
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Javier Martínez-Sanz
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Sergio Serrano-Villar
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Santiago Moreno
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Department of Medicine, University of Alcalá de Henares, Guadalajara Campus, 28801 Alcalá de Henares, Spain
| | - Matilde Sánchez-Conde
- Infectious Diseases Department, Hospital Ramón y Cajal, Carretera de Colmenar Km 9.1, 28034 Madrid, Spain
- Ramón y Cajal Research Institute (IRYCIS), 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| |
Collapse
|
53
|
Dale DC, Bolyard AA, Makaryan V. The promise of novel treatments for severe chronic neutropenia. Expert Rev Hematol 2023; 16:1025-1033. [PMID: 37978893 DOI: 10.1080/17474086.2023.2285987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Severe chronic neutropenia, i.e. absolute neutrophil count (ANC) less than 0.5 × 109/L, is a serious health problem because it predisposes patients to recurrent bacterial infections. Management radically changed with the discovery that granulocyte colony-stimulating factor (G-CSF) could be used to effectively treat most patients; therapy required regular subcutaneous injections. In the early days of G-CSF therapy, there were concerns that it might somehow overstimulate the bone marrow and cause myelodysplasia (MDS) or acute myeloid leukemia (AML). Detailed research records from the Severe Chronic Neutropenia International Registry (SCNIR) indicate that this is a relatively low-risk event. The research records suggest that certain patient groups are primarily at risk. Presently, allogeneic hematopoietic stem cell therapy serves as an alternate form of therapy. AREAS COVERED Due to these concerns and the desire for an easy-to-take oral alternative, several new treatments are under investigation. These treatments include neutrophil elastase inhibitors, SGLT-2 inhibitors, mavorixafor - an oral CXCR4 inhibitor, gene therapy, and gene editing. EXPERT OPINION All of these alternatives to G-CSF are promising. The risks, relative benefits, and costs are yet to be determined.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
54
|
Zhou R, Zhang S, Nguyen HT, Ding H, Gaffney A, Kappes JC, Smith AB, Sodroski JG. Conformations of Human Immunodeficiency Virus Envelope Glycoproteins in Detergents and Styrene-Maleic Acid Lipid Particles. J Virol 2023; 97:e0032723. [PMID: 37255444 PMCID: PMC10308955 DOI: 10.1128/jvi.00327-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Althea Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Fili M, Hu G, Han C, Kort A, Trettin J, Haim H. A classification algorithm based on dynamic ensemble selection to predict mutational patterns of the envelope protein in HIV-infected patients. Algorithms Mol Biol 2023; 18:4. [PMID: 37337202 DOI: 10.1186/s13015-023-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/04/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Therapeutics against the envelope (Env) proteins of human immunodeficiency virus type 1 (HIV-1) effectively reduce viral loads in patients. However, due to mutations, new therapy-resistant Env variants frequently emerge. The sites of mutations on Env that appear in each patient are considered random and unpredictable. Here we developed an algorithm to estimate for each patient the mutational state of each position based on the mutational state of adjacent positions on the three-dimensional structure of the protein. METHODS We developed a dynamic ensemble selection algorithm designated k-best classifiers. It identifies the best classifiers within the neighborhood of a new observation and applies them to predict the variability state of each observation. To evaluate the algorithm, we applied amino acid sequences of Envs from 300 HIV-1-infected individuals (at least six sequences per patient). For each patient, amino acid variability values at all Env positions were mapped onto the three-dimensional structure of the protein. Then, the variability state of each position was estimated by the variability at adjacent positions of the protein. RESULTS The proposed algorithm showed higher performance than the base learner and a panel of classification algorithms. The mutational state of positions in the high-mannose patch and CD4-binding site of Env, which are targeted by multiple therapeutics, was predicted well. Importantly, the algorithm outperformed other classification techniques for predicting the variability state at multi-position footprints of therapeutics on Env. CONCLUSIONS The proposed algorithm applies a dynamic classifier-scoring approach that increases its performance relative to other classification methods. Better understanding of the spatiotemporal patterns of variability across Env may lead to new treatment strategies that are tailored to the unique mutational patterns of each patient. More generally, we propose the algorithm as a new high-performance dynamic ensemble selection technique.
Collapse
Affiliation(s)
- Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, 3014 Black Engineering, 2529 Union Drive, Ames, IA, 50011, USA
| | - Guiping Hu
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, 3014 Black Engineering, 2529 Union Drive, Ames, IA, 50011, USA.
| | - Changze Han
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Rd, 3-770 BSB, Iowa City, IA, 52242, USA
| | - Alexa Kort
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Rd, 3-770 BSB, Iowa City, IA, 52242, USA
| | - John Trettin
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, 3014 Black Engineering, 2529 Union Drive, Ames, IA, 50011, USA
| | - Hillel Haim
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, 51 Newton Rd, 3-770 BSB, Iowa City, IA, 52242, USA.
| |
Collapse
|
56
|
Liu H, Chen C, Liao S, Sohaii DK, Cruz CR, Burdo TH, Cradick TJ, Mehta A, Barrero C, Florez M, Gordon J, Grauzam S, Dressman J, Amini S, Bollard CM, Kaminski R, Khalili K. Strategic self-limiting production of infectious HIV particles by CRISPR in permissive cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:1010-1025. [PMID: 37346975 PMCID: PMC10280355 DOI: 10.1016/j.omtn.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/28/2023] [Indexed: 06/23/2023]
Abstract
Post-translational glycosylation of the HIV-1 envelope protein involving precursor glycan trimming by mannosyl oligosaccharide glucosidase (MOGS) is critically important for morphogenesis of virions and viral entry. Strategic editing of the MOGS gene in T lymphocytes and myeloid origin cells harboring latent proviral DNA results in the production of non-infectious particles upon treatment of cells with latency reversal agents. Controlled activation of CRISPR-MOGS by rebound HIV-1 mitigates production of infectious particles that exhibit poor ability of the virus to penetrate uninfected cells. Moreover, exclusive activation of CRISPR in cells infected with HIV-1 alleviates concern for broad off-target impact of MOGS gene ablation in uninfected cells. Combination CRISPR treatment of peripheral blood lymphocytes prepared from blood of people with HIV-1 (PWH) tailored for editing the MOGS gene (CRISPR-MOGS) and proviral HIV-1 DNA (CRISPR-HIV) revealed a cooperative impact of CRISPR treatment in inhibiting the production of infectious HIV-1 particles. Our design for genetic inactivation of MOGS by CRISPR exhibits no detectable off-target effects on host cells or any deleterious impact on cell survival and proliferation. Our findings offer the development of a new combined gene editing-based cure strategy for the diminution of HIV-1 spread after cessation of antiretroviral therapy (ART) and its elimination.
Collapse
Affiliation(s)
- Hong Liu
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| | - Chen Chen
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| | - Shuren Liao
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| | - Danielle K. Sohaii
- Center for Cancer and Immunology Research, Children’s National Health System, The George Washington University, 7144 13th Place NW, Washington, DC 20012, USA
| | - Conrad R.Y. Cruz
- Center for Cancer and Immunology Research, Children’s National Health System, The George Washington University, 7144 13th Place NW, Washington, DC 20012, USA
| | - Tricia H. Burdo
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| | - Thomas J. Cradick
- Excision Biotherapeutics, Inc., 499 Jackson Street, San Francisco, CA 94111, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Basic Science Building, Room 310, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Carlos Barrero
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | - Magda Florez
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | - Jennifer Gordon
- Excision Biotherapeutics, Inc., 499 Jackson Street, San Francisco, CA 94111, USA
| | - Stephane Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Basic Science Building, Room 310, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - James Dressman
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Basic Science Building, Room 310, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Health System, The George Washington University, 7144 13th Place NW, Washington, DC 20012, USA
| | - Rafal Kaminski
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA 19140, USA
| |
Collapse
|
57
|
Xu L, Wang C, Xu W, Xing L, Zhou J, Pu J, Fu M, Lu L, Jiang S, Wang Q. A dePEGylated Lipopeptide-Based Pan-Coronavirus Fusion Inhibitor Exhibits Potent and Broad-Spectrum Anti-HIV-1 Activity without Eliciting Anti-PEG Antibodies. Int J Mol Sci 2023; 24:ijms24119779. [PMID: 37298729 DOI: 10.3390/ijms24119779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
We previously identified a lipopeptide, EK1C4, by linking cholesterol to EK1, a pan-CoV fusion inhibitory peptide via a polyethylene glycol (PEG) linker, which showed potent pan-CoV fusion inhibitory activity. However, PEG can elicit antibodies to PEG in vivo, which will attenuate its antiviral activity. Therefore, we designed and synthesized a dePEGylated lipopeptide, EKL1C, by replacing the PEG linker in EK1C4 with a short peptide. Similar to EK1C4, EKL1C displayed potent inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses. In this study, we found that EKL1C also exhibited broad-spectrum fusion inhibitory activity against human immunodeficiency virus type 1 (HIV-1) infection by interacting with the N-terminal heptad repeat 1 (HR1) of viral gp41 to block six-helix bundle (6-HB) formation. These results suggest that HR1 is a common target for the development of broad-spectrum viral fusion inhibitors and EKL1C has potential clinical application as a candidate therapeutic or preventive agent against infection by coronavirus, HIV-1, and possibly other class I enveloped viruses.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Fu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
58
|
Mazel-Sanchez B, Niu C, Williams N, Bachmann M, Choltus H, Silva F, Serre-Beinier V, Karenovics W, Iwaszkiewicz J, Zoete V, Kaiser L, Hartley O, Wehrle-Haller B, Schmolke M. Influenza A virus exploits transferrin receptor recycling to enter host cells. Proc Natl Acad Sci U S A 2023; 120:e2214936120. [PMID: 37192162 PMCID: PMC10214170 DOI: 10.1073/pnas.2214936120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/07/2023] [Indexed: 05/18/2023] Open
Abstract
Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.
Collapse
Affiliation(s)
- Beryl Mazel-Sanchez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Chengyue Niu
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Hélèna Choltus
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | | | | | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015Lausanne, Switzerland
- Computer-Aided Molecular Engineering Group, Department of Oncology (University of Lausanne and the Lausanne University Hospital), Ludwig Institute for Cancer Research Lausanne, 1066Épalinges, Switzerland
| | - Laurent Kaiser
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1211Geneva, Switzerland
- Geneva Center of Inflammation Research, University of Geneva, 1211Geneva, Switzerland
| |
Collapse
|
59
|
Wang K, Zhang S, Go EP, Ding H, Wang WL, Nguyen HT, Kappes JC, Desaire H, Sodroski J, Mao Y. Asymmetric conformations of cleaved HIV-1 envelope glycoprotein trimers in styrene-maleic acid lipid nanoparticles. Commun Biol 2023; 6:535. [PMID: 37202420 PMCID: PMC10195785 DOI: 10.1038/s42003-023-04916-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
During virus entry, the pretriggered human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer initially transits into a default intermediate state (DIS) that remains structurally uncharacterized. Here, we present cryo-EM structures at near-atomic resolution of two cleaved full-length HIV-1 Env trimers purified from cell membranes in styrene-maleic acid lipid nanoparticles without antibodies or receptors. The cleaved Env trimers exhibited tighter subunit packing than uncleaved trimers. Cleaved and uncleaved Env trimers assumed remarkably consistent yet distinct asymmetric conformations, with one smaller and two larger opening angles. Breaking conformational symmetry is allosterically coupled with dynamic helical transformations of the gp41 N-terminal heptad repeat (HR1N) regions in two protomers and with trimer tilting in the membrane. The broken symmetry of the DIS potentially assists Env binding to two CD4 receptors-while resisting antibody binding-and promotes extension of the gp41 HR1 helical coiled-coil, which relocates the fusion peptide closer to the target cell membrane.
Collapse
Affiliation(s)
- Kunyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Joint Center for Life Science, Peking University, Beijing, China
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Youdong Mao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Peking-Tsinghua Joint Center for Life Science, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
60
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
61
|
Carvajal-Barriga EJ, Fitzgerald W, Dimitriadis EK, Margolis L, Fields RD. Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1. Sci Rep 2023; 13:6959. [PMID: 37117231 PMCID: PMC10141831 DOI: 10.1038/s41598-023-33686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Biomaterials with antimicrobial activity are gaining attention due to their biodegradability and efficacy in interacting with a wide range of microorganisms. A new cellulose nano-biomaterial, endospermic nanocellulose crystals (ENC) obtained from parenchymal tissue of ivory nut endosperm, has a natural capacity as a universal binder. This feature is enhanced when it is chemically functionalized, and can be exploited in the fight against microbes. We tested the ability of sulfated ENC in aqueous suspension to encapsulate viruses through a crosslinking reaction mediated by cations. 0.25% w/v ENC suspensions efficiently encapsulated spike (S) protein, preventing its interaction with ACE2 receptor. ENC was further able to encapsulate SARS-CoV-2 pseudoviruses and prevent infection of 293T-hsACE2 cells. ENC also suppressed infection of MT-4 cells with HIV-1LAI.04. This antiviral activity of sulfated ENC is due to the irreversible interaction of ENC with viral particles mediated by crosslinking, as antiviral activity was less effective in the absence of cations. Additionally, ENC was used as a matrix to immobilize recombinant ACE2 receptors and anti-S IgG, creating molecular lures that efficiently inhibited SARS-CoV-2 infections in vitro. These results show that sulfated ENC from ivory nuts can be used as an efficient antiviral material.
Collapse
Affiliation(s)
- Enrique Javier Carvajal-Barriga
- Nervous System Development and Plasticity Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Neotropical Center for the Biomass Research, Pontificia Universidad Católica del Ecuador, Quito, Pichincha, Ecuador
| | - Wendy Fitzgerald
- Section On Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Emilios K Dimitriadis
- Biomedical Engineering and Physical Science Shared Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Leonid Margolis
- Section On Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - R Douglas Fields
- Nervous System Development and Plasticity Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
62
|
Wang S, Wang D, Kai M, Shen WT, Sun L, Gao W, Zhang L. Design Strategies for Cellular Nanosponges as Medical Countermeasures. BME FRONTIERS 2023; 4:0018. [PMID: 37849681 PMCID: PMC10521708 DOI: 10.34133/bmef.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 10/19/2023] Open
Abstract
The interest in using therapeutic nanoparticles to bind with harmful molecules or pathogens and subsequently neutralize their bioactivity has grown tremendously. Among various nanomedicine platforms, cell membrane-coated nanoparticles, namely, "cellular nanosponges," stand out for their broad-spectrum neutralization capability challenging to achieve in traditional countermeasure technologies. Such ability is attributable to their cellular function-based rather than target structure-based working principle. Integrating cellular nanosponges with various synthetic substrates further makes their applications exceptionally versatile and adaptive. This review discusses the latest cellular nanosponge technology focusing on how the structure-function relationship in different designs has led to versatile and potent medical countermeasures. Four design strategies are discussed, including harnessing native cell membrane functions for biological neutralization, functionalizing cell membrane coatings to enhance neutralization capabilities, combining cell membranes and functional cores for multimodal neutralization, and integrating cellular nanosponges with hydrogels for localized applications. Examples in each design strategy are selected, and the discussion is to highlight their structure-function relationships in complex disease settings. The review may inspire additional design strategies for cellular nanosponges and fulfill even broader medical applications.
Collapse
Affiliation(s)
- Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Mingxuan Kai
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
63
|
Znaidia M, de Souza-Angelo Y, Létoffé S, Staropoli I, Grzelak L, Ghigo JM, Schwartz O, Casartelli N. Exposure to Secreted Bacterial Factors Promotes HIV-1 Replication in CD4 + T Cells. Microbiol Spectr 2023; 11:e0431322. [PMID: 36853052 PMCID: PMC10100953 DOI: 10.1128/spectrum.04313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Microbial translocation is associated with systemic immune activation in HIV-1 disease. Circulating T cells can encounter microbial products in the bloodstream and lymph nodes, where viral replication takes place. The mechanisms by which bacteria contribute to HIV-associated pathogenesis are not completely deciphered. Here, we examined how bacteria may impact T cell function and viral replication. We established cocultures between a panel of live bacteria and uninfected or HIV-1-infected activated peripheral blood CD4-positive (CD4+) T cells. We show that some bacteria, such as Escherichia coli and Acinetobacter baumannii, sustain lymphocyte activation and enhance HIV-1 replication. Bacteria secrete soluble factors that upregulate CD25 and ICAM-1 cell surface levels and activate NF-κB nuclear translocation. Our data also demonstrate that CD25 polarizes at the virological synapse, suggesting a previously unappreciated role of CD25 during viral replication. These findings highlight how interactions between bacterial factors and T cells may promote T cell activation and HIV-1 replication. IMPORTANCE People living with HIV suffer from chronic immune activation despite effective antiretroviral therapy. Early after infection, HIV-1 actively replicates in the gut, causing the breakage of the intestinal epithelial barrier and microbial translocation. Microbial translocation and chronic immune activation have been proven linked; however, gaps in our knowledge on how bacteria contribute to the development of HIV-related diseases remain. Whether T cells in the peripheral blood react to bacterial products and how this affects viral replication are unknown. We show that some bacteria enriched in people living with HIV activate T cells and favor HIV-1's spread. Bacteria release soluble factors that cause the overexpression of cellular molecules related to their activation state. T cells overexpressing these molecules also replicate HIV-1 more efficiently. These results help us learn more about how HIV-1, T cells, and bacteria interact with each other, as well as the mechanisms behind chronic immune activation.
Collapse
Affiliation(s)
- M. Znaidia
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - Y. de Souza-Angelo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - S. Létoffé
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - I. Staropoli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - L. Grzelak
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| | - J. M. Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - O. Schwartz
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - N. Casartelli
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3569, Virus and Immunity Unit, Paris, France
| |
Collapse
|
64
|
Bruun TUJ, Tang S, Erwin G, Deis L, Fernandez D, Kim PS. Structure-guided stabilization improves the ability of the HIV-1 gp41 hydrophobic pocket to elicit neutralizing antibodies. J Biol Chem 2023; 299:103062. [PMID: 36841484 PMCID: PMC10064241 DOI: 10.1016/j.jbc.2023.103062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The hydrophobic pocket found in the N-heptad repeat (NHR) region of HIV-1 gp41 is a highly conserved epitope that is the target of various HIV-1-neutralizing monoclonal antibodies. Although the high conservation of the pocket makes it an attractive vaccine candidate, it has been challenging to elicit potent anti-NHR antibodies via immunization. Here, we solved a high-resolution structure of the NHR mimetic IQN17, and, consistent with previous ligand-bound gp41 pocket structures, we observed remarkable conformational plasticity of the pocket. The high malleability of this pocket led us to test whether we could improve the immunogenicity of the gp41 pocket by stabilizing its conformation. We show that the addition of five amino acids at the C terminus of IQN17, to generate IQN22, introduces a stabilizing salt bridge at the base of the peptide that rigidifies the pocket. Mice immunized with IQN22 elicited higher avidity antibodies against the gp41 pocket and a more potent, albeit still weak, neutralizing response against HIV-1 compared with IQN17. Stabilized epitope-focused immunogens could serve as the basis for future HIV-1 fusion-inhibiting vaccines.
Collapse
Affiliation(s)
- Theodora U J Bruun
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Shaogeng Tang
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Graham Erwin
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Lindsay Deis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Fernandez
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Chem-H Macromolecular Structure Knowledge Center (MSKC), Stanford University, Stanford, California, USA
| | - Peter S Kim
- Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
65
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
66
|
Gill KS, Mehta K, Heredia JD, Krishnamurthy VV, Zhang K, Procko E. Multiple mechanisms of self-association of chemokine receptors CXCR4 and CCR5 demonstrated by deep mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534231. [PMID: 36993221 PMCID: PMC10055436 DOI: 10.1101/2023.03.25.534231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chemokine receptors are members of the rhodopsin-like class A GPCRs whose signaling through G proteins drives the directional movement of cells in response to a chemokine gradient. Chemokine receptors CXCR4 and CCR5 have been extensively studied due to their roles in white blood cell development and inflammation and their status as coreceptors for HIV-1 infection, among other functions. Both receptors form dimers or oligomers but the function/s of self-associations are unclear. While CXCR4 has been crystallized in a dimeric arrangement, available atomic resolution structures of CCR5 are monomeric. To investigate the dimerization interfaces of these chemokine receptors, we used a bimolecular fluorescence complementation (BiFC)-based screen and deep mutational scanning to find mutations that modify receptor self-association. Many disruptive mutations promoted self-associations nonspecifically, suggesting they aggregated in the membrane. A mutationally intolerant region was found on CXCR4 that matched the crystallographic dimer interface, supporting this dimeric arrangement in living cells. A mutationally intolerant region was also observed on the surface of CCR5 by transmembrane helices 3 and 4. Mutations from the deep mutational scan that reduce BiFC were validated and were localized in the transmembrane domains as well as the C-terminal cytoplasmic tails where they reduced lipid microdomain localization. The reduced self-association mutants of CXCR4 had increased binding to the ligand CXCL12 but diminished calcium signaling. There was no change in syncytia formation with cells expressing HIV-1 Env. The data highlight that multiple mechanisms are involved in self-association of chemokine receptor chains.
Collapse
Affiliation(s)
- Kevin S Gill
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Kritika Mehta
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jeremiah D Heredia
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Current affiliation: Codexis, Redwood City, CA 94063
| | | | - Kai Zhang
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
- Cyrus Biotechnology, Seattle, WA 98121, USA
| |
Collapse
|
67
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
68
|
Fernández I, Dynesen LT, Coquin Y, Pederzoli R, Brun D, Haouz A, Gessain A, Rey FA, Buseyne F, Backovic M. The crystal structure of a simian Foamy Virus receptor binding domain provides clues about entry into host cells. Nat Commun 2023; 14:1262. [PMID: 36878926 PMCID: PMC9988990 DOI: 10.1038/s41467-023-36923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The surface envelope glycoprotein (Env) of all retroviruses mediates virus binding to cells and fusion of the viral and cellular membranes. A structure-function relationship for the HIV Env that belongs to the Orthoretrovirus subfamily has been well established. Structural information is however largely missing for the Env of Foamy viruses (FVs), the second retroviral subfamily. In this work we present the X-ray structure of the receptor binding domain (RBD) of a simian FV Env at 2.57 Å resolution, revealing two subdomains and an unprecedented fold. We have generated a model for the organization of the RBDs within the trimeric Env, which indicates that the upper subdomains form a cage-like structure at the apex of the Env, and identified residues K342, R343, R359 and R369 in the lower subdomain as key players for the interaction of the RBD and viral particles with heparan sulfate.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Lasse Toftdal Dynesen
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Riccardo Pederzoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Delphine Brun
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, Plateforme de cristallographie-C2RT, CNRS UMR 3528, 75015, Paris, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, 75015, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015, Paris, France.
| |
Collapse
|
69
|
Ao Y, Grover JR, Han Y, Zhong G, Qin W, Ghimire D, Haque A, Bhattacharjee R, Zhang B, Arthos J, Lemke EA, Kwong PD, Lu M. An intact amber-free HIV-1 system for in-virus protein bioorthogonal click labeling that delineates envelope conformational dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530526. [PMID: 36909529 PMCID: PMC10002649 DOI: 10.1101/2023.02.28.530526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The HIV-1 envelope (Env) glycoprotein is conformationally dynamic and mediates membrane fusion required for cell entry. Single-molecule fluorescence resonance energy transfer (smFRET) of Env using peptide tags has provided mechanistic insights into the dynamics of Env conformations. Nevertheless, using peptide tags risks potential effects on structural integrity. Here, we aim to establish minimally invasive smFRET systems of Env on the virus by combining genetic code expansion and bioorthogonal click chemistry. Amber stop-codon suppression allows site-specifically incorporating noncanonical/unnatural amino acids (ncAAs) at introduced amber sites into proteins. However, ncAA incorporation into Env (or other HIV-1 proteins) in the virus context has been challenging due to low copies of Env on virions and incomplete amber suppression in mammalian cells. Here, we developed an intact amber-free virus system that overcomes impediments from preexisting ambers in HIV-1. Using this system, we successfully incorporated dual ncAAs at amber-introduced sites into Env on intact virions. Dual-ncAA incorporated Env retained similar neutralization sensitivities to neutralizing antibodies as wildtype. smFRET of click-labeled Env on intact amber-free virions recapitulated conformational profiles of Env. The amber-free HIV-1 infectious system also permits in-virus protein bioorthogonal labeling, compatible with various advanced microscopic studies of virus entry, trafficking, and egress in living cells. Amber-free HIV-1 infectious systems actualized minimal invasive Env tagging for smFRET, versatile for in-virus bioorthogonal click labeling in advanced microscopic studies of virus-host interactions.
Collapse
|
70
|
Río-Bergé C, Cong Y, Reggiori F. Getting on the right track: Interactions between viruses and the cytoskeletal motor proteins. Traffic 2023; 24:114-130. [PMID: 35146839 DOI: 10.1111/tra.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
The cytoskeleton is an essential component of the cell and it is involved in multiple physiological functions, including intracellular organization and transport. It is composed of three main families of proteinaceous filaments; microtubules, actin filaments and intermediate filaments and their accessory proteins. Motor proteins, which comprise the dynein, kinesin and myosin superfamilies, are a remarkable group of accessory proteins that mainly mediate the intracellular transport of cargoes along with the cytoskeleton. Like other cellular structures and pathways, viruses can exploit the cytoskeleton to promote different steps of their life cycle through associations with motor proteins. The complexity of the cytoskeleton and the differences among viruses, however, has led to a wide diversity of interactions, which in most cases remain poorly understood. Unveiling the details of these interactions is necessary not only for a better comprehension of specific infections, but may also reveal new potential drug targets to fight dreadful diseases such as rabies disease and acquired immunodeficiency syndrome (AIDS). In this review, we describe a few examples of the mechanisms that some human viruses, that is, rabies virus, adenovirus, herpes simplex virus, human immunodeficiency virus, influenza A virus and papillomavirus, have developed to hijack dyneins, kinesins and myosins.
Collapse
Affiliation(s)
- Clàudia Río-Bergé
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
71
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
72
|
Insertion of an Amphipathic Linker in a Tetrapodal Tryptophan Derivative Leads to a Novel and Highly Potent Entry Inhibitor of Enterovirus A71 Clinical Isolates. Int J Mol Sci 2023; 24:ijms24043539. [PMID: 36834952 PMCID: PMC9959982 DOI: 10.3390/ijms24043539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
AL-471, the leading exponent of a class of potent HIV and enterovirus A71 (EV-A71) entry inhibitors discovered in our research group, contains four l-tryptophan (Trp) units bearing an aromatic isophthalic acid directly attached to the C2 position of each indole ring. Starting from AL-471, we (i) replaced l-Trp with d-Trp, (ii) inserted a flexible linker between C2 and the isophthalic acid, and (iii) substituted a nonaromatic carboxylic acid for the terminal isophthalic acid. Truncated analogues lacking the Trp motif were also synthesized. Our findings indicate that the antiviral activity seems to be largely independent of the stereochemistry (l- or d-) of the Trp fragment and also that both the Trp unit and the distal isophthalic moiety are essential for antiviral activity. The most potent derivative, 23 (AL-534), with the C2 shortest alkyl urea linkage (three methylenes), showed subnanomolar potency against different EV-71 clinical isolates. This finding was only observed before with the early dendrimer prototype AL-385 (12 l-Trp units) but remained unprecedented for the reduced-size prototype AL-471. Molecular modeling showed the feasibility of high-affinity binding of the novel l-Trp-decorated branches of 23 (AL-534) to an alternative site on the VP1 protein that harbors significant sequence variation among EV-71 strains.
Collapse
|
73
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
74
|
Santana DS, Silva MJA, de Marin ABR, Costa VLDS, Sousa GSM, de Sousa JG, Silva DC, da Cruz EC, Lima LNGC. The Influence Between C-C Chemokine Receptor 5 Genetic Polymorphisms and the Type-1 Human Immunodeficiency Virus: A 20-Year Review. AIDS Res Hum Retroviruses 2023; 39:13-32. [PMID: 36226448 PMCID: PMC9889015 DOI: 10.1089/aid.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is an infectious disease caused by the types 1 and 2 human immunodeficiency virus (HIV-1 and HIV-2). Clinical outcomes in patients are highly varied and delineated by complex interactions between virus, host, and environment, such as with help of co-receptors, for example, the C-C chemokine receptor 5 (CCR5). This work aimed to describe the scientific evidence relating the influence of CCR5 polymorphisms in association studies for HIV-1 disease susceptibility, severity, and transmissibility. This is a systematic review of the literature on single nucleotide polymorphisms (SNPs) and the deletion [Insertion and Deletion (Indel)] Δ32 of CCR5. The search for articles was based on the ScienceDirect, PubMed, and Coordination for the Improvement of Higher Education Personnel (CAPES) databases for the period between 2001 and 2021. The final sample consisted of 32 articles. †SNP rs1799987 is one of the genetic polymorphisms most associated with the criteria of susceptibility and severity of HIV-1, having distinct consequences in genotypic, allelic, and clinical analysis in the variability of investigated populations. As for the transmission character of the disease, the G mutant allele of rs1799987 corresponds to the highest positive association. ‡Furthermore, the results on Indel Δ32 corroborate the absence and rarity of this variant in some populations. Finally, mitigating the severity of cases, SNPs rs1799988 and rs1800023 obtained significant attribution in individuals in the studied populations. It is shown that the reported polymorphisms express significant influences for the evaluation of diagnostic, therapeutic, and prophylactic measures for HIV-1 having fundamental particularities in the molecular, genetic, and transcriptional aspects of CCR5.
Collapse
Affiliation(s)
- Davi Silva Santana
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (IEC), Ananindeua, Brazil.,Address correspondence to: Marcos Jessé Abrahão Silva, Bacteriology and Mycology Section, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | | | | | | | - Dihago Cardoso Silva
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | - Eliete Costa da Cruz
- Institute of Health Sciences (ICS), Federal University of Pará (UFPA), Belém, Brazil
| | | |
Collapse
|
75
|
Johnson MM, Jones CE, Clark DN. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Viruses 2022; 15:107. [PMID: 36680147 PMCID: PMC9861436 DOI: 10.3390/v15010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
HIV/AIDS mortality has been decreasing over the last decade. While promising, this decrease correlated directly with increased use of antiretroviral drugs. As a natural consequence of its high mutation rate, treatments provide selection pressure that promotes the natural selection of escape mutants. Individuals may acquire drug-naive strains, or those that have already mutated due to treatment. Even within a host, mutation affects HIV tropism, where initial infection begins with R5-tropic virus, but the clinical transition to AIDS correlates with mutations that lead to an X4-tropic switch. Furthermore, the high mutation rate of HIV has spelled failure for all attempts at an effective vaccine. Pre-exposure drugs are currently the most effective drug-based preventatives, but their effectiveness is also threatened by viral mutation. From attachment and entry to assembly and release, the steps in the replication cycle are also discussed to describe the drug mechanisms and mutations that arise due to those drugs. Revealing the patterns of HIV-1 mutations, their effects, and the coordinated attempt to understand and control them will lead to effective use of current preventative measures and treatment options, as well as the development of new ones.
Collapse
Affiliation(s)
- Madison M. Johnson
- Department of Microbiology, Weber State University, Ogden, UT 84408, USA
| | | | | |
Collapse
|
76
|
Pang W, Lu Y, Zhao YB, Shen F, Fan CF, Wang Q, He WQ, He XY, Li ZK, Chen TT, Yang CX, Li YZ, Xiao SX, Zhao ZJ, Huang XS, Luo RH, Yang LM, Zhang M, Dong XQ, Li MH, Feng XL, Zhou QC, Qu W, Jiang S, Ouyang S, Zheng YT. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 2022; 32:1068-1085. [PMID: 36357786 PMCID: PMC9648449 DOI: 10.1038/s41422-022-00746-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Yan-Bo Zhao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Fan Shen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Chang-Fa Fan
- grid.410749.f0000 0004 0577 6238Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Qian Wang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Qiang He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ze-Kai Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Tao-Tao Chen
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Cui-Xian Yang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - You-Zhi Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Si-Xuan Xiao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Zu-Jiang Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xu-Sheng Huang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Liu-Meng Yang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Mi Zhang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Xing-Qi Dong
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Ming-Hua Li
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Li Feng
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Qing-Cui Zhou
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wang Qu
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,University of the Chinese Academy of Sciences, Beijing, China. .,Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
77
|
Gao L, Jiao YM, Ma P, Sun L, Zhao H, Guo AL, Fan X, Zhang C, Song JW, Zhang JY, Lu F, Wang FS. Characterization and distribution of HIV-infected cells in semen. Emerg Microbes Infect 2022; 11:860-872. [PMID: 35253610 PMCID: PMC8942556 DOI: 10.1080/22221751.2022.2049982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Semen is a known vector for both human immunodeficiency virus (HIV) infection and transmission. However, the distribution and characteristics of HIV-infected cells in semen remain unclear. Investigating the possibility of transmission through the spermatozoon in semen is of great clinical significance to improve the strategies for exposure prevention and assisted reproduction for HIV-infected partners. Twenty-six HIV-infected patients, including twelve treatment-naïve (TN) patients and fourteen antiretroviral treated (ART) patients, were enrolled in this study. HIV p24 protein in spermatozoa was detected using imaging flow cytometry and immunohistochemistry, and HIV RNA was identified using next-generation RNAscope in situ hybridization. Additionally, we described the rates of HIV-positive spermatozoon and CD4+ T lymphocytes in semen, and found that p24+ spermatozoon were mainly CD4 negative regardless of whether the patients received ART. Of note, p24-positive cells in semen are predominantly spermatozoa, and we confirmed that motile spermatozoa carried HIV into peripheral blood mononuclear cells of healthy men in vitro. Our findings provide evidence regarding the risk of HIV-infected spermatozoa.
Collapse
Affiliation(s)
- Lin Gao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ping Ma
- Nankai University Second People's Hospital, School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Lijun Sun
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - An-Liang Guo
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fu-Sheng Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science, Peking University Health Science Center, Beijing, People's Republic of China.,Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, People's Republic of China.,Peking University 302 Clinical Medical School, Beijing, People's Republic of China.,Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
78
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
79
|
Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses 2022; 14:v14112503. [PMID: 36423112 PMCID: PMC9696704 DOI: 10.3390/v14112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.
Collapse
|
80
|
Secchi M, Vangelista L. Rational Engineering of a Sub-Picomolar HIV-1 Blocker. Viruses 2022; 14:v14112415. [PMID: 36366513 PMCID: PMC9695723 DOI: 10.3390/v14112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
With the aim of rationally devising a refined and potent HIV-1 blocker, the cDNA of CCL5 5p12 5m, an extremely potent CCR5 antagonist, was fused to that of C37, a gp41-targeted fusion inhibitor. The resulting CCL5 5p12 5m-C37 fusion protein was expressed in E. coli and proved to be capable of inhibiting R5 HIV-1 strains with low to sub-picomolar IC50, maintaining its antagonism toward CCR5. In addition, CCL5 5p12 5m-C37 inhibits R5/X4 and X4 HIV-1 strains in the picomolar concentration range. The combination of CCL5 5p12 5m-C37 with tenofovir (TDF) exhibited a synergic effect, promoting this antiviral cocktail. Interestingly, a CCR5-targeted combination of maraviroc (MVC) with CCL5 5p12 5m-C37 led to a synergic effect that could be explained by an extensive engagement of different CCR5 conformational populations. Within the mechanism of HIV-1 entry, the CCL5 5p12 5m-C37 chimera may fit as a powerful blocker in several instances. In its possible consideration for systemic therapy or pre-exposure prophylaxis, this protein design represents an interesting lead in the combat of HIV-1 infection.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- DNA Enzymology and Molecular Virology Unit, Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Luca Vangelista
- Protein Engineering and Therapeutics Group, Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
81
|
Barriga EJC, Fitzgerald W, Dimitriadis EK, Margolis L, Fields RD. Sulfated endospermic nanocellulose crystals prevent the transmission of SARS-CoV-2 and HIV-1. RESEARCH SQUARE 2022. [PMID: 36324803 PMCID: PMC9628189 DOI: 10.21203/rs.3.rs-2163527/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biomaterials with antimicrobial activity are gaining attention due to their biodegradability and efficacy in interacting with a wide range of microorganisms. A new cellulose nano-biomaterial, endospermic nanocellulose crystals (ENC) obtained from parenchymal tissue of ivory nut endosperm, has a natural capacity as a universal binder. This feature is enhanced when it is chemically functionalized, and can be exploited in the fight against microbes.
We tested the ability of sulfated ENC in aqueous suspension to encapsulate viruses through a crosslinking reaction mediated by cations. 0.25% w/v ENC suspensions efficiently encapsulated spike (S) protein, preventing its interaction with ACE2 receptor. ENC was further able to encapsulate SARS-CoV-2 pseudoviruses and prevent infection of 293T-ACE2 cells. ENC also suppressed infection of MT-4 cells with HIV-1
LAI.04
. This antiviral activity of sulfated ENC is due to the irreversible interaction of ENC with viral particles mediated by crosslinking, as antiviral activity was less effective in the absence of cations. Additionally, ENC was used as a matrix to immobilize recombinant ACE2 receptors and anti-S IgG, creating molecular lures that efficiently inhibited SARS-CoV-2 infections
in vitro
. These results show that sulfated ENC from ivory nuts can be used as an efficient antiviral material.
Collapse
|
82
|
Tang D, Wang Y, Dong X, Yuan Y, Kang F, Tian W, Wang K, Li H, Qi S. Scramblases and virus infection. Bioessays 2022; 44:e2100261. [DOI: 10.1002/bies.202100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Tang
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Yichang Wang
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Xiuju Dong
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Yiqiong Yuan
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Fanchen Kang
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Weidong Tian
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Kunjie Wang
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Hong Li
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| | - Shiqian Qi
- Department of Urology Institute of Urology (Laboratory of Reconstructive Urology) State Key Laboratory of Oral Disease West China Hospital of Stomatology West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
83
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
84
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
85
|
Chiliveri SC, Louis JM, Best RB, Bax A. Real-time Exchange of the Lipid-bound Intermediate and Post-fusion States of the HIV-1 gp41 Ectodomain. J Mol Biol 2022; 434:167683. [PMID: 35700771 PMCID: PMC9378563 DOI: 10.1016/j.jmb.2022.167683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The envelope glycoprotein gp41 of the HIV-1 virus mediates its entry into the host cell. During this process, gp41 undergoes large conformational changes and the energy released in the remodeling events is utilized to overcome the barrier associated with fusing the viral and host membranes. Although the structural intermediates of this fusion process are attractive targets for drug development, no detailed high-resolution structural information or quantitative thermodynamic characterization are available. By measuring the dynamic equilibrium between the lipid-bound intermediate and the post-fusion six-helical bundle (6HB) states of the gp41 ectodomain in the presence of bilayer membrane mimetics, we derived both the reaction kinetics and energies associated with these two states by solution NMR spectroscopy. At equilibrium, an exchange time constant of about 12 seconds at 38 °C is observed, and the post-fusion conformation is energetically more stable than the lipid-bound state by 3.4 kcal mol-1. The temperature dependence of the kinetics indicates that the folding occurs through a high-energy transition state which may resemble a 5HB structure. The energetics and kinetics of gp41 folding in the context of membrane bilayers provide a molecular basis for an improved understanding of viral membrane fusion.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/SaiChiliveri
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Mutengo KH, Masenga SK, Mwesigwa N, Patel KP, Kirabo A. Hypertension and human immunodeficiency virus: A paradigm for epithelial sodium channels? Front Cardiovasc Med 2022; 9:968184. [PMID: 36093171 PMCID: PMC9452753 DOI: 10.3389/fcvm.2022.968184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a risk factor for end organ damage and death and is more common in persons with HIV compared to the general population. Several mechanisms have been studied in the pathogenesis of hypertension. Current evidence suggests that the epithelial sodium channel (ENaC) plays a key role in regulating blood pressure through the transport of sodium and water across membranes in the kidney tubules, resulting in retention of sodium and water and an altered fluid balance. However, there is scarcity of information that elucidates the role of ENaC in HIV as it relates to increasing the risk for development or pathogenesis of hypertension. This review summarized the evidence to date implicating a potential role for altered ENaC activity in contributing to hypertension in patients with HIV.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- School of Medicine and Health Sciences, HAND Research Group, Mulungushi University, Livingstone Campus, Livingstone, Zambia,School of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Naome Mwesigwa
- Department of Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,*Correspondence: Annet Kirabo,
| |
Collapse
|
87
|
Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope. J Virol 2022; 96:e0185121. [PMID: 35862673 PMCID: PMC9327689 DOI: 10.1128/jvi.01851-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.
Collapse
|
88
|
Closing the Door with CRISPR: Genome Editing of CCR5 and CXCR4 as a Potential Curative Solution for HIV. BIOTECH 2022; 11:biotech11030025. [PMID: 35892930 PMCID: PMC9326690 DOI: 10.3390/biotech11030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection can be controlled by anti-retroviral therapy. Suppressing viral replication relies on life-long medication, but anti-retroviral therapy is not without risks to the patient. Therefore, it is important that permanent cures for HIV infection are developed. Three patients have been described to be completely cured from HIV infection in recent years. In all cases, patients received a hematopoietic stem cell (HSC) transplantation due to a hematological malignancy. The HSCs were sourced from autologous donors that expressed a homozygous mutation in the CCR5 gene. This mutation results in a non-functional receptor, and confers resistance to CCR5-tropic HIV strains that rely on CCR5 to enter host cells. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one of the methods of choice for gene editing, and the CRISPR/Cas system has been employed to target loci of interest in the context of HIV. Here, the current literature regarding CRISPR-mediated genome editing to render cells resistant to HIV (re)-infection by knocking out the co-receptors CCR5 and CXCR4 is summarized, and an outlook is provided regarding future (research) directions.
Collapse
|
89
|
Zhang H, Deng T, Fang Q, Li S, Gao S, Jiang W, Chen G, Yu K, Zhou L, Li T, Zheng Q, Yu H, Li S, Xia N, Gu Y. Endodomain truncation of the HIV-1 envelope protein improves the packaging efficiency of pseudoviruses. Virology 2022; 574:1-8. [PMID: 35858511 DOI: 10.1016/j.virol.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
HIV-1 remains one of the most devastating infectious pathogens without available vaccines. A valid neutralization assay using multiple representative virus strains is prerequisite for antibody response analysis in HIV-1 vaccine development, where HIV pseudoviruses (PsVs) commonly serve as surrogate agents for the authentic HIV, offering a safer manipulation in Biosafety Level 2+. However, PsV production is of low efficiency and is unstable in this field. Here, we optimize PsV production conditions via the use of alternative host cells, packaging ratios and gene truncation. We show that a 153-aa truncation of the endodomain substantially enhances the packaging efficiency of HIV PsVs, providing 4 to 25 times higher infection titers than the full-length Env. Further, we obtained a robust HIV-1 PsV panel covering 12 representative global strains for neutralization assay testing. This work sheds light on how to optimize HIV PsV packaging, and provides functional insight into the cytoplasmic domain of HIV-1.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianjiao Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaoyong Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuangquan Gao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenling Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Gege Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Kunyu Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China; The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen, Fujian, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
90
|
Tian H, He B, Yin Y, Liu L, Shi J, Hu L, Jiang G. Chemical Nature of Metals and Metal-Based Materials in Inactivation of Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2345. [PMID: 35889570 PMCID: PMC9323642 DOI: 10.3390/nano12142345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
In response to the enormous threat to human survival and development caused by the large number of viruses, it is necessary to strengthen the defense against and elimination of viruses. Metallic materials have been used against viruses for thousands of years due to their broad-spectrum antiviral properties, wide sources and excellent physicochemical properties; in particular, metal nanoparticles have advanced biomedical research. However, researchers in different fields hold dissimilar views on the antiviral mechanisms, which has slowed down the antiviral application of metal nanoparticles. As such, this review begins with an exhaustive compilation of previously published work on the antiviral capacity of metal nanoparticles and other materials. Afterwards, the discussion is centered on the antiviral mechanisms of metal nanoparticles at the biological and physicochemical levels. Emphasis is placed on the fact that the strong reducibility of metal nanoparticles may be the main reason for their efficient inactivation of viruses. We hope that this review will benefit the promotion of metal nanoparticles in the antiviral field and expedite the construction of a barrier between humans and viruses.
Collapse
Affiliation(s)
- Haozhong Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; (H.T.); (B.H.); (Y.Y.); (L.L.); (J.S.); (G.J.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
91
|
Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. J Biol Chem 2022; 298:102232. [PMID: 35798140 PMCID: PMC9372746 DOI: 10.1016/j.jbc.2022.102232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification, can determine and often enhance protein–protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.
Collapse
Affiliation(s)
- Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, USA.
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, USA; Genome Center, University of California, Davis, USA.
| |
Collapse
|
92
|
Li Y, Guo Y, Cheng H, Zeng X, Zhang X, Sang P, Chen B, Yang L. Deciphering gp120 sequence variation and structural dynamics in
HIV
neutralization phenotype by molecular dynamics simulations and graph machine learning. Proteins 2022; 90:1413-1424. [DOI: 10.1002/prot.26322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Yi Li
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Yu‐Chen Guo
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Hong‐Han Cheng
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Xin Zeng
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Xiao‐Ling Zhang
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Peng Sang
- College of Agriculture and Biological Science Dali University Dali Yunnan China
| | - Ben‐Hui Chen
- College of Mathematics and Computer Science Dali University Dali Yunnan China
| | - Li‐Quan Yang
- College of Agriculture and Biological Science Dali University Dali Yunnan China
| |
Collapse
|
93
|
Mostashari-Rad T, Claes S, Schols D, Shirvani P, Fassihi A. New 2-alkylthio-1-benzylimidazole-5-carboxylic acid derivatives targeting gp41: design, synthesis and in vitro anti-HIV activity evaluation. Curr HIV Res 2022; 20:CHR-EPUB-124859. [PMID: 35770403 DOI: 10.2174/1570162x20666220628154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
Background Although current available medications have increased the quality of life in HIV-infected patients, there are still some shortcomings in HIV treatment arising from viral resistance, drug side effects and high cost of medication. Therefore, there is an urgent need for some suitable HIV inhibitors with different mechanisms of action. Gp41, located on the HIV cell surface, plays an important role in the fusion of viral and host cell membranes. With the same structure in different HIV strains, gp41 seems to be a promising target for developing novel HIV fusion inhibitors. Objective Based on the essential structural elements of gp41 inhibitors, two series of compounds were prepared and their inhibitory effect on HIV cell growth was investigated. Compared to the known small-molecule gp41 inhibitors, 2-Alkylthio-1-benzylimidazole-5-carboxylic acid (series I) and (E)-4-{[5-(((1-benzyl-1H-1,2,3-triazol-4-yl)methoxyimino)methyl)-2-(alkylthio)-1H-imidazol-1-yl]methyl}benzoic acid derivatives (series II) had more flexible skeleton with extra moieties interacting with the gp41 key residues. Method In silico drug design approaches including molecular docking and molecular dynamics simulations were employed to design these novel compounds prior to preparation. The designed compounds exhibited proper chemical interactions and stable complexes with gp41. Then, the selected candidates were efficiently synthesized, and their anti-HIV-1 and anti-HIV-2 activities, as well as their cellular cytotoxicity in MT-4 cells were determined. Results None of the compounds belonging to the series I were active against HIV-1 and HIV-2 replication in cell cultures, and most of the compounds in series II exhibited significant cytotoxicity against MT-4 cells in low micro molar concentrations. Conclusion The smaller molecular structures of the compounds in series I might be responsible for their poor anti-HIV effects. The high toxicity of the series II compounds on the host cell makes it impossible to assess their anti-HIV activities.
Collapse
Affiliation(s)
- Tahereh Mostashari-Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sandra Claes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Pouria Shirvani
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
94
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
95
|
Mechanism of Viral Suppression among HIV Elite Controllers and Long-Term Nonprogressors in Nigeria and South Africa. Viruses 2022; 14:v14061270. [PMID: 35746741 PMCID: PMC9228396 DOI: 10.3390/v14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A subgroup among people living with HIV (PLHIV) experience viral suppression, sometimes to an undetectable level in the blood and/or are able to maintain a healthy CD4+ T-cell count without the influence of antiretroviral (ARV) therapy. One out of three hundred PLHIV fall into this category, and a large sample of this group can be found in areas with a high prevalence of HIV infection such as Nigeria and South Africa. Understanding the mechanism underpinning the nonprogressive phenotype in this subgroup may provide insights into the control of the global HIV epidemic. This work provides mechanisms of the elite control and nonprogressive phenotype among PLHIV in Nigeria and South Africa and identifies research gaps that will contribute to a better understanding on HIV controllers among PLHIV.
Collapse
|
96
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
97
|
Abstract
The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.
Collapse
Affiliation(s)
- Connie Zhao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
98
|
Chen X, Jia L, Zhang X, Zhang T, Zhang Y. One arrow for two targets: potential co-treatment regimens for lymphoma and HIV. Blood Rev 2022; 55:100965. [DOI: 10.1016/j.blre.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022]
|
99
|
Xu S, Zheng Z, Pathak JL, Cheng H, Zhou Z, Chen Y, Wu Q, Wang L, Zeng M, Wu L. The Emerging Role of the Serine Incorporator Protein Family in Regulating Viral Infection. Front Cell Dev Biol 2022; 10:856468. [PMID: 35433679 PMCID: PMC9010877 DOI: 10.3389/fcell.2022.856468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Serine incorporator (SERINC) proteins 1–5 (SERINC1-5) are involved in the progression of several diseases. SERINC2-4 are carrier proteins that incorporate the polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine and sphingolipids. SERINC genes are also differentially expressed in tumors. Abnormal expression of SERINC proteins occurs in human cancers of the breast, lung, colon, liver, and various glands, as well as in mouse testes. SERINC proteins also affect cleft lip and palate and nerve-related diseases, such as seizure Parkinsonism and borderline personality. Moreover, SERINC proteins have garnered significant interest as retroviral restriction factors, spurring efforts to define their function and elucidate the mechanisms through which they operate when associated with viruses. Human SERINC proteins possess antiviral potential against human immunodeficiency virus (HIV), SARS-COV-2, murine leukemia virus (MLV), equine infectious anemia virus (EIAV), and hepatitis B virus (HBV). Furthermore, the crystal structure is known, and the critical residues of SERINC5 that act against HIV have been identified. In this review, we discuss the most prevalent mechanisms by which SERINC3 and SERINC5 antagonize viruses and focus on the potential therapeutic applications of SERINC5/3 against HIV.
Collapse
Affiliation(s)
- Shaofen Xu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziliang Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Qiuyu Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| |
Collapse
|
100
|
Allen CNS, Arjona SP, Santerre M, De Lucia C, Koch WJ, Sawaya BE. Metabolic Reprogramming in HIV-Associated Neurocognitive Disorders. Front Cell Neurosci 2022; 16:812887. [PMID: 35418836 PMCID: PMC8997587 DOI: 10.3389/fncel.2022.812887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
A significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production. We have investigated cellular processes upstream of the mitochondrial functions and discovered that gp120 causes metabolic reprogramming. Effectively, the addition of gp120 protein to neuronal cells disrupted the glycolysis pathway at the pyruvate level. Looking for the players involved, we found that gp120 promotes increased expression of polypyrimidine tract binding protein 1 (PTBP1), causing the splicing of pyruvate kinase M (PKM) into PKM1 and PKM2. We have also shown that these events lead to the accumulation of advanced glycation end products (AGEs) and prevent the cleavage of pro-brain-derived neurotrophic factor (pro-BDNF) protein into mature brain-derived neurotrophic factor (BDNF). The accumulation of proBDNF results in signaling that increases the expression of the inducible cAMP early repressor (ICER) protein which then occupies the cAMP response element (CRE)-binding sites within the BDNF promoters II and IV, thus altering normal synaptic plasticity. We reversed these events by adding Tepp-46, which stabilizes the tetrameric form of PKM2. Therefore, we concluded that gp120 reprograms cellular metabolism, causing changes linked to disrupted memory in HIV-infected patients and that preventing the disruption of the metabolism presents a potential cure against HAND progression.
Collapse
Affiliation(s)
- Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Claudio De Lucia
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|