51
|
Structural determinants governing β-arrestin2 interaction with PDZ proteins and recruitment to CRFR1. Cell Signal 2019; 63:109361. [DOI: 10.1016/j.cellsig.2019.109361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022]
|
52
|
Crudden C, Song D, Cismas S, Trocmé E, Pasca S, Calin GA, Girnita A, Girnita L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019; 8:cells8101223. [PMID: 31600876 PMCID: PMC6829878 DOI: 10.3390/cells8101223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ligand-activated plasma membrane receptors follow pathways of endocytosis through the endosomal sorting apparatus. Receptors cluster in clathrin-coated pits that bud inwards and enter the cell as clathrin-coated vesicles. These vesicles travel through the acidic endosome whereby receptors and ligands are sorted to be either recycled or degraded. The traditional paradigm postulated that the endocytosis role lay in signal termination through the removal of the receptor from the cell surface. It is now becoming clear that the internalization process governs more than receptor signal cessation and instead reigns over the entire spatial and temporal wiring of receptor signaling. Governing the localization, the post-translational modifications, and the scaffolding of receptors and downstream signal components established the endosomal platform as the master regulator of receptor function. Confinement of components within or between distinct organelles means that the endosome instructs the cell on how to interpret and translate the signal emanating from any given receptor complex into biological effects. This review explores this emerging paradigm with respect to the cancer-relevant insulin-like growth factor type 1 receptor (IGF-1R) and discusses how this perspective could inform future targeting strategies.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Department of Pathology, Cancer Centre Amsterdam, Amsterdam UMC, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands.
| | - Dawei Song
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Sonia Cismas
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - Eric Trocmé
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- St. Erik Eye Hospital, 11282 Stockholm, Sweden.
| | - Sylvya Pasca
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ada Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
- Dermatology Department, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Leonard Girnita
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Karolinska Institute, and Karolinska University Hospital, 17164 Stockholm, Sweden.
| |
Collapse
|
53
|
Gagnon L, Cao Y, Cho A, Sedki D, Huber T, Sakmar TP, Laporte SA. Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor. J Biol Chem 2019; 294:17409-17420. [PMID: 31530642 DOI: 10.1074/jbc.ra119.010324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
The angiotensin II (AngII) type 1 receptor (AT1R) is a member of the G protein-coupled receptor (GPCR) family and binds β-arrestins (β-arrs), which regulate AT1R signaling and trafficking. These processes can be biased by different ligands or mutations in the AGTR1 gene. As for many GPCRs, the exact details for AT1R-β-arr interactions driven by AngII or β-arr-biased ligands remain largely unknown. Here, we used the amber-suppression technology to site-specifically introduce the unnatural amino acid (UAA) p-azido-l-phenylalanine (azF) into the intracellular loops (ICLs) and the C-tail of AT1R. Our goal was to generate competent photoreactive receptors that can be cross-linked to β-arrs in cells. We performed UV-mediated photolysis of 25 different azF-labeled AT1Rs to cross-link β-arr1 to AngII-bound receptors, enabling us to map important contact sites in the C-tail and in the ICL2 and ICL3 of the receptor. The extent of AT1R-β-arr1 cross-linking among azF-labeled receptors differed, revealing variability in β-arr's contact mode with the different AT1R domains. Moreover, the signature of ligated AT1R-β-arr complexes from a subset of azF-labeled receptors also differed between AngII and β-arr-biased ligand stimulation of receptors and between azF-labeled AT1R bearing and that lacking a bias signaling mutation. These observations further implied distinct interaction modalities of the AT1R-β-arr1 complex in biased signaling conditions. Our findings demonstrate that this photocross-linking approach is useful for understanding GPCR-β-arr complexes in different activation states and could be extended to study other protein-protein interactions in cells.
Collapse
Affiliation(s)
- Laurence Gagnon
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Aaron Cho
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Dana Sedki
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montréal, Québec H4A 3J1, Canada .,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
54
|
Toth K, Nagi K, Slosky LM, Rochelle L, Ray C, Kaur S, Shenoy SK, Caron MG, Barak LS. Encoding the β-Arrestin Trafficking Fate of Ghrelin Receptor GHSR1a: C-Tail-Independent Molecular Determinants in GPCRs. ACS Pharmacol Transl Sci 2019; 2:230-246. [PMID: 32259059 DOI: 10.1021/acsptsci.9b00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/14/2022]
Abstract
G-protein-coupled receptors (GPCRs) can bias signaling through distinct biochemical pathways that originate from G-protein/receptor and β-arrestin/receptor complexes. Receptor conformations supporting β-arrestin engagement depend on multiple receptor determinants. Using ghrelin receptor GHR1a, we demonstrate by bioluminescence resonance energy transfer and fluorescence microscopy a critical role for its second intracellular loop 2 (ICL2) domain in stabilizing β-arrestin/GHSR1a core interactions and determining receptor trafficking fate. We validate our findings in ICL2 gain- and loss-of-function experiments assessing β-arrestin and ubiquitin-dependent internalization of the CC chemokine receptor, CCR1. Like all CC and CXC subfamily chemokine receptors, CCR1 lacks a critical proline residue found in the ICL2 consensus domain of rhodopsin-family GPCRs. Our study indicates that ICL2, C-tail determinants, and the orthosteric binding pocket that regulates β-arrestin/receptor complex stability are sufficient to encode a broad repertoire of the trafficking fates observed for rhodopsin-family GPCRs, suggesting they provide the essential elements for regulating a large fraction of β-arrestin signaling bias.
Collapse
Affiliation(s)
- Krisztian Toth
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Pharmaceutical Sciences, Campbell University, Buies Creek, North Carolina 27506, United States
| | - Karim Nagi
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,College of Medicine, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Lauren M Slosky
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Lauren Rochelle
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Caroline Ray
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Suneet Kaur
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sudha K Shenoy
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G Caron
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States.,Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Larry S Barak
- Departments of Cell Biology, Neurobiology, and Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
55
|
Mayer D, Damberger FF, Samarasimhareddy M, Feldmueller M, Vuckovic Z, Flock T, Bauer B, Mutt E, Zosel F, Allain FHT, Standfuss J, Schertler GFX, Deupi X, Sommer ME, Hurevich M, Friedler A, Veprintsev DB. Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation. Nat Commun 2019; 10:1261. [PMID: 30890705 PMCID: PMC6424980 DOI: 10.1038/s41467-019-09204-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular functions of arrestins are determined in part by the pattern of phosphorylation on the G protein-coupled receptors (GPCRs) to which arrestins bind. Despite high-resolution structural data of arrestins bound to phosphorylated receptor C-termini, the functional role of each phosphorylation site remains obscure. Here, we employ a library of synthetic phosphopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these peptides to bind and activate arrestins using a variety of biochemical and biophysical methods. We further characterize how these peptides modulate the conformation of arrestin-1 by nuclear magnetic resonance (NMR). Our results indicate different functional classes of phosphorylation sites: 'key sites' required for arrestin binding and activation, an 'inhibitory site' that abrogates arrestin binding, and 'modulator sites' that influence the global conformation of arrestin. These functional motifs allow a better understanding of how different GPCR phosphorylation patterns might control how arrestin functions in the cell.
Collapse
Affiliation(s)
- Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland.
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland.
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, 92093-0636, California, USA.
| | | | | | - Miki Feldmueller
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Tilman Flock
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
- Fitzwilliam College, Cambridge, CB3 0DG, UK
| | - Brian Bauer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Eshita Mutt
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | | | - Jörg Standfuss
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Condensed Matter Theory, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Martha E Sommer
- Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232, Villigen, Switzerland.
- Department of Biology, ETH Zürich, 8093, Zürich, Switzerland.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK.
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
56
|
Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019; 484:34-41. [PMID: 30703488 PMCID: PMC6377262 DOI: 10.1016/j.mce.2019.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
57
|
Zheng C, Tholen J, Gurevich VV. Critical role of the finger loop in arrestin binding to the receptors. PLoS One 2019; 14:e0213792. [PMID: 30875392 PMCID: PMC6420155 DOI: 10.1371/journal.pone.0213792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
We tested the interactions with four different G protein-coupled receptors (GPCRs) of arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically. Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for the arrestin-receptor interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Arrestins/chemistry
- Arrestins/genetics
- Arrestins/metabolism
- HEK293 Cells
- Humans
- Point Mutation
- Protein Conformation
- Receptor, Muscarinic M2/chemistry
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Sequence Homology
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, Germany
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| |
Collapse
|
58
|
Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol 2019; 10:125. [PMID: 30837883 PMCID: PMC6389790 DOI: 10.3389/fphar.2019.00125] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Every animal species expresses hundreds of different G protein-coupled receptors (GPCRs) that respond to a wide variety of external stimuli. GPCRs-driven signaling pathways are involved in pretty much every physiological function and in many pathologies. Therefore, GPCRs are targeted by about a third of clinically used drugs. The signaling of most GPCRs via G proteins is terminated by the phosphorylation of active receptor by specific kinases (GPCR kinases, or GRKs) and subsequent binding of arrestin proteins, that selectively recognize active phosphorylated receptors. In addition, GRKs and arrestins play a role in multiple signaling pathways in the cell, both GPCR-initiated and receptor-independent. Here we focus on the mechanisms of GRK- and arrestin-mediated regulation of GPCR signaling, which includes homologous desensitization and redirection of signaling to additional pathways by bound arrestins.
Collapse
|
59
|
Perry NA, Kaoud TS, Ortega OO, Kaya AI, Marcus DJ, Pleinis JM, Berndt S, Chen Q, Zhan X, Dalby KN, Lopez CF, Iverson TM, Gurevich VV. Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci U S A 2019; 116:810-815. [PMID: 30591558 PMCID: PMC6338856 DOI: 10.1073/pnas.1819230116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Scaffold proteins tether and orient components of a signaling cascade to facilitate signaling. Although much is known about how scaffolds colocalize signaling proteins, it is unclear whether scaffolds promote signal amplification. Here, we used arrestin-3, a scaffold of the ASK1-MKK4/7-JNK3 cascade, as a model to understand signal amplification by a scaffold protein. We found that arrestin-3 exhibited >15-fold higher affinity for inactive JNK3 than for active JNK3, and this change involved a shift in the binding site following JNK3 activation. We used systems biochemistry modeling and Bayesian inference to evaluate how the activation of upstream kinases contributed to JNK3 phosphorylation. Our combined experimental and computational approach suggested that the catalytic phosphorylation rate of JNK3 at Thr-221 by MKK7 is two orders of magnitude faster than the corresponding phosphorylation of Tyr-223 by MKK4 with or without arrestin-3. Finally, we showed that the release of activated JNK3 was critical for signal amplification. Collectively, our data suggest a "conveyor belt" mechanism for signal amplification by scaffold proteins. This mechanism informs on a long-standing mystery for how few upstream kinase molecules activate numerous downstream kinases to amplify signaling.
Collapse
Affiliation(s)
- Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Tamer S Kaoud
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Oscar O Ortega
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 32232
| | - Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - David J Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 32232
| | - John M Pleinis
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232
| | - Xuanzhi Zhan
- Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505
| | - Kevin N Dalby
- Division of Chemical Biology & Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Carlos F Lopez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 32232
- Department of Bioinformatics, Vanderbilt University, Nashville, TN 32232
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 32232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 32232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 32232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 32232
| | | |
Collapse
|
60
|
Gurevich VV, Gurevich EV. Arrestin-mediated signaling: Is there a controversy? World J Biol Chem 2018; 9:25-35. [PMID: 30595812 PMCID: PMC6305498 DOI: 10.4331/wjbc.v9.i3.25] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023] Open
Abstract
The activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK)1/2 was traditionally used as a readout of signaling of G protein-coupled receptors (GPCRs) via arrestins, as opposed to conventional GPCR signaling via G proteins. Several recent studies using HEK293 cells where all G proteins were genetically ablated or inactivated, or both non-visual arrestins were knocked out, demonstrated that ERK1/2 phosphorylation requires G protein activity, but does not necessarily require the presence of non-visual arrestins. This appears to contradict the prevailing paradigm. Here we discuss these results along with the recent data on gene edited cells and arrestin-mediated signaling. We suggest that there is no real controversy. G proteins might be involved in the activation of the upstream-most MAP3Ks, although in vivo most MAP3K activation is independent of heterotrimeric G proteins, being initiated by receptor tyrosine kinases and/or integrins. As far as MAP kinases are concerned, the best-established role of arrestins is scaffolding of the three-tiered cascades (MAP3K-MAP2K-MAPK). Thus, it seems likely that arrestins, GPCR-bound and free, facilitate the propagation of signals in these cascades, whereas signal initiation via MAP3K activation may be independent of arrestins. Different MAP3Ks are activated by various inputs, some of which are mediated by G proteins, particularly in cell culture, where we artificially prevent signaling by receptor tyrosine kinases and integrins, thereby favoring GPCR-induced signaling. Thus, there is no reason to change the paradigm: Arrestins and G proteins play distinct non-overlapping roles in cell signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
61
|
Perkovska S, Méjean C, Ayoub MA, Li J, Hemery F, Corbani M, Laguette N, Ventura MA, Orcel H, Durroux T, Mouillac B, Mendre C. V 1b vasopressin receptor trafficking and signaling: Role of arrestins, G proteins and Src kinase. Traffic 2018; 19:58-82. [PMID: 29044966 DOI: 10.1111/tra.12535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
Abstract
The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of β-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for β-arrestins 1 and 2, we demonstrated that both β-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-β-arrestin interaction in contrast to a slow and long-lasting β-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with β-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.
Collapse
Affiliation(s)
- Sanja Perkovska
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Catherine Méjean
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Mohammed Akli Ayoub
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan Li
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Floriane Hemery
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maithé Corbani
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Nadine Laguette
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Angeles Ventura
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Orcel
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Thierry Durroux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Bernard Mouillac
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Christiane Mendre
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle (IGF), Montpellier, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1191, Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
62
|
Gurevich VV, Gurevich EV, Uversky VN. Arrestins: structural disorder creates rich functionality. Protein Cell 2018; 9:986-1003. [PMID: 29453740 PMCID: PMC6251804 DOI: 10.1007/s13238-017-0501-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023] Open
Abstract
Arrestins are soluble relatively small 44-46 kDa proteins that specifically bind hundreds of active phosphorylated GPCRs and dozens of non-receptor partners. There are binding partners that demonstrate preference for each of the known arrestin conformations: free, receptor-bound, and microtubule-bound. Recent evidence suggests that conformational flexibility in every functional state is the defining characteristic of arrestins. Flexibility, or plasticity, of proteins is often described as structural disorder, in contrast to the fixed conformational order observed in high-resolution crystal structures. However, protein-protein interactions often involve highly flexible elements that can assume many distinct conformations upon binding to different partners. Existing evidence suggests that arrestins are no exception to this rule: their flexibility is necessary for functional versatility. The data on arrestins and many other multi-functional proteins indicate that in many cases, "order" might be artificially imposed by highly non-physiological crystallization conditions and/or crystal packing forces. In contrast, conformational flexibility (and its extreme case, intrinsic disorder) is a more natural state of proteins, representing true biological order that underlies their physiologically relevant functions.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
63
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
64
|
Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:29-45. [PMID: 30711028 PMCID: PMC6400060 DOI: 10.1016/bs.pmbts.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
65
|
Mas L, Cieren A, Delphin C, Journet A, Aubry L. Calcium influx mediates the chemoattractant-induced translocation of the arrestin-related protein AdcC in Dictyostelium. J Cell Sci 2018; 131:jcs.207951. [PMID: 30209138 DOI: 10.1242/jcs.207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Arrestins are key adaptor proteins that control the fate of cell-surface membrane proteins and modulate downstream signaling cascades. The Dictyostelium discoideum genome encodes six arrestin-related proteins, harboring additional modules besides the arrestin domain. Here, we studied AdcB and AdcC, two homologs that contain C2 and SAM domains. We showed that AdcC - in contrast to AdcB - responds to various stimuli (such as the chemoattractants cAMP and folate) known to induce an increase in cytosolic calcium by transiently translocating to the plasma membrane, and that calcium is a direct regulator of AdcC localization. This response requires the calcium-dependent membrane-targeting C2 domain and the double SAM domain involved in AdcC oligomerization, revealing a mode of membrane targeting and regulation unique among members of the arrestin clan. AdcB shares several biochemical properties with AdcC, including in vitro binding to anionic lipids in a calcium-dependent manner and auto-assembly as large homo-oligomers. AdcB can interact with AdcC; however, its intracellular localization is insensitive to calcium. Therefore, despite their high degree of homology and common characteristics, AdcB and AdcC are likely to fulfill distinct functions in amoebae.
Collapse
Affiliation(s)
- Lauriane Mas
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Adeline Cieren
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Christian Delphin
- Université Grenoble Alpes, INSERM U1216, GIN, F-38000 Grenoble, France
| | - Agnès Journet
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| | - Laurence Aubry
- Université Grenoble Alpes, CEA, INSERM, BGE U1038, F-38000 Grenoble, France
| |
Collapse
|
66
|
Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:47-61. [PMID: 30470292 PMCID: PMC6437759 DOI: 10.1016/bs.pmbts.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins were discovered as proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) and block their interactions with G proteins, i.e., for their role in homologous desensitization of GPCRs. Mammals express only four arrestin subtypes, two of which are largely restricted to the retina. Two nonvisual arrestins are ubiquitous and interact with hundreds of different GPCRs and dozens of other binding partners. Changes of just a few residues on the receptor-binding surface were shown to dramatically affect GPCR preference of inherently promiscuous nonvisual arrestins. Mutations on the cytosol-facing side of arrestins modulate their interactions with individual downstream signaling molecules. Thus, it appears feasible to construct arrestin mutants specifically linking particular GPCRs with signaling pathways of choice or mutants that sever the links between selected GPCRs and unwanted pathways. Signaling-biased "designer arrestins" have the potential to become valuable molecular tools for research and therapy.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
67
|
Yang F, Xiao P, Qu CX, Liu Q, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP, Wang J. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol 2018; 14:876-886. [PMID: 30120361 DOI: 10.1038/s41589-018-0115-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022]
Abstract
Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote β-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of β-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Science, Shandong University, Jinan, Shandong, China
| | - Chang-Xiu Qu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qi Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Liu-Yang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Zhi-Xin Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing-Tao He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chuan Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jian-Ye Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Rui-Rui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Meng-Jing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qing Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Xu-Zhen Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China
| | - Zhao-Ya Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Dong-Fang He
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ke Ruan
- Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei Anhui, China
| | - Yue-Mao Shen
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Shandong, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, China. .,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang district, Beijing, China.
| |
Collapse
|
68
|
Structural insights into G-protein-coupled receptor allostery. Nature 2018; 559:45-53. [DOI: 10.1038/s41586-018-0259-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
69
|
Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat Struct Mol Biol 2018; 25:538-545. [PMID: 29872229 DOI: 10.1038/s41594-018-0071-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/25/2018] [Indexed: 01/14/2023]
Abstract
Arrestins regulate the signaling of ligand-activated, phosphorylated G-protein-coupled receptors (GPCRs). Different patterns of receptor phosphorylation (phosphorylation barcode) can modulate arrestin conformations, resulting in distinct functional outcomes (for example, desensitization, internalization, and downstream signaling). However, the mechanism of arrestin activation and how distinct receptor phosphorylation patterns could induce different conformational changes on arrestin are not fully understood. We analyzed how each arrestin amino acid contributes to its different conformational states. We identified a conserved structural motif that restricts the mobility of the arrestin finger loop in the inactive state and appears to be regulated by receptor phosphorylation. Distal and proximal receptor phosphorylation sites appear to selectively engage with distinct arrestin structural motifs (that is, micro-locks) to induce different arrestin conformations. These observations suggest a model in which different phosphorylation patterns of the GPCR C terminus can combinatorially modulate the conformation of the finger loop and other phosphorylation-sensitive structural elements to drive distinct arrestin conformation and functional outcomes.
Collapse
Affiliation(s)
| | - Raphael Peer
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Arthur M Lesk
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Biochemistry and Molecular Biology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Cambridge, UK. .,Fitzwilliam College, University of Cambridge, Cambridge, UK. .,Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
70
|
Chen Q, Iverson TM, Gurevich VV. Structural Basis of Arrestin-Dependent Signal Transduction. Trends Biochem Sci 2018; 43:412-423. [PMID: 29636212 PMCID: PMC5959776 DOI: 10.1016/j.tibs.2018.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
Arrestins are a small family of proteins with four isoforms in humans. Remarkably, two arrestins regulate signaling from >800 G protein-coupled receptors (GPCRs) or nonreceptor activators by simultaneously binding an activator and one out of hundreds of other signaling proteins. When arrestins are bound to GPCRs or other activators, the affinity for these signaling partners changes. Thus, it is proposed that an activator alters arrestin's ability to transduce a signal. The comparison of all available arrestin structures identifies several common conformational rearrangements associated with activation. In particular, it identifies elements that are directly involved in binding to GPCRs or other activators, elements that likely engage distinct downstream effectors, and elements that likely link the activator-binding sites with the effector-binding sites.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| |
Collapse
|
71
|
Hayashi H, Hess DT, Zhang R, Sugi K, Gao H, Tan BL, Bowles DE, Milano CA, Jain MK, Koch WJ, Stamler JS. S-Nitrosylation of β-Arrestins Biases Receptor Signaling and Confers Ligand Independence. Mol Cell 2018; 70:473-487.e6. [PMID: 29727618 PMCID: PMC5940012 DOI: 10.1016/j.molcel.2018.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Abstract
Most G protein-coupled receptors (GPCRs) signal through both heterotrimeric G proteins and β-arrestins (βarr1 and βarr2). Although synthetic ligands can elicit biased signaling by G protein- vis-à-vis βarr-mediated transduction, endogenous mechanisms for biasing signaling remain elusive. Here we report that S-nitrosylation of a novel site within βarr1/2 provides a general mechanism to bias ligand-induced signaling through GPCRs by selectively inhibiting βarr-mediated transduction. Concomitantly, S-nitrosylation endows cytosolic βarrs with receptor-independent function. Enhanced βarr S-nitrosylation characterizes inflammation and aging as well as human and murine heart failure. In genetically engineered mice lacking βarr2-Cys253 S-nitrosylation, heart failure is exacerbated in association with greatly compromised β-adrenergic chronotropy and inotropy, reflecting βarr-biased transduction and β-adrenergic receptor downregulation. Thus, S-nitrosylation regulates βarr function and, thereby, biases transduction through GPCRs, demonstrating a novel role for nitric oxide in cellular signaling with potentially broad implications for patho/physiological GPCR function, including a previously unrecognized role in heart failure.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland OH 44106,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Douglas T. Hess
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland OH 44106,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Rongli Zhang
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland OH 44106,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Keiki Sugi
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106,Case Cardiovascular Research Institute, Case Western University School of Medicine, Cleveland, OH 44106,Harrington Heart and Vascular Institute, Case Western University School of Medicine, Cleveland, OH 44106
| | - Huiyun Gao
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106,Case Cardiovascular Research Institute, Case Western University School of Medicine, Cleveland, OH 44106,Harrington Heart and Vascular Institute, Case Western University School of Medicine, Cleveland, OH 44106
| | - Bea L. Tan
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland OH 44106,Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Dawn E. Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Carmelo A. Milano
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - Mukesh K. Jain
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106,Case Cardiovascular Research Institute, Case Western University School of Medicine, Cleveland, OH 44106,Harrington Heart and Vascular Institute, Case Western University School of Medicine, Cleveland, OH 44106,Harrington Discovery Institute, University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Walter J. Koch
- Department of Medicine and Center for Translational Research, Jefferson Medical College, Thomas Jefferson University,
Philadelphia, PA 19107
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland OH 44106,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106,Harrington Discovery Institute, University Hospitals Case Medical Center, Cleveland, OH 44106,Lead Contact to whom correspondence should be addressed: Jonathan S. Stamler, M.D., Institute for Transformative
Molecular Medicine, Case Western Reserve University, Wolstein Research Building 4129, 2103 Cornell Road, Cleveland, OH 44106,
Tel.: 216-368-5725, Fax: 216-368-2968,
| |
Collapse
|
72
|
Abstract
G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
73
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
74
|
Storme J, Cannaert A, Van Craenenbroeck K, Stove CP. Molecular dissection of the human A 3 adenosine receptor coupling with β-arrestin2. Biochem Pharmacol 2018; 148:298-307. [PMID: 29309765 DOI: 10.1016/j.bcp.2018.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Besides classical G protein coupling, G protein-coupled receptors (GPCRs) are nowadays well known to show significant signalling via other adaptor proteins, such as β-arrestin2 (βarr2). The elucidation of the molecular mechanism of the GPCR-βarr2 interaction is a prerequisite for the structure-activity based design of biased ligands, which introduces a new chapter in drug discovery. The general mechanism of the interaction is believed to rely on phosphorylation sites, exposed upon agonist binding. However, it is not known whether this mechanism is universal throughout the GPCR family or if GPCR-specific patterns are involved. In recent years, promising orally active agonists for the human A3 adenosine receptor (A3AR), a GPCR highly expressed in inflammatory and cancer cells, have been evaluated in clinical trials for the treatment of rheumatoid arthritis, psoriasis, and hepatocellular carcinoma. In this study, the effect of cytoplasmic modifications of the A3AR on βarr2 recruitment was evaluated in transiently transfected HEK293T cells, using a live-cell split-reporter system (NanoBit®, Promega), based on the structural complementation of NanoLuc luciferase, allowing real-time βarr2 monitoring. The A3AR-selective reference agonist 2-Cl-IB-MECA yielded a robust, concentration dependent (5 nM-1 µM) recruitment of βarr2 (logEC50: -7.798 ± 0.076). The role of putative phosphorylation sites, located in the C-terminal part and cytoplasmic loops, and the role of the 'DRY' motif was evaluated. It was shown that the A3AR C-terminus was dispensable for βarr2 recruitment. This contrasts with studies in the past for the rat A3AR, which pointed at crucial C-terminal phosphorylation sites. When combining truncation of the A3AR with modification of the 'DRY' motif to 'AAY', the βarr2 recruitment was drastically reduced. Recruitment could be partly rescued by back-mutation to 'NQY', or by extending the C-terminus again. In conclusion, other parts of the human A3AR, either cytosolic or exposed upon receptor activation, rather than the C-terminus alone, are responsible for βarr2 recruitment in a complementary or synergistic way.
Collapse
Affiliation(s)
- Jolien Storme
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
75
|
Cheng JX, Cheng T, Li WH, Liu GX, Zhu WL, Tang Y. Computational insights into the G-protein-biased activation and inactivation mechanisms of the μ opioid receptor. Acta Pharmacol Sin 2018; 39:154-164. [PMID: 29188799 DOI: 10.1038/aps.2017.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022]
Abstract
The μ opioid receptor (OR), a member of the class A subfamily of G-protein coupled receptors (GPCRs), is a major target for the treatment of pain. G-protein biased μ-OR agonists promise to be developed as analgesics. Thus, TRV130, the first representative μ-OR ligand with G-protein bias, has entered into phase III clinical trials. To identify the detailed G-protein-biased activation and inactivation mechanisms of the μ-OR, we constructed five μ-OR systems that were in complexes with the G-protein-biased agonists TRV130 and BU72, the antagonists β-FNA and naltrexone, as well as the free receptor. We performed a series of conventional molecular dynamics simulations and analyses of G-protein-biased activation and inactivation mechanisms of μ-OR. Our results, together with previously reported mutation results, revealed the operating mode of the activation switch composed of residues W6.48 and Y7.43 (Ballesteros/Weinstein numbering), the activity of which was responsible for down- and up-regulation, respectively, of the β-arrestin signaling, which in turn affected G-protein-biased activation of μ-OR. TRV130 was found to stabilize W6.48 by interacting with Y7.43. In addition, we obtained useful information regarding μ-OR-biased activation, such as strong stabilization of W7.35 through a hydrophobic ring interaction in the TRV130 system. These findings may facilitate understanding of μ-OR biased activation and the design of new biased ligands for GPCRs.
Collapse
|
76
|
Vishnivetskiy SA, Sullivan LS, Bowne SJ, Daiger SP, Gurevich EV, Gurevich VV. Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant. Invest Ophthalmol Vis Sci 2018; 59:13-20. [PMID: 29305604 PMCID: PMC5756042 DOI: 10.1167/iovs.17-22180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/01/2017] [Indexed: 01/31/2023] Open
Abstract
PURPOSE The purpose of this study was to identify the molecular defect in the disease-causing human arrestin-1 C147F mutant. METHODS The binding of wild-type (WT) human arrestin-1 and several mutants with substitutions in position 147 (including C147F, which causes dominant retinitis pigmentosa in humans) to phosphorylated and unphosphorylated light-activated rhodopsin was determined. Thermal stability of WT and mutant human arrestin-1, as well as unfolded protein response in 661W cells, were also evaluated. RESULTS WT human arrestin-1 was selective for phosphorylated light-activated rhodopsin. Substitutions of Cys-147 with smaller side chain residues, Ala or Val, did not substantially affect binding selectivity, whereas residues with bulky side chains in the position 147 (Ile, Leu, and disease-causing Phe) greatly increased the binding to unphosphorylated rhodopsin. Functional survival of mutant proteins with bulky substitutions at physiological and elevated temperature was also compromised. C147F mutant induced unfolded protein response in cultured cells. CONCLUSIONS Bulky Phe substitution of Cys-147 in human arrestin-1 likely causes rod degeneration due to reduced stability of the protein, which induces unfolded protein response in expressing cells.
Collapse
Affiliation(s)
| | - Lori S. Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Sara J. Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
77
|
Gurevich VV, Gurevich EV. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017; 18:2519. [PMID: 29186792 PMCID: PMC5751122 DOI: 10.3390/ijms18122519] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that respond to a wide variety of stimuli, from light, odorants, hormones, and neurotransmitters to proteins and extracellular calcium. GPCRs represent the largest family of signaling proteins targeted by many clinically used drugs. Recent studies shed light on the conformational changes that accompany GPCR activation and the structural state of the receptor necessary for the interactions with the three classes of proteins that preferentially bind active GPCRs, G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. Importantly, structural and biophysical studies also revealed activation-related conformational changes in these three types of signal transducers. Here, we summarize what is already known and point out questions that still need to be answered. Clear understanding of the structural basis of signaling by GPCRs and their interaction partners would pave the way to designing signaling-biased proteins with scientific and therapeutic potential.
Collapse
|
78
|
Nogueras-Ortiz C, Roman-Vendrell C, Mateo-Semidey GE, Liao YH, Kendall DA, Yudowski GA. Retromer stops beta-arrestin 1-mediated signaling from internalized cannabinoid 2 receptors. Mol Biol Cell 2017; 28:3554-3561. [PMID: 28954865 PMCID: PMC5683765 DOI: 10.1091/mbc.e17-03-0198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/18/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
The retromer acts as the gatekeeper blocking signaling mediated by beta-arrestin 1 from internalized cannabinoid 2 receptors. This work provides further confirmation of the relevance and prevalence of signaling from internalized receptors at endosomal compartments after ligand-induced endocytosis. G protein–coupled receptors mediate their complex functions through activation of signaling cascades from receptors localized at the cell surface and endosomal compartments. These signaling pathways are modulated by heterotrimeric G proteins and the scaffold proteins beta-arrestin 1 and 2. However, in contrast to the events occurring at the cell surface, our knowledge of the mechanisms controlling signaling from receptors localized at intracellular compartments is still very limited. Here we sought to investigate the intracellular signaling from cannabinoid 2 receptor (CB2R). First, we show that receptor internalization is required for agonist-induced phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Then we demonstrate that ERK1/2 activation is mediated by beta-arrestin 1 from receptors localized exclusively at Rab4/5 compartments. Finally, we identify the retromer complex as a gatekeeper, terminating beta-arrestin 1–mediated ERK phosphorylation. These findings extend our understanding of the events controlling signaling from endocytosed receptors and identify the retromer as a modulator of beta-arrestin–mediated signaling from CB2R.
Collapse
Affiliation(s)
| | - Cristina Roman-Vendrell
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901.,Department of Physiology and Biophysics, University of Puerto Rico, Medical San Juan, PR 00936
| | - Gabriel E Mateo-Semidey
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936
| | - Yu-Hsien Liao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092
| | - Guillermo A Yudowski
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901 .,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936
| |
Collapse
|
79
|
Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Cell Signal 2017; 36:98-107. [PMID: 28461104 PMCID: PMC5797668 DOI: 10.1016/j.cellsig.2017.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022]
Abstract
Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M2 muscarinic receptor, so that agonist activation of the M2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M2, whereas its interactions with other receptors, including the β2-adrenergic receptor and the D1 and D2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β2-adrenergic and D2 dopamine receptors, while reducing its interaction with the D1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes.
Collapse
Affiliation(s)
- Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA
| | | | - Andras D Toth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Graeme Milligan
- Centre for Translational Pharmacology, College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Tina M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA
| | - Laszlo Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| |
Collapse
|
80
|
Vishnivetskiy SA, Lee RJ, Zhou XE, Franz A, Xu Q, Xu HE, Gurevich VV. Functional role of the three conserved cysteines in the N domain of visual arrestin-1. J Biol Chem 2017; 292:12496-12502. [PMID: 28536260 PMCID: PMC5535024 DOI: 10.1074/jbc.m117.790386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
Arrestins specifically bind active and phosphorylated forms of their cognate G protein-coupled receptors, blocking G protein coupling and often redirecting the signaling to alternative pathways. High-affinity receptor binding is accompanied by two major structural changes in arrestin: release of the C-tail and rotation of the two domains relative to each other. The first requires detachment of the arrestin C-tail from the body of the molecule, whereas the second requires disruption of the network of charge-charge interactions at the interdomain interface, termed the polar core. These events can be facilitated by mutations destabilizing the polar core or the anchoring of the C-tail that yield "preactivated" arrestins that bind phosphorylated and unphosphorylated receptors with high affinity. Here we explored the functional role in arrestin activation of the three native cysteines in the N domain, which are conserved in all arrestin subtypes. Using visual arrestin-1 and rhodopsin as a model, we found that substitution of these cysteines with serine, alanine, or valine virtually eliminates the effects of the activating polar core mutations on the binding to unphosphorylated rhodopsin while only slightly reducing the effects of the C-tail mutations. Thus, these three conserved cysteines play a role in the domain rotation but not in the C-tail release.
Collapse
Affiliation(s)
| | - Regina J Lee
- Vanderbilt University, Nashville, Tennessee 37232
| | - X Edward Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | | - Qiuyi Xu
- Vanderbilt University, Nashville, Tennessee 37232
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | | |
Collapse
|
81
|
Liebick M, Henze S, Vogt V, Oppermann M. Functional consequences of chemically-induced β-arrestin binding to chemokine receptors CXCR4 and CCR5 in the absence of ligand stimulation. Cell Signal 2017; 38:201-211. [PMID: 28733085 DOI: 10.1016/j.cellsig.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 01/14/2023]
Abstract
Chemokine receptor signaling is a tightly regulated process which was for a long time exclusively attributed to heterotrimeric G proteins. β-Arrestins constitute a separable signaling arm from classical heterotrimeric G proteins, in addition to their well-established roles in receptor desensitization and endocytosis. In order to clearly dissect β-arrestin- from G protein-dependent effects we forced the recruitment of β-arrestin to CXCR4 and CCR5 independently of agonist-promoted receptor activation through chemically-induced dimerization. Targeting β-arrestins to receptors at the plasma membrane prior to chemokine stimulation attenuated G protein-mediated calcium release. Association of β-arrestins to the receptors was sufficient to induce their internalization in the absence of ligand and this effect could be further enhanced by translocation of a constitutively active β-arrestin 1 variant. CXCR4 and CCR5 were targeted to different intracellular compartments upon chemical-induced dimerization with β-arrestins and reproduced the intracellular distribution of receptors after activation with their respective ligands. Our data further provide evidence for direct β-arrestin-mediated signaling via MAP kinases ERK 1/2. These results provide clear evidence that CXCR4- or CCR5-β-arrestin complexes induce receptor endocytosis and signaling in the absence of G protein coupling and ligand-induced conformational changes of the receptor.
Collapse
Affiliation(s)
- Marcel Liebick
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany.
| | - Sarah Henze
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Viola Vogt
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Martin Oppermann
- Department of Cellular and Molecular Immunology, University of Göttingen, Göttingen, Niedersachsen, Germany
| |
Collapse
|
82
|
Ranjan R, Dwivedi H, Baidya M, Kumar M, Shukla AK. Novel Structural Insights into GPCR-β-Arrestin Interaction and Signaling. Trends Cell Biol 2017; 27:851-862. [PMID: 28651823 DOI: 10.1016/j.tcb.2017.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are major signal recognition and transmission units in the plasma membrane. The interaction of activated and phosphorylated GPCRs with the multifunctional adaptor proteins β-arrestins (βarrs) is crucial for regulation of their signaling and functional outcomes. Over the past few years, a range of structural, biochemical, and cellular studies have revealed novel insights into GPCR-βarr interaction and signaling. Some of these findings have come as a surprise and therefore have the potential to significantly refine the conceptual framework of the GPCR-βarr system. Here we discuss these recent advances with particular emphasis on biphasic GPCR-βarr interaction, the formation of GPCR-G-protein-βarr supercomplexes, and receptor-specific conformational signatures in βarrs. We also underline the emerging research areas that are likely to be at the center stage of investigations in the coming years.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Hemlata Dwivedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mohit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
83
|
Steury MD, McCabe LR, Parameswaran N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling. Adv Immunol 2017; 136:227-277. [PMID: 28950947 DOI: 10.1016/bs.ai.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases that regulate a large and diverse class of G protein-coupled receptors (GPCRs). Through GRK phosphorylation and β-arrestin recruitment, GPCRs are desensitized and their signal terminated. Recent work on these kinases has expanded their role from canonical GPCR regulation to include noncanonical regulation of non-GPCR and nonreceptor substrates through phosphorylation as well as via scaffolding functions. Owing to these and other regulatory roles, GRKs have been shown to play a critical role in the outcome of a variety of physiological and pathophysiological processes including chemotaxis, signaling, migration, inflammatory gene expression, etc. This diverse set of functions for these proteins makes them popular targets for therapeutics. Role for these kinases in inflammation and inflammatory disease is an evolving area of research currently pursued in many laboratories. In this review, we describe the current state of knowledge on various GRKs pertaining to their role in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
| | - Laura R McCabe
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
84
|
Porter-Stransky KA, Weinshenker D. Arresting the Development of Addiction: The Role of β-Arrestin 2 in Drug Abuse. J Pharmacol Exp Ther 2017; 361:341-348. [PMID: 28302862 PMCID: PMC5443318 DOI: 10.1124/jpet.117.240622] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
The protein β-arrestin (βarr) 2 directly interacts with receptors and signaling pathways that mediate the behavioral effects of drugs of abuse, making it a prime candidate for therapeutic interventions. βarr2 drives desensitization and internalization of G protein-coupled receptors, including dopamine, opioid, and cannabinoid receptors, and it can also trigger G protein-independent intracellular signaling. βarr2 mediates several drug-induced behaviors, but the relationship is complex and dependent on the type of behavior (e.g., psychomotor versus reward), the class of drug (e.g., psychostimulant versus opioid), and the circuit being interrogated (e.g., brain region, cell type, and specific receptor ligand). Here we discuss the current state of research concerning the contribution of βarr2 to the psychomotor and rewarding effects of addictive drugs. Next we identify key knowledge gaps and suggest new tools and approaches needed to further elucidate the neuroanatomical substrates and neurobiological mechanisms to explain how βarr2 modulates behavioral responses to drugs of abuse, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
85
|
Hinz L, Ahles A, Ruprecht B, Küster B, Engelhardt S. Two serines in the distal C-terminus of the human ß1-adrenoceptor determine ß-arrestin2 recruitment. PLoS One 2017; 12:e0176450. [PMID: 28472170 PMCID: PMC5417508 DOI: 10.1371/journal.pone.0176450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) undergo phosphorylation at several intracellular residues by G protein-coupled receptor kinases. The resulting phosphorylation pattern triggers arrestin recruitment and receptor desensitization. The exact sites of phosphorylation and their function remained largely unknown for the human β1-adrenoceptor (ADRB1), a key GPCR in adrenergic signal transduction and the target of widely used drugs such as β-blockers. The present study aimed to identify the intracellular phosphorylation sites in the ADRB1 and to delineate their function. The human ADRB1 was expressed in HEK293 cells and its phosphorylation pattern was determined by mass spectrometric analysis before and after stimulation with a receptor agonist. We identified a total of eight phosphorylation sites in the receptor's third intracellular loop and C-terminus. Analyzing the functional relevance of individual sites using phosphosite-deficient receptor mutants we found phosphorylation of the ADRB1 at Ser461/Ser462 in the distal part of the C-terminus to determine β-arrestin2 recruitment and receptor internalization. Our data reveal the phosphorylation pattern of the human ADRB1 and the site that mediates recruitment of β-arrestin2.
Collapse
Affiliation(s)
- Laura Hinz
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- * E-mail: (AA); (SE)
| | - Benjamin Ruprecht
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center for Protein Science Munich (CIPSM), Freising, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center for Protein Science Munich (CIPSM), Freising, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- * E-mail: (AA); (SE)
| |
Collapse
|
86
|
A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat Commun 2017; 8:15054. [PMID: 28416805 PMCID: PMC5399295 DOI: 10.1038/ncomms15054] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
In addition to G protein-coupled receptor (GPCR) desensitization and endocytosis, β-arrestin recruitment to ligand-stimulated GPCRs promotes non-canonical signalling cascades. Distinguishing the respective contributions of β-arrestin recruitment to the receptor and β-arrestin-promoted endocytosis in propagating receptor signalling has been limited by the lack of selective analytical tools. Here, using a combination of virtual screening and cell-based assays, we have identified a small molecule that selectively inhibits the interaction between β-arrestin and the β2-adaptin subunit of the clathrin adaptor protein AP2 without interfering with the formation of receptor/β-arrestin complexes. This selective β-arrestin/β2-adaptin inhibitor (Barbadin) blocks agonist-promoted endocytosis of the prototypical β2-adrenergic (β2AR), V2-vasopressin (V2R) and angiotensin-II type-1 (AT1R) receptors, but does not affect β-arrestin-independent (transferrin) or AP2-independent (endothelin-A) receptor internalization. Interestingly, Barbadin fully blocks V2R-stimulated ERK1/2 activation and blunts cAMP accumulation promoted by both V2R and β2AR, supporting the concept of β-arrestin/AP2-dependent signalling for both G protein-dependent and -independent pathways. Beta-arrestins play central roles in the mechanisms regulating GPCR signalling and trafficking. Here the authors identify a selective inhibitor of the interaction between β-arrestin and the β2-adaptin subunit of the clathrin adaptor protein AP-2, which they use to dissect the role of the β-arrestin/β2-adaptin interaction in GPCR signalling.
Collapse
|
87
|
Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, Shukla AK. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell 2017; 28:1003-1010. [PMID: 28228552 PMCID: PMC5391177 DOI: 10.1091/mbc.e16-12-0818] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) exhibit highly conserved activation and signaling mechanisms by which agonist stimulation leads to coupling of heterotrimeric G proteins and generation of second messenger response. This is followed by receptor phosphorylation, primarily in the carboxyl terminus but also in the cytoplasmic loops, and subsequent binding of arrestins. GPCRs typically recruit arrestins through two different sets of interactions, one involving phosphorylated receptor tail and the other mediated by the receptor core. The engagement of both set of interactions (tail and core) is generally believed to be necessary for arrestin-dependent functional outcomes such as receptor desensitization, endocytosis, and G protein-independent signaling. Here we demonstrate that a vasopressin receptor (V2R) mutant with truncated third intracellular loop (V2RΔICL3) can interact with β-arrestin 1 (βarr1) only through the phosphorylated tail without engaging the core interaction. Of interest, such a partially engaged V2RΔICL3-βarr1 complex can efficiently interact with clathrin terminal domain and ERK2 MAPK in vitro. Furthermore, this core interaction-deficient V2R mutant exhibits efficient endocytosis and ERK activation upon agonist stimulation. Our data suggest that core interaction with βarr is dispensable for V2R endocytosis and ERK activation and therefore provide novel insights into refining the current understanding of functional requirements in biphasic GPCR-βarr interaction.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
88
|
Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D, Shukla AK. Functional competence of a partially engaged GPCR-β-arrestin complex. Nat Commun 2016; 7:13416. [PMID: 27827372 PMCID: PMC5105198 DOI: 10.1038/ncomms13416] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
G Protein-coupled receptors (GPCRs) constitute the largest family of cell surface receptors and drug targets. GPCR signalling and desensitization is critically regulated by β-arrestins (βarr). GPCR-βarr interaction is biphasic where the phosphorylated carboxyl terminus of GPCRs docks to the N-domain of βarr first and then seven transmembrane core of the receptor engages with βarr. It is currently unknown whether fully engaged GPCR-βarr complex is essential for functional outcomes or partially engaged complex can also be functionally competent. Here we assemble partially and fully engaged complexes of a chimeric β2V2R with βarr1, and discover that the core interaction is dispensable for receptor endocytosis, ERK MAP kinase binding and activation. Furthermore, we observe that carvedilol, a βarr biased ligand, does not promote detectable engagement between βarr1 and the receptor core. These findings uncover a previously unknown aspect of GPCR-βarr interaction and provide novel insights into GPCR signalling and regulatory paradigms.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Pragya Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xin Chen
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bhagyashri Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Charu Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepika Jaiman
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K. Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
89
|
Nogueras-Ortiz C, Yudowski GA. The Multiple Waves of Cannabinoid 1 Receptor Signaling. Mol Pharmacol 2016; 90:620-626. [PMID: 27338082 PMCID: PMC11037448 DOI: 10.1124/mol.116.104539] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system, with key roles during neurotransmitter release and synaptic plasticity. Upon ligand activation, CB1Rs may signal in three different spatiotemporal waves. The first wave, which is transient (<10 minutes) and initiated by heterotrimeric G proteins, is followed by a second wave (>5 minutes) that is mediated by β-arrestins. The third and final wave occurs at intracellular compartments and could be elicited by G proteins or β-arrestins. This complexity presents multiple challenges, including the correct classification of receptor ligands, the identification of the signaling pathways regulated by each wave, and the underlying molecular mechanisms and physiologic impacts of these waves. Simultaneously, it provides new opportunities to harness the therapeutic potential of the cannabinoid system and other GPCRs. Over the last several years, we have significantly expanded our understanding of the mechanisms and pathways downstream from the CB1R. The identification of receptor mutations that can bias signaling to specific pathways and the use of siRNA technology have been key tools to identifying which signaling cascades are controlled by G proteins or β-arrestins. Here, we review our current knowledge on CB1R signaling, with particular emphasis on the mechanisms and cascades mediated by β-arrestins downstream from the CB1R.
Collapse
Affiliation(s)
- Carlos Nogueras-Ortiz
- Institute of Neurobiology(C.N.-O., G.A.Y.) and Department of Anatomy and Neurobiology (G.A.Y.), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Guillermo A Yudowski
- Institute of Neurobiology(C.N.-O., G.A.Y.) and Department of Anatomy and Neurobiology (G.A.Y.), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
90
|
Hashimoto T, Yang B, Okazaki Y, Yoshizawa I, Kajihara K, Kato N, Wada M, Yanaka N. Time Course Analysis of Skeletal Muscle Pathology of GDE5 Transgenic Mouse. PLoS One 2016; 11:e0163299. [PMID: 27658304 PMCID: PMC5033411 DOI: 10.1371/journal.pone.0163299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Glycerophosphodiesterase 5 (GDE5) selectively hydrolyses glycerophosphocholine to choline and is highly expressed in type II fiber-rich skeletal muscles. We have previously generated that a truncated mutant of GDE5 (GDE5dC471) that lacks phosphodiesterase activity and shown that transgenic mice overexpressing GDE5dC471 in skeletal muscles show less skeletal muscle mass than control mice. However, the molecular mechanism and pathophysiological features underlying decreased skeletal muscle mass in GDE5dC471 mice remain unclear. In this study, we characterized the skeletal muscle disorder throughout development and investigated the primary cause of muscle atrophy. While type I fiber-rich soleus muscle mass was not altered in GDE5dC471 mice, type II fiber-rich muscle mass was reduced in 8-week-old GDE5dC471 mice. Type II fiber-rich muscle mass continued to decrease irreversibly in 1-year-old transgenic mice with an increase in apoptotic cell. Adipose tissue weight and blood triglyceride levels in 8-week-old and 1-year-old transgenic mice were higher than those in control mice. This study also demonstrated compensatory mRNA expression of neuromuscular junction (NMJ) components, including nicotinic acetylcholine receptors (α1, γ, and ε subunits) and acetylcholinesterase in type II fiber-rich quadriceps muscles in GDE5dC471 mice. However, we did not observe morphological changes in NMJs associated with skeletal muscle atrophy in GDE5dC471 mice. We also found that HSP70 protein levels are significantly increased in the skeletal muscles of 2-week-old GDE5dC471 mice and in mouse myoblastic C2C12 cells overexpressing GDE5dC471. These findings suggest that GDE5dC471 mouse is a novel model of early-onset irreversible type II fiber-rich myopathy associated with cellular stress.
Collapse
Affiliation(s)
- Takao Hashimoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Bo Yang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuri Okazaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ikumi Yoshizawa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kaori Kajihara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Norihisa Kato
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
91
|
Sensoy O, Moreira IS, Morra G. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor. ACS Chem Neurosci 2016; 7:1212-24. [PMID: 27405242 DOI: 10.1021/acschemneuro.6b00073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective interaction with GPCRs, and to understand the basis for these differences, we used unbiased molecular dynamics simulations to compare the structural and dynamic properties of wild type Arr1 (Arr1-WT), Arr3 (Arr3-WT), and a constitutively active Arr1 mutant, Arr1-R175E, characterized by a perturbation of the phosphate recognition region called "polar core". We find that in our simulations the mutant evolves toward a conformation that resembles the known preactivated structures of an Arr1 splice-variant, and the structurally similar phosphopeptide-bound Arr2-WT, while this does not happen for Arr1-WT. Hence, we propose an activation allosteric mechanism connecting the perturbation of the polar core to a global conformational change, including the relative reorientation of N- and C-domains, and the emergence of electrostatic properties of putative binding surfaces. The underlying local structural changes are interpreted as markers of the evolution of an arrestin structure toward an active-like conformation. Similar activation related changes occur in Arr3-WT in the absence of any perturbation of the polar core, suggesting that this system could spontaneously visit preactivated states in solution. This hypothesis is proposed to explain the lower selectivity of Arr3 toward nonphosphorylated receptors. Moreover, by elucidating the allosteric mechanism underlying activation, we identify functionally critical regions on arrestin structure that can be targeted with drugs or chemical tools for functional modulation.
Collapse
Affiliation(s)
- Ozge Sensoy
- The School of Engineering and Natural Sciences, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, New York 10065, United States
| | - Irina S. Moreira
- CNC - Center for Neuroscience and Cell Biology; Rua Larga, FMUC, Polo I, 1°andar, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Bijvoet Center for Biomolecular Research,
Faculty of Science - Chemistry, Utrecht University, Utrecht 3584CH, The Netherlands
| | - Giulia Morra
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, New York 10065, United States
- ICRM-CNR
Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milano, Italia
| |
Collapse
|
92
|
Gurevich EV, Gainetdinov RR, Gurevich VV. G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacol Res 2016; 111:1-16. [PMID: 27178731 PMCID: PMC5079267 DOI: 10.1016/j.phrs.2016.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
Actions of the neurotransmitter dopamine in the brain are mediated by dopamine receptors that belong to the superfamily of G protein-coupled receptors (GPCRs). Mammals have five dopamine receptor subtypes, D1 through D5. D1 and D5 couple to Gs/olf and activate adenylyl cyclase, whereas D2, D3, and D4 couple to Gi/o and inhibit it. Most GPCRs upon activation by an agonist are phosphorylated by GPCR kinases (GRKs). The GRK phosphorylation makes receptors high-affinity binding partners for arrestin proteins. Arrestin binding to active phosphorylated receptors stops further G protein activation and promotes receptor internalization, recycling or degradation, thereby regulating their signaling and trafficking. Four non- visual GRKs are expressed in striatal neurons. Here we describe known effects of individual GRKs on dopamine receptors in cell culture and in the two in vivo models of dopamine-mediated signaling: behavioral response to psychostimulants and L-DOPA- induced dyskinesia. Dyskinesia, associated with dopamine super-sensitivity of striatal neurons, is a debilitating side effect of L-DOPA therapy in Parkinson's disease. In vivo, GRK subtypes show greater receptor specificity than in vitro or in cultured cells. Overexpression, knockdown, and knockout of individual GRKs, particularly GRK2 and GRK6, have differential effects on signaling of dopamine receptor subtypes in the brain. Furthermore, deletion of GRK isoforms in select striatal neuronal types differentially affects psychostimulant-induced behaviors. In addition, anti-dyskinetic effect of GRK3 does not require its kinase activity: it is mediated by the binding of its RGS-like domain to Gαq/11, which suppresses Gq/11 signaling. The data demonstrate that the dopamine signaling in defined neuronal types in vivo is regulated by specific and finely orchestrated actions of GRK isoforms.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Skolkovo Institute of Science and Technology, Skolkovo, 143025, Moscow, Russia
| | | |
Collapse
|
93
|
Jean-Charles PY, Freedman NJ, Shenoy SK. Chapter Nine - Cellular Roles of Beta-Arrestins as Substrates and Adaptors of Ubiquitination and Deubiquitination. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:339-69. [PMID: 27378762 DOI: 10.1016/bs.pmbts.2016.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Arrestin1 and β-arrestin2 are homologous adaptor proteins that are ubiquitously expressed in mammalian cells. They belong to a four-member family of arrestins that regulate the vast family of seven-transmembrane receptors that couple to heterotrimeric G proteins (7TMRs or GPCRs), and that modulate 7TMR signal transduction. β-Arrestins were originally identified in the context of signal inhibition via the 7TMRs because they competed with and thereby blocked G protein coupling to 7TMRs. Currently, in addition to their role as desensitizers of signaling, β-arrestins are appreciated as multifunctional adaptors that mediate trafficking and signal transduction of not only 7TMRs, but a growing list of additional receptors, ion channels, and nonreceptor proteins. β-Arrestins' interactions with their multifarious partners are based on their dynamic conformational states rather than particular domain-domain interactions. β-Arrestins adopt activated conformations upon 7TMR association. In addition, β-arrestins undergo various posttranslational modifications that are choreographed by activated 7TMRs, including phosphorylation, ubiquitination, acetylation, nitrosylation, and SUMOylation. Ubiquitination of β-arrestins is critical for their high-affinity interaction with 7TMRs as well as with endocytic adaptor proteins and signaling kinases. β-Arrestins also function as critical adaptors for ubiquitination and deubiquitination of various cellular proteins, and thereby affect the longevity of signal transducers and the intensity of signal transmission.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States
| | - N J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina, United States; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States.
| |
Collapse
|
94
|
Gurevich EV, Gainetdinov RR, Gurevich VV. Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3798-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
95
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|
96
|
Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R. Structural evidence for the role of polar core residue Arg175 in arrestin activation. Sci Rep 2015; 5:15808. [PMID: 26510463 PMCID: PMC4625158 DOI: 10.1038/srep15808] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022] Open
Abstract
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
Collapse
Affiliation(s)
- Joachim Granzin
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Andreas Stadler
- Jülich Centre for Neutron Science (JCNS-1) &Institute for Complex Systems (ICS-1), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Anneliese Cousin
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Ramona Schlesinger
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Renu Batra-Safferling
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
97
|
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun 2015; 6:8202. [PMID: 26347956 PMCID: PMC4569848 DOI: 10.1038/ncomms9202] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. G-protein-coupled receptors (GPCRs) signal via G proteins or arrestin-mediated pathways; the plasticity of arrestin proteins is thought to underlie their function. Here, the authors use NMR to examine how β-arrestin-1 recognizes different GPCR phospho-barcodes, and how this triggers structural rearrangements to fulfill selective functions.
Collapse
|
98
|
Gurevich EV, Gurevich VV. Beyond traditional pharmacology: new tools and approaches. Br J Pharmacol 2015; 172:3229-3241. [PMID: 25572005 PMCID: PMC4500362 DOI: 10.1111/bph.13066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
Traditional pharmacology is defined as the science that deals with drugs and their actions. While small molecule drugs have clear advantages, there are many cases where they have proved to be ineffective, prone to unacceptable side effects, or where due to a particular disease aetiology they cannot possibly be effective. A dominant feature of the small molecule drugs is their single mindedness: they provide either continuous inhibition or continuous activation of the target. Because of that, these drugs tend to engage compensatory mechanisms leading to drug tolerance, drug resistance or, in some cases, sensitization and consequent loss of therapeutic efficacy over time and/or unwanted side effects. Here we discuss new and emerging therapeutic tools and approaches that have potential for treating the majority of disorders for which small molecules are either failing or cannot be developed. These new tools include biologics, such as recombinant hormones and antibodies, as well as approaches involving gene transfer (gene therapy and genome editing) and the introduction of specially designed self-replicating cells. It is clear that no single method is going to be a 'silver bullet', but collectively, these novel approaches hold promise for curing practically every disorder.
Collapse
Affiliation(s)
- E V Gurevich
- Department of Pharmacology, Vanderbilt UniversityNashville, TN, USA
| | - V V Gurevich
- Department of Pharmacology, Vanderbilt UniversityNashville, TN, USA
| |
Collapse
|
99
|
Stoy H, Gurevich VV. How genetic errors in GPCRs affect their function: Possible therapeutic strategies. Genes Dis 2015; 2:108-132. [PMID: 26229975 PMCID: PMC4516391 DOI: 10.1016/j.gendis.2015.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/07/2015] [Indexed: 01/14/2023] Open
Abstract
Activating and inactivating mutations in numerous human G protein-coupled receptors (GPCRs) are associated with a wide range of disease phenotypes. Here we use several class A GPCRs with a particularly large set of identified disease-associated mutations, many of which were biochemically characterized, along with known GPCR structures and current models of GPCR activation, to understand the molecular mechanisms yielding pathological phenotypes. Based on this mechanistic understanding we also propose different therapeutic approaches, both conventional, using small molecule ligands, and novel, involving gene therapy.
Collapse
|
100
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|