51
|
Chen X, Wang S, Chen G, Wang Z, Kan J. The immunomodulatory effects of Carapax Trionycis ultrafine powder on cyclophosphamide-induced immunosuppression in Balb/c mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2014-2026. [PMID: 32949169 DOI: 10.1002/jsfa.10819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There are abundant resources of Carapax Trionycis from soft-shelled turtle processing wastes each year in China. Our preliminary work showed that Carapax Trionycis ultrafine powder (CTUP) obtained using ball-milling with a particle size of 2.24 μm (D0.025) contained more active ingredients. The CTUP D0.025 has a good bioaccessibility, but there has been no report about the immunomodulatory function of CTUP. Therefore, using a cyclophosphamide-induced immunosuppression mice model, we investigated the immunomodulatory effects of CTUP D0.025. RESULTS The results indicated that CTUP D0.025 administration significantly improved the immune organ (bone marrow, thymus and spleen) indices, ameliorated spleen tissue morphology and increased the capacity of splenocyte proliferation and the activity of macrophage phagocytosis. CTUP D0.025 also significantly promoted the secretion of cytokines (IL-2, IL-4, IL-10, IFN-γ and TNF-α), improved the related mRNA expression levels of IL2, IFN-γ, T-bet and GATA3 in immunosuppressed mice and increased the production of serum hemolysin and the levels of IgG, IgM as well as complement C3 . Moreover, CTUP D0.025 administration enhanced the antioxidant capacity of mice, exhibited a moderating effect on the damage of bone and skeletal muscle and improved the recovery of bone mineral density and calcium metabolism. CONCLUSIONS These findings demonstrated that CTUP D0.025 had an effective immune-enhancing function in immunosuppressive Balb/c mice and also exhibited anti-osteoporosis properties. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuhui Chen
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Shasha Wang
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, PR China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, PR China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, PR China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, PR China
| |
Collapse
|
52
|
Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins (Basel) 2021; 13:217. [PMID: 33803037 PMCID: PMC8002947 DOI: 10.3390/toxins13030217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens.
Collapse
Affiliation(s)
- Insaf Riahi
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Anna Maria Pérez-Vendrell
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198 Lleida, Spain;
| | - Joaquim Brufau
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Enric Esteve-Garcia
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Julie Schulthess
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| | - Virginie Marquis
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| |
Collapse
|
53
|
Ringseis R, Gessner DK, Loewenstein F, Kuehling J, Becker S, Willems H, Lechner M, Eder K, Reiner G. Swine Inflammation and Necrosis Syndrome Is Associated with Plasma Metabolites and Liver Transcriptome in Affected Piglets. Animals (Basel) 2021; 11:772. [PMID: 33799520 PMCID: PMC8001383 DOI: 10.3390/ani11030772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Swine Inflammation and Necrosis Syndrome can lead to severe clinical signs, especially in tails, ears, teats, and claws in pigs. Clinical and histopathological findings in newborn piglets with intact epidermis indicate a primarily endogenous etiology, and microbial-associated molecular patterns (MAMPs), such as lipopolysaccharide (LPS) are assumed to play a central role in the development of the syndrome. We hypothesized that swine inflammation and necrosis syndrome (SINS) is indirectly triggered by gut-derived MAMPs entering the circulatory system via the liver and thereby causing derangements on liver metabolism. To test this hypothesis, metabolomes, candidate genes of the liver and liver transcriptomes of 6 piglets with high-grade clinical signs of SINS (SINS high) were examined and compared with 6 piglets without significant signs of SINS (SINS low). Several hepatic pro-inflammatory genes and genes involved in stress response were induced in piglets of the SINS high group. The most striking finding from hepatic transcript profiling and bioinformatic enrichment was that the most enriched biological processes associated with the approximately 220 genes induced in the liver of the SINS high group were exclusively related to metabolic pathways, such as fatty acid metabolic process. Within the genes (≈390) repressed in the liver of the SINS high group, enriched pathways were ribosome biogenesis, RNA processing, RNA splicing, spliceosome, and RNA transport. The transcriptomic findings were supported by the results of the metabolome analyses. These results provide the first evidence for the induction of an inflammatory process in the liver of piglets suffering from SINS, accompanied by lipid metabolic derangement.
Collapse
Grants
- no number Tönnies Forschung, Rheda, Germany
- no number Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz, Hessen, Germa-ny
- no number Ministerium für Umwelt, Klima, Landwirtschaft und Verbraucherschutz, Nordrhein-Westfalen, Germany
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (R.R.); (D.K.G.); (K.E.)
| | - Denise K. Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (R.R.); (D.K.G.); (K.E.)
| | - Frederik Loewenstein
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (F.L.); (J.K.); (S.B.); (H.W.)
| | - Josef Kuehling
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (F.L.); (J.K.); (S.B.); (H.W.)
| | - Sabrina Becker
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (F.L.); (J.K.); (S.B.); (H.W.)
| | - Hermann Willems
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (F.L.); (J.K.); (S.B.); (H.W.)
| | | | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; (R.R.); (D.K.G.); (K.E.)
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; (F.L.); (J.K.); (S.B.); (H.W.)
| |
Collapse
|
54
|
Al-Saeedi FJ. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells. Clin Exp Pharmacol Physiol 2021; 48:389-400. [PMID: 33124065 DOI: 10.1111/1440-1681.13432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023]
Abstract
Several cereal grains contain a mycotoxin food contaminant called deoxynivalenol (DON), which presents a significant health risk as it is one of the most commonly found mycotoxins. The current paper examines the ameliorative effect of mangiferin (MAN) in vascular endothelial cells induced through activating the Nrf2 signalling pathway on dietary DON-induced oxidative changes. The study infers that the intercellular reactive oxygen species (ROS) levels and malondialdehyde decrease due to MAN. Other effects include in human umbilical vein endothelial cells (HUVECs), the oxidative stress-induced cell damage is reduced due to protective effects and superoxide dismutase (SOD), and catalase (CAT) activities also reveal an improvement. In HUVECs, the Nrf2-regulated antioxidant enzyme genes' expression is activated by Nrf2 nuclear translocation induction and this activity suppresses the oxidative stress damage. The genes in HUVECs include HO-1 and NQO1. Moreover, in HUVECs, the nucleus translocation of Nrf2 reduces the Nrf2, HO-1, whereas NQO1 expression decreases the cytoprotective effects against oxidative stress reduce with the rejection of Nrf2 with siRNA. This paper pioneers in inferring that oxidative stress-induced HUVECs' cell injury is suppressed by MAN through Nrf2, signalling pathway activation.
Collapse
Affiliation(s)
- Fatma J Al-Saeedi
- Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
55
|
Holanda DM, Kim SW. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins (Basel) 2021; 13:toxins13020171. [PMID: 33672250 PMCID: PMC7927007 DOI: 10.3390/toxins13020171] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops.
Collapse
|
56
|
Bryła M, Ksieniewicz-Woźniak E, Michałowska D, Waśkiewicz A, Yoshinari T, Gwiazdowski R. Transformation of Selected Trichothecenes during the Wheat Malting Production. Toxins (Basel) 2021; 13:135. [PMID: 33670424 PMCID: PMC7918639 DOI: 10.3390/toxins13020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The transformation of deoxynivalenol (DON), nivalenol (NIV), and their glucosides (DON3G and NIV3G) during the malting of grains of two wheat varieties was studied. The concentration of DON3G and NIV3G started to increase significantly before the concentration of DON and NIV increased. This may reflect the transformation of the parent mycotoxin forms into their glucosides due to xenobiotic detoxification reactions. After a sharp rise during the last 2 days of the process (day 6 and 7), the DON concentration reached 3010 ± 338 µg/kg in the Legenda wheat-based malt and 4678 ± 963 µg/kg in the Pokusa wheat-based malt. The NIV concentration, at 691 ± 65 µg/kg, remained the same as that in the dry grain. The concentration of DON3G in the Legenda and Pokusa wheat-based malt was five and three times higher, respectively, than that in the steeped grain. The concentration of NIV3G in the Legenda wheat-based malt was more than twice as high as that in the steeped grain. The sharp increase in the concentration of DON at the end of the malting process reflected the high pathogen activity. We set aside some samples to study a batch that was left undisturbed without turning and aeration, for the entire period of malting. The concentration of DON in the malt produced from the latter batch was 135% and 337% higher, for Legenda and Pokusa, respectively, than that in the malt produced from the batch that was turned and aerated. The NIV concentration was 22% higher in the latter batch.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, 02-532 Warsaw, Poland;
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, 02-532 Warsaw, Poland;
| | - Dorota Michałowska
- Beer and Malt Laboratory, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, 02-532 Warsaw, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood, Poznan University of Life Sciences, 60-625 Poznan, Poland;
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan;
| | - Romuald Gwiazdowski
- Research Centre for Registration of Agrochemicals, Institute of Plant Protection–National Research Institute, 60-318 Poznań, Poland;
| |
Collapse
|
57
|
Wang P, Huang L, Yang W, Liu Q, Li F, Wang C. Deoxynivalenol Induces Inflammation in the Small Intestine of Weaned Rabbits by Activating Mitogen-Activated Protein Kinase Signaling. Front Vet Sci 2021; 8:632599. [PMID: 33604367 PMCID: PMC7884333 DOI: 10.3389/fvets.2021.632599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Deoxynivalenol (DON) can activate related signaling pathways and induce gastrointestinal disorders. Based on the results of previous studies, this study tried to explore the relationship between DON-induced intestinal inflammation of weaned rabbits and the ERK-p38 signaling pathway. Forty-five weaned rabbits were divided into three treatments: control, LD and HD group. All rabbits were treated with diet containing a same nutrient content, but animals in the LD and HD groups were additionally administered DON via drinking water at 0.5 and 1.5 mg/kg b.w./d, respectively. The protocol consisted of a total feeding period of 31 days, including a pre-feeding period of 7 days. Western blotting, qRT-PCR, and immunohistochemistry were applied for analysis the expression of protein and mRNA of extracellular signal-regulated kinase (ERK), p38, double-stranded RNA-activated protein kinase (PKR), and hematopoietic cell kinase (Hck) in the duodenum, jejunum, and ileum of rabbits, as well as the distribution of positive reactants. The results proved that DON intake could enhance the levels of inflammatory factors in serum and damage the intestinal structure barrier of rabbits. Meanwhile, DON addition can stimulate the protein and mRNA expression for ERK, p38, PKR, and Hck in the intestine of rabbits, especially in the duodenum, as well as expand the distribution of positive reactants, in a dose-dependent manner.
Collapse
Affiliation(s)
- Pengwei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Wanying Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Quancheng Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chunyang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| |
Collapse
|
58
|
Ndlovu S, Nagiah S, Abdul NS, Ghazi T, Chuturgoon AA. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells. Toxicon 2021; 193:4-12. [PMID: 33515572 DOI: 10.1016/j.toxicon.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Deoxynivalenol (DON) commonly infects agricultural foods; it exhibits toxicity by inducing oxidative stress and inhibiting protein synthesis. Nuclear factor erythroid 2-related factor 2 (NRF2) regulates the cellular antioxidant response. We investigated the cytotoxicity of DON and its effect on the NRF2 antioxidant response in HepG2 cells. The Methyl Thiazol Tetrazolium (MTT), glutathione (GSH) and ATP assays evaluated toxicity, whilst lipid peroxidation and membrane damage were assessed using the Thiobarbituric acid reactive substance (TBARS) and lactate dehydrogenase (LDH) assays. Protein expression of NRF2, phosphorylated (p-ser40) NRF2, catalase (CAT), superoxide dismutase 2 (SOD2), and Sirtuin 3 (Sirt3) were quantified by Western Blotting. Gene expression of glutathione peroxidase (GPx), CAT and SOD2 was determined using qPCR. DON decreased cell viability, GSH concentrations and ATP levels and increased lipid peroxidation and membrane damage. DON significantly decreased total NRF2 and increased p-NRF2 and downregulated the transcription and translation of NRF2 target antioxidant enzymes. Further, expression of the mitochondrial stress response protein, Sirt3 was significantly decreased. In conclusion, DON induced oxidative stress and downregulated NRF2-induced cytoprotection by suppressing the antioxidant signalling mechanism in HepG2 cells.
Collapse
Affiliation(s)
- Siqiniseko Ndlovu
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
59
|
Effects of Deoxynivalenol-Contaminated Diets on Metabolic and Immunological Parameters in Broiler Chickens. Animals (Basel) 2021; 11:ani11010147. [PMID: 33440734 PMCID: PMC7826962 DOI: 10.3390/ani11010147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
The current study was conducted to examine the effects of deoxynivalenol (DON) at different levels (5 and 15 mg/kg feed) on the metabolism, immune response and welfare parameters of male broiler chickens (Ross 308) at 42 days old. Forty-five 1 day-old broiler chickens were randomly distributed into three different dietary treatments: (1) control, (2) DON-contaminated diet with 5 mg DON/kg of feed (guidance level), and (3) DON-contaminated diet with 15 mg DON/kg of feed. Five replicated cages with three birds each were used for each treatment in a randomized complete block design. The results showed that DON was detected in excreta of birds fed contaminated diets compared with controls. The metabolite DON-3 sulphate (DON-3S) was detected in plasma and excreta in both treated groups, as well as in the liver (but only at 15 mg/kg feed). The increase in the level of DON decreased the hemoglobin concentration (p < 0.001), whereas the erythrocyte counts were only decreased at 15 mg DON/kg feed. No effect of DON on the responses to common vaccines was observed. In plasma, interleukin 8 levels in both contaminated groups were significantly higher than in the control group. The expression of interleukin 6, interleukin 1β and interferon-γ increased in jejunum tissues of broilers fed 5 mg/kg of DON compared with controls. The stress index (heterophil to lymphocyte ratio) was not affected by DON-contaminated diets compared with controls. The plasma corticosterone level was significantly lower in both DON groups compared with controls. In conclusion, DON-3S could be used as a specific biomarker of DON in different biological matrices, while the immune response in broiler chickens is stimulated by the presence of DON at the guidance level, but no adverse effect was observed on physiological stress parameters.
Collapse
|
60
|
Mézes M, Kovács M, Szabó A. Mycotoxin exposure, oxidative stress, and lipid peroxidation. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Chen P, Xiang B, Shi H, Yu P, Song Y, Li S. Recent advances on type A trichothecenes in food and feed: Analysis, prevalence, toxicity, and decontamination techniques. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
62
|
Oufensou S, Balmas V, Azara E, Fabbri D, Dettori MA, Schüller C, Zehetbauer F, Strauss J, Delogu G, Migheli Q. Naturally Occurring Phenols Modulate Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium graminearum. ACS OMEGA 2020; 5:29407-29415. [PMID: 33225172 PMCID: PMC7676359 DOI: 10.1021/acsomega.0c04260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
To assess the in vitro activity of five naturally occurring phenolic compounds (ferulic acid, apocynin, magnolol, honokiol, and thymol) on mycelial growth and type B trichothecene mycotoxin accumulation by Fusarium graminearum, three complementary approaches were adopted. First, a high-throughput photometric continuous reading array allowed a parallel quantification of F. graminearum hyphal growth and reporter TRI5 gene expression directly on solid medium. Second, RT-qPCR confirmed the regulation of TRI5 expression by the tested compounds. Third, liquid chromatography-tandem mass spectrometry analysis allowed quantification of deoxynivalenol (DON) and its acetylated forms released upon treatment with the phenolic compounds. Altogether, the results confirmed the activity of thymol and an equimolar mixture of thymol-magnolol at 0.5 mM, respectively, in inhibiting DON production without affecting vegetative growth. The medium pH buffering capacity after 72-96 h of incubation is proposed as a further element to highlight compounds displaying trichothecene inhibitory capacity with no significant fungicidal effect.
Collapse
Affiliation(s)
- Safa Oufensou
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Virgilio Balmas
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| | - Emanuela Azara
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Davide Fabbri
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | | | - Christoph Schüller
- Bioactive Microbial
Metabolites (BiMM) Research Platform, University
of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Franz Zehetbauer
- Institute of Microbial Genetics, Department
of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Joseph Strauss
- Bioactive Microbial
Metabolites (BiMM) Research Platform, University
of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
- Institute of Microbial Genetics, Department
of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna, (BOKU), 3430 Tulln, Austria
| | - Giovanna Delogu
- Istituto CNR di
Chimica Biomolecolare, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università
degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
- Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Via E. De Nicola 9, 07100 Sassari, Italy
| |
Collapse
|
63
|
Rahman S, Sharma AK, Singh ND, Prawez S. Immunopathological effects of experimental T-2 mycotoxicosis in Wistar rats. Hum Exp Toxicol 2020; 40:772-790. [PMID: 33111562 DOI: 10.1177/0960327120968852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is well known that T-2 toxin has cytotoxic radiomimetic like effects on the immune system. Because of scant research data demonstrating the chronic effects of low doses of the T-2 toxin on humoral and cellular responses in rats, the present experiment was undertaken. The animals were divided into four groups, namely, group I (0.5 ppm), group II (0.75 ppm) and group III (1.0 ppm) and group IV (control) were given toxin-free diet for 12 weeks and eight animals each were sacrificed at 2, 4, 6, 8, 10, and 12-week of the experimental period. The humoral immune response was evaluated based on hemagglutination test (HA), and levels of serum immunoglobulins (IgA, IgG, IgM) while the cell-mediated immune response was evaluated by delayed-type hypersensitivity (DTH) response to ovalbumin, lymphocyte stimulation index, analyses of CD4+ and CD8+ T lymphocytes and mRNA expression levels of selected cytokines like IL-2, IFN-γ, IL-4 and IL-10 by quantitative Real-time PCR in experimental groups. T-2 treatment caused suppression in both humoral and cell-mediated immune responses as evidenced by a decrease in all these parameters in toxin fed animals compared to the control in the dose and duration-dependent manner. This dose-dependent effect on the immune system has been further reflected largely by the depletion of lymphocytes from lymphoid organs as observed histopathologically in the spleen, thymus, and Peyer's patches in the present study.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-J, Jammu, Jammu & Kashmir, India
| | - Anil Kumar Sharma
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Nittin Dev Singh
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Shahid Prawez
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, RGSC, 30114Banaras Hindu University, Barkachha, Uttar Pradesh, India
| |
Collapse
|
64
|
Gallo A, Minuti A, Bani P, Bertuzzi T, Cappelli FP, Doupovec B, Faas J, Schatzmayr D, Trevisi E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J Dairy Sci 2020; 103:11314-11331. [PMID: 33222853 DOI: 10.3168/jds.2020-18197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Little is known about the effects of commonly found levels of Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cattle. We investigated the effects of regular contamination levels, meaning contamination levels that can be commonly detected in dairy feeds, of deoxynivalenol (DON) and fumonisins (FB) in total mixed ration (TMR) on the performance, diet digestibility, milk quality, and plasma liver enzymes in dairy cows. This trial examined 12 lactating Holstein dairy cows using a 3-period × 3-treatment Latin square design. The experimental period was 21 d of mycotoxin exposure followed by 14 d of washout. During treatment periods, cows received one of 3 diets: (1) CTR (control) diet of TMR contaminated with 340.5 µg of DON/kg of dry matter (DM) and 127.9 µg FB/kg of DM; (2) MTX diet of TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (i.e., 733.0 µg of DON/kg of DM and 994.4 µg of FB/kg of DM); or (3) MDP diet, which was MTX diet supplemented with a mycotoxin deactivator product (i.e., 897.3 µg of DON/kg of DM and 1,247.1 µg of FB/kg of DM; Mycofix, 35 g/animal per day). During washout, all animals were fed the same CTR diet. Body weight, body condition score, DM intake, dietary nutrient digestibility, milk production, milk composition and rennet coagulation properties, somatic cell count, blood serum chemistry, hematology, serum immunoglobulin concentrations, and expression of multiple genes in circulating leucocytes were measured. Milk production was significantly greater in the CTR group (37.73 kg/d) than in the MTX (36.39 kg/d) and the MDP (36.55 kg/d) groups. Curd firmness and curd firming time were negatively affected by the MTX diet compared with the other 2 diets. Furthermore, DM and neutral detergent fiber digestibility were lower after the MTX diet than after the CTR diet (67.3 vs. 71.0% and 42.8 vs. 52.3%). The MDP diet had the highest digestibility coefficients for DM (72.4%) and neutral detergent fiber (53.6%) compared with the other 2 diets. The activities of plasma liver transaminases were higher after the MTX diet than after the CTR and MDP diets. Compared with the CTR diet, the MTX diet led to slightly lower expression of genes related to immune and inflammatory functions, indicating that Fusarium mycotoxins had an immunosuppressive effect. Our results indicated that feed contaminated with regular levels of Fusarium mycotoxins adversely affected the performance, milk quality, diet digestibility, metabolic variables, and immunity of dairy cows, and that supplementation with mycotoxin deactivator product counteracted most of these negative effects.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - P Bani
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - T Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - B Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - J Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - D Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
65
|
Holanda DM, Kim SW. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges. Anim Biosci 2020; 34:405-416. [PMID: 33152208 PMCID: PMC7961193 DOI: 10.5713/ajas.20.0567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Objective This study evaluated the effects of feeding diets naturally contaminated with deoxynivalenol (supplemental 2 mg/kg) on health, growth, and the effects of a mycotoxin-detoxifying additive in newly-weaned pigs. Methods Thirty-six pigs (27 day-old) were housed individually and assigned to 3 treatments for 5 weeks: CON (diet containing minimal deoxynivalenol), MT (diet with supplemental 1.9 mg/kg of deoxynivalenol), and MT+D (MT + mycotoxin-detoxifying additive, 0.2%, MegaFix, ICC, São Paulo, Brazil). The mycotoxin-detoxifying additive included bentonite, algae, enzymes, and yeast. Blood was taken at week 2 and 5. Jejunal tissue were taken at week 5. Data were analyzed using the MIXED procedure of SAS. Results Pigs fed MT+D tended to have decreased (p = 0.056) averaged daily feed intake during week 1 than MT. At week 2, serum aspartate aminotransferase/alanine aminotransferase in MT tended to be lower (p = 0.059) than CON, whereas it was increased (p< 0.05) for MT+D than MT, indicating hepatic damages in MT and recovery in MT+D. Pigs fed MT had lower (p<0.05) blood urea nitrogen/creatinine than CON, supporting hepatic damage. At week 5, pigs fed MT tended to have reduced (p = 0.079) glucose than CON, whereas it was increased (p<0.05) for MT+D than MT, indicating impaired intestinal glucose absorption in MT, which was improved in MT+D. Pigs fed CON tended to have increased (p = 0.057) total glutathione in jejunum than MT, indicating oxidative stress in MT. Pigs fed MT+D had a reduced (p<0.05) proportion of Ki-67-positive cells in jejunum than MT, indicating lower enterocyte proliferation in MT+D. Conclusion Feeding supplemental 1.9 mg/kg of deoxynivalenol reduced growth and debilitated hepatic health of pigs, as seen in leakage of hepatic enzymes, impaired nitrogen metabolism, and increase in oxidative stress. The mycotoxin-detoxifying enhanced hepatic health and glucose levels, and attenuated gut damage in pigs fed deoxynivalenol contaminated diets.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
66
|
Tran AT, Kluess J, Kersten S, Berk A, Paulick M, Schatzmayr D, Dänicke S, Frahm J. Sodium sulfite (SoS) as decontamination strategy for Fusarium-toxin contaminated maize and its impact on immunological traits in pigs challenged with lipopolysaccharide (LPS). Mycotoxin Res 2020; 36:429-442. [PMID: 32902833 PMCID: PMC7536171 DOI: 10.1007/s12550-020-00403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022]
Abstract
The main objective of this study was to evaluate the effects of sodium sulfite (SoS) treatment of maize and its impact on the porcine immune system in the presence of an LPS-induced systemic inflammation. Control maize (CON) and Fusarium-toxin contaminated maize (FUS) were wet-preserved (20% moisture) for 79 days with (+) or without (−) SoS and then included at 10% in a diet, resulting in four experimental groups: CON−, CON+, FUS−, and FUS+ with deoxynivalenol (DON) concentrations of 0.09, 0.05, 5.36, and 0.83 mg DON/kg feed, respectively. After 42-day feeding trial (weaned barrows, n = 20/group), ten pigs per group were challenged intraperitoneally with either 7.5 μg LPS/kg BW or placebo (0.9% NaCl), observed for 2 h, and then sacrificed. Blood, mesenteric lymph nodes, and spleen were collected for phenotyping of different T cell subsets, B cells, and monocytes. Phagocytic activity and intracellular formation of reactive oxygen species (ROS) were analyzed in both polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) using flow cytometry. Our results revealed that the impact of DON was more notable on CD3+CD4+CD8+ T cells in lymphoid tissues rather than in blood T cells. In contrast, SoS treatment of maize altered leukocyte subpopulations in blood, e.g., reduced the percentage and fluorescence signal of CD8high T cells. Interestingly, SoS treatment reduced the amount of free radicals in basal ROS-producing PMNs only in LPS-challenged animals, suggesting a decrease in basal cellular ROS production (pSoS*LPS = 0.022).
Collapse
Affiliation(s)
- Anh-Tuan Tran
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany.
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Andreas Berk
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Marleen Paulick
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | | | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
67
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
68
|
Woelflingseder L, Adam G, Marko D. Suppression of Trichothecene-Mediated Immune Response by the Fusarium Secondary Metabolite Butenolide in Human Colon Epithelial Cells. Front Nutr 2020; 7:127. [PMID: 32850941 PMCID: PMC7423873 DOI: 10.3389/fnut.2020.00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Butenolide (BUT, 4-acetamido-4-hydroxy-2-butenoic acid gamma-lactone) is a secondary metabolite produced by several Fusarium species and is co-produced with the major trichothecene mycotoxin deoxynivalenol (DON) on cereal grains throughout the world. BUT has low acute toxicity and only very limited occurrence and exposure data are available. The intestinal epithelium represents the first physiological barrier against food contaminants. We aimed to elucidate the intestinal inflammatory response of the human, non-cancer epithelial HCEC-1CT cells to BUT and to characterize potential combinatory interactions with co-occurring trichothecenes, such as DON and NX-3. Using a reporter gene approach, BUT (≥5 μM, 20 h) was found to decrease lipopolysaccharide (LPS; 10 ng/mL) induced nuclear factor kappa B (NF-κB) activation in a dose-dependent manner, and in combinatory treatments BUT represses trichothecene-induced enhancement of this important inflammatory pathway. Analysis of transcription and secretion levels of NF-κB-dependent, pro-inflammatory cytokines, revealed a significant down-regulation of IL-1β, IL-6, and TNF-α in IL-1β-stimulated (25 ng/mL) HCEC-1CT cells after BUT exposure (10 μM). Trichothecene-induced expression of pro-inflammatory cytokines by the presence of 1 μM DON or NX-3 was substantially suppressed in the presence of 10 μM BUT. The emerging mycotoxin BUT has the ability to suppress NF-κB-induced intestinal inflammatory response mechanisms and to modulate substantially the immune responsiveness of HCEC-1CT cells after trichothecene treatment. Our results suggest that BUT, present in naturally occurring mixtures of Fusarium fungal metabolites, should be increasingly monitored, and the mechanism of inhibition of NF-κB that might affect the pathogenesis or progression of intestinal inflammatory disorders, should be further investigated.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Crop Science, Institute of Plant Protection, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
69
|
Nguyen-Ba H, Taghipoor M, van Milgen J. Modelling the feed intake response of growing pigs to diets contaminated with mycotoxins. Animal 2020; 14:s303-s312. [PMID: 32349831 PMCID: PMC7391214 DOI: 10.1017/s175173112000083x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/27/2020] [Accepted: 03/27/2020] [Indexed: 12/29/2022] Open
Abstract
Quantifying robustness of farm animals is essential before it can be implemented in breeding and management strategies. A generic modelling and data analysis procedure was developed to quantify the feed intake response of growing pigs to perturbations in terms of resistance and resilience. The objective of this study was to apply this procedure to quantify these traits in 155 pigs from an experiment where they received diets with or without cereals contaminated with the mycotoxin deoxynivalenol (DON). The experimental pigs were divided equally in a control group and three DON-challenged groups. Pigs in each of the challenged groups received a diet contaminated with DON for 7 days early on (from 113 to 119 days of age), later on (from 134 to 140 days of age) or in both periods of the experiment. Results showed that the target feed intake trajectory of each pig could be estimated independently of the challenge. The procedure also estimated relatively accurately the times when DON was given to each challenged group. Results of the quantification of the feed intake response indicated that age and previous exposure to DON have an effect on the resilience capacity of the animals. The correlation between resistance and resilience traits was modest, indicating that these are different elements of robustness. The feed intake analysis procedure proved its capacity to detect and quantify the response of animals to perturbations, and the resulting response traits can potentially be used in breeding strategies.
Collapse
Affiliation(s)
- H. Nguyen-Ba
- PEGASE, INRAE, Institut Agro, 35590Saint-Gilles, France
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - M. Taghipoor
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 75005Paris, France
| | - J. van Milgen
- PEGASE, INRAE, Institut Agro, 35590Saint-Gilles, France
| |
Collapse
|
70
|
Protective effect of selenomethionine on intestinal injury induced by T- 2 toxin. Res Vet Sci 2020; 132:439-447. [PMID: 32777540 DOI: 10.1016/j.rvsc.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
Abstract
T-2 toxin is the most toxic as a type A trichothecenes, which could contaminate grains, especially in wheat and corn. It can cause immune suppression, neurotoxicity, the apoptosis of cells and even induce tumorigenesis. Recent studies have indicated that selenium (Se) have protective effect against mycotoxins-induced toxicity. The present studies was designed to investigate the protective role of Selenomethionine (SeMet) on T-2 toxin-induced toxicity in rabbit's jejunum. 50 New Zealand rabbits were divided into five group (Control group, T-2 group, low-dose Se + T-2 group, medium-dose + T-2 group and high-dose Se + T-2 group). New Zealand rabbits were orally administered with SeMet (0.2, 0.4 and 0.6 mg/kg, Adding diet) for 21 days. On 17th days, each group began to take 0.4 mg/kg of T-2 toxin orally every day for 5 days. We found that rabbit exposed to T-2 toxin could increase the levels of ROS, and decrease activities of antioxidant enzymes and the expression of Occludin and ZO-1. In addition, T-2 toxin could trigger jejunal inflammatory response and enhance the expression of IL-1β, IL-6 and TNF-α. After SeMet pretreatment, our results indicated that Se attenuated the T-2 toxin-induced oxidative stress, decreasing the level of ROS, MDA and enhancing the activity of SOD and GSH-Px. Moreover, SeMet can alleviate jejunal inflammatory response, and protect the integrity of the intestinal barrier through up-regulating the expression of ZO-1 and Occludin. In the present research, supplementation of 0.2 mg/kg SeMet in the diet could effectively alleviate the T-2 toxin poisoning in rabbits.
Collapse
|
71
|
Bartosh AV, Urusov AЕ, Petrakova AV, Kuang H, Zherdev AV, Dzantiev BB. Highly sensitive lateral flow test with indirect labelling for zearalenone in baby food. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1750570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anastasiya V. Bartosh
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Moscow, Russia
| | - Alexandr Е. Urusov
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Moscow, Russia
| | - Alina V. Petrakova
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Moscow, Russia
| | - Hua Kuang
- School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
72
|
Effects of trichothecene mycotoxin T-2 toxin on haematological and immunological parameters of rainbow trout (Oncorhynchus mykiss). Mycotoxin Res 2020; 36:319-326. [PMID: 32451776 DOI: 10.1007/s12550-020-00396-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The aim of this study was to assess the effects of T-2 toxin-contaminated feed (at concentrations of 1.0 and 1.8 mg/kg) on the rainbow trout immune system by studying non-specific cellular and humoral immune responses and its effect on red and white blood cells. Consumption of T-2 toxin at both concentrations resulted in significantly increased erythrocyte counts and a decrease in mean corpuscular volume. While a significant decrease in mean corpuscular haemoglobin was observed at both experimental concentrations, the decrease in plasma haemoglobin was only significant at the higher T-2 toxin concentration. Higher T-2 toxin concentrations resulted in a significant increase in leukocyte and lymphocyte count, while absolute phagocyte count and counts of less mature neutrophil granulocyte forms remained unchanged at both concentrations. Non-specific humoral immunity (bactericidal activity measured as complement activation) decreased significantly in both experimental groups when compared with the control. The results of this study show that T-2 toxin in feed at a concentration range of 1.0-1.8 mg/kg influences the immunological defence mechanisms of rainbow trout.Trial registration number, MSMT-3876/2014-14; date of registration, 31/1/2014.
Collapse
|
73
|
Pro-Inflammatory Effects of NX-3 Toxin Are Comparable to Deoxynivalenol and not Modulated by the Co-Occurring Pro-Oxidant Aurofusarin. Microorganisms 2020; 8:microorganisms8040603. [PMID: 32326355 PMCID: PMC7232499 DOI: 10.3390/microorganisms8040603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The type A trichothecene NX-3, produced by certain Fusarium graminearum strains, is similar to the mycotoxin deoxynivalenol (DON), with the exception that it lacks the carbonyl moiety at the C-8 position. NX-3 inhibits protein biosynthesis and induces cytotoxicity to a similar extent as DON, but so far, immunomodulatory effects have not been assessed. In the present study, we investigated the impact of NX-3 on the activity of the nuclear factor kappa B (NF-κB) signaling pathway in direct comparison to DON. Under pro-inflammatory conditions (IL-1β treatment), the impact on cytokine mRNA levels of NF-κB downstream genes was studied in human colon cell lines, comparing noncancer (HCEC-1CT) and cancer cells (HT-29). In addition, potential combinatory effects with the co-occurring Fusarium secondary metabolite aurofusarin (AURO), a dimeric naphthoquinone known to induce oxidative stress, were investigated. NX-3 and DON (1 μM, 20 h) significantly activated a NF-κB regulated reporter gene to a similar extent. Both trichothecenes also enhanced transcript levels of the known NF-κB-dependent pro-inflammatory cytokines IL-8, IL-6, TNF-α and IL-1β. Comparing the colon cancer HT-29 and noncancer HCEC-1CT cells, significant differences in cytokine signaling were identified. In contrast, AURO did not affect NF-κB pathway activity and respective cytokine expression levels at the tested concentration. Despite its pro-oxidant potency, the combination with AURO did not significantly affect the immunomodulatory effects of the tested trichothecenes. Taken together, the present study reveals comparable potency of DON and NX-3 with respect to immunomodulatory and pro-inflammatory potential. Consequently, not only DON but also NX-3 should be considered as factors contributing to intestinal inflammatory processes.
Collapse
|
74
|
Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food Chem Toxicol 2020; 138:111187. [DOI: 10.1016/j.fct.2020.111187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
|
75
|
Nayakwadi S, Ramu R, Kumar Sharma A, Kumar Gupta V, Rajukumar K, Kumar V, Shirahatti PS, L. R, Basalingappa KM. Toxicopathological studies on the effects of T-2 mycotoxin and their interaction in juvenile goats. PLoS One 2020; 15:e0229463. [PMID: 32214355 PMCID: PMC7098593 DOI: 10.1371/journal.pone.0229463] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/06/2020] [Indexed: 11/28/2022] Open
Abstract
Food and feeds contaminated with mycotoxins have been a threat to the rearing industry by causing some of the most fatal toxic reactions not only in the farm animals but also in humans who consume them. Toxicity to juvenile goats was induced by feed contamination with T-2 toxin (at 10 and 20 ppm dosage; group I and II, respectively). The toxicity impact was assessed on days 15 and 30 post treatment with respect to growth performance, oxidative stress, apoptotic studies and detailed pathomorphology. The study revealed that apart from the obvious clinical toxicosis (weakness, lethargy, and retardation in growth), the toxin fed groups also exhibited significant haematological (reduced hemoglobin, total leukocyte and thrombocyte counts) and biochemical changes (increased levels of oxidative stress markers with concomitant decrease in levels of serum and tissue catalase and superoxide dismutase). The pathomorphological and histological alterations suggested that the liver and intestine were the most affected organs. Ultra-structurally, varying degrees of degeneration, cytoplasmic vacuolations and pleomorphic mitochondria were observed in the hepatocytes and the enterocytes of the intestine. Kidney also revealed extensive degeneration of the cytoplasmic organelles with similar condensation of the heterochromatin whereas the neuronal degeneration was characterized by circular, whirling structures. In addition, the central vein and portal triad of the hepatocytes, cryptic epithelial cells of the intestine, MLNs in the lymphoid follicles, PCT and DCT of the nephronal tissues and the white pulp of the spleen exhibited extensive apoptosis. In this study, it was also observed that the expression of HSPs, pro-apoptotic proteins and pro-inflammatory cytokines were significantly upregulated in response to the toxin treatment. These results suggest that the pathogenesis of T-2 toxicosis in goats employs oxidative, apoptotic and inflammatory mechanisms.
Collapse
Affiliation(s)
- Shivasharanappa Nayakwadi
- Central Institute for Research on Goats (CIRG), Makhdoom, Mathura, India
- Animal Science Section, ICAR-Central Coastal Agricultural Research Institute, Ela, Goa, India
- * E-mail: ,
| | - Ramith Ramu
- Division of Biotechnology and Bioinformatics, Department of Water & Health Sciences–Faculty of Life Sciences, JSS Academy of Higher Education and Research (Deemed to be University), Mysuru, India
| | - Anil Kumar Sharma
- Central Institute for Research on Goats (CIRG), Makhdoom, Mathura, India
- Division of Pathology, Mycotic and Mycotoxic Diseases Laboratory, Indian Veterinary Research Institute, Izatnagar, India
| | | | - K. Rajukumar
- ICAR–National Institute of High Security Animal Diseases, Bhopal, India
| | - Vijay Kumar
- Central Institute for Research on Goats (CIRG), Makhdoom, Mathura, India
| | | | - Rashmi L.
- Karnataka Veterinary Animal Fisheries University, Bidar, Karnataka, India
| | - Kanthesh M. Basalingappa
- Division of Molecular Biology, Department of Water & Health Sciences–Faculty of Life Sciences, JSS Academy of Higher Education and Research (Deemed to be University), Mysuru, India
| |
Collapse
|
76
|
Hlavová K, Štěpánová H, Šťastný K, Levá L, Hodkovicová N, Vícenová M, Matiašovic J, Faldyna M. Minimal Concentrations of Deoxynivalenol Reduce Cytokine Production in Individual Lymphocyte Populations in Pigs. Toxins (Basel) 2020; 12:toxins12030190. [PMID: 32197345 PMCID: PMC7150743 DOI: 10.3390/toxins12030190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin frequently found in cereals, and pigs are one of the most sensitive farm species to DON. The aim of this study was to determine the effects of DON in very low doses on peripheral blood mononuclear cells (PBMC) and on particular lymphocyte subpopulations. The cells were exposed to 1, 10 and 100 ng/mL of DON and lymphocyte viability, proliferation, and cytokine (Interleukin (IL)-1β, IL-2, IL-8, IL-17, Interferon (IFN) γ and tumor necrosis factor (TNF) α production were studied. Cells exposed to DON for 5 days in concentrations of 1 and 10 ng/mL showed higher viability compared to control cells. After 18 h of DON (100 ng/mL) exposure, a significantly lower proliferation after mitogen stimulation was observed. In contrast, an increase of spontaneous proliferation induced by DON (100 ng/mL) was detected. After DON exposure, the expression of cytokine genes decreased, with the exception of IL-1β and IL-8, which increased after 18 h exposure to 100 ng/mL of DON. Among lymphocyte subpopulations, helper T-cells and γδ T-cells exhibiting lower production of IL-17, IFNγ and TNFα were most affected by DON exposure (10 ng/mL). These findings show that subclinical doses of DON lead to changes in immune response.
Collapse
|
77
|
Isolation and Characterization of a Deoxynivalenol-Degrading Bacterium Bacillus licheniformis YB9 with the Capability of Modulating Intestinal Microbial Flora of Mice. Toxins (Basel) 2020; 12:toxins12030184. [PMID: 32183451 PMCID: PMC7150942 DOI: 10.3390/toxins12030184] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most prevalent food- and feed-associated mycotoxins. It frequently contaminates agricultural commodities and poses serious threats to human and animal health and leads to tremendous economic losses globally. Much attention has been paid to using microorganisms to detoxify DON. In this study, a Bacillus licheniformis strain named YB9 with a strong ability to detoxify DON was isolated and characterized from a moldy soil sample. YB9 could degrade more than 82.67% of 1 mg/L DON within 48 h at 37 °C and showed strong survival and DON degradation rate at simulated gastric fluid. The effects of YB9 on mice with DON intragastrical administration were further investigated by biochemical and histopathological examination and the gut microbiota was analyzed by 16S rRNA Illumina sequencing technology. The results showed that DON increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine (Cr), decreased those of immunoglobulin G (IgG) and IgM in serum, and resulted in severe pathological damage of the liver, kidney, and spleen. By contrast, YB9 supplementation obviously inhibited or attenuated the damages caused by DON in mice. In addition, YB9 addition repaired the DON-induced dysbiosis of intestinal flora, characterized by recovering the balance of Firmicutes and Bacteroidetes to the normal level and decreasing the abundance of the potentially harmful bacterium Turicibacter and the excessive Lactobacillus caused by DON. Taken together, DON-degrading strain YB9 might be used as potential probiotic additive for improving food and feed safety and modulating the intestinal microbial flora of humans and animals.
Collapse
|
78
|
Cardiomyopathy induced by T-2 toxin in rats. Food Chem Toxicol 2020; 137:111138. [DOI: 10.1016/j.fct.2020.111138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/19/2020] [Indexed: 11/22/2022]
|
79
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
80
|
Dual Function of a Novel Bacterium, Slackia sp. D-G6: Detoxifying Deoxynivalenol and Producing the Natural Estrogen Analogue, Equol. Toxins (Basel) 2020; 12:toxins12020085. [PMID: 31991913 PMCID: PMC7076803 DOI: 10.3390/toxins12020085] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023] Open
Abstract
Deoxynivalenol (DON) is a highly abundant mycotoxin that exerts many adverse effects on humans and animals. Much effort has been made to control DON in the past, and bio-transformation has emerged as the most promising method. However, useful and effective application of bacterial bio-transformation for the purpose of inhibiting DON remains urgently needed. The current study isolated a novel DON detoxifying bacterium, Slackia sp. D-G6 (D-G6), from chicken intestines. D-G6 is a Gram-positive, non-sporulating bacterium, which ranges in size from 0.2–0.4 μm × 0.6–1.0 μm. D-G6 de-epoxidizes DON into a non-toxic form called DOM-1. Optimum conditions required for degradation of DON are 37–47 °C and a pH of 6–10 in WCA medium containing 50% chicken intestinal extract. Besides DON detoxification, D-G6 also produces equol (EQL) from daidzein (DZN), which shows high estrogenic activity, and prevents estrogen-dependent and age-related diseases effectively. Furthermore, the genome of D-G6 was sequenced and characterized. Thirteen genes that show potential for DON de-epoxidation were identified via comparative genomics. In conclusion, a novel bacterium that exhibits the dual function of detoxifying DON and producing the beneficial natural estrogen analogue, EQL, was identified.
Collapse
|
81
|
Peng Z, Liao Y, Wang X, Chen L, Wang L, Qin C, Wang Z, Cai M, Hu J, Li D, Yao P, Nüssler AK, Liu L, Yang W. Heme oxygenase-1 regulates autophagy through carbon-oxygen to alleviate deoxynivalenol-induced hepatic damage. Arch Toxicol 2019; 94:573-588. [PMID: 31848666 DOI: 10.1007/s00204-019-02649-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/12/2019] [Indexed: 01/05/2023]
Abstract
Deoxynivalenol (DON) cannot be totally removed due to its stable chemical characteristics and chronic exposure to low doses of DON causes significant toxic effects in humans and animals. However, the potential hazard of such low-dose exposure in target organs still remains not completely understood, especially in liver, which is mainly responsible for detoxification of DON. In the present study, we demonstrated for the first time that estimated human daily DON exposure (25 μg/kg bw) for 30 and 90 days caused low-grade inflammatory infiltration around hepatic centrilobular veins, elevated systemic IL-1β, IL-6 and TNF-α and impaired liver function evidenced by increased serum ALT activity. At the molecular level, expressions of autophagy-related proteins as well as Cleaved Caspase-3 and Cleaved Caspase-7 were upregulated during DON exposure, which indicated the activation of autophagy and apoptosis. Importantly, AAV-mediated liver-specific overexpression of HO-1 reversed DON-induced liver damages, upregulated autophagy and attenuated apoptosis in liver, while AAV-mediated HO-1 silence aggravated DON-induced liver damages, inhibited autophagy and increased apoptosis. Furthermore, in vitro experiments demonstrated that lentivirus-mediated HO-1 overexpression in Hepa 1-6 cells prolonged the duration of autophagy and delayed the onset of apoptosis. HO-1 silence in Hepa 1-6 cells inhibited activation of autophagy and accelerated occurrence of apoptosis, and these could be recovered by CO pre-treatment. Therefore, we suppose that HO-1 might be a potential research target to protect human and animal from liver injuries induced by low dose of DON exposure.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Liangliang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China. .,Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
82
|
Koppenol A, Branco Beirão BC, Ingberman M, Caron LF. Measuring Peripheral and Some Mucosal Immune Cells to Better Understand Immunomodulation by T-2 Toxin in Broilers. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
83
|
Jaćević V, Wu Q, Nepovimova E, Kuča K. Efficacy of methylprednisolone on T-2 toxin-induced cardiotoxicity in vivo: A pathohistological study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103221. [PMID: 31365892 DOI: 10.1016/j.etap.2019.103221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Our aim was to compare the protective efficacy of two different formulations of methylprednisolone in T-2 toxin-induced cardiomyopathy. Methylprednisolone (soluble form, Lemod-solu® and/or depot form, Lemod-depo®, a total single dose of 40 mg/kg im) was given immediately after T-2 toxin (1 LD50 0.23 mg/kg sc). The myocardial tissue samples were examinated by using histopathology, semiquantitative and imaging analyses on day 1, 7, 14, 21, 28 and 60 of the study. Therapeutic application of Lemod-solu® significantly decreased the intensity of myocardial degeneration and haemorrhages, distribution of glycogen granules in the endo- and perimysium, a total number of mast cells and the degree of their degranulation was in correlation with the reversible heart structural lesions (p < 0.01 vs. T-2 toxin). These changes were completely abolished by the therapeutic use of Lemod-solu® plus Lemod-depo® (p < 0.001 vs. T-2 toxin). Our results show that a significant cardioprotective efficacy of methylprednisolone is mediated by its anti-inflammatory activity.
Collapse
Affiliation(s)
- Vesna Jaćević
- National Poison Control Centre, Military Medical Academy, 17 Crnotravska St, 11000, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, 1 Pavla Jurišića-Šturma St, 11000, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023, Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03, Hradec Králové, Czechia; Malaysia-Japan International Institute of Technology (MJIIT), University Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| |
Collapse
|
84
|
Xu Y, Ji J, Wu H, Pi F, Blaženović I, Zhang Y, Sun X. Untargeted GC-TOFMS-based cellular metabolism analysis to evaluate ozone degradation effect of deoxynivalenol. Toxicon 2019; 168:49-57. [DOI: 10.1016/j.toxicon.2019.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
|
85
|
Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review. Curr Neuropharmacol 2019; 17:201-213. [PMID: 30081786 PMCID: PMC6425079 DOI: 10.2174/1570159x16666180803164238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sar-coma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline expo-sure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is corre-lated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mito-gen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen tox-icity and neurotoxicity.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mojtaba Limoee
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
86
|
Woelflingseder L, Warth B, Vierheilig I, Schwartz-Zimmermann H, Hametner C, Nagl V, Novak B, Šarkanj B, Berthiller F, Adam G, Marko D. The Fusarium metabolite culmorin suppresses the in vitro glucuronidation of deoxynivalenol. Arch Toxicol 2019; 93:1729-1743. [PMID: 31049613 PMCID: PMC6620244 DOI: 10.1007/s00204-019-02459-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022]
Abstract
Glucuronidation is a major phase II conjugation pathway in mammals, playing an important role in the detoxification and biotransformation of xenobiotics including mycotoxins such as deoxynivalenol (DON). Culmorin (CUL), a potentially co-occurring Fusarium metabolite, was recently found to inhibit the corresponding detoxification reaction in plants, namely DON-glucoside formation, raising the question whether CUL might affect also the mammalian counterpart. Using cell-free conditions, CUL when present equimolar (67 µM) or in fivefold excess, suppressed DON glucuronidation by human liver microsomes, reducing the formation of DON-15-glucuronide by 15 and 50%, and DON-3-glucuronide by 30 and 50%, respectively. Substantial inhibitory effects on DON glucuronidation up to 100% were found using the human recombinant uridine 5'-diphospho-glucuronosyltransferases (UGT) 2B4 and 2B7, applying a tenfold excess of CUL (100 µM). In addition, we observed the formation of a novel metabolite of CUL, CUL-11-glucuronide, identified for the first time in vitro as well as in vivo in piglet and human urine samples. Despite the observed potency of CUL to inhibit glucuronidation, no significant synergistic toxicity on cell viability was observed in combinations of CUL (0.1-100 µM) and DON (0.01-10 µM) in HT-29 and HepG2 cells, presumably reflecting the limited capacity of the tested cell lines for DON glucuronidation. However, in humans, glucuronidation is known to represent the main detoxification pathway for DON. The present results, including the identification of CUL-11-glucuronide in urine samples of piglets and humans, underline the necessity of further studies on the relevance of CUL as a potentially co-occurring modulator of DON toxicokinetics in vivo.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Immina Vierheilig
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Heidi Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Christian Hametner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Bojan Šarkanj
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| |
Collapse
|
87
|
Aupanun S, Poapolathep S, Phuektes P, Giorgi M, Zhang Z, Oswald IP, Poapolathep A. Individual and combined mycotoxins deoxynivalenol, nivalenol, and fusarenon-X induced apoptosis in lymphoid tissues of mice after oral exposure. Toxicon 2019; 165:83-94. [PMID: 31054920 DOI: 10.1016/j.toxicon.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022]
Abstract
Lymphocytes are involved in the adaptive immune response and are highly sensitive to type B trichothecenes. In grains and their products, deoxynivalenol (DON) is the most widely distributed trichothecene. It usually co-occurs with other type B members, such as nivalenol (NIV) and fusarenon-X (FX), because they are all produced by the same Fusarium fungi. However, the combined effects of mycotoxins are complex and cannot be predicted based on individual toxicity. Thus, the adverse effects of combined toxins are of increasing concern. The aim of this study was to compare the toxicity to lymphoid tissues of mice of DON alone or mixed with NIV or FX. Forty, 3-week-old male ICR mice were given a single oral administration of a vehicle control, one toxin, binary, or ternary mixtures and then sacrificed at 12 h after exposure. Mice treated with FX alone showed marked nuclear condensation and fragmentation of lymphocytes in the cortical thymus and germinal center of Peyer's patches and spleen. Similarly, these animals clearly displayed TUNEL- and Caspase-3-positive cells in the regions. In contrast, minimal changes were noticed in the lymphoid tissues of mice receiving combined toxins when compared to this toxin alone. In addition, oral exposure to FX alone significantly up-regulated the relative expression of Bax, Caspase-3, Caspase-9, and Trp53. These data increase our understanding of the toxic actions of DON, NIV, and FX alone or in combination to lymphocytes and can be used to assess the possible risk associated with their co-occurrences in foodstuffs to human and animal health.
Collapse
Affiliation(s)
- Sawinee Aupanun
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand
| | - Saranya Poapolathep
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand
| | - Patchara Phuektes
- Department of Pathobiology, Faculty of Veterinary Medicine, Khonkaen University, Khonkaen, 40002, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Via Livornese, San Piero a Grado, 56122, Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Amnart Poapolathep
- .Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand; Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, CASAF, NRU-KU, Bangkok, 10900, Thailand.
| |
Collapse
|
88
|
The Effects of Deoxynivalenol (DON) on the Gut Microbiota, Morphology and Immune System of Chicken – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Feed contamination is a major cause of diseases outbreak in the poultry industry. There is a direct relationship between feeding, the intestinal microbiota and how the immune system responds to disease infestation. Cereals which form the bulk of poultry feed are mostly contaminated by mycotoxins of Fusarium origin. Adequate knowledge of mycotoxins and their effects on animals is necessary. Deoxynivalenol (DON) is a major contaminant of poultry feed. DON has the ability to bind with a large number of eukaryotic ribosomal subunits because of the presence of an epoxide group and these disrupt the activity of peptidyl transferase and the elongation or shortening of peptide chains. Deoxynivalenol has varying effect ranging from acute, overt diseases with high morbidity and death to chronic disease, decreased resistance to pathogens and reduced animal productivity. Deoxynivalenol also impairs the intestinal morphology, nutrient absorption, barrier function, and the innate immune response in chickens. This review highlights the impacts of deoxynivalenol on the immune system, intestinal microbiota composition and the morphology of chicken.
Collapse
|
89
|
Mendel M, Karlik W, Chłopecka M. The impact of chlorophyllin on deoxynivalenol transport across jejunum mucosa explants obtained from adult pigs. Mycotoxin Res 2019; 35:187-196. [PMID: 30710317 PMCID: PMC6478627 DOI: 10.1007/s12550-019-00342-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
Regardless of the efforts put into preventing or reducing fungal growth, extensive mycotoxin contamination has been reported in animal feeds. In the case of pigs, one of the mycotoxins of major concern is deoxynivalenol (DON). The use of adsorbents as feed additives represents one of the strategies to control mycotoxins' contamination in feedstuff. Therefore, the aim of the study was to verify the ability of chlorophyllin (CHL) to reduce the absorption rate of DON in swine mucosa explants. Intestine was obtained from routinely slaughtered adult pigs. The mucosa explants were studied by means of Ussing chamber technique. The effect of DON (10 and 30 μg/ml) on mucosa viability and permeability and CHL (100 μg/ml) impact on DON (30 μg/ml) absorption was verified. The results revealed that mucosa explants isolated from adult animals remained unaffected for 90 min in the presence of DON in the lower concentration (10 μg/ml). Mycotoxin in the higher dose (30 μg/ml) increased mucosa permeability (decreased transepithelial electrical resistance value) and enhanced paracellular transport of lucifer yellow and mannitol but did not affect lactate dehydrogenase leakage. The introduction of CHL neither diminished the absorption rate of DON across swine mucosa explants nor prevented the toxic effects of DON on intestine. In conclusion, the results confirm the negative effect of DON on pig jejunum mucosa. However, the toxic effect of DON was observed only when it was used in relatively high doses. A promising adsorbent agent, CHL, failed to reduce the intensity of DON transport across intestine under in vitro conditions.
Collapse
Affiliation(s)
- Marta Mendel
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 8 Ciszewskiego St, Warsaw, Poland.
| | - Wojciech Karlik
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 8 Ciszewskiego St, Warsaw, Poland
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 8 Ciszewskiego St, Warsaw, Poland
| |
Collapse
|
90
|
Jahanian E, Mahdavi AH, Asgary S, Jahanian R, Tajadini MH. Effect of dietary supplementation of mannanoligosaccharides on hepatic gene expressions and humoral and cellular immune responses in aflatoxin-contaminated broiler chicks. Prev Vet Med 2019; 168:9-18. [PMID: 31097128 DOI: 10.1016/j.prevetmed.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/16/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023]
Abstract
The present study was conducted to investigate the effects of dietary supplementation of mannanoligosaccharides (MOS) on expression of hepatic immunological genes and immune responses in aflatoxin-contaminated broiler chicks. A total of 336 seven-day-old Ross broiler chicks were randomly allotted to 7 experimental treatments with 4 replicates and 12 birds per replicate. Experimental treatments consisted of 2 aflatoxin levels (0.5 and 2 ppm) and 3 supplemental MOS levels (0, 1 and 2 g/kg) as a 2 × 3 factorial arrangement in comparison with a control group (unchallenged group). The chicks were challenged with a mix of aflatoxins during 7-28 d of age. Results showed that aflatoxin challenge resulted in the lower antibody titers against infectious bronchitis (IBV) and bursal (IBD) diseases viruses. In addition, aflatoxin-contaminated birds had a lower (P < 0.0001) lymphocyte percentage and a decline in (P < 0.01) interleukin-2 (IL-2) mRNA abundance. Likewise, heterophil proportion, heterophil to lymphocyte ratio and gene expressions of hepatic interleukin-6 (IL-6) and C reactive protein (CRP) were raised (P < 0.001) by increasing dietary aflatoxin level. Dietary inclusion of MOS increased (P < 0.05) antibody titers against IBV, IBD and Newcastle disease virus. Lymphocyte proportion and hepatic IL-2 gene expression were greater (P < 0.0001) in MOS-supplemented birds. Furthermore, supplemental MOS decreased hepatic IL-6 and CRP abundances. Additionally, inclusion of 2 g/kg MOS resulted in the upregulation (P < 0.01) of hepatic IL-2 gene expression in birds contaminated with 0.5 ppm aflatoxin. The present results indicate that supplemental MOS could improve cellular immunity via the upregulation of hepatic IL-2 gene expression in birds challenged with aflatoxins.
Collapse
Affiliation(s)
- E Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - A H Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - R Jahanian
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M H Tajadini
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
91
|
Aupanun S, Phuektes P, Poapolathep S, Alassane-Kpembi I, Oswald IP, Poapolathep A. Individual and combined cytotoxicity of major trichothecenes type B, deoxynivalenol, nivalenol, and fusarenon-X on Jurkat human T cells. Toxicon 2019; 160:29-37. [DOI: 10.1016/j.toxicon.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
|
92
|
Yang JH, Wang JH, Guo WB, Ling AR, Luo AQ, Liu D, Yang XL, Zhao ZH. Toxic Effects and Possible Mechanisms of Deoxynivalenol Exposure on Sperm and Testicular Damage in BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2289-2295. [PMID: 30707021 DOI: 10.1021/acs.jafc.8b04783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON, vomitoxin) is the most common mycotoxin in cereals and grains. DON contamination can cause a serious health threat to humans and farm animals. DON has been reported to exert significant toxicity effects on the male reproductive system. However, the causes and mechanisms underlying efforts of DON on sperm and testicular damage remain largely unclear. In the present study, we thoroughly investigated this issue. Eighty male BALB/c mice were randomly divided into a control group ( n = 40) and DON treatment group (2.4 mg/kg of body weight, n = 40). The ratio of testes and seminal vesicle to body, sperm survival and motility, and morphology of sperm and testis were observed in DON-treated and control mice. In addition, the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and glutathione (GSH), and also the expression levels of JNK/c-Jun signaling and apoptotic factors such as caspase-3, caspase-8, caspase-9, Bim, and Bid were analyzed and compared between the two groups. The results demonstrated that a single topical application of DON significantly increased the percentage of abnormal sperm and decreased the motility of sperm, indicating the sperms are damaged by DON. Additionally, the reduced relative body weight of testis and severe destruction of testicular morphology were observed. Moreover, the increased levels of ROS and MDA levels and decreased activities of SOD and GSH were found in testicular tissues, suggesting that oxidative stress is induced by DON treatment. Furthermore, DON upregulated the expression of stress-induced JNK/c-Jun signaling pathway proteins as well as JNK/c-Jun phosphorylation proteins. In addition, DON could enhance testicular apoptosis by increasing expression levels of apoptotic genes including Bim, cytochrome c, caspase 3, caspase 8, and caspase 9. These results suggest that DON exposure can cause sperm damage, oxidative stress, testicular apoptosis, and phosphorylation of JNK/c-Jun signaling pathway. The underlying mechanisms may be that DON induces sperm damage by exacerbating oxidative stress-mediated testicular apoptosis via JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Jun-Hua Yang
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Jian-Hua Wang
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Wen-Bo Guo
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - A-Ru Ling
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Ai-Qiong Luo
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Dan Liu
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Xian-Li Yang
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| | - Zhi-Hui Zhao
- Institute for Agri-Food Standards and Testing Technology , Shanghai Academy of Agricultural Sciences , Shanghai , 201403 , People's Republic of China
| |
Collapse
|
93
|
Effects of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on parameters associated with oxidative stress in HepG2 cells. Mycotoxin Res 2019; 35:197-205. [PMID: 30806951 DOI: 10.1007/s12550-019-00344-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
This work studied the effect of deoxynivalenol (DON) and two of its acetylated analogs (3-ADON, 15-ADON) on first indicators of oxidative stress status, namely production of reactive oxygen species (ROS) and induction of lipid peroxidation (LPO), in HepG2 cells. HepG2 cells were exposed to different concentrations of the three toxins, either alone or in combinations, for 24, 48, and 72 h. Results of cytotoxicity obtained in HepG2 cells were correlated with the detection of ROS and LPO. This effect was inversely correlated with ROS while directly correlated with LPO for the assayed mycotoxins in individual treatment. Combinations of two toxins containing 15-ADON yielded highest values, while for two-toxin combinations with 3-ADON, the effects were minor. A combination of all three mycotoxins alleviated ROS production and the highest levels in LPO were detected, in association to a final breakdown of adaption of ROS early produced by HepG2. In conclusion, parameters of stress evaluation presented in this study (ROS and LPO), revealed increases in HepG2 cells exposed to DON, 3-ADON, and 15-ADON either individually or combined.
Collapse
|
94
|
Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: A review. Food Chem Toxicol 2018; 121:666-675. [DOI: 10.1016/j.fct.2018.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/03/2023]
|
95
|
Li X, Guo Y, Zhao L, Fan Y, Ji C, Zhang J, Ma Q. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growing-finishing pigs fed with deoxynivalenol contaminated diets. Food Chem Toxicol 2018; 121:246-251. [DOI: 10.1016/j.fct.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
96
|
Szabó-Fodor J, Szabó A, Kócsó D, Marosi K, Bóta B, Kachlek M, Mézes M, Balogh K, Kövér G, Nagy I, Glávits R, Kovács M. Interaction between the three frequently co-occurring Fusarium mycotoxins in rats. J Anim Physiol Anim Nutr (Berl) 2018; 103:370-382. [PMID: 30362174 DOI: 10.1111/jpn.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
To test the complex, acute biochemical effects of combined, naturally co-occurring fusariotoxins, a 5-day rat study was performed. Mycotoxin treatment was invented by intraperitoneal injection: FB1 (F): 9 µg/animal/day (approx. 30 µg/kg bw/day), DON (D): 16.5 µg/animal/day (approx. 55 µg/kg bw/day) and ZEN (Z): 12.75 µg/animal/day (approx. 42.5 µg/kg bw/day). The binary groups (FB1 and DON [FD], FB1 and ZEN [FZ] and DON and ZEN [DZ]) as well as the ternary (FB1 , DON and ZEN [FDZ]) group were dosed at the same combined level as the individual mycotoxins. Body weight, feed intake and mortality were not affected by any of the treatments. FB1 and DON in combination (FD) increased the plasma aspartate aminotransferase activity synergistically (compared to the individual FB1 and DON). In the liver, both the total glutathione (GSH) and the glutathione peroxidase (GPx) activity were increased (p < 0.05) by the binary FB1 and ZEN (FZ) and the DON and ZEN (DZ) groups as well as the ternary FB1 , DON and ZEA group (FDZ) compared to the control. The GSH level of the ternary group was significantly increased compared to the FB1 group, whereas the GPx activity of the ternary group was significantly increased compared to all three the individual mycotoxin groups. The Bliss independence method revealed synergism between DON and ZEN (DZ), as well as FB1 and DON (FD) on liver GPx activity. None of the toxins alone or in combination exerted strong genotoxicity on lymphocytes, neither on the gross histopathological characteristics. However, even at these low levels acute exposure of more than one of these mycotoxins (FB1 , DON and ZEN) affected metabolic and detoxification changes.
Collapse
Affiliation(s)
- Judit Szabó-Fodor
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - András Szabó
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Dániel Kócsó
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Kinga Marosi
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Brigitta Bóta
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Mariam Kachlek
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | - Miklós Mézes
- Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Krisztián Balogh
- Department of Nutrition, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - György Kövér
- Faculty of Economic Sciences, Kaposvár University, Kaposvár, Hungary
| | - István Nagy
- Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| | | | - Melinda Kovács
- MTA-KE Mycotoxins in the Food Chain Research Group, Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary.,Faculty of Agricultural and Environmental Sciences, Kaposvár University, Kaposvár, Hungary
| |
Collapse
|
97
|
Woelflingseder L, Del Favero G, Blažević T, Heiss EH, Haider M, Warth B, Adam G, Marko D. Impact of glutathione modulation on the toxicity of the Fusarium mycotoxins deoxynivalenol (DON), NX-3 and butenolide in human liver cells. Toxicol Lett 2018; 299:104-117. [PMID: 30244016 DOI: 10.1016/j.toxlet.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
DON, NX-3 and butenolide (BUT) are secondary metabolites formed by Fusarium graminearum. Evidence for formation of DON-glutathione adducts exists in plants, and also in human liver (HepG2) cells mass spectrometric evidence for GSH-adduct formation was reported. NX-3 is a DON derivative lacking structural features for Thiol-Michael addition, while BUT has the structural requirements (conjugated double bond and keto group). In the present study, we addressed whether these structural differences affect levels of intracellular reactive oxygen species in HepG2 cells, and if intracellular GSH levels influence toxic effects induced by DON, NX-3 and BUT. Pre-treatment with an inhibitor of GSH bio-synthesis, L-buthionine-[S,R]-sulfoximine, aggravated substantially BUT-induced cytotoxicity (≥50 μM, 24 h), but only marginally affected the cytotoxicity of DON and NX-3 indicating that GSH-mediated detoxification is of minor importance in HepG2 cells. We further investigated whether BUT, a compound inducing alone low oral toxicity, might affect the toxicity of DON. Under different experimental designs with respect to pre- and/or co-incubations, BUT was found to contribute to the combinatorial cytotoxicity, exceeding the toxic effect of DON alone. The observed combinatorial effects underline the potential contribution of secondary metabolites like BUT, considered to be alone of low toxicological relevance, to the toxicity of DON or structurally related trichothecenes, arguing for further studies on the toxicological relevance of naturally occurring mixtures.
Collapse
Affiliation(s)
- Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Tina Blažević
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Maximilian Haider
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria.
| |
Collapse
|
98
|
Pierron A, Bracarense APFL, Cossalter AM, Laffitte J, Schwartz-Zimmermann HE, Schatzmayr G, Pinton P, Moll WD, Oswald IP. Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule deoxynivalenol in piglets. Arch Toxicol 2018; 92:3381-3389. [DOI: 10.1007/s00204-018-2293-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
99
|
Wang X, Tang J, Geng F, Zhu L, Chu X, Zhang Y, Rahman SU, Chen X, Jiang Y, Zhu D, Feng S, Li Y, Wu JJ. Effects of deoxynivalenol exposure on cerebral lipid peroxidation, neurotransmitter and calcium homeostasis of chicks in vivo. Toxicon 2018; 150:60-65. [DOI: 10.1016/j.toxicon.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
|
100
|
Carere J, Hassan YI, Lepp D, Zhou T. The Identification of DepB: An Enzyme Responsible for the Final Detoxification Step in the Deoxynivalenol Epimerization Pathway in Devosia mutans 17-2-E-8. Front Microbiol 2018; 9:1573. [PMID: 30065709 PMCID: PMC6056672 DOI: 10.3389/fmicb.2018.01573] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/25/2018] [Indexed: 12/03/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins found in cereal grains and grains contaminated with DON can cause health issues for both humans and animals and result in severe economic losses. Currently there is no feasible method to remediate affected grains. The development of a biological method for detoxification is becoming increasingly more plausible with the discovery of microbes which can transform DON to a relatively non-toxic stereoisomer, 3-epi-DON. Although bacteria capable of detoxifying DON have been known for some time, it is only recently an enzyme responsible was identified. In Devosia mutans 17-2-E-8 (Devosia sp. 17-2-E-8) a two-step DON epimerization (Dep) pathway, designated as the Dep system, completes this reaction. DepA was recently identified as the enzyme responsible for the conversion of DON to 3-keto-DON, and in this report, DepB, a NADPH dependent dehydrogenase, is identified as the second and final step in the pathway. DepB readily catalyzes the reduction of 3-keto-DON to 3-epi-DON. DepB is shown to be moderately thermostable as it did not lose significant activity after a heat treatment at 55°C and it is amenable to lyophilization. DepB functions at a range of pH-values (5-9) and functions equally well in multiple common buffers. DepB is clearly a NADPH dependent enzyme as it utilizes it much more efficiently than NADH. The discovery of the final step in the Dep pathway may provide a means to finally mitigate the losses from DON contamination in cereal grains through an enzymatic detoxification system. The further development of this system will need to focus on the activity of the Dep enzymes under conditions mimicking industrially relevant conditions to test their functionality for use in areas such as corn milling, fuel ethanol fermentation or directly in animal feed.
Collapse
Affiliation(s)
| | | | | | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|